
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

Cite this column as follows: Douglas A. Lyon “I Resign! Resigning Jar Files with Initium.”, in
Journal of Object Technology, vol. 7. no. 4, May-June 2008 pp. 9-27
http://www.jot.fm/issues/issue_2008_05/column2/

I Resign! Resigning Jar Files with
Initium.

Douglas Lyon, Ph.D.

Abstract
This paper describes how to resign Jar files. Jar files (Java archives) are used by
technologies (like Java Web Start) to deploy applications that are run with increased
privileges. The Jar files are signed with certificates that generally expire after a year.
The annual resigning of the files is therefore an event that occurs after the signer
has forgotten how resigning is done.
Manual resigning of Jar files is a tedious and error-prone task. All the more so when
there are many of them. This article shows how to automate the task. Considering
that I have over 250 Jar files that have to be resigned each year, a manual task is
not an option.
The methodology for resigning a Jar file cannot include signing the Jar file twice. Jar
files that are signed twice create an error during verification. Unsigning a Jar file is
not a straightforward task. Thus, our approach is to expand the Jar file, remove the
expired certificate and then repack and resign the Jar file with the new certificate.
We also show how to obtain a new certificate, from a free certificate provider.
This paper addresses a sub-problem of the Initium project, a joint, on-going project
between the Fairfield University and the DocJava, Inc. Initium is a Latin word that
means: “at the start”.

1 THE PROBLEM

Every year the number of Jar files that we have to deploy grows. Some of the Jar files
are primary containers of applications (with a main method). Other Jar files are
containers of commonly used libraries. Still other Jar files are containers of native
methods. Regenerating the Jar files, with a new certificate, is what we term resigning
the Jars. This annual event requires that we:

1. get a new certificate,
2. load the certificate into our keystore(s),
3. unjar the already signed Jar files,
4. rejar the directories into Jar files of the same name,
5. sign the Jar files and
6. verify the Jar file signatures.

The procedure takes several minutes. Even so, we have often performed the procedure
on the server, as this is where most of the Jar files reside. Further, the new certificate

I RESIGN! RESIGNING JAR FILES WITH INITIUM.

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

needs to be distributed to various machines. Development machines and the web-
server, all have key stores. Each of these machines is capable of signing Jar files. As a
result, each key store must be a recipient of the new certificate. This is typically done
by installing the certificate into one key store, then copying the key store file from one
machine to another.

2 GETTING A NEW CERTIFICATE

The first assumption behind the renewal of a certificate is that you already have an old
one. If this is not the case, you should probably make reference to [Lyon 2004].

In order to get a new certificate, proceed to the Certificate Authority (CA) web
site. In my case, I go to the Thawte web site at
https://www.thawte.com/cgi/personal/cert/enroll.exe and login.

Figure 2-1. Request a Certificate

Select the link labeled “Developers of New Security Applications ONLY”. Then
select “test”. In the next dialog, select “Paste-in CSR Certificate Enrollment”, as
shown in Figure 2-2.

Figure 2-2. Select a “Paste-in CSR Certificate”

Figure 2-2 shows the pop-up dialog that asks to create a CSR (Certificate Signing
Request). Select “Test” in order to past in the CSR.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 21

Figure 2-3. Confirm the Certificate Name

Figure 2-3 confirms that the recipient is correct.

Figure 2-4. E-mail confirmation

Figure 2-4 confirms the e-mail address is correct.

Figure 2-5. Final Confirmation

Figure 2-5 shows that a “final confirmation” is needed.

Figure 2-6. CSR Dialog

Figure 2-6 shows the CSR dialog, where the CSR is to be pasted in.
Generate a public key using keytool.
keytool -genkey -keyalg RSA -alias docjavaInc

I RESIGN! RESIGNING JAR FILES WITH INITIUM.

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Now to get my certificate:
keytool -certreq -file keystore.txt -alias docjavaInc

Here is the output from the certificate request:
more keystore.txt

-----BEGIN NEW CERTIFICATE REQUEST-----
MIME Encoded Data
-----END NEW CERTIFICATE REQUEST-----

This is pasted into the Thawte web form to yield a distinguished certificate.
Now I proceed to my Thawte accounts’ certificate manager page, at:

https://www.thawte.com/cgi/personal/cert/status.exe and check the status of my X509
certificate request. After a few minutes, it changes status from “pending” to “issued”
and I fetch my new X.509 certificate.

