
JOURNAL OF OBJECT TECHNOLOGY
 Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 6. July - August 2006

Cite as follows: Douglas Lyon and Francisco Castellanos: “The Initium RJS
ScreenSaver: Part 2, UNIX”, in Journal of Object Technology, vol. 5, no. 6, July-August 2006,
pp. 7-15

The Initium RJS ScreenSaver: Part 2,
UNIX

Douglas A. Lyon and Francisco Castellanos

Abstract
This paper describes a Java-based screensaver technology for the Initium Remote Job
Submission (RJS) system running on UNIX XWindows. Initium RJS is a Java Web Start
(JAWS) technology that enables Java-based grid computing. The Initium RJS system
uses screensavers to enable CPU scavenging.
A screensaver is a program that activates during a period of user-computer quiescence.
Detection of this quiet time enables the use of otherwise wasted CPU cycles. When the
period of user-computer quiescence ceases, the screensaver terminates any currently
running compute jobs, releasing the computer back for general use. Such a program
constitutes a first step toward utilizing otherwise idle compute resources in a grid
computing system.
We are motivated to study screen-savers because they represent a minimally invasive
technology for volunteering CPU services. Typically, computers are used between 40
and 60 hours out of a 168-hour week. This represents approximately 35% utilization.
Our theory is that a screen-saver based cycle scavenging will improve this number
dramatically.
We are motivated to provide a Java-based environment in order to capitalize on Java’s
inherent heterogeneity. This makes a larger universe of grid-compute servers available,
without requiring changes to the computational program.
This paper is part 2 of a 5 part series on Java-based screensavers. Part 1 addressed
the creation of screensavers on MS Windows platform systems. Parts 2 and 3 address
the Linux and Macintosh-based screensavers. Part 4 addresses the automatic
deployment and installation of the screensavers. Part 5 speaks to the problem of
screensaver integration with the Initium RJS system.
Initium RJS is a joint project between DocJava, Inc. and Fairfield University. The goal of
the Initium RJS system is to improve the accessibility of grid computing to Java
developers.

THE INITIUM RJS SCREENSAVER: PART 2, UNIX

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

1 INTRODUCTION

This paper describes the application of our technology to the UNIX platform. Our
previous paper covered the Windows platform, and our next paper will cover the
Macintosh platform. Our goal is to make use of these screensavers in the Initium RJS
system, our grid-computing framework. While we acknowledge that the form of the
screensaver installation, as presented in this article, is tedious and error-prone, we will (in
a future paper) describe the automatic installation of a compute-serving screensaver. It is
our hope that our system will help in the promotion of Java as a grid-based computing
platform.

This paper shows how to create a screensaver using an existing framework called
SaverBeans. The SaverBeans development kit is an open-source, freely-available
framework consisting of both C/C++ and Java code. The kit is available for both the
Windows and Linux systems. However, it is not available for the Macintosh. The
alternative to creating a Macintosh-based screensaver is to run X-windows under the
Macintosh (an atypical use of the Macintosh).

This paper introduces the SaverBeans SDK for UNIX with an XWindows GUI. The
idea of using screensavers for Java-based grid computing is not new [SaverScience].
However, the work was not continued and present implementations do not make use of
screensavers for grid computing [George].

2 SAVERBEANS – A JAVA SCREENSAVER FRAMEWORK

The SaverBeans Screensaver SDK is a project of the Java.net group. It provides a set of
native subroutines that invoke Java methods when a screensaver activates and deactivates
(i.e., experiences a change of state). The SaverBeans SDK has its roots in the JDIC
project (JDesktop Integration Components). The JDIC project aims to make Java™
technology-based applications ("Java applications") first-class citizens of current desktop
platforms without sacrificing platform independence. Its mission is to enable seamless
desktop/Java integration [JDIC1].

2.1. Building the SaverBeans SDK

In order to install the screensaver in a UNIX/XWindows workstation, you must have the
standard xscreensaver installed. While most workstation installations come with the
screensaver already installed, most installations do not include the source code, that is
needed for the native method builds. The xscreensaver installation includes a daemon that
detects quiescence [Zawinski]. To determine the version of the xscreensaver type:

xscreensaver &
xscreensaver-command –version

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 9

The computer responds with:
XScreenSaver 4.21

The ‘&’ in the first line place the xscreensaver in the background.
The method for installation of the xscreensaver may vary from platform to platform.

