
JOURNAL OF OBJECT TECHNOLOGY 
 Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 1, January-February 2005 

 
 
 
 

Cite as follows: Douglas Lyon: “Resource Bundling for Distributed Computing”, in 
Journal of Object Technology, vol. 4, no. 1, January-February 2005, pp. 45-58. 
 

Resource Bundling for Distributed 
Computing 

Douglas Lyon, Fairfield University, Fairfield CT, U.S.A. 
 
 

Wantonly hacked by an endless stream of nameless,  
faceless undergraduates,  

both men and women,  
often by more than one at the same time,  

Kahindu  fell into a hell-hole of depravity. 

– DL, 1998  

Abstract 
This paper describes techniques for integrating programs and their resources. The goal 
is to distribute the programs, to a variety of platforms, without loosing the resources that 
they need in order to run. Programs so integrated are less fragile than their non-
integrated counterparts. The techniques described include the use of a semi-automatic 
source code synthesizer, XML-based serialization and a base-64 GZIP encoded string 
format. 
The approach is suitable for small data objects (i.e., icons, short audio signals, etc.). It 
has been used, with good success, on a variety of projects. One drawback of the 
technique is that an added step is required during program development in order to 
integrate resources into the code. Another drawback is that integrating resources into 
the source code can dramatically increase the size of the class files. On the other hand, 
once the class files are loaded, the resources are available in memory (and hence, 
quickly accessible). 
The techniques described are a part of the Kahindu project, a joint project between the 
skunk works of DocJava, Inc. and Fairfield University. Kahindu is the name of a village 
in Kenya known for its fine coffee. 

1 INTRODUCTION 

One of the basic problems with Java programs is the fragility that results when data is 
decoupled from source code. For example, suppose that you write a program that seeks to 
make use of an icon in an interface. In order to load the icon, you write: 

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/column4


 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

LookAndFeel.makeIcon(getClass(), "icons/ColorIcon.gif")); 

Now suppose the GIF “ColorIcon” icon file is relocated, relative to the root of the source 
code. This can easily happen during the process of distribution or development. Even 
worse, the missing resource is not detected until run-time (perhaps days or even weeks 
after deployment). For example, if you try to deploy an application that attempts to obtain 
the above icon, without having it properly integrated into the application, you would 
throw an exception, like: 

java.lang.NullPointerException 
 at sun.awt.SunToolkit.getImageFromHash(SunToolkit.java:433) 
 at sun.awt.SunToolkit.getImage(SunToolkit.java:490) 
 at j2d.ImageUtils.getImageResource(ImageUtils.java:873) 
 at j2d.ImageUtils.fetchIcon(ImageUtils.java:887) 

Wouldn’t it be nice if the compiler could make sure that our resources were present, 
before run-time? In this way, we trade off a run-time error for a compile-time error. We 
present some techniques that allow resources to be integrated directly into source code. 
The result is a self-contained resource without the normal source of fragility (i.e., source 
relocation). Hence, we no longer have a program that requires files to be located in 
particular places on the disk. 

The presented technique can be used for any type of resource. Initially, we focus on 
icons. We present the ability to create icons in one of three ways: by grabbing the icon 
using a screen grabbing program, by drawing the icon using either the Kahindu  drawing 
tools or another paint program and finally, by entering the icon using teletype graphics. 
Finally we present an encoding technique that automatically generates Java source code 
from serializable instances. 

Icon Design by Grabbing 

There are often icons that are available as a system resource that can be freely copied. 
These icons start as bit-maps and may be scaled in size to suite the application. The 
Kahindu  program will accept icons of any size. Several applications are able to take 
snapshots of the computer screen. These applications vary from platform to platform. For 
example, Silicon Graphics workstations have an application called Snap, which will save 
a snapshot of the screen. On the Mac there is a keyboard shortcut, <shift-Moth-4> (or the 
grab application) which changes the cursor into a cross hair and allows the user to click 
and drag across the screen. 

Depending on the platform, the screen shot will be saved to a file or to a clipboard. 
The clipboard enables the screen shot to be pasted into another application. 
Unfortunately, Kahindu is rather limited in the number of file types that it currently 
supports. Thus, a third-party application is required to convert the snapshot into an image 
that Kahindu  supports. Currently, this means GIF, PPM or JPEG files. Suppose, for 
example, we wanted to grab the icon image from the system to symbolize magnification. 
Fig. 1-1 shows an image of the magnifier icon. This was grabbed using the screen capture 
facilities on a Mac. 



