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ABSTRACT

With the shrinking of transistors continuing to follow
Moore’s Law and the non-scalability of conventional out-
of-order processors, multi-core systems are becoming the
design choice for industry. Performance extraction is thus
largely alleviated from the hardware and placed on the pro-
grammer/compiler camp, who now have to expose Thread
Level Parallelism (TLP) to the underlying system in the form
of explicitly parallel applications.

Unfortunately, parallel programming is hard and error-
prone. The programmer has to parallelize the work, per-
form the data placement, and deal with thread synchroniza-
tion. Systems that support speculative multithreaded execu-
tion like Thread Level Speculation (TLS), offer an interest-
ing alternative since they relieve the programmer from the
burden of parallelizing applications and correctly synchro-
nizing them.

Since systems that support speculative multithreading
usually treat all threads equally, they are energy-inefficient.
This inefficiency stems from the fact that speculation occa-
sionally fails and, thus, power is spent on threads that will
have to be discarded. In this paper we propose a power al-
location scheme for TLS systems, based on Dynamic Volt-
age and Frequency Scaling (DVFS), that tries to remedy this
inefficiency. More specifically, we propose a profitability-
based power allocation scheme, where we “steal” power
from non-profitable threads and use it to speed up more use-
ful ones. We evaluate our techniques for a state-of-the-art
TLS system and show that, with minimal hardware support,
they lead to improvements in ED of up to 39.6% with an
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average of 21.2%, for a subset of the SPEC 2000 Integer
benchmark suite.

1 INTRODUCTION

With devices continuing to scale according to Moore’s
Law, we have witnessed a shift towards the multi-core de-
sign paradigm for both industry and academia. This shift
is mainly a consequence of our inability to scale the out-of-
order cores in an efficient way, so that instead of investing
the available transistor budget to build wider processors, we
do so to replicate relatively simpler cores. This of course im-
poses challenges for the programmers/compilers who now
have to devise thread-level-parallel applications, so as to
exploit the available resources. Unfortunately parallel pro-
gramming is hard and error-prone and compilers still fail to
automatically parallelize all but the most regular programs.

Thread Level Speculation (TLS) [10, 13, 16, 23] allows
the compiler/programmer to freely generate threads with-
out having to consider all possible cross-thread data depen-
dences. Parallel execution of threads then proceeds specula-
tively and the TLS system guarantees the original sequential
semantics of the program by transparently detecting any data
dependence violations, squashing the offending threads, and
returning the system to a previously non-speculative correct
state.

Under the TLS executionmodel, threads are speculatively
executed with the hope that this does not result in depen-
dence violations. Of course this is not the case always, and
the offending threads have to be squashed and restarted. Al-
though this optimistic view of the existence of dependences
usually results in a better performance, it does so at the cost
of an increase in power when speculation fails. It is inter-
esting to note that even when speculation fails, we may still
be able to gain benefits, due to prefetching effects as it was
previously reported in [19] and [28].
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If we could separate profitable threads from the non-
profitable ones, then we could allocate the power resources
accordingly, and thus increase the energy efficiency of the
system. This is the main ambition of this paper. More
specifically, we first try to identify threads that provide nei-
ther TLP, nor ILP benefits and distinguish them from those
that do. By classifying threads into profitable and non-
profitable ones, we can increase the efficiency of our specu-
lative system by allocating power according to their prof-
itability. More specifically, threads predicted to be non-
profitable are put in one of the low power modes, allowing
us to spend the power saved to accelerate the profitable ones.
We guide our scheme based on two predictors: a dependence
predictor able to detect lack of TLP, and a memory bound-
edness predictor able to estimate lack of ILP.

Apart from being able to classify threads into profitable
and non-profitable ones, we also require a mechanism to
regulate the power resources accordingly. We could poten-
tially implement this by supporting multiple types of cores
(i.e., low power ones, high power ones, etc.) and migrate
the threads accordingly. However, since our threads are by
construction small, migration will likely have serious per-
formance repercussions. We instead choose to implement
different power modes by performing Dynamic Voltage and
Frequency Scaling (DVFS) [15] on each core, which, when
done by on-chip regulators, is a proven and fast way to trade
power for performance [12].

Applying our profitability-based power allocation scheme
to a state-of-the-art TLS system, we are able to achieve sig-
nificant speedups with a reasonable increase in the power
consumed. More specifically, by evaluating our technique
for a subset of the SPEC2000 Int benchmarks, we show that
with only minimal hardware support, we are able to achieve
improvements in the overall Energy-Delay 1 (ED) of up to
39.6% with an average of 21.2%.