Download http://www.jwz.org/xscreensaver/xscreensaver-4.23.tar.gz and uncompress
and untar the xscreensaver file and cd into that directory, then run configure and make.
Type:

tar -vxzf xscreensaver-4.23.tar.gz
cd xscreensaver-4.23/
./configure
make
make install

Even if the xscreensaver binaries are already installed, you may still need the source code
to compile the SaverBeans SDK. This has been bundled in a special distribution available
at http://www.docjava.com. As an alternative, you can download the SaverBeans SDK
from https://jdic.dev.java.net/files/documents/880/12349/saverbeans-sdk-0.2-beta.zip and
unzip. Type:

cd saverbeans-sdk-0.2-beta
unzip saverbeans-startup.zip
cp build.properties.sample build.properties

Alter the SaverBeans path in the build.properties directory to reflect the installation
location of the SDK. For example:

saverbeans.path=/opt/saverbeans

becomes:
saverbeans.path=

saverbeans.path=/home/lyon/current/ssbeta/saverbeans-
sdk-0.2-beta/

Make sure that the Java virtual machine is in the PATH and that the JAVA_HOME is set
correctly:

show.docjava.com{lyon}113: which java
/usr/java/jdk1.5.0_04/bin/java
show.docjava.com{lyon}114: echo $JAVA_HOME
/usr/java/jdk1.5.0_04/

Finally build the project using:
ant dist

This will generate a directory called dist. The dist directory contains the distributable
files. Edit the Makefile in the dist/bouncingline-unix directory altering jdkhome and
xscreensaverhome to valid directories. For example:

http://www.jwz.org/xscreensaver/xscreensaver-4.23.tar.gz
http://www.docjava.com
https://jdic.dev.java.net/files/documents/880/12349/saverbeans-sdk-0.2-beta.zip

THE INITIUM RJS SCREENSAVER: PART 2, UNIX

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

jdkhome=/usr/java/jdk1.5.0_04
xscreensaverhome=/home/lyon/current/ssbeta/saverbeans-sdk-0.2-

beta/xscreensaver-4.23

To compile the native methods for the current platform, type:
Make

Notice the files generated: bouncingline-bin and bouncingline.o.
The following section describes how to deploy the screensaver to an XWindows

system under UNIX.

2.3 Deploying

Now that the binaries have been generated, these files can be used to deploy the
screensaver into an XWindow platform. With the native method framework in place, a
wide variety of different screensavers can be authored, in Java, without having to rebuild
the native methods.

The .xscreensaver file needs to be modified to include the bouncingline screensaver.
The xscreensaver-demo program generates this file and places it into the users’ home.
Type:

xscreensaver-demo

Look into the users’ home directory to verify the existence of the .xscreensaver file. To
inform the xscreensaver program that you have a new screensaver, you should edit the
.xscreensaver file in your home directory. To add the bouncingline screensaver to the
.xscreensaver file, use:

programs:
"Bouncingline (java)"/home/lyon/ss/bouncingline -root -
jdkhome /usr/java/jdk1.5.0_04

…

Now execute the screensaver by typing:
xscreensaver-demo

Figure 2.3-1 shows the screensaver dialog box, with the bouncingline screensaver
selected.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 11

Figure 2.3-1. The Screensaver Dialog

For ease of use, the files required to run the screensaver are placed in a single directory
called ss. No root permissions are required to install custom screensavers that reside in
the home directory.

3 MAKEFILE SYNTHESIS

Ant is a multi-platform, java-based, make-like utility. The ScreenSaver SDK uses ant as
well as custom ant tasks, stored in a jar file called saverbeans-ant.jar. In the course of
running the ant dist a make file is synthesized. This is created for UNIX and Windows.
The contents of the dist directory include:

bouncingline-unix/ bouncingline-win32/
bouncingline-unix.zip bouncingline-win32.zip

The bouncingline-unix directory contains the files:
bouncingline bouncingline.jar COPYING saverbeans-

api.jar
bouncingline-bin* bouncingline.o Makefile
bouncingline.c bouncingline.xml README.txt

The Makefile is generated from a template. We have altered this template in order to
generate a file that is somewhat more automatic in its installation. For example:

THE INITIUM RJS SCREENSAVER: PART 2, UNIX

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

Set this to your Java home directory
jdkhome=${JAVA_HOME}

Set this to where the xscreensaver source bundle is

installed
xscreensaverhome=../../xscreensaver-4.23

Further, we have installed a version of the xscreensaver that makes compilation
somewhat more automatic. In order to accomplish these changes, we altered the
Makefile.template file in:

saverbeans-
ant/org/jdesktop/jdic/screensaver/autogen/resources/unix

The template contains a file with variables that to help drive the Makefile synthesizer.
The creation of Makefiles in this way is unique, as far as we know.

