
JOURNAL OF OBJECT TECHNOLOGY
 Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 5, May-June 2004

 “Project Imperion: New Semantics, Façade and
Command Design Patterns for Swing”, in Journal of Object Technology, vol. 3, no. 5, May-June
2004, pp. 51-64.

Project Imperion: New Semantics,
Façade and Command Design Patterns
for Swing

Douglas Lyon, Computer Engineering Department, Fairfield University,
Connecticut, USA

…Thus in the beginning the world
was so made that certain signs

come before certain events

- Cicero. 106–43 B.C.

Abstract
Project Imperion consists of a library of GUI elements that combine the command and
facade design patterns to add new semantic meaning to some common Swing
components. This simplifies the synthesis and maintenance of the code. It also shortens
the code, while improving readability, speeding synthesis and easing maintenance. It
also promotes better code organization, including the separation of business logic from
GUI code and a logical grouping of the code along the same lines as its GUI’s
appearance.
Started in the late ‘90’s, in the DocJava, Inc. Skunkworks, the Imperion project was
meant only for menu items using AWT, targeting the single application of image
processing programs. It has since been reworked and extended to support the use of 16
Swing components with built-in keyboard shortcuts. The Imperion project was named
for the Latin root, imperium, meaning the power to command.

1 WHAT’S WRONG WITH THE CURRENT EVENT MODEL?

When programmers use the current event model, they typically jump around in the source
code. For example, it is normal for programmers to create a graphic user interface using a
5 step process:

1. Make a new button (or Component)
2. Set the keyboard shortcuts.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_05/column6

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

3. Add the button to the container.
4. Add an ActionListener to the button
5. Create a long dispatch in an actionPerformed method.

Visiting code in several places in order to add a feature is a fruitful source of errors. The
code is also hard to maintain, and less readable in that the programmer must jump back
and forth in the code file to see declarations, installation of components into GUI
containers and implementations of event listeners.

Such an approach does not scale well. When the number of different components
gets large, these jump points can be many lines of code away from one another. To
illustrate the programmers’ jumping around in the code, consider the following example:

package gui.run.examples;

import javax.swing.JButton;
import javax.swing.JFrame;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class CommandFrame extends JFrame
 implements ActionListener {
 //1. Make the new buttons
 JButton okButton = new JButton("OK");
 JButton cancelButton = new JButton("cancel");

 public CommandFrame() {
 Container c = getContentPane();

 //2. Set the shortcuts
 okButton.setMnemonic('o');
 cancelButton.setMnemonic('c');

 //3. Add the components to the
 // container
 c.add(okButton);
 c.add(cancelButton);

 //4. Set up the ActionListeners
 okButton.addActionListener(this);
 cancelButton.addActionListener(this);
 c.setLayout(new FlowLayout());
 setSize(200, 200);
 show();
 }

 public void actionPerformed(ActionEvent e) {

WHAT’S WRONG WITH THE CURRENT EVENT MODEL?

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 53

 Object o = e.getSource();

 // 5. Add to a if-else dispatch
 if (o == okButton)
 System.out.println("ok");
 else if (o == cancelButton)
 System.out.println("cancel");
 }
 public static void main(String[] args) {
 new CommandFrame();
 }
}

Thus, the typical procedure is to put an instance of a button into a class member variable.
During the initialization phase for the GUI, the shortcuts are established, components are
added to the container and the listeners are added. During the event handling dispatch we
check the event to see if it the button was selected. As a result, we have created a
situation where we have to visit the code in several places. This complicated procedure
for adding code also complicates maintenance and decreases reliability of the program. It
also adds more code. The output of the CommandFrame is shown in Figure 1.

Figure 1. OK-Cancel Dialog.