The rest of this paper is organized as follows: in the next
Section we provide some background information. In Sec-
tion 3 we outline our proposed scheme. In Section 4 we
describe our methodology and in Section 5 we present our
results. Finally, in Section 7 we discuss related work, and in
Section 8 we conclude the paper.

2 BACKGROUND

2.1 Background on TLS

Under the thread-level speculation (also called specula-
tive parallelization or speculative multithreading) approach,
sequential sections of code are speculatively executed in par-
allel hoping not to violate any sequential semantics [10, 13,

1Energy Delay is a combined metric, that is the product of the energy a
system expended to perform an operation and the time required to perform
it.

16, 23]. The control flow of the sequential code imposes a
total order on the threads. At any time during execution, the
earliest thread in program order is non-speculativewhile the
others are speculative. The terms predecessor and succes-
sor are used to relate threads in this total order. Stores from
speculative threads generate unsafe versions of variables that
are stored in some sort of speculative buffer. If a spec-
ulative thread overflows its speculative buffer it must stall
and wait to become non-speculative. Loads from specula-
tive threads are provided with potentially incorrect versions.
As execution proceeds, the system tracks memory references
to identify any cross-thread data dependence violation. Any
value read from a predecessor thread, is called an exposed
read, and it has to be tracked since it may expose a Read-
After-Write (RAW) dependence. If a dependence violation
is found, the offending thread must be squashed, along with
its successors, thus reverting the state back to a safe position
from which threads can be re-executed. When the execution
of a non-speculative thread completes it commits and the val-
ues it generated can be moved to safe storage (usually main
memory or some shared lower-level cache). At this point its
immediate successor acquires non-speculative status and is
allowed to commit. When a speculative thread completes it
must wait for all predecessors to commit before it can com-
mit. After committing, the processor is free to start executing
a new speculative thread.

2.2 Background on DVFS

The basic dynamic power equation: P = CV 2Af clearly
shows that there is a great opportunity to save power by ad-
justing voltage and frequency. By reducing the voltage by a
small amount, we reduce power by the square of that fac-
tor. Unfortunately, reducing the operating voltage means
that the transistors need more time in order to switch on and
off, which also forces a reduction in the operating frequency.
Dynamic Voltage and Frequency Scaling (DVFS) [15] tech-
niques try to exploit this relationship by reducing the voltage
and the clock frequency when they discern that they can do
so without causing a proportional reduction in performance.

Adjusting the voltage and frequency is done by means of
a DC-DC converter, which changes the voltage to the desired
levels. The new operating voltage is then used to drive the
frequency generator, which provides the chip with the oper-
ating frequency for the corresponding voltage level. Having
a means of changing the voltage and frequency, one has to
decide whether to put the DC-DC converter off-chip [18, 27]
or on-chip [1, 11]. Placing the converter off-chip, we are lim-
ited in that we can only change the voltage and frequency
of the entire chip. A second related issue is that off-chip
regulators are generally slow. However, they consume less
power and require a smaller hardware budget than their on-
chip counterparts. On the other hand, this additional area



and power consumption grants on-chip regulators faster re-
sponse times and allow changes of the voltage and frequency
to parts of the chip.

3 PROFITABILITY-BASED POWER AL-
LOCATION

3.1 Basic Idea

Most modern processors have support for DVFS in order
to save power when cores are underutilized or to avoid ther-
mal emergencies [8]. As experiments done in [9] showed,
it is advantageous to reduce the CPU frequency for mem-
ory intensive tasks, but not for the CPU intensive ones. In
fact, for tasks with high CPU utilization, the system perfor-
mance is linearly dependent on the operating frequency, and
thus decreasing the frequency results in significant perfor-
mance loss. On the other hand, for memory intensive tasks,
decreasing the operating frequency has only a mild effect
on the overall performance, since these tasks typically stall
while waiting for the memory requests to be serviced. It thus
makes sense, from an energy efficiency perspective, to lower
the frequency for a memory intensive tasks, and increase it
only when running CPU intensive ones.