Figure 2-7. Fetch Your Certificate

Figure 2-7 shows the area that enables retrieval of the certificate.
In order to import the certificate into the key store, the PKCS7 part of the

certificate must be saved into a file and then altered so that it looks like the following:
-----BEGIN PKCS #7 SIGNED DATA-----
MIII7AYJKoZIhv…

The Initium GUI has a cleanThawtes menu item that automates the processing of
certitificates returned by Thawte. It is based on the work of Richard Dallaway
[Dallaway].

Figure 2-8. The Initium Dialog

Figure 2-8 shows the menu item being selected for cleaning the returned certificate
under to the pk8.cert format. This is imported into the keystore file using:

keytool -import -file pk8.cert -alias docjavainc –trustcacerts

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 23

Errors in the parameters passed to the keytool command result in cryptic exceptions.
For example:

keytool -import -file pk8.cert -trustcacerts
Enter keystore password:
keytool error: java.lang.Exception: Input not an X.509 certificate

The default location for the keystore file is “.keystore” and is located in the users’
home directory. In order to deal with the case of an improperly formatted certificate, I
have created a more sophisticated way to get certificates, one that invokes the Thawte
cleaner (that is, the API can import the improperly formatted certificates form
Thawte). Thus we are able to run the Initium key wizard under a series of different
situations. For example, when no .keystore file appears in the users’ home, the
program will prompt you for a key store file. If you don’t have one, the program will
offer to make one for you, adding a self-signed certificate. The program will also offer
to create a certificate request file, which can be used to obtain a trusted certificate.
Thus easing key management, a little.

3 RESIGNFILE – SHELL SCRIPTS AND ANT

A shell script can be used to resign Jar files. Here are the basic steps to resigning a Jar
file:

1. Create a temporary directory (e.g., foo).
2. Move the Jar file into the foo directory.
3. Decompress the Jar file.
4. Remove the META-INF directory and old Jar file.
5. Create a new Jar file and sign it with the new certificate.

A csh script, called resignFile follows:
#! /bin/csh -f

Usage: for_each_file file(s)

if ($#argv == 0) then # arguments?
 echo "Usage: $0 file(s)"
 exit 1
endif
rm -rf foo
mkdir foo
foreach file ($argv[*]) # expand argument word list
 echo $file
 mv $file foo
 cd foo
 jar -xf $file

I RESIGN! RESIGNING JAR FILES WITH INITIUM.

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 rm -rf META-INF
 rm $file
 jar -cf $file .
 jarsigner -storepass plainTextPasswordHere $file docjava
 mv $file ..
 cd ..
end

There are several problems with such a script. First, the plain-text password is
embedded in the source code (as well as the alias for the certificate). These problems
can be resolved by changing these elements from literals embedded in the code into
command-line parameters. Worse, there is no verification of the Jar file and the script
is not cross-platform.

Existing technologies for resigning Jar files are typically based in ant. For
example:

<signjar jar="${dist}/lib/ant.jar"
alias="docjava" storepass="plainTextPasswordHere"/>

The ant-based technology is cross-platform, but it suffers from an embedded plain-
text password. A variant on the use of the signjar task avoids (or at least moves) the
plain-text parameters:

<signjar keystore="${keystore.file}" storepass="${keystore.passwd}"
alias="${alias}" lazy="true" jar="${jarFile}" />

We note that alias names can be longer than 8 characters, but the jarsigner truncates
the rsa and sf file base name to 8. For example, in the META-INF
directory, the docjavaInc alias is used to create two files,
DOCJAVAI.RSA and DOCJAVAI.SF.

If two aliases are not unique for the first 8 characters, the jarsigner will fail.
Even worse, webstart will fail if the Jar file is signed by more than one signature.

It will also fail if the Jar files in a project are signed by different signatures.
In summary, shell scripts are not cross-platform, and ant scripts (as well as shell

scripts) encourage the embedding of plain-text passwords in files.

