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Abstract—Interpretation and basic block translation (BBT) are 
two typical strategies for cold code emulation in a dynamic 
binary translation (DBT) system. More and more DBT systems 
employ BBT as the generated native code runs more efficiently 
than the interpretation routines. We observe that BBT’s high 
efficiency is based on those special hardware assists. With 
certain simple hardware techniques, interpretation could 
outperform BBT. In our pervious work, we proposed a 
hardware interpreted code cache (Pcache) mechanism to 
speedup interpretation by saving the decoded instruction 
information during interpretation. This light-weight code 
cache design could be extended to assist the hotspots 
translation, thus further reduce the DBT systems’ overhead. 
We add the translation routine entry into the Pcache design 
thus saving most decoding operations during translation. We 
use eight SPEC 2000 integer benchmarks on our DBT 
simulator. Results show that the modified Pcache design causes 
a speedup of 1.94 according to the referenced DBT with basic 
interpretation. Furthermore, the interpretation based DBT 
system assisted by the modified Pcache performs more 
efficiently than the DBT system which employs BBT for the 
cold code. 

Keywords-interpretation; basic block translation; decoding; 
Pcache; performance 

I.  INTRODUCTION 
Dynamic binary translation (DBT) [1] converts codes 

written for a source instruction set architecture (ISA) into 
optimized codes for a target ISA, allowing great flexibility 
for realizing microarchitecture innovations. A number of 
dynamic binary translation systems have been proposed and 
developed in recent years.  

Because the translation is done dynamically, it usually 
costs a software-implemented DBT thousands of instructions 
to translate and optimize a source ISA instruction [2], most 
sophisticated DBT systems adopt the two-stage translation 
strategy. Some of them use simple fast interpretation for cold 
code (not frequently executed codes) emulation and 
translate/optimize a hotspot/trace (frequently executed code 
segments). Some use simple basic block translation (BBT) 
for the cold code emulation. Because the target codes 
generated by BBT could get native execution which is more 
efficient than the interpretation routine, more and more DBT 
systems adopt BBT for the cold code.  

 Actually, both interpretation and BBT have advantages 
and disadvantages. The biggest disadvantage of 

interpretation is that no target binary codes generated for 
reuse. But it is easy to do the profiling (collecting program 
execution information) during interpretation as the 
interpreter and the interpretation routine have the same 
execution context. The biggest advantage of BBT is the 
generated target codes. As each basic block ends with a 
control transfer instruction, chaining should be used to avoid 
costly context saving and recovering as the basic block 
execution and lookup table accessing (checking whether the 
required next block has been translated) have different 
execution context. Thus, it is difficult to do the profiling 
when the basic blocks are chained together because profiling 
is difficult during native execution. For this reason, special 
hardware assists for profiling should be adopted. 

Compared the two cold code emulation approaches, we 
observe that with certain hardware assists, interpretation may 
overcome its disadvantage. In our previous work, we 
proposed a hardware light-weight code cache design Pcache 
[13, 14] for saving the decoded instruction information 
during interpretation. We have demonstrated that Pcache can 
avoid most redecoding operations thus speeding up the 
interpretation stage.  

In fact, Pcache could be extended to assist translation. In 
this paper, we proposed a modified Pcache design which 
provides decoded instructions for translation. So, the 
translation procedure could be accelerated. We run 8 SPEC 
2000 integer benchmarks on a DBT system simulator, where 
the source ISA is IA-32 and the target ISA is a simple VLIW 
(very long instruction word). Experimental results show that 
the entire interpretation based DBT system could be 
accelerated and outperforms the BBT based DBT system.  

The rest of the paper is organized as follows. Section 2 
introduces some related works. Section 3 summarizes 
interpretation and BBT first, and then compares the two cold 
code emulation approaches. Section 4 first briefly reviews 
the Pcache strategy and then proposes a modified version of 
Pcache which would assist the translation. Evaluation of the 
modified Pcache is presented in section 5. Evaluation of the 
entire DBT system is also presented in this section. Section 6 
concludes the paper. 