 
INTRODUCTION 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47 

 
 

Fig. 1-1. The Magnifier Icon 
 

Using an application called Debabelizer [Debabelizer], we save the icon image to a GIF 
file and open it with the Kahindu  program.  

 
 

Fig. 1-2. Save As Binary Icon 
 

Fig. 1-2 shows that the Kahindu  program has a menu for saving the binary icon image.  

 
 

Fig. 1-3. Binary Icon Output as Java 
 

Fig. 1-3 shows the binary icon output at the console as a two-dimensional static byte 
array. Such data takes very little space in the program (15x15 = 225 bytes) and its’ space 
is allocated at compile time. 

Icon Design by Drawing 

Another method for obtaining a binary icon is to draw it. Several excellent paint 
programs are available that can help with drawing icons (including Kahindu).  



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

 
 

Fig. 1-4. The Kahindu Toolbar 
 

Fig. 1-4 shows an image of the Kahindu  toolbar. From left to right, the icons are 
identified as the eraser, pencil, paintbrush, hand, magnifier, marquee, paint can, 
eyedropper, and marker. To draw or modify an existing icon, use the eraser, pencil, 
brush, magnifier and eyedropper. The eraser will clear pixels in the icon. The pencil will 
set pixels to the value selected with the eyedropper. The brush will set a larger array of 
pixels than the pencil. Normally, the icons are small. The Kahindu toolbar icons are all 
15x15 pixels in size. As a result, the magnifier is used to make the image easier to work 
on. 

 
 

Fig. 1-5. Using the Magnifier to Expand the Paint Brush 

 
Fig. 1-5 shows an example of the use of the magnifier icon to enlarge the paintbrush 
image. This type of enlargement works by doubling the number of pixels in the icon, and 
thus growing the icon. To keep the icon the same size, but to enlarge it on the screen, 
simply resize the frame. Once the frame is enlarged, use the drawing tools to modify the 
icon. 



 
INTRODUCTION 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49 

 
 

Fig. 1-6. Elements of One Icon Can Be Used to Create Another 
 

Fig. 1-6 shows how the bristles of the brush were reused to make a face. The design of 
icons is an art and it takes great care to find icons that have cross-cultural meaning. For 
example, icons should probably not contain English language characters, as these are not 
well known in all cultures. 

Icon Design by Typing  

The programmer can design icons by hand-keying them into the byte array. The 
IconFrame class resides in the Kahindu gui package. It contains several icons, some of 
which were typed by hand. Sometimes this is the easiest way to enter an icon, as it gives 
fine-grained control over the value and location of each pixel. 

 
 

Fig. 1-7. Hand Typing an Icon 
 

Fig. 1-7 shows the marker icon, as it was hand-encoded into the IconFrame. The shift by 
exactly one pixel during each entry of the zeros in the array, as well as the precise 
centering of the mark, is simplified by hand entry. In fact, some programs (such as 
Maple) can output Teletype graphics, like that shown in Fig. 1-7. The Internet is a good 
source of Teletype graphics, as they are still e-mailed occasionally.  

Saving the Icon as Java 

Now that you have obtained the Java source code needed for an image, you must assign it 
a name. This is done in the IconFrame when the static array is formulated in the Java 
code. For example: 

private static byte pencil[][] = { 



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

 
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 
{1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1}, 
{1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1}, 
{1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1}, 
{1,1,1,1,1,1,1,1,0,1,0,0,0,1,1,1}, 
{1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1}, 
{1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1}, 
{1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1}, 
{1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1}, 
{1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1}, 
{1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1}, 
{1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1}, 
{1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1}, 
{1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1}, 
{1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1}, 
}; 

Once the byte array is formulated, an IconComponent is created, using the 
getIconComponent  method: 

package gui; 
import java.awt.*; 
import java.awt.image.*; 
import java.awt.event.*; 
import java.util.*; 
 
public class IconFrame  
 extends ClosableFrame implements ActionListener { 
  
 private Panel iconPanel = new Panel(new FlowLayout()); 
 
