
A Light-weight Code Cache Design for Dynamic Binary Translation

Wei Chen, Li Shen, Hongyi Lu, Zhiying Wang, Nong Xiao
School of Computer, National University of Defense Technology,

Changsha 410073, Hunan, China
e-mail:{chenwei, lishen, hylu, zywang}@nudt.edu.cn

Abstract—Interpretation and basic block translation (BBT) are
two typical strategies for cold code emulation in a dynamic
binary translation (DBT) system. More and more DBT systems
employ BBT as the generated native code runs more efficiently
than the interpretation routines. We observe that BBT’s high
efficiency is based on those special hardware assists. With
certain simple hardware techniques, interpretation could
outperform BBT. In our pervious work, we proposed a
hardware interpreted code cache (Pcache) mechanism to
speedup interpretation by saving the decoded instruction
information during interpretation. This light-weight code
cache design could be extended to assist the hotspots
translation, thus further reduce the DBT systems’ overhead.
We add the translation routine entry into the Pcache design
thus saving most decoding operations during translation. We
use eight SPEC 2000 integer benchmarks on our DBT
simulator. Results show that the modified Pcache design causes
a speedup of 1.94 according to the referenced DBT with basic
interpretation. Furthermore, the interpretation based DBT
system assisted by the modified Pcache performs more
efficiently than the DBT system which employs BBT for the
cold code.

Keywords-interpretation; basic block translation; decoding;
Pcache; performance

I. INTRODUCTION
Dynamic binary translation (DBT) [1] converts codes

written for a source instruction set architecture (ISA) into
optimized codes for a target ISA, allowing great flexibility
for realizing microarchitecture innovations. A number of
dynamic binary translation systems have been proposed and
developed in recent years.

Because the translation is done dynamically, it usually
costs a software-implemented DBT thousands of instructions
to translate and optimize a source ISA instruction [2], most
sophisticated DBT systems adopt the two-stage translation
strategy. Some of them use simple fast interpretation for cold
code (not frequently executed codes) emulation and
translate/optimize a hotspot/trace (frequently executed code
segments). Some use simple basic block translation (BBT)
for the cold code emulation. Because the target codes
generated by BBT could get native execution which is more
efficient than the interpretation routine, more and more DBT
systems adopt BBT for the cold code.

 Actually, both interpretation and BBT have advantages
and disadvantages. The biggest disadvantage of

interpretation is that no target binary codes generated for
reuse. But it is easy to do the profiling (collecting program
execution information) during interpretation as the
interpreter and the interpretation routine have the same
execution context. The biggest advantage of BBT is the
generated target codes. As each basic block ends with a
control transfer instruction, chaining should be used to avoid
costly context saving and recovering as the basic block
execution and lookup table accessing (checking whether the
required next block has been translated) have different
execution context. Thus, it is difficult to do the profiling
when the basic blocks are chained together because profiling
is difficult during native execution. For this reason, special
hardware assists for profiling should be adopted.

Compared the two cold code emulation approaches, we
observe that with certain hardware assists, interpretation may
overcome its disadvantage. In our previous work, we
proposed a hardware light-weight code cache design Pcache
[13, 14] for saving the decoded instruction information
during interpretation. We have demonstrated that Pcache can
avoid most redecoding operations thus speeding up the
interpretation stage.

In fact, Pcache could be extended to assist translation. In
this paper, we proposed a modified Pcache design which
provides decoded instructions for translation. So, the
translation procedure could be accelerated. We run 8 SPEC
2000 integer benchmarks on a DBT system simulator, where
the source ISA is IA-32 and the target ISA is a simple VLIW
(very long instruction word). Experimental results show that
the entire interpretation based DBT system could be
accelerated and outperforms the BBT based DBT system.

The rest of the paper is organized as follows. Section 2
introduces some related works. Section 3 summarizes
interpretation and BBT first, and then compares the two cold
code emulation approaches. Section 4 first briefly reviews
the Pcache strategy and then proposes a modified version of
Pcache which would assist the translation. Evaluation of the
modified Pcache is presented in section 5. Evaluation of the
entire DBT system is also presented in this section. Section 6
concludes the paper.