In addition, using the above formulated actionPerformed method, one can expect a rather
long dispatch. As an example, consider the following code, taken from [Lyon 1999]:

 public void actionPerformed(ActionEvent e) {
 if (match(e, mandelbrot_mi)) {
 mandelbrot();
 return;
 }
 if (match(e, goslab_mi)) {
 goslab();
 return;
 }
// 17 if statements later....
 if (match(e, systemInfo_mi)) {
 systemInfo();
 return;
 }
 super.actionPerformed(e);
 }

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Such long dispatches can be exceedingly difficult to maintain. And GUI elements are
removed from their definitions by hundreds of lines of code (in programs of only modest
complexity). Even more insidious is the invocation:

 super.actionPerformed(e);

This can make reference to an unknown number of concrete super-classes that improve
implementation reuse at a cost of increased fragility. In short, such a programming style
does not scale well because it does not encapsulate complexity at the right level. The
following section shows that adding function points in this way is a waste of time (i.e.,
unnecessarily difficult and wrong-headed).

If you don’t
have time to do it right

the first time, when
will you have time to

do it again?

– Unknown

2 BUILDING A BETTER BUTTON

This section presents an approach to building the same program by creating a new, more
feature-rich button, called the RunButton. A RunButton instance is a button that knows
how to run itself. Such a button makes use of what is known as the command design
pattern. The command design pattern places an instance of a command into an instance
of another class, call the issuer. For example, a button can have the role of the issuer,
holding a reference to an instance of a command. Thus a RunButton will invoke a
command (run()) on the command instance. The command instance has the role of either
message forwarding the command to a specific recipient or of executing the command
itself.

We define the RunButton class as a subclass of the JButton class. It works using the
façade design pattern to map the ActionListener interface into the simpler Runnable
interface. The run method is left undefined and this causes the class to be abstract.

package gui.run.examples;

import gui.ClosableJFrame;
import gui.run.RunButton;

import java.awt.Container;
import java.awt.FlowLayout;

public class ExampleRunButton {
 public static void main(String args[]) {

BUILDING A BETTER BUTTON

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 55

 // anonymous inner class
 // That uses the command pattern
 // also uses facade pattern
 // since the normal
 // requires an
 // actionListener-
 // actionPerformed(ActionEvent e)
 // now we just need a run method.
 // Semantics for the runButton now include
 // an implicit metaChar='['

 ClosableJFrame cf =
 new ClosableJFrame(
 "OK-CANCEL Frame");
 Container c = cf.getContentPane();
 c.setLayout(new FlowLayout());

 RunButton okButton = new RunButton("ok") {
 public void run() {
 System.out.println(getText());
 }
 };
 okButton.setMnemonic('o');
 c.add(okButton);
 RunButton cancelButton = new RunButton("cancel") {
 public void run() {
 System.out.println(getText());
 }
 };
 cancelButton.setMnemonic('c');
 c.add(cancelButton);
 cf.setSize(200, 200);
 cf.show();
 }
}

The main method in the above code sample also produced Figure 1.

3 WHAT’S WRONG WITH THE STANDARD LISTENERS?

The astute reader may ask, “why start using non-standard GUI elements in the code?
What’s so wrong with using the command pattern without altering the interface from an
ActionListener to a Runnable?” The primary problem is that there are just too many
listeners to keep track of. As of j2se1.4.2, there are 68 known different interfaces that
extend the java.util.EventListener interface. There are 234 known implementations of
these interfaces in a wide variety of classes. This is too much complexity for the average
programmer to keep in their head.

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Using the Facade design pattern we are able to map several common components to
take advantage of the simpler Runnable interface, as shown in Figure 2.

Figure 2. Some Run Components

One of the basic questions that we must ask of a framework is: “how much complexity is
too much?” If a feature set overwhelms us, then we no longer have the ability to program
without constantly consulting documentation. This is a burden to the programmer. In
short, simplicity is a desirable feature. By mapping several of the interfaces to the simpler
Runnable interface, we can simplify our code. We dispense with the ability to obtain the
target of the event, but, since the GUI element always knows that it is its’ own target, it

WHAT’S WRONG WITH THE STANDARD LISTENERS?

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 57

no longer needs these parameters. Thus, we have made a design decision to always make
use of the command pattern when invoking GUI elements in the Imperion project.

4 WHY ADD KEYBOARD SHORTCUTS?

Keyboard shortcuts are often added to an interface as an afterthought. In fact, a GUI is
really just a visual language for commanding a program. Adding more GUI elements to
add more commands (i.e., feature points) is common practice. Programmers often ask,
“Do we really need keyboard shortcuts too?”. There are compelling reasons to add
keyboard shortcuts, and to make these as easy as possible for the programmer to maintain
them.