 
 IconComponent eraserIcon =  
   getIconComponent(eraser); 
 IconComponent pencilIcon =  
   getIconComponent(pencil); 

The IconComponentinstances are added, using: 
 private void addIcons() { 
  addIcon(eraserIcon,iconPanel); 
  addIcon(pencilIcon,iconPanel); 
  addIcon(brushIcon,iconPanel); 
  addIcon(handIcon, iconPanel); 
  addIcon(magnifyingGlassIcon,iconPanel); 

Once the icons are added to the iconPanel instance, they will be available upon program 
start-up (i.e., without the need to access the file system). For use in Swing, programmers 
can get an instance of a javax.swing. Icon by using: 

Icon icon = Icons.getMagnifierIcon(); 



 
INTRODUCTION 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51 

Event processing occurs both in the IconFrame instance and in the frames that are 
associated with the icon’s state. For example, in the PaintFrame, there is a method called 
mouseDragged which checks the iconFrame instance for the selected icon: 

 public void mouseDragged(MouseEvent e) { 
      e.consume(); 
  IconComponent ic = iconFrame.getSelectedIcon(); 
  if (ic == iconFrame.eraserIcon) erasePoint(); 
  if (ic == iconFrame.brushIcon) brushPoint(); 
  if (ic == iconFrame.pencilIcon) pencilPoint(); 
  if (ic == iconFrame.eyeDropperIcon) getColor(); 
 
       setP1(e); 
      repaint();  
 } 

The IconComponent instances act just like other components in the AWT, except that 
they know how to invert their own appearance. They can be added to panels and layout 
managers can arrange them, just like other components. The IconComponent instance 
keeps a private copy of an image of its own appearance. 

2 ON THE XML ENCODING OF SERIALIZABLE OBJECTS 

This section shows how an instance of a serializable class can be transformed into a static 
variable. The static variable is used to reconstruct the instance, at run-time, thereby 
integrating the resource directly into the source code. Consider the Address class, a 
fragment of which follows: 

public class Address implements Comparable, 
        Serializable { 
    private String title = null; 
    private String userId = null; 
    private String password = null; 
    private String firstName = null; 
    private String lastName = null; 
    private String street = null; 
    private String company = null; 
    private String address1 = null; 
    private String address2 = null; 
    private String address3 = null; 
    private String homePage = null; 
    private String emailAddress = null; 
    private String homePhone = null; 
    private String businessPhone = null; 
    private String faxPhone = null; 
    private String city = null; 
    private String state = null; 
    private String zip = null; 
 



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

An instance of the Address converts itself to XML using the java.beans.XMLEncoder: 
public String toXml() { 

ByteArrayOutputStream baos = new    
ByteArrayOutputStream(); 

        XMLEncoder e = new XMLEncoder(baos); 
        e.writeObject(this); 
        e.flush(); 
        return baos.toString(); 
} 

The XMLEncoder shows: 
<?xml version="1.0" encoding="UTF-8"?>  
<java version="1.4.2_03" class="java.beans.XMLDecoder">  
 <object class="xml.adbk.Address">  
  <void property="address1">  
   <string>1313 Mocking bird lane</string>  
  </void>  
  <void property="city">  
   <string>munsterville</string>  
  </void>  
  <void property="state">  
   <string>ny</string>  
  </void>  
  <void property="zip">  
   <string>12181</string>  
  </void>  
 </object> 

A static method in a utility class converts the above code into a static string that can be 
embedded into a Java program: 

 
static String Address761092 = "<?xml version=\"1.0\" 
       encoding=\"UTF-8\"?> " + 
            "<java version=\"1.4.2_03\" 
       class=\"java.beans.XMLDecoder\"> " + 
            " <object class=\"xml.adbk.Address\"> " + 
            "  <void property=\"address1\"> " + 
            "   <string>1313 Mocking bird lane</string> " + 
            "  </void> " + 
            "  <void property=\"city\"> " + 
            "   <string>munsterville</string> " + 
            "  </void> " + 
            "  <void property=\"state\"> " + 
            "   <string>ny</string> " + 
            "  </void> " + 
            "  <void property=\"zip\"> " + 
            "   <string>12181</string> " + 
            "  </void> " + 
            " </object> " + 
            "</java>"; 
 