II. RELATED WORKS
Typically, the overhead of an optimized translation for

each source ISA instruction is on the order of thousands of
instructions. For example, DAISY [3] is reported to take
more than four thousand operations to translate and optimize

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.134

120

one PowerPC instruction for its VLIW engine. The
translation of each Alpha instruction to a proposed
superscalar-like ILDP ISA takes more than one thousand
Alpha instructions [4]. Hence, DBT systems usually employ
staged approaches to ISA emulation that simple emulate the
cold code and translated/optimized the hotspots of the
program. During the cold code emulation stage, the simply
basic block translation could be first used, where code is
translated based on the basic block without any optimization
and is saved in a translated code cache for reuse. The Intel
IA-32 EL [5] adopts this approach. [6] also use BBT for the
cold code. An alternative to BBT is simple fast interpretation.
A part of DBT systems interpret the cold code at the initial
stage and translate/optimize the hotspot. DAISY interprets
PowerPC instructions before invoking “tree-region”
translation [3]. Transmeta Crusoe [7] uses a staged
translation strategy combining interpretation and hotspot
translation. In our research, we also employ fast
interpretation and trace translation/optimization.

III. COLD CODE EMULATION APPROACHES

In this section, we summarize and compare the two cold
code emulation approaches, i.e., interpretation and BBT.

A. Interpretation

A software interpreter is a program that reads instructions
of the old architecture one at a time, performing each
operation in turn on a software maintained version of the old
architecture's state [8]. A typical interpreter is always
organized as a decode-and-dispatch interpreter, as it is
structured around a central loop that decodes and then
dispatches it to an interpretation routine based on the type of
instruction [9]. In the interpretation routine, one or several
target instructions may be used to achieve the same effect as
the source instruction. The interpreter and the interpretation
routine have the same execution mode/context. Profiling
could be performed on each interpreted source instruction.
Fig. 1 shows an interpretation routine of a free software
interpreter Bochs-2.4.1[10]. This interpretation routine could
emulate 32-bit IA-32 add instructions whose operands are
general purposes register eax and immediate value, like
“ADD eax, $0x4”.

Figure 1. An example of interpretation routine.

B. Basic Block Translation

Basic block translation (BBT) is another popular strategy
for the cold code emulation. Source binary codes are
recognized and translated to the target codes as their basic

blocks. BBT performs simple straightforward translation
without any optimizations. The generated binary codes will
be saved in a translated code cache in the main memory for
reuse.

Fig. 2 shows an example of binary translation from an
IA-32 binary to PowerPC binaries in the form of assembly
language.

Figure 2. An example of binary translation.

For BBT, each block ends with a control transfer
instruction, like a direct jump. The DBT will maintain a
lookup table which records the correspondence between the
source basic block and the target one. Each time the target
block finish the execution, the DBT will search the lookup
table to check if the next block has been translated yet. This
will cause considerable overhead when control is transferred
between target blocks and the DBT software, as they have
different execution context. When control is transferred from
translated target block to the DBT, processor’s special
function registers like the status register has to be saved first
and will have to be recovered when control is transferred
back to the translated code execution mode. One commonly
used optimization is to chain the basic blocks together so that
immediately jump/branch can be performed at the end of one
block to the next. For direct jump instruction, it is easy to
chain by modifying the source target address to the target
one. For the indirect jump instruction, more complicated
methods have to be taken, like software prediction, JLT
(Jump Target-Address Lookup Table) [11] and RAS (Return
Address Stack) [11] for return instructions.

C. Interpretation vs. BBT

Though the overhead for translating each source
instruction is bigger than interpretation, translation is mostly
performed the first time the instruction is executed. The
translated codes could get native execution. Thus, more and
more DBT systems employ BBT to emulate the cold code.

Actually, the high efficiency of BBT is always achieved
at the cost of special hardware assists.