Screen space is consumed as a function of the number of displayed GUI elements.
Even pop-up menus consume valuable screen space and make selection difficult. For
example, menus with more than 10 items make scanning a list tedious. Also, many of the
items may be irrelevant to the users’ current need [Laurel]. This is the primary motivation
for the use of a hierarchic menu. A hierarchic menu allows a grouping of items into
relevant sub-menus. The danger is that the hierarchical menu becomes so deep that the
user gets lost. According to Tognazzini, the hierarchical menu offers hundreds of extra
options, but it takes much longer for the user to make a selection. Additionally,
Tognazzini says that menu selections are generally faster than keyboard shortcuts [Tog].

As a result, it is common to associate keyboard shortcuts with GUI elements. This
enables the user to decide how to invoke a process. It also can lead to faster execution of
application commands by skilled users.

5 WHAT IS WRONG WITH THE PRESENT KEYBOARD
SHORTCUT SYSTEM?

At present, a programmer must isolate a reference to a GUI element and explicitly make
an instance of a Keystroke that will be associated with the GUI element. Consider the
following code fragment:

 RunButton sleepButton = new RunButton(
 "sleep") {
 public void run() {
 System.out.println(getText());
 }
 };
 sleepButton.setMnemonic('s');
 c.add(sleepButton); // add button to container

The RunButton instance is stored in the sleepButton variable. This variable is needed so
that the programmer can explicitly set the mnemonic that will be associated with a button
press. Such a programming practice requires that a new variable be introduced for each

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

GUI element, and that it be explicitly named by the programmer. These variables have a
nasty habit of propagating through the program, adding both code and complexity.

6 ADDING NEW SEMANTIC MEANING TO GUI ELEMENTS

This section shows how the Imperion project adds keyboard shortcuts to GUI elements by
modifying their in-line text. Consider the following code sample:

 c.add(new RunButton("[sleep") {
 public void run() {
 System.out.println("alarm!");
 }
 });

The new RunButton has an implicit mnemonic s. The rule is that the first character after
the ‘[‘ will be the mnemonic keyboard shortcut for the Imperion component. Also, that
the meta-character ‘[‘ will be stripped from the final appearance of the component. The
following example also produces the image shown in Figure 1:

package gui.run.examples;
import gui.ClosableJFrame;
import gui.run.RunButton;
import java.awt.Container;
import java.awt.FlowLayout;

public class ExampleRunButton {
 public static void main(String args[]) {
 ClosableJFrame cf =
 new ClosableJFrame(
 "OK-CANCEL Frame");
 Container c = cf.getContentPane();
 c.setLayout(new FlowLayout());

 c.add(new RunButton("[ok") {
 public void run() {
 System.out.println(getText());
 }
 });
 c.add(new RunButton("[cancel") {
 public void run() {
 System.out.println(getText());
 }
 });
 cf.setSize(200, 200);
 cf.show();
 }
}

ADDING NEW SEMANTIC MEANING TO GUI ELEMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 59

A mnemonic shortcut always uses a meta character (this is not true for keyboard
accelerators). For example, on Windows or a mac, the meta character is the ‘alt’ key.
Thus, to issue the ‘OK’ command, the user types: “alt-o”. The mnemonic shortcuts are
only active in a context. Thus, in a hierarchic menu system, only the visible mnemonics
are active. This facilitates navigation of the menus.

Mnemonic shortcuts are different from keyboard accelerators in that accelerators do
not require a meta-character and they can be invoked from any context. Thus, keyboard
accelerators map to visual commands in a global way. The advantage of global
invocation is that you can issue commands with fewer keystrokes. The disadvantage of
global invocation is that it is easier to have conflicting accelerators in the interface. For
example, multiple menu items can map to the same accelerator. In such a case, the last
one to be added to the GUI is the one that gets executed. In the Imperion system
accelerators are defined with the begin curly brace ‘{‘ and the end curly brace ‘}’.