Unfortunately, for TLS systems this is not enough. A
real-life scenario for systems that support these systems, is
that a significant fraction of the threads have to be rolled-
back due to dependence violations. This suggests that from
a performance point of view, some of the threads are prof-
itable, while some others are not. In fact much of the energy
inefficiency of TLS stems from the fact that we spend the
same amount of power to execute threads that will procure
performance benefits and those that will not. In this paper
we propose to try to adapt the power consumed by threads
based on their expected profitability.

We leverage the fact that modern processors, like Intel’s
Nehalem [7], are able to increase the operating frequency of
a core if the rest of the cores are either idle or on one of the
low-power modes. Instead of relying on the OS to decide
how to allocate the power resources to each of the cores, we
use hardware predictors to guide the power allocation at run-
time. In our system, we assume four power modes: the very-
low-power mode, the low-power mode, the normal-power
mode and the high-power mode. Each mode corresponds
to a different frequency-voltage pair. We assume that the
normal-power mode is the operating mode when all of the
cores are busy. We also assume that, as with Intel’s Nehalem,
the high-power mode cannot be used if all of our cores are
operating at normal-power mode, due to power delivery is-
sues.

More specifically, since the only thread that will surely
commit in a TLS system is the safe thread, it intuitively
makes sense to try to put it in high-power mode when this

is possible. As we previously mentioned, we are only able
to do so if one of the other threads is in one of the low-power
modes (Figure 1(a)), or clock-gated (Figure 1(b)). On the
other hand, we put threads in one of the low-power modes
if we predict that they will squash due to a violation of the
sequential semantics or if we estimate that they are memory
bound, and as such reduced frequencies/voltages will only
result in minor performance loss (Figure 1(c)). We keep the
remaining threads in the normal-power mode.

Although allocating more power to the thread that ac-
quires the safe token is straightforward, finding the threads
that will be victimized is not. One of the difficult aspects
of finding the non-profitable threads stems from the fact that
our predictions are used to guide the execution speed of the
different threads and the same thread can potentially be prof-
itable or non-profitable based on our decisions. Fortunately,
by using hardware predictors like the ones presented in the
following sections, our system adapts to this run-time behav-
ior. We use two predictors: one able to predict if a thread has
performed a load that will cause it to squash, and one able to
estimate if the thread is memory bound. Threads predicted
to squash go into the low-power mode, while threads pre-
dicted to squash for more than three times go into the very-
low-power mode. Similarly, threads estimated to be memory
bound go to low-power mode.

Note that as is shown in Figure 1(d), when the safe token
is passed to the next thread, so do the power resources. As
we will show in Section 5.3, this results in more uniform dis-
tribution of the power consumed than that of a normal TLS
system, and thus our scheme enjoys a better thermal behav-
ior. In fact as we will show in the same section, although we
increase the overall power consumed, we reduce the temper-
ature of the chip significantly. This result suggests that our
scheme would experience less thermal emergencies and as
such it could potentially be clocked at even higher frequen-
cies.

Note also that if our predictions are right and the threads
do squash or are memory bound, we have saved some power.
This is important since this extra power can be spent to
speed up safe threads. At the same time the extra power
consumed executing safe threads in high-power mode, does
not increase significantly the average power consumed. On
the other hand, if our predictions are wrong, we slow down
useful threads and allocate more power to non-profitable
threads. Due to the central role these predictors play in our
design, they have to be quite accurate. In the next two sec-
tions we describe how they operate and discuss various de-
sign options.

3.2 Adapting to TLP

We first target threads that are not going to be useful in
terms of TLP. We base our classification on a Squash Pre-
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Figure 1. Profitability-based power allocation: (a) When all cores are occupied, only when one thread goes in low-power mode
we put the safe thread in high-power mode. (b) While there are free processors (clock gated), the safe thread T1 is set in high-power
mode. (c) When a thread is predicted to squash or to be memory-bound it goes in low-power mode, when it is predicted to squash
and to be memory bound it goes into very-low-power mode. (d) If a safe thread (T1) finishes and the subsequent thread becomes safe
(T2), the high-power core becomes the one holding the current safe thread.

dictor: a dependence predictor able to predict whether a
specific load will squash the thread or not. A dependence
predictor has been previously proposed in [17], but it re-
lies on global information about possibly conflicting loads
and stores. Such a centralized scheme is not practical for a
multi-core system like the one we use. This has been previ-
ously noted in [6], where the authors designed dependence
predictors for a directory-based CC-NUMA system. Instead
of using a centralized scheme, they extended the directories
with a few bits so as to capture the dependence behavior us-
ing only memory addresses.