First, in order to avoid the high overhead of control
transfer, chaining methods should be employed. The
software predication is mainly used for register-indirect jump.
Software prediction will expand the size of each basic block
and may cause great miss penalty due to mispredictation. A
better strategy is to use hardware assists like JLT and RAS,
which need additional hardware implementation and need to
modify the processor’s architecture.

Second, it makes the profiling more difficult if the blocks
are chained together, because control is transferred to the
native execution. Thus, special hardware assist must be
employed to support profiling. For an example, Merten et al.
[12] proposed a 4K-entry branch behavior buffer (BBB)
located after the instruction-retire-stage to identify dynamic
hotspots.

121

In contrast, as the interpretation does not need to change
the execution mode, profiling is easily performed without
special hardware assists. Besides, as there is no control
transfer during interpretation, context saving and recovering
is avoided.

The biggest shortage of interpretation is that no target
codes are generated for reuse. This could be compensated
through both software and hardware approaches. In our
previous work [13, 14], we proposed a novel hardware
assist-interpreted code cache (Pcache) for saving the decoded
instruction information produced during interpretation.

We believe that with high efficient hardware assist,
interpretation may achieve the same performance as BBT,
and may even provide better performance than BBT.

IV. A LIGHT-WEIGHT CODE CACHE DESIGN

Pcache is a light-weight code cache design for reducing
the interpretation overhead. The details of the simple Pcache
design are described in a previous paper [13] where Pcache
is used in a cross-ISA DBT system. We also demonstrated its
efficiency in a same ISA emulation system [14]. In this
section we first summarize the principle of our Pcache
strategy and then propose the extended version.

A. Principle of Pcache

A typical DBT system combining interpretation and
translation consists of five major components, a fast
interpreter, a profiler, a translator, a translated code cache
and a DBT control center. Each component will introduce
different overhead. We have conducted experimental
simulations on a DBT system simulator. Results from some
SPEC2000 integer benchmarks indicate that interpretation
was responsible for 40.84% of the total overhead [13].

For a typical decode-and-dispatch interpreter, the
overhead of interpreting a source instruction could be
partitioned to overheads of fetching, decoding, dispatching
and executing the interpretation routine.

Overhead of fetching the source codes through memory
hierarchy is determined by the memory system and are not
easy to be changed. Overhead of executing the interpretation
routine would always been minimized as the interpretation
routines always consists of the most efficient equivalent
target instructions. Overhead of decoding a source
instruction is always on the order of thousands of clock
cycles, specially for those complicated CISC ISAs, like x86.
Thus, a feasible way to speedup interpretation is to reduce
the decoding overhead.

We have found that most interpreted instructions are
reinterpreted many times. Results from some SPEC2000
benchmarks on the simulator shows that instructions
interpreted only once is less than 1% of the entire interpreted
instructions. Clearly, the reinterpreted instructions would
cause redecoding operations, introducing a mass of
redundant overhead. This forms the motivation of our
previous work to reduce the decoding overhead in
interpretation.

Pcache is a special light-weight code cache design for
saving the decoded instruction information during
interpretation. Each Pcache line contains useful instruction

information of interpretation routine entry and the operands’
addressing form. With Pcache, the interpreter will first
access the Pcache according to the source instruction’s
address. If the required instruction information is found, an
interpretation routine whose entry is in the Pcache could be
directly dispatched without decoding the instruction.
Decoding is only activated when it is not hit in Pcache.

We have demonstrated that Pcache can dramatically
reduce the repeated decoding operations and speedup the
interpretation. Actually, it could be easily extended to
accelerate the translation procedure and further improve the
entire DBT’s performance.

B. Extended Design of Pcache

 The basic Pcache strategy saves the decoded source
instruction information only for interpretation. Actually, the
translation procedure also has a similar decode and dispatch
process. The difference is that it dispatches to a translation
routine. Thus, the translation routine entry could also be
recorded in the Pcache. Fig. 3 shows the modified Pcache
line form.