Figure 3. RunMenuItems with Mnemonics and Accelerators

Figure 3 shows that the key strokes “ctrl-c” will draw a circle, but that “ctrl-C” will do a
cut. Also, these keystrokes may be used from anywhere in the frame. Compare this with
the context sensitive mnemonics that require the user type “alt-e,d,c” to obtain a circle.
While more keystrokes are involved, the hierarchic nature of the mnemonics enables the
organization of keystrokes according to their function. Global keyboard accelerators are
more likely to collide than mnemonics. Collisions create semantic errors. For example, if
“ctrl-c” was used for both the cut and the circle commands, it would only invoke the
command associated with the keystroke added last. It should probably be a run-time error
to add duplicate keystrokes, but Imperion will not catch the error, at present (nor, for that
matter, does Swing). The following code will set up the GUI depicted in Figure 3:

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

package gui.run.examples;

import gui.ClosableJFrame;
import gui.run.RunMenu;
import gui.run.RunMenuItem;

import javax.swing.JMenuBar;
import java.awt.Container;

public class RunMenuItemExample {
 public static void main(String args[]) {
 new RunMenuItemExample();
 }

 private RunMenuItemExample() {
 ClosableJFrame cf = new ClosableJFrame(
 "RunMenuItem");
 Container c = cf.getContentPane();
 cf.setJMenuBar(getMenuBar());
 c.setLayout(new java.awt.FlowLayout());
 cf.setSize(200, 200);
 cf.setVisible(true);
 }

 private JMenuBar getMenuBar() {
 JMenuBar mb = new JMenuBar();
 mb.add(getFileMenu());
 mb.add(getEditMenu());
 return mb;
 }

 private RunMenu getDrawMenu() {
 RunMenu drawMenu = new RunMenu("[draw");
 drawMenu.add(new gui.run.RunMenuItem(
 "[rect{alt shift R}") {
 public void run() {
 System.out.println(getText());
 }
 });
 drawMenu.add(new RunMenuItem(
 "[square{shift F12}") {
 public void run() {
 System.out.println(getText());
 }
 });
 drawMenu.add(new RunMenuItem(
 "[quad{alt 1}") {
 public void run() {
 System.out.println(getText());

ADDING NEW SEMANTIC MEANING TO GUI ELEMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 61

 }
 });
 drawMenu.add(new RunMenuItem(
 "[right arrow{alt RIGHT}") {
 public void run() {
 System.out.println(getText());
 }
 });
 drawMenu.add(new RunMenuItem(
 "[fat line{ctrl alt shift L}") {
 public void run() {
 System.out.println(getText());
 }
 });
 drawMenu.add(new RunMenuItem(
 "[circle{ctrl C}") {
 public void run() {
 System.out.println(getText());
 }
 });
 return drawMenu;
 }

 private RunMenu getEditMenu() {
 RunMenu editMenu = new RunMenu("[Edit");
 editMenu.add(new RunMenuItem(
 "[Undo{control DELETE}") {
 public void run() {
 System.out.println(getText());
 }
 });
 editMenu.add(new RunMenuItem(
 "[cut{ctrl shift C}") {
 public void run() {
 System.out.println(getText());
 }
 });
 editMenu.add(getDrawMenu());
 return editMenu;
 }

 private RunMenu getFileMenu() {
 RunMenu fileMenu = new RunMenu("[File");
 fileMenu.add(new RunMenuItem(
 "[open{alt shift X}") {
 public void run() {
 System.out.println(getText());
 }
 });
 fileMenu.add(new RunMenuItem(

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

 "[save{alt control DELETE}") {
 public void run() {
 System.out.println(getText());
 }
 });
 fileMenu.add(new RunMenuItem(
 "[close{PAGE_UP}") {
 public void run() {
 System.out.println(getText());
 }
 });
 fileMenu.add(new RunMenuItem(
 "[export{NUMPAD0}") {
 public void run() {
 System.out.println(getText());
 }
 });
 return fileMenu;
 }
}

One important feature of the code is that the visual organization of the menus and menu
items is reflected in the structure of the code. That is, one does not have to guess what the
function of the getDrawMenu is. A logical grouping of menu item constructions into
menu factory methods improves maintainability and readability. The use of the
anonymous inner classes promotes short method bodies (since people don’t generally like
to see long anonymous inner classes). The short method bodies, in turn, promote method
forwarding to the business logic (improving code reuse and promoting the separation of
GUI code and business logic).