We opt for a similar solution to the one presented in [6].
More specifically, we maintain a simple table of three bit sat-
urating counters per core as is shown in Figure 2(a). When
a speculative thread (i.e., all threads but the safe one) tries to
execute a load instruction, we perform a bit-wise XOR of the
memory address and the five least significant bits from the
load’s program counter and form an index. We use this in-

dex to look up the corresponding counter from the table we
mentioned before. If the value of the corresponding counter
is larger than three, we then predict that the specific load is
being performed prematurely and will thus cause the thread
to squash, otherwise we predict that the specific load will
not cause any problems. At the same time we also update
the tag of the cache line that holds the specific memory
address, with the five least significant bits of the program
counter. The predictor is updated when we perform a store.
The memory address of the store is propagated to all the
cores, since it is used by the TLS protocol to uncover any de-
pendence violations by checking whether any of the caches
holds a violating load. If the store does reveal a dependence
violation, we read out the five bit field that holds the pro-
gram counter of the load that last touched the cache line.
These bits are XORed with the memory address of the store
and are used to index the table of saturating counters, which
we increment by two. If a thread becomes safe, and thus can



no longer be squashed, it updates the predictor when each of
the lines that belong to it are written back. As with the pre-
vious case, we read out the PC bits and use them along with
the address of the write-back request to index the counter
and decrement it by one. We choose to perform this lazy up-
date of the squash predictor since in this way we can ensure
that for each of the memory addresses for the threads that
commit, we only update the predictor once (as opposed to
updating on every store that does not cause a squash). This
allows us to employ a small number of bits per entry in the
saturating counter table.

Although the main focus of this paper is not in creating
novel dependence predictors, but rather on using them so as
to guide power allocation, as we will show, the proposed pre-
dictor is better than the previously proposed ones. Note that
similarly to [6] we slightly augment the cache lines, but we
only do so to hold information about the program counter
that performed the specific load. As we will show in a sub-
sequent section, this improves the prediction accuracy, since
our predictor is able to disambiguate accesses to the same
memory location from different sections of the code.

Having predicted which threads will get squashed, we
now have to decide how much to slow them down. One op-
tion would be to stall them completely. Albeit simple, this
approach can be very detrimental in terms of performance.
As was pointed out in [28] even threads that do squash may
be useful for prefetching reasons. By stalling threads that
squash, we remove much of this desirable side-effect of TLS
execution. An additional reason why this approach hurts per-
formance is that although fairly accurate, our squash predic-
tor may be wrong. Since the cost of being wrong is high,
we would have to make our predictor fairly conservative in
predicting that a thread will squash. This results of course
in lost opportunity to put threads in low-power mode (i.e.,
stall them in this case), which in turn results in not being
able to put the safe thread in high-power mode. We thus put
these threads in low-power mode instead. When a thread is
predicted to squash more than three times, we can be more
aggressive and put the thread in very-low-powermode. Note
that in this way we wrongly put a thread in very-low-power
mode only when we mispredict three times in a row, in one
task. We thus keep a two-bit counter per core where we ac-
count for the number of times the thread has been predicted
to squash.

3.3 CPI-Based Adaptation

Although by using the squash predictor we can poten-
tially improve energy efficiency, we can still do a better
job by reducing the consumed power according to how
much this will affect the thread’s performance. In fact, for
memory-bound threads, most of their time is spent wait-
ing for memory operations to be serviced. Executing them

in normal-power mode is wasteful since they will consume
valuable power without achieving any performance benefits
out of this.

It is thus clear that we need a mechanism to decide
whether a thread will wait for costly memory operations or
not, since this provides an additional source of energy ineffi-
ciency. Our estimator, depicted in Figure 2(b), uses per core,
two five bit saturating counters, a five bit multiplier, and a
comparator. In order to predict whether a thread is memory
bound or not, when a thread is executing we keep track of
how many times we have had an unresolved memory access
reaching the head of the ROB. These memory accesses are
the ones that are important since they stall the pipeline. At
the same time we also keep track of how many instructions
we have successfully committed. When we wish to make a
prediction we multiply the miss counter with half the size of
the instruction window (in number of in-flight instructions it
can accommodate concurrently) and compare this with the
number of instructions committed. If the product is larger
than the number of instructions, we predict that we have
spent most of our execution time waiting for memory and
thus our thread is memory bound, if it is smaller we predict
otherwise. Threads predicted to be memory bound are put in
low-power mode. We consult the estimator, and thus decide
on the ”memory-boundedness” of the thread, each time we
have a miss in the shared L2 cache.