Figure 3. Pcache line format: (a) generic form of Pcache line; (b) Pcache

line for IA-32 integer ISA; (c) Pcache line for ADD eax, $0x4.

For IA-32 integer ISA [15] (without IA-32E mode),
Pcache lines could be arranged as Fig. 3(b). Each Pcache line
contains 16 bytes with 32 bits for each sub-element of the
Pcache line. The interpretation function distinguishes the
source operand and the destination. Decoded instruction
information of ADD eax, 0x4 is shown in Fig. 3(c).

Fig. 4 shows a modified Pcache infrastructure, where
PR3 is added for the translation routine entry. PMU (Pcache
Management Unit) is the control centre, which convert the
source instruction address (Srcpc) and check whether the
desired decoded instruction is in Pcache. In our previous
work, the hardware Pcache access will affect the zero flag in
the status flag register. Actually, this may influence other
instructions whose execution depends on the zero flag, like
the JNZ instruction. Though we have not found any incorrect
cases when using the SPEC 2000 benchmarks, we do
consider it is not safe to use the zero flag for the Pcache. It
may be better to occupy a new bit for the Pcache in the status
flag if there are any reserved bits left. Otherwise, a new
status flag could be added into the microprocessor.

122

Int_Rou_Entry

.

.

.

Pcache <128>

op2

.

.

.

op1

.

.

.

PR2 PR1 PR0
<32>

PMU.
.
.

.

.

.

Srcpc

Tag

<32>

.

.

.

.

.

.

Valid

FPC
Status flag

Tran_Rou_Entry

PR3
<32>

Figure 4. Pcache infrastructure

Conventional cache access is transparent to the user, but
access of the Pcache is explicit through several new
instructions implemented in the target microprocessor/ISA.
Table Ⅰ briefly describes the new instructions. The first two
instructions have been already proposed in our previous
work, the JPC instruction is added for checking the Pcache
status flag FPC.

TABLE I. PCACHE ACCESS INSTRUCTIONS

Instruction Brief Description

PLD Srcpc

Read Pcache with given source instruction
address Srcpc. If hit, send the content of the
desired Pcache line into PR0~PR3 and set FPC
flag to 1; if not hit, clear FPC flag.

PST Srcpc Write the content of PR0~PR3 to the Pcache
line corresponding to Srcpc.

JPC Judge the FPC flag to check whether the
required instruction is already in Pcache

0.Pcahce_Load:
1.PLD Srcpc
2.JPC Decode_Routine
3.JMP [PR2]/[PR3]
;to interpretation/translation routine

0.Pcahce_Store:
1.MOV PR0,op1
2.MOV PR1,op2
3.MOV PR2,Interpretation_Routine_Entry
4.MOV PR3,Translation_Routine_Entry
5.PST Srcpc

(a)

(b)

Figure 5. Code for Pcache access: (a) use PLD to read Pcache; (b) use
PST to write Pcache.

Fig. 5 illustrates the kernel codes used by the DBT
system to access Pcache both during interpretation and
translation. Srcpc is the implementation register holding the
source instruction PC value. When reading the Pcache, a
source instruction is fetched by a PLD (Pcache load)
instruction from the Pcache. If it is hit in Pcache, the content
of the corresponding Pcache line will be send to PR0~PR3
and the FPC flag will be set to 1. If not hit, the FPC flag will
be cleared. The instruction JPC, check the FPC flag to
determine whether the decoding operation could be avoided.
Codes in Fig. 5(b) are used to write the decoded instruction
into the hardware Pcache. Related information is first MOV

to PR0~PR3. Then, PST instruction is performed to write the
content in PR0~PR3 into the hardware Pcache.

A modified DBT system assisted by Pcache is shown in
Fig. 6. Decoded source instructions are fetched from Pcache
first. If it is hit, the interpreter/translator directly executes the
related interpretation/translation routine using information in
the related Pcache line. If not hit, the interpreter/translator
fetches and decodes source instructions from data cache, as it
normally does. Decoded instruction is finally written back to
Pcache.