7 HOW DOES IMPERION DO IT?

This section describes the Imperion technique for modifying the keyboard shortcut used
on a component. Consider the following constructor for the RunMenuItem:

 public RunMenuItem(String l, Icon i) {
 super(l, i);
 addActionListener(this);
 ShortcutUtils.addShortcut(this);
 }

At the heart of the mechanism is the invocation to ShortcutUtils.addShortcut.
 public static void addShortcut(
 AbstractButton ab) {
 addMnemonic(ab);
 addAccelerator(ab);
 }

HOW DOES IMPERION DO IT?

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 63

The addMnemonic will scan for the mnemonic meta character (i.e., ‘[‘) and add the
following character as a mnemonic, if the meta character is present. The addMnemonic
method is implemented as:

 private static void addMnemonic(
 AbstractButton ab) {
 String s = ab.getText();
 if (!hasMnemonic(s)) return;
 ab.setMnemonic(getMnemonicChar(s));
 ab.setText(stripMnemonicMetaChar(s));
 }

 private static boolean hasMnemonic(String s) {
 int mc = s.indexOf(META_CHARACTER);
 if (-1 == mc)
 return false;
 if (s.length() == mc - 1) return false;
 return true;
 }

The basic idea is that hasMnemonic will return true only if there is a ‘[‘ present and there
is a character following it. If both these conditions are met, then the character is stripped
out and used to add a mnemonic. The label on the component is then reset.

8 CONCLUSION

The use of the command and facade design patterns to formulate a new GUI library is not
new. In fact, this was described in detail in my most recent book [Lyon 2004]. The
embedding of keyboard shortcuts into the text of GUI elements using a code is not new
either [Lyon 1999].

However, the combination of the facade and command patterns, along with the
embedding of keyboard shortcuts into the text of GUI elements, is new.

A logical grouping of menu item constructions into menu factory methods improves
maintainability and readability. The use of the anonymous inner classes promotes short
method bodies (since people don’t generally like to see long anonymous inner classes).
The short method bodies, in turn, promote method forwarding to business logic
(improving code reuse and promoting the separation of GUI code and business logic).

One of the drawbacks of the Imperion system is that the components map their
actions to only a single listener (themselves). This would seem, on the surface, to be a big
limitation. For example, what if many components are interested in a text-field action? I
suggest that if this occurs, we are too tied to the components. That text-field should be
treated as a controller in a model-view-controller design pattern. A control should alter a
model. Views that are interested in the model should be observing the model, not the
controller. It should come as no surprise, therefore, that having components listen to their
own event is an easy limitation to live with. In fact, I contend that this is preferable, as it

PROJECT IMPERION: NEW SEMANTICS, FAÇADE AND COMMAND

DESIGN PATTERNS FOR SWING

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

limits inter-object associations, which is, in my view, a primary metric of object-oriented
complexity.

Another limit of Imperion (and of Swing, for that matter) is that the semantic error of
duplicate keyboard accelerators is not caught. To catch the duplicates, you need code that
goes to the root of the content pane and then forms a list of all accelerators in all
components. Overcoming this limitation requires addressing some open questions. For
example: what is the policy for accelerator duplication? That is, should we throw a run-
time exception, put up a dialog box, print a warning to the console, etc. Also at question
is the issue of responsibility. Sun has already made it the implicit responsibility of the
programmer to check for conflicts during the test phase of the development. Since
conflict checks are time consuming for the programmer, perhaps an optional display
feature (with a nice GUI) would not be amiss. In any case, this remains a topic of future
work.

REFERENCES

[Laurel] The Art of Human-Computer Interface Design, edited by Brenda
Laurel, Addison Wesley, 1990.

[Lyon 1999] Douglas A. Lyon. Image Processing in Java, Prentice Hall, 1999.
Available from http://www.docjava.com.

[Lyon 2004] Douglas A. Lyon. Java for Programmers, Prentice Hall, 2004.
Available from http://www.docjava.com.

[Tog] Bruce Tognazzini. Tog on Interface, Addison Wesley, 1992.

About the author

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

http://www.docjava.com
http://www.docjava.com
http://www.docjava.com
mailto:Lyon@DocJava.com