II.  RELATED WORKS 
Typically, the overhead of an optimized translation for 

each source ISA instruction is on the order of thousands of 
instructions. For example, DAISY [3] is reported to take 
more than four thousand operations to translate and optimize 
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one PowerPC instruction for its VLIW engine. The 
translation of each Alpha instruction to a proposed 
superscalar-like ILDP ISA takes more than one thousand 
Alpha instructions [4]. Hence, DBT systems usually employ 
staged approaches to ISA emulation that simple emulate the 
cold code and translated/optimized the hotspots of the 
program. During the cold code emulation stage, the simply 
basic block translation could be first used, where code is 
translated based on the basic block without any optimization 
and is saved in a translated code cache for reuse. The Intel 
IA-32 EL [5] adopts this approach. [6] also use BBT for the 
cold code. An alternative to BBT is simple fast interpretation. 
A part of DBT systems interpret the cold code at the initial 
stage and translate/optimize the hotspot. DAISY interprets 
PowerPC instructions before invoking “tree-region” 
translation [3]. Transmeta Crusoe [7] uses a staged 
translation strategy combining interpretation and hotspot 
translation. In our research, we also employ fast 
interpretation and trace translation/optimization.  

III. COLD CODE EMULATION APPROACHES 

In this section, we summarize and compare the two cold 
code emulation approaches, i.e., interpretation and BBT. 

A. Interpretation 

A software interpreter is a program that reads instructions 
of the old architecture one at a time, performing each 
operation in turn on a software maintained version of the old 
architecture's state [8]. A typical interpreter is always 
organized as a decode-and-dispatch interpreter, as it is 
structured around a central loop that decodes and then 
dispatches it to an interpretation routine based on the type of 
instruction [9]. In the interpretation routine, one or several 
target instructions may be used to achieve the same effect as 
the source instruction. The interpreter and the interpretation 
routine have the same execution mode/context. Profiling 
could be performed on each interpreted source instruction. 
Fig. 1 shows an interpretation routine of a free software 
interpreter Bochs-2.4.1[10]. This interpretation routine could 
emulate 32-bit IA-32 add instructions whose operands are 
general purposes register eax and immediate value, like 
“ADD eax, $0x4”. 

 
Figure 1.  An example of interpretation routine. 

B. Basic Block Translation 

Basic block translation (BBT) is another popular strategy 
for the cold code emulation. Source binary codes are 
recognized and translated to the target codes as their basic 

blocks. BBT performs simple straightforward translation 
without any optimizations. The generated binary codes will 
be saved in a translated code cache in the main memory for 
reuse.  

Fig. 2 shows an example of binary translation from an 
IA-32 binary to PowerPC binaries in the form of assembly 
language.  

 
Figure 2.  An example of binary translation. 

For BBT, each block ends with a control transfer 
instruction, like a direct jump. The DBT will maintain a 
lookup table which records the correspondence between the 
source basic block and the target one. Each time the target 
block finish the execution, the DBT will search the lookup 
table to check if the next block has been translated yet. This 
will cause considerable overhead when control is transferred 
between target blocks and the DBT software, as they have 
different execution context. When control is transferred from 
translated target block to the DBT, processor’s special 
function registers like the status register has to be saved first 
and will have to be recovered when control is transferred 
back to the translated code execution mode. One commonly 
used optimization is to chain the basic blocks together so that 
immediately jump/branch can be performed at the end of one 
block to the next. For direct jump instruction, it is easy to 
chain by modifying the source target address to the target 
one. For the indirect jump instruction, more complicated 
methods have to be taken, like software prediction, JLT 
(Jump Target-Address Lookup Table) [11] and RAS (Return 
Address Stack) [11] for return instructions.  

C. Interpretation vs. BBT 

Though the overhead for translating each source 
instruction is bigger than interpretation, translation is mostly 
performed the first time the instruction is executed. The 
translated codes could get native execution. Thus, more and 
more DBT systems employ BBT to emulate the cold code. 

Actually, the high efficiency of BBT is always achieved 
at the cost of special hardware assists. 

First, in order to avoid the high overhead of control 
transfer, chaining methods should be employed. The 
software predication is mainly used for register-indirect jump. 
Software prediction will expand the size of each basic block 
and may cause great miss penalty due to mispredictation. A 
better strategy is to use hardware assists like JLT and RAS, 
which need additional hardware implementation and need to 
modify the processor’s architecture.  