Figure 6. DBT system assisted by Pcache

V. EVALUATION

A. Evaluation Environment
The experimental infrastructure is based on a DBT

simulator we construct to evaluate the related DBT
performance. The DBT simulator is a two-stage DBT system
which combines fast interpretation and trace translation/
optimization. The hot trace formation method is a slightly
modified version of Cao’s adaptive trace/hotspots detection
and construction technique [16] with a threshold of 16. The
source ISA is IA-32 integer, and the target is a simple VLIW
simulator we construct from SimpleScalar 3.0 [17]. Other
primary components are shown in Fig. 7 and only the main
control/data flow is depicted.

Figure 7. Infrastructure of DBT simulator

123

The simulator supports two working modes, with Pcache
or not, controlled by a controller. Related configuration
settings are provided in Table Ⅱ . Eight benchmarks
(illustrated in Fig. 8, Fig. 9) of SPEC2000 integer benchmark
set have been successfully executed on the DBT simulator.
Other SPEC2000 benchmarks contain some complicate
floating point instructions we can not handle at the moment
as only IA-32 integer instructions will be translated.

TABLE II. MACHINE CONFIGURATIONS AND SIMULATOR SETTINGS

Execution Engine
Host OS Linux Red Hat Enterprise3, 2.4.21-4.EL
GCC 3.2.3
Optimization -O2 –msoft-float

Simulator Settings
Data Cache 64KB,64B lines,4-way,LRU
Source/target ISA IA-32 Integer/VLIW
Trace Threshold 16
Pcache 8KB/16KB, 1/2/4-way, LRU

B. Performance Evaluation of Pcache

To measure the performance of Pcache, we first evaluate
the Pcache hit rate for several cache sizes and associativities
with the least-recently used (LRU) replacement. Fig. 8
shows the experimental results. With the assist of Pcache,
DBT has to access the Pcache first for interpreting each
source instruction or for translating the source instruction if
it has not been translated, decoding only occurs when there is
a Pcache miss. Thus, the reduced decoding operation ratio is
equal to the Pcache hit rate.

Because these benchmarks have different program
characterizations, the hit rate ranges from 90.86% to 99.72%.
We have evaluated the Pcache hit rate during interpretation,
which are from 90.80% to 99.69% [13]. Results show that
more decoding operations have been omitted as Pcache is
used for the translation. Among the 6 Pcache configurations,
the average Pcache hit rate reaches the highest 98.73% with
a 16KB, 4-way, LRU Pcache.

Figure 8. Reduced decoding ratio/Pcache hit rate

C. Performance Evaluation of DBT

Obviously, Pcache can significantly reduce the number
of redecoding operations, thus improve the performance of
the entire DBT system.

In our DBT simulator, a normal interpretation for a
simple IA-32 instruction costs about 2700 CPU cycles on
average, about 2500 cycles for decoding a simple IA-32
instruction and 150 cycles for executing the interpretation
routine. The average overhead of translating a simple IA-32
instruction is about 47055 cycles, consists of overheads of
profiling, source instruction decoding, trace constructing,
target codes generating and optimization. As the translator
will access Pcache first, most decoding overhead of
translation could be omitted.

In our previous work, we have already observed that a
16KB, 4-way, LRU hardware Pcache has a best average
speedup of 17.72 for the interpreter. In this paper, we would
evaluate the performance improvement of the entire DBT.

Fig. 9 shows the performance of different DBT systems.
Ref. is the referenced DBT system combines interpretation
and trace translation without Pcache. DBT-P is the reference
system with assist of a 16KB, 4-way, LRU Pcache. DBT-
BBT is a DBT system combines BBT and trace translation.

Figure 9. Performance evaluation of DBT systems

Fig. 9 shows the speedup rate of DBT-P to the referenced
DBT is 1.94 on average. This indicates that Pcache could
significantly speedup the entire DBT system. Fig. 9 also
shows the relative performance of DBT-BBT. Here, we do
not adopt any special hardware assists for profiling and
chaining. Results show that without the special hardware
assists, BBT has not outperformed the interpreter and even
consumes more overhead.