There are two interesting points to make here. The first is
that although this mechanism is triggered on every L2 miss,
we only allow it to have an effect if the thread is believed
to be memory bound. That is, if a L2 miss happens and
the prediction is that the thread is not memory-bound, no
action is taken. By allowing each evaluation to have an ef-
fect, we could have corrected some erroneous estimations
by putting the threads that are in low-power mode, back to
normal-power mode if this was not the necessary. In prac-
tice we found that if we allow a given number of cycles be-
fore we take any decision, we do not have to do this. As
such the memory-boundedness predictor only operates after
1k cycles have elapsed since the beginning of the execution
of the thread. The second interesting thing to note, is that
the squash predictor may have already placed a thread in the
very-low-power mode. In such cases the memory- bounded-
ness predictor, will not put the thread in the low-power-mode
even though it may be memory bound.

4 Evaluation Methodology

We conduct our experiments using the SESC simula-
tor [21]. The main microarchitectural features are listed in
Table 1. The system we simulate is a multi-core with 4 pro-
cessors, where each processor is 4-issue out-of-order super-
scalar. The power consumption numbers are extracted using
CACTI [24] and wattch [3]. The thermal simulations are per-
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formed using Hotspot [22]. For the TLS protocol we assume
out-of-order spawning [19].

Each one of the cores along with its associated L1 caches
form a separate voltage/frequency domain. The shared L2
cache together with the interconnection network belong to
a different domain (which is fixed). On-chip regulators are
placed per core so as to implement the different power do-
mains, in a similar fashion to [12]. In order to synchronize
communication between the distinct domains that operate
asynchronously to each other we use the mixed-clock FIFO
design proposed in [5].

We only assume four voltage and frequency domains,
as shown in Table 1, similarly to the offered domains in
current commercial designs (i.e., the Super Low Frequency
Mode, Low Frequency Mode, Normal Frequency Mode and
High Frequency Mode used in [7]). All cores operate at
the normal-power mode except if our predictions dictate we
should do otherwise. The cost for changing a power mode
depends on the voltage swing and is modeled to be 1 ns per
10mV in accordance to [12].

Our scheme requires on top of the baseline TLS support,
the necessary hardware to perform the squash prediction and
the CPI estimation (per core). More specifically, for the
squash predictor we need to augment the tags of the cache
lines to hold the five least significant bits of the program
counter performing the access. Using CACTI we found that
the overhead of these extra bits was small enough, so as not
to affect the number of cycles needed to access it. We ad-
ditionally need a 5-bit XOR and one small table of up/down
counters. For the CPI estimator, we require two 5-bit coun-
ters, a 5-bit XOR, a 5-bit multiplier and a comparator.

Since the proposed scheme changes performance and
power simultaneously, we need to use a combined metric so
as to be able to quantify the different design points. One such
metric proposed in [4] is the Energy Delay product (ED),
which allows us to quantify both power and execution time
simultaneously. Since the energy component of ED already

uses the execution time (i.e., Energy = Delay x Power), the
metric emphasizes more on execution time than it does on
power, and as such it is suitable to evaluate TLS systems
which aim at improving performance.

4.1 Benchmarks

We use the programs from the SPEC CPU 2000 Integer
benchmark suite running the Reference data set. We use
the entire suite except eon, which cannot be compiled be-
cause our infrastructure does not support C++, and gcc and
perlbmk, which failed to compile in our infrastructure. For
reference, the sequential (non-TLS) binaries where obtained
with unmodified code compiled with the MIPSPro SGI com-
piler at the O3 optimization level. The TLS binaries were
obtained with the POSH infrastructure [14]. In order to di-
rectly compare them, we execute a given number of simu-
lation marks, which pinpoint specific code segments. This
is necessary because the binaries are different, due to re-
arrangements of the code by POSH. We simulate enough
simulation marks so that the corresponding sequential ap-
plication graduates more than 750 million instructions.

5 EXPERIMENTAL RESULTS

5.1 Profitability-Based Scheme Versus Static
Schemes

Figure 3 depicts the ED when we compare our scheme
against three static power modes, namely the very-low-
power, the low-power and the normal-power modes. Note
that we do not compare against the high-power mode since
we assume that having all the cores operating in the high-
power mode is not possible due to physical constraints.