Second, it makes the profiling more difficult if the blocks 
are chained together, because control is transferred to the 
native execution. Thus, special hardware assist must be 
employed to support profiling. For an example, Merten et al. 
[12] proposed a 4K-entry branch behavior buffer (BBB) 
located after the instruction-retire-stage to identify dynamic 
hotspots.  
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In contrast, as the interpretation does not need to change 
the execution mode, profiling is easily performed without 
special hardware assists. Besides, as there is no control 
transfer during interpretation, context saving and recovering 
is avoided.  

The biggest shortage of interpretation is that no target 
codes are generated for reuse. This could be compensated 
through both software and hardware approaches. In our 
previous work [13, 14], we proposed a novel hardware 
assist-interpreted code cache (Pcache) for saving the decoded 
instruction information produced during interpretation.  

We believe that with high efficient hardware assist, 
interpretation may achieve the same performance as BBT, 
and may even provide better performance than BBT. 

IV. A LIGHT-WEIGHT CODE CACHE DESIGN 

Pcache is a light-weight code cache design for reducing 
the interpretation overhead.  The details of the simple Pcache 
design are described in a previous paper [13] where Pcache 
is used in a cross-ISA DBT system. We also demonstrated its 
efficiency in a same ISA emulation system [14]. In this 
section we first summarize the principle of our Pcache 
strategy and then propose the extended version.  

A. Principle of Pcache 

A typical DBT system combining interpretation and 
translation consists of five major components, a fast 
interpreter, a profiler, a translator, a translated code cache 
and a DBT control center. Each component will introduce 
different overhead. We have conducted experimental 
simulations on a DBT system simulator. Results from some 
SPEC2000 integer benchmarks indicate that interpretation 
was responsible for 40.84% of the total overhead [13].  

For a typical decode-and-dispatch interpreter, the 
overhead of interpreting a source instruction could be 
partitioned to overheads of fetching, decoding, dispatching 
and executing the interpretation routine. 

Overhead of fetching the source codes through memory 
hierarchy is determined by the memory system and are not 
easy to be changed. Overhead of executing the interpretation 
routine would always been minimized as the interpretation 
routines always consists of the most efficient equivalent 
target instructions. Overhead of decoding a source 
instruction is always on the order of thousands of clock 
cycles, specially for those complicated CISC ISAs, like x86. 
Thus, a feasible way to speedup interpretation is to reduce 
the decoding overhead. 

We have found that most interpreted instructions are 
reinterpreted many times. Results from some SPEC2000 
benchmarks on the simulator shows that instructions 
interpreted only once is less than 1% of the entire interpreted 
instructions. Clearly, the reinterpreted instructions would 
cause redecoding operations, introducing a mass of 
redundant overhead. This forms the motivation of our 
previous work to reduce the decoding overhead in 
interpretation.   

Pcache is a special light-weight code cache design for 
saving the decoded instruction information during 
interpretation. Each Pcache line contains useful instruction 

information of interpretation routine entry and the operands’ 
addressing form. With Pcache, the interpreter will first 
access the Pcache according to the source instruction’s 
address. If the required instruction information is found, an 
interpretation routine whose entry is in the Pcache could be 
directly dispatched without decoding the instruction. 
Decoding is only activated when it is not hit in Pcache. 

We have demonstrated that Pcache can dramatically 
reduce the repeated decoding operations and speedup the 
interpretation. Actually, it could be easily extended to 
accelerate the translation procedure and further improve the 
entire DBT’s performance. 

B. Extended Design of Pcache 

 The basic Pcache strategy saves the decoded source 
instruction information only for interpretation. Actually, the 
translation procedure also has a similar decode and dispatch 
process. The difference is that it dispatches to a translation 
routine. Thus, the translation routine entry could also be 
recorded in the Pcache. Fig. 3 shows the modified Pcache 
line form. 

 
Figure 3.  Pcache line format: (a) generic form of Pcache line; (b) Pcache 

line for IA-32 integer ISA; (c) Pcache line for ADD eax, $0x4. 

For IA-32 integer ISA [15] (without IA-32E mode), 
Pcache lines could be arranged as Fig. 3(b). Each Pcache line 
contains 16 bytes with 32 bits for each sub-element of the 
Pcache line. The interpretation function distinguishes the 
source operand and the destination. Decoded instruction 
information of ADD eax, 0x4 is shown in Fig. 3(c). 

