
JANUARY 2012

IN DEVELOPMENT

Published by the IEEE Computer Society0018-9162/12/$31.00 © 2012 IEEE	

neglect and deprecation. Deprecation
warnings aren’t generally deemed
serious, as programs continue to run.
However, sometimes entire JVMs are
deprecated. The biggest threat to
Java is Apple’s banning of Java on the
iPhone and the deprecation of the new
JVM on the Mac OS.

Java provides a way to isolate
and manage API instability using
JavaBeans. The bean embodies the
promise of Java code-reuse via inter-
changeable parts—known as com-
ponent software development (CSD).

Historically, the technology of
interchangeable parts enabled an
industrial revolution—among other
things, it helped the Springfield
Armory produce more than 1 million
model 1861 rifles during the Civil
War. However, JavaBeans never
really caught on, leaving us with
monolithic and brittle systems that
shunned code reuse and encouraged
ad hoc framework development. API
complexity can reach a tipping point
that causes frameworks to collapse
under their own weight in a manner
similar to punctuated equilibrium.

MEASURING CHANGE
The number of imports and

deprecations represents the growth
of the new and the withering of the

PREDICTION IS HARD,
ESPECIALLY WHEN IT’S
ABOUT THE FUTURE

If we establish a good reason for
Java’s ascendancy, perhaps we can
come up with a prognosis for its
future.

One of Java’s key strengths is its
portability. The Java virtual machine
(JVM) is a high-performance, portable,
and successful substrate. However,
the tectonic shift in Java ownership
(from Sun to Oracle) has caused
af tershocks, destabilizing Java
APIs. This has been exacerbated by

C omputer languages are
uniquely posit ioned
as a case study in the
development of man’s

most complex and powerful techno
artifact—the programming language.
The most popular of these languages
is now Java.

In 15 years, my Java project
has grown from 667 lines of code
(LOC) to 633,436 LOC. During this
time, I’ve had to struggle to keep up
with API deprecations and defunct
frameworks. Some code will no longer
run. What will become of Java?

The Java report card: infrastructure gets a D, code reuse gets
an F.

Doug Lyon

Fairfield University, Fairfield, Connecticut

The Java Tree
Withers

83

Figure 1. CutBot versus the Java tree. A tree grows from the cup of Java, only to be
hacked by the merciless automation.

r1ind.indd 83 12/20/11 11:25 AM

computer	84

IN DEVELOPMENT

same year the QuickTime book was
published. QuickTime X no longer
runs QT4J, and my QuickTime code
is dead on that platform. There’s
no equivalent framework to take
the place of QT4J on the Mac, only
competing frameworks.

Java Media Framework can digitize
video on Windows, but not the Mac.
JMF “performance packs” enable fast
execution on Windows, but not on
the Mac. Worse, JMF first appeared
in 1997 and hasn’t been updated since
2004. In comparison, FMJ (Freedom
for Media in Java) can’t digitize video,
at least, not on the Mac.

The chilling thought is that Oracle
appears to have created a monolithic
multimedia replacement for JMF,
QT4J, and FMJ. The new technology
is called JavaFX. For me, that’s more
than 6,000 LOC for JMF and another
1,000 LOC for QT4J—at least 7,000
LOC down the flusher. What do these
changes cost?

THE COST OF DEPRECATION
Java is the most widely used

programming platform on the planet.
In 2005, Sun reported there were 4.5
million Java developers. Oracle says
that number increased to 9 million by
2010. A global developer population
and demographic survey published by
the Evans Data Corp. showed that 61
percent of the world’s programmers
used Java in 2009 (http://tinyurl.com/
yduglku). Deprecations impact an
entire industry!

Suppose a deprecated LOC can
be rewritten for just $10 worth of
time (an optimistic assumption,
considering testing, documentation,
a nd ma intena nce). My QT4J-
dependent code is 1,000 lines long,
so that should cost only $10,000
worth of my time. Suppose 9 million
programmers have, on average, 1,000
LOC to modify, at $10 per line. That
cost would be $90 billion.

The entire software industry’s
output in 2008 was only $303
billion (http://tinyurl.com/45ck4v).
Deprecation of 1,000 LOC per year,

cost. Interpackage association and
framework complexity are functions
of the number of imports. The bigger
the building, the more it will cost to
change the foundation.

Multimedia trench warfare
Developers create frameworks

in a competitive environment. For
example, while doing multimedia
programming, I reviewed the
manuscript for a book by Tom
Maremaa and William Stewart of
Apple Computer titled QuickTime
for Java (Morgan Kaufmann, 1999).
QT4J became the de facto standard
for digitization of streaming video on
the Mac (and it worked well). However,
QT4J wouldn’t work on Solaris (since
Sun never licensed QuickTime). Apple
officially deprecated QT4J in the

old. Measurement of deprecations or
imports is an easy one-liner in Unix:

grep import -d recurse . |
wc -l grep deprecated -d recurse . |
wc -l

Based on the information in
Table 1, we can make the following
observations:

•	 The number of imports is dou-
bling with every major release.