As Figure 3 shows, the normal-power mode is better than
both very-low-power mode and low-power mode, because



Parameter TLS (4 cores)

Fetch/Issue/Retire Width 4, 4, 4
L1 ICache 16KB, 2-way, 2 cycles
L1 DCache 16KB, 4-way, 3 cycles
L2 Cache 1MB, 8-way, 10 cycles
L2 MSHR 32 entries
Main Memory 500 cycles
I-Window/ROB 80, 104
Ld/St Queue 54, 46
Branch Predictor 32Kbit OGEHL
BTB/RAS 2K entries, 2-way, 32 entries
Minimum Misprediction 12 cycles
Cycles from Violation to Kill/Restart 20
Cycles to Spawn 20

Extra Hardware per Core

Squash Predictor 2K Entries / 3bit
Instruction Counter 5bits
L2 Miss Counter 5bits
Bitwise XOR 10 x 2-input XOR gates
Comparator 1

Power Modes

High Power Mode 5.0GHz / 1000mV
Normal Power Mode 4.0GHz / 950mV
Low Power Mode 3.0GHz / 900mV
Very Low Power Mode 1.0GHz / 700mV

Table 1. Architectural parameters used along with extra hardware required for the proposed scheme, and the different power modes
available in the simulated system.
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Figure 3. Improvement in ED over normal-power
mode for very-low-power mode, low-power mode and the
profitability-based scheme (%).

although both of them consume considerably less power,
they are too slow. Interestingly, for the memory-bound mcf
the low-power more is better than all the other schemes,
since for that frequency the threads execute in a way that
reduces the number of squashes significantly (values are
consumed right after they are produced). We see that our
profitability-based scheme is able to provide a better trade-
off, and it is thus 21.2% better on average than the best static
scheme. Note that for some benchmarks, like crafty and gap,
we are able to improve ED by 39.6% and 29.4% over the
normal-power mode. The reason for this is that for these
benchmarks our squash prediction schemeworks really well.
In the next sections, we provide a detailed analysis of how
our system is able to achieve these significant benefits in ED.

5.2 Performance-Power Analysis

Figure 4(a) depicts the speedup (or slowdown) of the
static power schemes and our profitability-based scheme
over the normal-power mode. Note that frequency changes
are detrimental in terms of performance. In fact, the very-
low power mode is almost 67% slower than the base fre-
quency mode, whereas the low-power mode is 16% slower.
On the other hand, the performance of the profitability-based
scheme is always better than that of the base operating fre-
quency. On average the profitability scheme is 11% faster,
with bzip2, crafty and vortex achieving speedups close to
20%.

At the same time, the power consumed is 2.4% on average
more than that of the normal-power mode. Note that the
other static schemes are able to save far more power (49%
for the very-low power mode and 16% for the low-power
mode on average). However, as we showed in Figure 4(a)
this comes at a fairly large cost in terms of performance. We
thus believe that our profitability based scheme is a far more
reasonable approach in terms of energy efficiency than any
of the static schemes.

5.3 Thermal Analysis

Figure 5 depicts the transient thermal behavior for the
base TLS system operating in normal-power mode and the
profitability-based one for parser. As the figures reveal,
core0 consumes most of the power and as such has the
highest average temperature. Note that even though the
profitability-based scheme consumes more power on aver-
age than the base TLS, the transient behavior is much bet-
ter. This results in a significant reduction in the tempera-
tures observed, while it is also interesting that the thermal
gap between the processors becomes smaller as well. We
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Figure 4. Comparing the three static power schemes, the very-low-power, the low-power and the normal-power mode, and our
profitability-based one in terms of: (a) Speedup (normalized over normal-power mode). (b) Power Consumed (normalized over
normal-power mode).
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Figure 5. Thermal behavior per core for parser for: (a) Base TLS operating at normal-power mode. (b) The profitability-based
scheme.

believe that these two figures present a strong motivation
in employing the proposed form of adaptivity. The results
for the rest of the applications exhibit similar, if not better
behavior. Note that as the temperature of the two systems
reaches steady state, it is much lower for the profitability-
based scheme, than it is for the normal-power mode. The
same trends hold for the rest of the benchmarks.