Fig. 4 shows a modified Pcache infrastructure, where 
PR3 is added for the translation routine entry. PMU (Pcache 
Management Unit) is the control centre, which convert the 
source instruction address (Srcpc) and check whether the 
desired decoded instruction is in Pcache. In our previous 
work, the hardware Pcache access will affect the zero flag in 
the status flag register. Actually, this may influence other 
instructions whose execution depends on the zero flag, like 
the JNZ instruction. Though we have not found any incorrect 
cases when using the SPEC 2000 benchmarks, we do 
consider it is not safe to use the zero flag for the Pcache. It 
may be better to occupy a new bit for the Pcache in the status 
flag if there are any reserved bits left. Otherwise, a new 
status flag could be added into the microprocessor.  
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Figure 4.  Pcache infrastructure  

Conventional cache access is transparent to the user, but 
access of the Pcache is explicit through several new 
instructions implemented in the target microprocessor/ISA. 
Table Ⅰ briefly describes the new instructions. The first two 
instructions have been already proposed in our previous 
work, the JPC instruction is added for checking the Pcache 
status flag FPC.  

TABLE I.  PCACHE ACCESS INSTRUCTIONS 

Instruction Brief Description  
 
PLD Srcpc 

Read Pcache with given source instruction 
address Srcpc. If hit, send the content of the 
desired Pcache line into PR0~PR3 and set FPC 
flag to 1; if not hit, clear FPC flag. 

PST Srcpc Write the content of PR0~PR3 to the Pcache 
line corresponding to Srcpc. 

JPC Judge the FPC flag to check whether the 
required instruction is already in Pcache 

 
0.Pcahce_Load:
1.PLD Srcpc
2.JPC Decode_Routine
3.JMP [PR2]/[PR3]
;to interpretation/translation routine 

0.Pcahce_Store:
1.MOV PR0,op1
2.MOV PR1,op2
3.MOV PR2,Interpretation_Routine_Entry
4.MOV PR3,Translation_Routine_Entry
5.PST Srcpc

(a)

(b)  

Figure 5.  Code for Pcache access: (a) use PLD to read Pcache; (b) use 
PST to write Pcache. 

Fig. 5 illustrates the kernel codes used by the DBT 
system to access Pcache both during interpretation and 
translation. Srcpc is the implementation register holding the 
source instruction PC value. When reading the Pcache, a 
source instruction is fetched by a PLD (Pcache load) 
instruction from the Pcache. If it is hit in Pcache, the content 
of the corresponding Pcache line will be send to PR0~PR3 
and the FPC flag will be set to 1. If not hit, the FPC flag will 
be cleared. The instruction JPC, check the FPC flag to 
determine whether the decoding operation could be avoided. 
Codes in Fig. 5(b) are used to write the decoded instruction 
into the hardware Pcache. Related information is first MOV 

to PR0~PR3. Then, PST instruction is performed to write the 
content in PR0~PR3 into the hardware Pcache. 

A modified DBT system assisted by Pcache is shown in 
Fig. 6. Decoded source instructions are fetched from Pcache 
first. If it is hit, the interpreter/translator directly executes the 
related interpretation/translation routine using information in 
the related Pcache line. If not hit, the interpreter/translator 
fetches and decodes source instructions from data cache, as it 
normally does. Decoded instruction is finally written back to 
Pcache. 

 

 
Figure 6.  DBT system assisted by Pcache 

V. EVALUATION 

A. Evaluation Environment 
The experimental infrastructure is based on a DBT 

simulator we construct to evaluate the related DBT 
performance. The DBT simulator is a two-stage DBT system 
which combines fast interpretation and trace translation/ 
optimization. The hot trace formation method is a slightly 
modified version of Cao’s adaptive trace/hotspots detection 
and construction technique [16] with a threshold of 16. The 
source ISA is IA-32 integer, and the target is a simple VLIW 
simulator we construct from SimpleScalar 3.0 [17]. Other 
primary components are shown in Fig. 7 and only the main 
control/data flow is depicted. 