 
ON THE XML ENCODING OF SERIALIZABLE OBJECTS 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53 

This can be decoded using: 
public static Object decodeXml(String xml) { 
        ByteArrayInputStream bais = new 
ByteArrayInputStream(xml.getBytes()); 
        XMLDecoder d = new XMLDecoder(bais); 
        return d.readObject(); 
    } 

Thus, we can test the XMLDecoder using: 
private static void testXmlDecoder() { 
        Object o = decodeXml(Address761092); 
        System.out.println("decode shows:" + o); 
        Address a = (Address)o; 
        a.toXml(); 
    } 

 

It is possible to serialize full-color images using XML, but this is really inelegant. For 
example, an instance of the ShortImageBean: 

public class ShortImageBean implements Serializable { 
    private short r[][]; 
    private short g[][]; 
    private short b[][]; 
… 

becomes: 
private static String ShortImageBean8330147 ="<?xml 
version=\"1.0\" encoding=\"UTF-8\"?> "+ 
"<java version=\"1.4.2_03\" class=\"java.beans.XMLDecoder\"> 
"+ 
" <object class=\"j2d.ShortImageBean\"> "+ 
"  <void property=\"b\"> "+ 
"   <array class=\"[S\" length=\"64\"> "+ 
"    <void index=\"0\"> "+ 
"     <array class=\"short\" length=\"64\"/> "+ 
"    </void> "+ 
"    <void index=\"1\"> "+ 
"     <array class=\"short\" length=\"64\"> "+ 
"      <void index=\"1\"> "+ 
"       <short>155</short> "+ 
"      </void> "+… 

This uses 6 lines for every pixel! Such expansions are too cumbersome even to 
contemplate.  The following section addresses this concern by using a base-64 GZIP 
encoding technique. 

3 ON THE BASE-64 ENCODING OF SERIALIZABLE OBJECTS 

This section shows how to GZIP compress, and base-64 encode, an instance of an object, 
so that it is suitable for storage into a Java string. This is far more efficient (in terms of 



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

memory and CPU time) than creating XML strings. The technique suffers from the fact 
that the output is not readable by humans and cannot be hand-edited.   

The following example turns a full color image into a base-64 GZIP encoded string, 
then decoded and displayed for view.  

private static void testBase64GzipEncodeDecoding() { 
        ShortImageBean sib = new 
       ShortImageBean(NumImage.getImage()); 
        String s = 
                Base64.encodeObject(sib, Base64.GZIP | 
       Base64.DONT_BREAK_LINES); 
        Object o = Base64.decodeToObject(s); 
        ShortImageBean sibTest = (ShortImageBean)o; 
        ImageFrame imf = new ImageFrame("sib test"); 
        imf.setImage(sibTest.getImage()); 
        imf.setSize(200,200); 
        imf.show(); 
        System.out.println(s); 
    } 
 

The following code shows how the GZIP base-64 encoder can be used to synthesize a 
Java static variable declaration: 

/** 
     * Input a serializable object and get back a very 
     * long string that is a base64 encoded gzipped version 
     * of the serialized object suitable for compilation into 
     * a Java program. 
     * 
     * @param object 
     * @return 
     */ 
    public static String getCompactJava(Serializable object) { 
        String instanceName = getUnqualifiedClassName(object) 
                + object.hashCode(); 
        String s = "static String " + 
                instanceName + 
                "=\n\"" + 
                Base64.encodeObject(object, 
Base64.GZIP|Base64.DONT_BREAK_LINES) 
                + "\";"; 
        return s; 
    } 
The output is too long to reproduce in full here. An 
abbreviated version follows: 
static String ShortImageBean12960684= 
"H4sIAAAAAAAAAO2a+3NVVxXHF1hrIS8gQKiFqkChgsKUadJ…”; 

The following code example demonstrates how to decode the embedded object: 
private static void testBase64GzipDecoding() { 



 
ON THE BASE-64 ENCODING OF SERIALIZABLE OBJECTS 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 55 

        Object o = 
Base64.decodeToObject(ShortImageBean12960684); 
        ShortImageBean sibTest = (ShortImageBean)o; 
        ImageFrame imf = new ImageFrame("sib test"); 
        imf.setImage(sibTest.getImage()); 
        imf.setSize(200,200); 
        imf.show(); 
        System.out.println(ShortImageBean12960684); 
    } 

