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Abstract—Speculation execution model which executes sequential 
programs in parallel through speculation is an effective technique 
for making better use of growing on-chip resources and exploiting 
more instruction-level parallelism of applications. However, 
accompanied high communication overheads and roll-back 
penalties can not be neglected. This paper focuses on analyzing the 
feasibility of aggressive speculation execution model and finding 
an appropriate degree of “aggressiveness” under hyperblock-
based execution model. We analyze the characteristic of control 
dependences and data dependences between adjacent hyperblocks, 
and propose a quantitative analysis method to detect data 
dependences on hyperblock-based execution model, and then 
evaluate the feasibility of aggressive speculative execution model 
on 8 applications from SPEC2K. Our experiments show most 
applications can get high prediction accuracy on control-flow from 
hyperblock-based prediction mechanisms, especially SPECFP. 
Furthermore, we analyze factors which impact expected prediction 
depth and find depth depends more on application than predictors. 

Keywords-hyperblock; speculative execution; prediction; 
control dependence; data dependence 

I.  INTRODUCTION 
Modern CMOS technology brings the increasing number 

of transistors on one chip, so how to effectively utilize the 
growing resources and exploit more parallelism to accelerate 
applications is an urgent problem for computer architects. 
However, to expose potential of instruction-level parallelism 
(ILP), control-flow and data-flow constraints inherent in a 
program must be overcome. Speculative execution [1] which 
executes programs aggressively has become a mainstream 
technique to reduce the impacts of dependences in high 
performance microprocessors. 

The block-based execution model [4] has been proposed 
to enlarge the instruction window, which may achieve high 
ILP and high resource utilization. Recent works on  
computer architectures, such as TRIPS and Multiscalar, use 
block-atomic(tasks in Multiscalar [4]) execution, in which 
each block is fetched, executed, and committed atomically, 
behave like a conventional processor with sequential 
semantics at the block level. A hyperblock [2][3] is a set of 
predicated basic blocks combined by compiler in which 
control flow only enters from the top, but may exit from one 
or more locations. With hyperblock, larger instruction 
window and more ILP can be achieved than basic block. 

Similar to the multi-issue in superscalar, block-based 
execution model utilizes additional resources to execute more 

blocks simultaneously on the processor substrate, with all but 
one executing speculatively. It’s obvious that the feasibility 
of aggressive execution model depends largely on the 
effectivity and prediction accuracy of speculation. However, 
as speculation in high-ILP processors become more 
aggressive, the number of mis-speculation increases with 
growing numbers of inflight instructions/ blocks. Although 
many mechanisms have been proposed for speculative 
execution, efficiency is still limited because of mis-
speculation penalties, high communication overheads and etc. 

This paper focuses on the analysis of hyperblock-based 
aggressive execution model. We concentrate on finding a 
tradeoff and maximum potential of aggressive execution that 
can be exploited, and analyze dependent behaviors of 
applications under this model. At the aspect of control-flow, 
we evaluate performance of three branch predictors, and 
estimate the expected prediction depth, and then analyze the 
effecting factors of aggressive speculation with control-flow. 
In the view of data-flow, we propose a quantitative analysis 
of data dependence on hyperblock-based execution model, 
and analyze the distributions of data dependences between 
hyperblocks and their impacts on the depth of prediction. 

We evaluate the feasibility of aggressive speculative 
execution model on 8 applications from SPEC2K. Our 
experiments show that most applications have good 
predictability, and high prediction accuracy on control-flow 
can be gained by using hyperblock-based branch prediction 
mechanisms, especially SPECFP applications. Furthermore, 
we analyze factors which impact expected prediction depth, 
and find that it depends more on applications themselves 
than predictors, and expected prediction depth differs 
depending on the characteristics of each application. 

The rest of this paper is organized as follows. Section II 
describes the aggressive execution model in detail, and 
analyzes it in the aspects of both control dependences and 
data dependences. Section III experimentally evaluates and 
analyzes the feasibility of aggressive execution, which 
corresponds to the part in section II. Section IV introduces 
related works on aggressive execution models. Finally in 
section V we make our conclusions. 

II. HYPERBLOCK-BASED AGGRESSIVE EXECUTION 
MODEL 

Current researches of ILP processors focus on exposing 
more inherent parallelism in an application to obtain higher 
performance. To effectively exploit ILP in programs, the 
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dependences between instructions need to be detected and 
avoided to prevent pipeline stalls, among which control 
dependence and data dependence are of the most importance. 

A. Speculation execution on the control-flow 
1) Differences between hyperblock branch predictor 

and conventional predictor 
Branch predictions are made based on branch history 

information, so that the accuracy of predictors depends on 
the frequency of historical representation of previous branch 
target address. Branch predictions in hyperblock-based 
model have high parallelism, but their mechanisms are much 
different with those in conventional superscalar processors 
from following aspects. 

First, in superscalar model, each branch has only one exit 
so that one bit of exit information is enough for representing 
taken or not taken (T/NT); while in block-based model, each 
block has several exit points, predicting the exit taken out of 
multiple possible exits is a multi-way branching problem, 
some bits of exit ID or target address of the branch should be 
reserved as the exit information. 