 

 
Figure 7.  Infrastructure of DBT simulator 
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The simulator supports two working modes, with Pcache 
or not, controlled by a controller. Related configuration 
settings are provided in Table Ⅱ . Eight benchmarks 
(illustrated in Fig. 8, Fig. 9) of SPEC2000 integer benchmark 
set have been successfully executed on the DBT simulator. 
Other SPEC2000 benchmarks contain some complicate 
floating point instructions we can not handle at the moment 
as only IA-32 integer instructions will be translated. 

TABLE II.  MACHINE CONFIGURATIONS AND SIMULATOR SETTINGS 

Execution Engine 
Host OS Linux Red Hat Enterprise3, 2.4.21-4.EL 
GCC  3.2.3 
Optimization  -O2 –msoft-float  

Simulator Settings 
Data Cache 64KB,64B lines,4-way,LRU  
Source/target ISA IA-32 Integer/VLIW 
Trace Threshold 16 
Pcache 8KB/16KB, 1/2/4-way, LRU 

 

B. Performance Evaluation of Pcache 

To measure the performance of Pcache, we first evaluate 
the Pcache hit rate for several cache sizes and associativities 
with the least-recently used (LRU) replacement. Fig. 8 
shows the experimental results. With the assist of Pcache, 
DBT has to access the Pcache first for interpreting each 
source instruction or for translating the source instruction if 
it has not been translated, decoding only occurs when there is 
a Pcache miss. Thus, the reduced decoding operation ratio is 
equal to the Pcache hit rate.   

Because these benchmarks have different program 
characterizations, the hit rate ranges from 90.86% to 99.72%. 
We have evaluated the Pcache hit rate during interpretation, 
which are from 90.80% to 99.69% [13]. Results show that 
more decoding operations have been omitted as Pcache is 
used for the translation. Among the 6 Pcache configurations, 
the average Pcache hit rate reaches the highest 98.73% with 
a 16KB, 4-way, LRU Pcache.  

 

 

Figure 8.   Reduced decoding ratio/Pcache hit rate 

C. Performance Evaluation of DBT 

Obviously, Pcache can significantly reduce the number 
of redecoding operations, thus improve the performance of 
the entire DBT system.  

In our DBT simulator, a normal interpretation for a 
simple IA-32 instruction costs about 2700 CPU cycles on 
average, about 2500 cycles for decoding a simple IA-32 
instruction and 150 cycles for executing the interpretation 
routine. The average overhead of translating a simple IA-32 
instruction is about 47055 cycles, consists of overheads of 
profiling, source instruction decoding, trace constructing, 
target codes generating and optimization. As the translator 
will access Pcache first, most decoding overhead of 
translation could be omitted.  

In our previous work, we have already observed that a 
16KB, 4-way, LRU hardware Pcache has a best average 
speedup of 17.72 for the interpreter. In this paper, we would 
evaluate the performance improvement of the entire DBT. 

Fig. 9 shows the performance of different DBT systems. 
Ref. is the referenced DBT system combines interpretation 
and trace translation without Pcache. DBT-P is the reference 
system with assist of a 16KB, 4-way, LRU Pcache. DBT-
BBT is a DBT system combines BBT and trace translation. 

 

  
Figure 9.  Performance evaluation of DBT systems 

Fig. 9 shows the speedup rate of DBT-P to the referenced 
DBT is 1.94 on average. This indicates that Pcache could 
significantly speedup the entire DBT system. Fig. 9 also 
shows the relative performance of DBT-BBT.  Here, we do 
not adopt any special hardware assists for profiling and 
chaining. Results show that without the special hardware 
assists, BBT has not outperformed the interpreter and even 
consumes more overhead.   

VI. CONCLUSIONS 

Though more and more dynamic binary translation 
systems employ the basic block translation for the cold code 
emulation, we believe that with certain hardware assist, 
interpretation could outperforms the BBT. 

Pcache is a light weight code cache design which save 
the decoded instruction information during interpretation and 
translation, thus avoid most redundant instruction decoding. 
We conduct experiments on a DBT simulator. Results show 
that Pcache could dramatically reduce the DBT system’s 
overhead. Furthermore, Pcache is easy to be implemented 
than those special hardware techniques that used to assist 
BBT. With Pcache, the interpretation based DBT may 
achieve better performance than BBT based DBT. 
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