More generally, we write: 
public static String encodeImage(Image img) { 
        ShortImageBean sib = new ShortImageBean(img); 
        return getCompactJava(sib); 
    } 
public static Image decodeImage(String s) { 
        Object o = Base64.decodeToObject(s); 
        ShortImageBean sib = (ShortImageBean)o; 
        return sib.getImage();     
    } 
 

One drawback to this technique is that string constants can be too long, causing the java 
compiler to choke. For example: 

javac Images.java 
Images.java:11: constant string too long 

Even editing such files can cause some IDEs (like IntelliJ) to bomb out. The question of 
how to address this problem (perhaps by breaking up the strings) remains open. 

As a final example, we present a series of icons used in our new GUI for image 
processing. These icons are integrated into an Images class: 

public class Images { 
    private static String ShortImageBeanExit = 
             

"H4sIAAAAAAAAAFvzloG1uIhBKMsoRS84I7+oxDM3MT3VKTUx79Jz7
fNOD1JnMjGwRDMwJpUwMEdHB/swsCfnZBYUpBaVMPD6pJdm6jtDuNZ
ANemFDHUMjEBGEZhRUVBaBNZUsy52nZC1iykTA0NFAQMDgwBQnCk6+
H2zHtvT2A2/4MIM3xn+44RODN9LQcaywVWewwpb6KiSAUkNAwGVDHB
1+FXCVCB04HMnA5I66qgk1nbifUR8KFE7jlpwQHSVTnjgd2Du4AYmd
D1oQn/8IahS7ff83UwMjFGwzJACTL9gA1nAqRth9Dm8CfocmsprWGE
LHVUyIKlhIKCSAa4Ov0qYCoQOfO5kQFJHHZXE2k68j4gPJWrHEe4Ej
aoSX4I+hzWlLsWbUpeiqcTtYnqpxB4H2FVii1fstmNLK7jciZn+KFV
JrO3E+4j4UKJ2HOFOqagq8aXUpQBz65GonQgAAA=="; 

    private static String ShortImageBeanOpen = 
            

"H4sIAAAAAAAAAFvzloG1uIhBKMsoRS84I7+oxDM3MT3VKTUx79Jz7
fNOD1JnMjGwRDMwJpUwMEdHB/swsCfnZBYUpBaVMPD6pJdm6jtDuNZ
ANemFDHUMjEBGEZhRUVBaBNZUsy52nZC1iykTA0NFAQMDgwBQnCk6+
H2zHtvT2A2/4MIM5+AQEwBFS0HGsqGoZGD4j4Zxq0RXh08lqjpcKs9
hqMOnElUdITOJU0nYTAYizWQg2kxklcSZia7+HA53opt8DqvKc0hyK
OqwmImq8hxOlajuROEDcwc3MKHrQRP64w9BlWq/5+9mYmCMgmWGFGD
6BRvIAjIQyehrcIgJgKJYVIICHxkSq5KBYS8elQwo6nCrRJgKUUdYJ



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

Uwd/VQyEKmSgWgzESohgLBKmHokdVjdyYCiEq4bw+8MKCqRbMEwkwH
FtddwqkR15zUMlaMpdTSlDvqUCgCbGTxOnQgAAA=="; 

    private static String ShortImageBeanRevert = 
             

"H4sIAAAAAAAAAFvzloG1uIhBKMsoRS84I7+oxDM3MT3VKTUx79Jz7
fNOD1JnMjGwRDMwJpUwMEdHB/swsCfnZBYUpBaVMPD6pJdm6jtDuNZ
ANemFDHUMjEBGEZhRUVBaBNZUsy52nZC1iykTA0NFAQMDgwBQnCk6+
H2zHtvT2A2/4MIM5/DDUpCxbGgqQQCDh0UlDBBSiQyopZIUdw6USmS
fIPsLDChUyYBNFw6VCLVwUTwqz6GYjVslcgwRUokGgLmDG5jQ9aAJ/
fGHoEq13/N3MzEwRsEyQwow/YINZAEZiGT0NfwQq0oQwOBhUQkDhFQ
iA2qpJMWdA6US2SfI/kKPfnJUMmDThUMlQi1cFI/Kayhm41aJHEOEV
KKB0ZQ6yFQi+wTZX7jjdYSkVADMCBJtnQgAAA=="; 