5.4 Effectiveness of the Squash Predictor

Figure 6 shows how our scheme works when it is guided
by the Squash Predictor only. We only use the squash predic-
tor so as to compare the effectiveness of the one we proposed
in this paper and one that only uses memory addresses, with-
out interference from the memory boundedness estimator.
The left bar in each graph shows the percentage breakdown
of the power modes for a memory address only predictor,
while the right bars show the same for our memory address
plus PC prediction scheme. In Figure 6(a) we see that for the
threads that commit, the two predictors exhibit a similar be-

havior. However in Figure 6(b) we see that our scheme per-
forms better than the memory address only scheme, and it is
able to put more threads that will get squashed in low-power
mode. What is interesting to point out, but is not shown in
these graphs, is that when we also use the memory bound-
edness estimator, the memory-based only scheme performs
much worse than ours. The reason for this is that it is far
more sensitive in the thread ordering than the proposed pre-
dictor. Of course if adding five bits for each cache line is pro-
hibitive for a specific design, our profitability-based scheme
could still perform better than any static one even with the
memory address only predictor.

5.5 Effectiveness ofMemory-BoundednessPredic-
tor

Figure 7 shows the ED for the profitability-based scheme
with and without the memory-boundedness predictor. Be-
cause the only truly memory-bound application we have in
our set of benchmarks ismcf, we expect the predictor to have
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Figure 6. Guiding our allocation scheme using only a Squash Predictor (memory address only and our combined) for: (a) Threads
that commit. (b) Threads that squash.
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Figure 7. Normalized speedup over normal-power mode
for the profitability-based scheme with and without the
memory-boundedness predictor.

an impact for this benchmark and not to affect significantly
the rest. This intuition is supported by the depicted results.
For the memory-bound application we can see that the addi-
tion of the predictor is fairly significant. For gap and parser,
it helps albeit not significantly, while for the rest of the ap-
plications it has no effect. Note that because this graph com-
pares ED, no change in the bars does not mean that the pre-
dictor does not have an effect. In fact this only means that
the predictor is able to trade performance for power, while
maintaining the same energy efficiency (or even improving
it).

5.6 Stalling Non-Profitable Threads

A reasonable concern is that, if we can identify so accu-
rately the threads that will get squashed, why not stall them
until they become safe. As it can be seen from Figure 8,
doing so results in a system with significantly lower perfor-
mance than the normal-power one. The reasons for this are
primarily twofold. Firstly, although our predictor is quite ac-
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Figure 8. Normalized speedup over normal-power mode
for low-power mode, high-power mode and our scheme
where instead of putting non-profitable threads in low-power
mode we stall them until they become safe.

curate it is far from perfect, and whenever it is wrong we lose
performance due to TLP. Secondly, even threads which will
eventually get squashed are not completely non-profitable.
In fact, they can procure indirect performance benefits, ei-
ther due to prefetching to the common L2 cache for safer
threads, or due to warming up the branch predictors. There-
fore, we argue that letting those threads run, albeit in low-
power mode, is a sensible solution as it enhances the sys-
tem’s performance while consuming minimal power.

6 Discussion - Applying Profitability-Based
Power Allocation to TM

In the previous sections we showed that allocating power
according to profitability, provides significant benefits in
terms of ED for TLS. Making speculative multithreading
systems energy efficient is becoming increasingly impor-
tant, especially for many-core systems like the ones we will



have, according to projections made by both industry and
academia. In fact better energy efficiency will allow more
cores to operate at the same time and thus increase their
throughput. We have shown how one can improve a state-of-
art TLS system, despite the fact that it was already optimized
by means of profiling (the POSH compiler used throughout
this work optimizes for power as well).

Applying the proposed power allocation scheme to a TM
system should be quite straight-forward. The only differ-
ence from a hardware perspective between TM and TLS is
that under TM there is no implicit thread ordering. As such
we cannot allocate more power to a specific thread based on
it being safe. However, under TM systems there is usually
a conflict resolution policy, which is different based on the
TM flavor used. We can then leverage upon this mechanism
to decide which is the “safe” thread (i.e., the one most likely
to win in a conflict) and thus guide our scheme. The squash
predictor and the memory boundedness estimator presented
here can then be used in a similar fashion to the one de-
scribed in previous chapters.