VI. CONCLUSIONS

Though more and more dynamic binary translation
systems employ the basic block translation for the cold code
emulation, we believe that with certain hardware assist,
interpretation could outperforms the BBT.

Pcache is a light weight code cache design which save
the decoded instruction information during interpretation and
translation, thus avoid most redundant instruction decoding.
We conduct experiments on a DBT simulator. Results show
that Pcache could dramatically reduce the DBT system’s
overhead. Furthermore, Pcache is easy to be implemented
than those special hardware techniques that used to assist
BBT. With Pcache, the interpretation based DBT may
achieve better performance than BBT based DBT.

124

ACKNOWLEDGMENTS
 This work is supported by National Basic Research

Program (973) under grant No.2007CB310901, National
Nature Science of China under grant No.60803041.

REFERENCES
[1] K. Ebcioglu et al., “Dynamic Binary Translation and Optimization,”

IEEE Transactions on Computers, vol. 50, No. 6, 2001, pp. 529-548,
June 2001.

[2] R. J. Hookway and M. A. Herdeg, “Digital FX!32: Combining
Emulation and Binary Translation,” Digital Technical Journal, vol. 9,
No. 1, 1997.

[3] K. Ebcioglu and E. Altman, “DAISY: Dynamic Compilation for
100% Architectural Compatibility,” Proc. of 24th Int’l Symp. on
Computer Architecture, Denver, USA, pp. 26-37, 1997.

[4] H.-S. Kim and J. E. Smith, “Dynamic Binary Translation for
Accumulator-Oriented Architectures,” Proc. of 1st Int’l Symp. on
Code Generation and Optimization, San Francisco, pp. 25-35, 2003.

[5] L. Baraz, et al.,“ IA-32 Execution Layer: a two phase dynamic
translator designed to support IA-32 applications on Itanium®-based
systems,” Proc. of the 36th Int’l Symp. on Microarchitecture, pp.
191-204, Dec. 2003.

[6] Shiliang Hu and J. E. Smith, “Reducing Startup Time in Co-designed
Virtual Machines,” Proc. of 33th Inte’l Symp. on Computer
Architecture, Boston, USA, 2006.

[7] A. Klaiber, “The Technology behind Crusoe Processors,” Transmeta
Technical Brief, 2000.

[8] Richard L Sites, et al., “Binary Translation,” Digital Technical
Journal, vol. 4, No. 4, 1992, pp. 1-16.

[9] James E. Smith and Ravi Nair, Virtual Machines: Versatile Platforms
for Systems and Processer. Publishing House of Electronics industry,
pp.29-218, 2006.

[10] K. Lawton, “The BOCHS Open Source IA-32 Emulation Project,”
http://bochs.sourceforge.net

[11] H.-S. Kim, J. E. Smith, “Hardware Support for Control Transfers in
Code Cache,” Proc. of the 36th Int’l Symp. on Microarchitecture pp.
253-264, Dec. 2003

[12] M. C. Merten, et al., “An Architectural Framework for Runtime
Optimization,” IEEE transactions on Computers, Vol. 50, No.6, pp.
567-589, Jun. 2001.

[13] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang and Nong Xiao,
“Using Pcache to Speedup Interpretaion in Dyanamic Binary
Translation,” Proc. of Inte’l Symp. on Parallel and Distributed
Processing with Applications (ISPA 2009) Chengdu, China, August
2009.

[14] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang and Nong Xiao, “A
Hardware Approach for Reducing Interpretaion Overhead,” in press
of the Proc. of 9th International Conference on Computer and
information Technology, Xiamen, China, Oct. 2009.

[15] Intel Corporation, IA-32 Intel Architecture Software Developer’s
Manual, vol.2: Instruction Set Reference, 2003.

[16] Hongjia Cao, “Research on Dynamic Binary Translation Technology
for Microprocessor Design,” Ph.D thesis, National University of
Defense Technology, 2005.

[17] SimpleScalar 3.0, http://www.simplescalar.com/

125