4 WRITING A SCREENSAVER

The following code shows how to write a screensaver by subclassing the
SimpleScreenSaver class:

public class Test1
 extends SimpleScreensaver {

 public void paint(Graphics g) {
 Component c = getContext().getComponent();
 int x = 0;
 int y = c.getHeight() / 2;
 g.setColor(Color.WHITE);
 g.setFont(new Font("Dialog",Font.BOLD,30));
 g.drawString("Initium RJS see:

 http://www.docjava.com", x, y);
 }

 public static void main(String[] args) {
 new ScreensaverFrame(new Test1()).setVisible(true);
 }
}

The main method makes an instance of a ScreensaverFrame, used for testing. The
ScreensaverFrame is a subclass of the JFrame and sets the context of the
SimpleScreensaver. This context is an instance of a Component class. In the case of a
JFrame it is also an instance of a Container. Knowing this, we are at liberty to establish a
layout with standard swing components as a part of our screensaver. We need to obtain
the Container of our Component via focus traversal in the init method. For example:

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 13

public class Test2
 extends SimpleScreensaver {
 JPanel buttonControlPanel = getButtonControlPanel();

 private JPanel getButtonControlPanel() {
 JPanel jp = new JPanel();
 jp.setLayout(new FlowLayout());
 jp.add(new RunButton("ok") {
 public void run() {
 System.out.println(getText());
 }
 });
 jp.add(new RunButton("cancel") {
 public void run() {
 System.out.println(getText());
 }
 });
 return jp;
 }

 public void init() {
 Container c =

super.getContext().getComponent().getFocusCycleRootAnc
esto

r();
 c.add(buttonControlPanel);
 }

 public void paint(Graphics g) {
 Component c = getContext().getComponent();
 c.paint(g);
 }

 public static void main(String[] args) {
 new ScreensaverFrame(new Test2()).setVisible(true);
 }
}

The getFocusCycleRootAncestor enables the addition of an arbitrary swing panel to the
display. This is useful for creating GUIs needed for controlling the compute server.

5 SUMMARY

This paper addressed the issue of implementing a Java-based screensaver under the X-
Window system, as well as providing a solution to the automation of installation and

THE INITIUM RJS SCREENSAVER: PART 2, UNIX

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

deployment for these systems. Focus traversal techniques helped with the swing
programming. We find that focus traversal works for screensavers written for either MS
Windows or XWindows. Unlike the MS Windows screen saver, no system administration
privileges were required for installation. Further, unlike MS Windows, Linux does not
need to run a windows server and therefore may not have a screen saver. In such a case,
no screen-saver based system can take advantage of the machine.

Part 3 will describe how to implement a Java-based screen saver on the Macintosh
operating system. Screensaver integration with the grid-based middleware and automatic
screen saver deployment are the topics of Parts 4 and 5 of the Initium RJS paper
sequence.

REFERENCES

[George] Private communications with William L. George, Ph.D., National Institute of
Standards and Technology, 100 Bureau Dr. Stop 8911, Gaithersburg, MD
20899-8911, email: wgeorge@nist.gov, March 15, 2006.

[JDIC1] Java.net: “JDIC project home”, https://jdic.dev.java.net/ Last accessed March 14,
2005.

[SaverScience] William L. George and Jacob Scott, “Screen Saver Science: Realizing
Distributed Parallel Computing with Jini and JavaSpaces”, in 2002
Conference on Parallel Architectures and Compilation Techniques
(PACT2002), Charlottesville, VA, September 22-25, 2002.

[Zawinski] Jamie Zawinski: “A screen saver and locker for the X Window System”
http://www.jwz.org/xscreensaver/

mailto:wgeorge@nist.gov
https://jdic.dev.java.net/

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 15

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Francisco Catellanos. Earned his bachelors degree with honors in
Computer Science at Western Connecticut State University. Francisco
Castellanos worked at Pepsi Bottling Group in Somers, NY as a
software developer. Currently he is working on a thesis to complete his
Master's Degree in Computer Engineering from the Fairfield University.
His research interests include grid computing. Francisco Castellanos is

also employed by Access Worldwide in Boca Raton, FL as a software developer. He can
be contacted at fsophisco@yahoo.com.

mailto:Lyon@DocJava.com
http://www.docjava.com/