7 RELATED WORK

7.1 Related Work on TLS Systems

Thread-level-speculation has been previously proposed
(e.g., [10, 13, 16, 23]) as a means to provide some degree
of parallelism in the presence of data dependences. The vast
majority of prior work on TLS systems has focused on ar-
chitectural features directly related to the TLS support, such
as protocols for multi-versioned caches and data dependence
violation detection. All these are orthogonal to our work. In
particular, we use the system in [19] as our baseline. The
work in [20] argues that TLS systems can be more energy
efficient than wide single threaded systems, but does not fo-
cus on improving the energy efficiency of TLS systems by
using DVFS on non-profitable tasks.

7.2 Related Work on Power Allocation

The work most relevant to this scheme is the one in [25].
In that work there is only one core that is fixed in high-power
mode and three that are fixed in low-power mode. Threads
are migrated to the high power core when they are predicted
to be critical. Predictions are made based on a task-level
criticality predictor. We showed that with much simpler pre-
dictors one can achieve the same goals given per core volt-
age/frequency regulators. Recently [2] performed run-time
adaptation based on criticality predictors. Although our pa-
per shares the same ambitions, we not only cut down power
but instead allocate it to the threads deemed to be profitable.
An additional important issue we had to deal with is the fact

that not all our threads commit their state (in contrast to the
explicitly parallel applications used in [2]).

Per-core regulators like the one proposed in [26], have
been demonstrated to be both fast and efficient. [12] showed
that these regulators can be beneficial for fast architectural
optimizations like ours. Our work assumes such regulators
and it builds on top of work on synchronization among cores
in different voltage/frequency isles, like the one in [5].

8 Conclusions

Speculative multithreaded systems like TM and TLS re-
lieve the programmer/compiler from the tedious process of
synchronizing explicitly parallel applications and of cor-
rectly parallelizing sequential ones. However, due to mis-
peculation, both systems are inefficient from a power per-
spective. In this paper we propose to classify threads into
either profitable or non-profitable ones and allocate power
resources accordingly.

When we applied our scheme to a state-of-the-art TLS
system, we were able to achieve significant speedups with
reasonable increases in the power consumed. More specif-
ically, for a subset of the SPEC2000 Integer benchmarks,
we showed that with only minimal hardware support, we
were able to achieve improvements in the overall ED of up
to 39.6% with an average of 21.2%.
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[16] P. Marcuello and A. González. “Clustered Speculative Multithreaded
Processors.” Intl. Conf. on Supercomputing, pages 365-372, June
1999.

[17] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. “Dynamic
Speculation and Synchronization of Data Dependence.” Intl. Symp.
on Computer Architecture, pages 181-193, May 1997.

[18] Y. Panov and M. Jovanovic. “Design Considerations for 12-V/1.5-V,
50-A Voltage Regulator Modules.” Transactions on Power Electron-
ics, 16(6), November 2001.

[19] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. “Task-
ing with Out-Of-Order Spawn in TLS Chip Multiprocessors: Microar-
chitecture and Compilation.” Intl. Conf. on Supercomputing, pages
179-188, June 2005.

[20] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Saarangi, J. Tuck, and J.
Torrellas. “Thread-Level Speculation on a CMP Can Be Energy Effi-
cient.” Intl. Conf. on Supercomputing, pages 219-228, June 2005.

[21] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S.
Sarangi, P. Sack, K. Strauss, and P. Montesinos. “SESC simulator.”
http://sesc.sourceforge.net.

[22] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. “Temperature-Aware Microarchitecture.”
Intl. Symp. on Computer Architecture, pages 2-13, June 2003.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. “Multiscalar Pro-
cessors.” Intl. Symp. on Computer Architecture, pages 414-425, June
1995.

[24] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Tech. report,
Compaq Western Research Lab., 2006.

[25] J. Tuck, W. Liu, and J. Torrellas. “CAP: Criticality Analysis for
Power-Efficient Speculative Multithreading.” Intl. Conf. on Computer
Design, pages 409-416, October 2007.

[26] J. Wibben and R. Harjani. “A High Efficiency DC-DC Converter Us-
ing 2nH On-Chip Inductors.” Symp. on VLSI Circuits, 2007.

[27] W. Wu, N. Lee, and G. Schuellein. “Multi-Phase Buck Converter De-
sign with Two-Phase Coupled Inductors.” Applied Power Electronics
Conference and Exposition, March 2006.

[28] P. Xekalakis, N. Ioannou and M. Cintra. “Combining Thread Level
Speculation, Helper Threads, and Runahead Execution.” Intl. Conf. on
Supercomputing, pages 410-420, June 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