•	 The 10-year compound annual
growth rate of deprecations is
46 percent. On average, depre-
cations have doubled every 18
months.

Deprecations are the dark side
to API growth and have a nonlinear

Table 3. Framework fossils.

Framework Status

javax.comm Replaced with RXTX

JNI Replaced with JNA

QT4J Dead

JVM on iPhone Practically outlawed by Apple

JVM on Mac Deprecated by Apple

FMJ/JMF Replaced with JavaFX

Table 2. Endangered frameworks.

API Last update

Java Sound 2004

JMF 2003

JAI 2008

JOGL 2008

Java 3D 2008

Table 1. Core Java API.*

Version Number of imports
Number of

deprecations Release year

JDK1.1 415 41 1997

JDK1.2 1,108 99 1998

JDK1.3 22,545 967 2000

JDK1.5 49,471 1,285 2004

JDK1.6 90,788 1,868 2006

*JDK1.4 is missing as the source code is unavailable

r1ind.indd 84 12/20/11 11:25 AM

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

The world-renowned IEEE Computer Society Press is currently
seeking authors. The CS Press publishes, promotes, and
distributes a wide variety of authoritative computer science
and engineering texts. It offers authors the prestige of the
IEEE Computer Society imprint, combined with the worldwide
sales and marketing power of our partner, the scientifi c and
technical publisher Wiley & Sons.

For more information contact Kate Guillemette,
Product Development Editor, at kguillemette@computer.org.

www.computer.org/cspress

85JANUARY 2012

Without maintenance, the de-
terioration of the API infrastructure
will be the defining idea of what
it means to be a programmer of a
declining language.

Doug Lyon is chairman of the Com-
puter Engineering Department at
Fairfield University, Fairfield, Con-
necticut. Contact him at lyon@
docjava.com.

follow along the Java path? Will Oracle
lead Java down the path of salvation?

Oracle paid $7.4 billion (including
debt) for Sun and discontinued the
Sparc line. Oracle’s middleware is
built on Java, and they paid for Java
ownership (they didn’t spend all that
money just for storage appliances
and Solaris). In a recent webcast on
Java strategy, Oracle claimed that it’s
dedicated to improving Java; how-
ever, Oracle has made little effort
on frameworks beyond JavaFX. The
emphasis of the presentation was on
the core runtime, mobile platform/
desktop convergence, and the Enter-
prise Edition (EE).

The trouble with JavaFX is
that it’s another very large,
quickly growing, complex-

looking technology. If JavaFX is the
answer, then what was the question?
How long will it be before JavaFX
reaches its tipping point and needs
to be thrown out in favor of a new
API? Is this the new API life cycle?
Java’s reputation is at stake, and a
reputation isn’t a coin that’s easily
minted.

per programmer, costs 30 percent
of worldwide Java programmer
productivity. By the way, JMF may be
on the way out too—another 6,000
LOC for me.

Is 1,000 (or even 6,000) LOC per
year per programmer realistic or
optimistic? For example, deprecation
of the JDK1.0 “handleEvent” method
impacted millions of LOC, and even
entire books (including some of my
own).

I write in Java to obtain portability
so that code can survive the transi-
tion from one OS to another. Now we
face a different set of problems: code
has trouble surviving from one JVM to
another. The nice thing about the Java
API is that if you don’t like it, just wait
two minutes—it will change.

WHERE DID ALL THE APIs
GO? LONG TIME PASSING

The Java tree is withering and
dying from neglect. Table 2 lists
frameworks on the endangered list,
and Table 3 lists frameworks that are
no longer available. Add to that the
1,000 LOC from QT4J and the 6,000
LOC from JMF. And don’t even get
me started on the 62,000 LOC that
depend on Java3D (if only someone
would pay me $10 per LOC!).

The new normal means increased
framework volatility and interlocking
fragility. Framework chaotics require
that programmers must adapt or die.
I build a moat around core features,
coding like I drive—defensively.

The alarming thing about seeing
Java’s infrastructure showing its
age in this way is that it represents
a declining Java programming
civilization.

What will be the defining idea that
will save or kill Java? Will JavaBeans
return? Can private ownership and
deployment of JavaBeans be the killer
application? How can we monetize
software components? How can
we promote software reuse? Why
is reusing software so much harder
than rewriting it? How will we control
complexity? Should we continue to

Original copyrighted illustration by
George Beker, whose iconic 1970s
bot drawings were featured in Basic
Computer Games and other publi-
cations. An e-book collection of
Beker’s drawings and observations
is available at www.bekerbots.com.
All revenue is donated to a non-
profit national children’s literacy
organization.

Editor: Chris Huntley, Fairfield University;
chuntley@mail.fairfield.edu

r1ind.indd 85 12/20/11 11:25 AM