4 PROGRAMMATIC RESIGNING OF THE JAR FILE

This section describes how we implemented the resigning of Jar files using a custom
Java API. The tool addresses the weakness of ANT, in that it does not hold passwords
in plaintext files. All information is held in user preferences and is password protected
by the users login id. Thus, it should be as secure as the users’ account (in theory).
The other weakness that this program addresses is one of portability. The shellscript
approach only works under Unix. Our approach is deployed as a webstart application
and should work on several platforms. Here are the system requirements:

1. JDK 1.5 or better is installed,
2. The key store is on the local disk
3. The user has the key store password and

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 25

4. A new certificate is in the key store with a known alias

Figure 4-1. Key store Settings

Figure 4-1 shows that the key store settings populating the key store dialog box after
having been saved in preferences. The location of the JDK is set in another dialog
(and also persisted in preferences). These things do not change often, and a GUI
becomes more user-friendly if it makes use of reasonable defaults.

Figure 4-2. Resign jars

Figure 4-2 shows the menu item that brings up the directory-choice dialog box. This
allows the user to select the root directory that contains all the Jar files to be resigned.
Once the process begins, it is automatic, resigning all Jar files in the root directory and
its sub-directories. We have created a class, called SignUtils and it contains several
overloaded resignJars methods. For example:

public static void resignJars() throws NoSuchAlgorithmException,
 IOException, CertificateException, KeyStoreException {
 File f = Futil.getReadDir("select a root resign directory");

 DirList dl = new DirList(f, "jar");

 File[] fa = dl.getFiles();
 String[] s = SelectorDialog.getStringSelectorDialog(fa);
 for (String aFile:s){
 resignJar(new File(aFile));
 }
 PrintUtils.print(fa);
 }

The DirList class does a recursive search for all files whose file name suffix is “jar”.

public static void resignJar(File file) throws
 NoSuchAlgorithmException, IOException,
 CertificateException, KeyStoreException {

I RESIGN! RESIGNING JAR FILES WITH INITIUM.

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 unsignJar(file);
 WebStartBean wsb = WebStartBean.getWsbFromPreferences();
 signJar(file, wsb);
 }

The resignJar method makes use of the WebStartBean, parameter for the signJar
operation. We are unable to modify the contents of a Jar directly, so we decompress
the Jar file, delete the signatures in the META-INF directory and then re-compress:

public static void unsignJar(File inputJar) {
 //File out = Futil.getReadDir("select output dir");
 File out = new File(inputJar.getParent(), "tmp");
 Futil.deleteDirectory(out);
 out.mkdir();
 ZipUtils.unjar(inputJar, out);
 Futil.deleteDirectory(new File(out, "META-INF"));

 File newUnsignedJar = new File(inputJar.getName());
 ZipUtils.createJar(newUnsignedJar, out);
 Futil.deleteDirectory(out);
 }

We gain access to the Jar and JarSigner tools, by executing processes on the host
operating system. Their location is obtained from:

public static File getJarSignerPath() {
 // first try the windows location
 String command = "jarsigner";
 return SystemUtils.getSdkCommand(command);

 }

 public static File getJarPath() {
 // first try the windows location
 String command = "jar";
 return SystemUtils.getSdkCommand(command);

 }

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 27

Static methods like getSdkCommand are ad-hoc implementations of JDK tool
locators, custom built for each operating system. Presently, we are only able to run on
MacOS, Linux and Windows.

5 CONCLUSION

Programmatic use of the JDK tools has enabled us to create an API that automates the
signing of Jar files. This eases maintenance, somewhat. Our technique for locating
JDK tools is ad-hoc, and probably does not work reliably on all platforms. This is a
problem that could be solved if Sun would release an API that supported the features
of these tools. Lacking that, we could write our own (given additional time).

It would be really nice if there were a way to programmatically retrieve
certificates from the Certificate Authority.

REFERENCES

[Lyon 2004] “The Initium X.509 Certificate Wizard” by Douglas A. Lyon, Journal of
Object Technology, vol. 3, no. 10, November-December 2004, pp. 75-88.
http://www.jot.fm/issues/issue_2004_11/column6/

About the author

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He is currently the Chairman of the Computer Engineering

Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or
co-authored three books (Java, Digital Signal Processing, Image Processing in Java
and Java for Programmers). He has authored over 30 journal publications. Email:
lyon@docjava.com. Web: http://www.DocJava.com.