    private static String ShortImageBeanSave = 
             

"H4sIAAAAAAAAAFvzloG1uIhBKMsoRS84I7+oxDM3MT3VKTUx79Jz7
fNOD1JnMjGwRDMwJpUwMEdHB/swsCfnZBYUpBaVMPD6pJdm6jtDuNZ
ANemFDHUMjEBGEZhRUVBaBNZUsy52nZC1iykTA0NFAQMDgwBQnCk6+
H2zHtvT2A2/4MIM5/DDUpCxbFCVuAHxKhkoUInsslGVMDb5KnEDTDO
JVUmsmXghMHdwAxO6HjShP/4QVKn2e/5uJgbGKFhmSAGmX7CBLCADk
Yy+hh+iqMQNMFXuxQEZ8JqJXyWyyxjAKuD2j0CVMDb5KtFDHp/t2GM
Uv5mo4BqJqW40pQ4XlcM4pQIAdEPpCJ0IAAA="; 

 
    public static Icon getRevertIcon() { 
        return new 
ImageIcon(Utils.decodeImage(ShortImageBeanRevert), "revert"); 
    } 
 
    public static Icon getSaveIcon() { 
        return new 
ImageIcon(Utils.decodeImage(ShortImageBeanSave), "save"); 
    } 
 
    public static Icon getExitIcon() { 
        return new 
ImageIcon(Utils.decodeImage(ShortImageBeanExit), "exit"); 
    } 
 
    public static Icon getOpenIcon() { 
        return new 
ImageIcon(Utils.decodeImage(ShortImageBeanOpen), "open"); 
    } 
} 

The output of the new interface, with the integrated icons, is shown in Fig. 2-1. 
 



 
ON THE BASE-64 ENCODING OF SERIALIZABLE OBJECTS 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 57 

 
 

Fig. 2-1. The Application with Integrated Icons

4 CONCLUSION 

In summary we look to avoid storing resources in external files in order to speed resource 
loading and improve reliability of our programs. This is a natural outcome of resource 
integration with source code. 

The idea of storing icons in source code is not new [Lyon], but the idea of storing 
serialized XML encoded objects in Java source is (as far as I know). 

There are definite limitations to the technique of storing objects inside of a Java 
program. For one, there is a reliance on classes implementing the serializable interface. 
For example, the Image class does not implement the serializable interface. On the other 
hand, writing ad-hoc techniques for storing images has the benefit of creating a nice 
structure for hand editing.  

It is equally clear that large arrays of data could create a cumbersome burden during 
compilation. In fact, some compilers will not allow a static array that is larger than 64K 
bytes. It is generally recognized that this is not a limitation of the Java language 
specification, but rather of the implementation of the compiler. 
Other failures to serialize into Java source can result from using inner classes. For 
example: 

private static void testXmlImageEncoding() { 
        class Foo implements Serializable { 
           int i =10; 
        } 
        System.out.println(getJava(new Foo())); 
    } 

Cannot work because Foo is an inner class. 
 



 
RESOURCE BUNDLING FOR DISTRIBUTED COMPUTING 

 
 
 
 

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1 

REFERENCES 

[Debabelizer] Debabelizer is a useful program for batch image conversion and 
processing, available from: Equilibrium, 475 Gate Five Road, #225, 
Sausalito, CA 94965. Phone: (415)332-4343. 

[Harder] Robert W. Harder, “Base64”, A Public Domain Java class providing very fast 
Base64 encoding and decoding in the form of convenience methods and 
input/output streams. See http://iharder.sourceforge.net/base64/  

[Lyon] Douglas A. Lyon, Image Processing in Java, Prentice Hall, Upper Saddle 
River, NJ, 07458. 1999. Available from http://www.docjava.com 

 
 

About the author 

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr. 
Lyon worked at AT&T Bell Laboratories. He has also worked for the 
Jet Propulsion Laboratory at the California Institute of Technology. He 
is currently the Chairman of the Computer Engineering Department at 
Fairfield University, a senior member of the IEEE and President of 
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at 

Lyon@DocJava.com. His website is http://www.DocJava.com. 

http://iharder.sourceforge.net/base64/
http://www.docjava.com
http://www.DocJava.com
mailto:Lyon@DocJava.com