Secondly, dedicated adder in the fetch mechanism and 
branch target buffer (BTB) of RISC architectures can be 
used to compute PC relative target addresses before they are 
computed by ALU(s) in execution stage; but in hyperblock-
based model, the variable block sizes and different target 
addresses which exit may correspond to force us to predict 
target addresses of all exit point. 

Thirdly, A return address stack (RAS) used for return 
address prediction makes it more accurate, and the type of 
branch instruction can be easily got from a pre-decoder in 
RISC architectures, but the type of exit points in blocks is 
hard to get before block committing. So we need a 
mechanism to predict the type of exit points. 

2) Design space of hyperblock-based branch predictors 
In this section we describe the design space of 

hyperblock-based branch predictors in detail. Based on 
conventional branch predictors and the characteristics of 
hyperblocks, we consider a two-level predictor [5] which 
predicts the first branch that will be taken in a hyperblock. 
As shown in Figure 1, the first level predicts the exit point, 
and then the second level produces the branch target address. 

 
Figure 1.  2-level hyperblock-based branch predictors 

a) Exit predictor: Corresponding to branch behaviors 
of conventional branch predictors, the predictors for exit [7] 
can be organized around following methods. 

Global predictor:  Global predictor indexes the table of 
bimodal counters with the recent global history integrated 
with branch instruction addresses to get branch behavior. In 
hyperblock-based model, we replace the T/NT stored in 
Pattern History Table (PHT) with exit numbers of each 
block; branch behaviors in History Register Table (HRT) are 
also replaced by recent exit history of blocks. In addition, for 

the accuracy of prediction, we use two HRT, one for 
updating the prediction information, the other for recovering. 

Local predictor: Local branch predictor keeps two tables. 
One is a local BHT indexed by the low-order bits of each 
branch instruction’s address; it records T/NT history of N 
most recent executions of each branch, which is different 
from global predictor. The other is a PHT indexed by the 
generated value from the branch history in BHT. Local 
prediction is slower than global prediction because it requires 
two subsequent table lookups for each prediction, but it may 
be favorable for deep prediction of a certain local branch. 

Tournament predictor: Since different branches may be 
predicted better with either local or global techniques, 
tournament predictor uses a choice predictor to dynamically 
select the best method between two prediction for each 
branch, it is nearly as accurate as local predictor, and almost 
as fast as global predictor. The choice prediction is made 
from the table of 2-bit prediction counters indexed by path 
history; processor trains counters to prefer the correct 
prediction whenever the local and global predictions differ. 

b) Block target address prediction 
Block branch target address determined by the exit 

instruction is the starting block address of next task. After 
the exit is predicted, we use both predicted exit and branch 
address to determine the target. Conventional methods 
usually use BTB and RAS, in which BTB handles prediction 
of branch and call exit, RAS predicts address of return exits 
with known types of each exit, this will certainly degrade 
prediction accuracy and increase its complexity. So we only 
use BTB for the prediction, which is easy and versatile. 

 
Figure 2.  Structure of the BTB 

As shown in Figure 2, each item of BTB maintains target 
addresses of several exit and hysteresis bits, indexed by the 
block address and exit ID which was predicted by branch 
predictor, to obtain the Block Target Address. 

3) Evaluation of three branch predictors  
In this section we evaluate prediction accuracy of exit 

predictors with block target address predictor presented 
previously on 8 benchmarks from SPEC2000. Both Global 
predictor and  Local  predictor  are  configured  to  be  16384 
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Figure 3.  prediction accuracy of three branch predictors 
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Figure 4.  Prediction accuracy of different  branch predictor

entries, Tournament predictor contains 8192 entries for both 
global and local predictor; The BTB has 1024 entries. 

From Figure 3, it is clear that global predictor performs 
better than local predictor on art, bzip, gzip and mcf in which 
global histories is predominant; but equake and vortex on 
which local histories have more impact perform better with 
the local predictor. The tournament predictor takes full 
advantage of global and local histories, achieves better 
performance than both of them. 

B. Speculative execution on the Data-flow 
Data dependence is an important factor that influences 

effectivity of multi-level speculative execution. In this 
section, we conduct a quantitative analysis of data 
dependence on hyperblock-based execution model, and 
analyze its impact on the depth of prediction. To be able to 
obtain benefits from data speculation, we must execute 
instruction streams correctly, so we make two assumptions 
before the analysis: (1) A perfect branch predictor is 
assumed. (2) No complexity of hardware implementation is 
taken into accounts. These assumptions would not affect the 
analysis of the natural characteristic of programs. 

The dependent relation between instructions in traditional 
processors can be described by dependence-distance (the 
number of instructions between data producers and 
consumers); but it is no longer applicable for measuring 
hyperblock-based model, because different impacts of 
instructions on separating producer and consumer, and 
instructions in the same block can execute in parallel. 

1

 i
i

Dependence depeth P i
∞

=

= ×∑  (1) 

We define the term “Dependence depth” to measure the 
degree of dependences between blocks. There i denotes the 
distance from current block; Pi denotes the proportion of 
instructions which have dependence with instructions in the 
previous ith block to the total number of instructions within 
current block. Dependence depth describes the dependence 
strength between blocks. The larger dependence depth means 
the weaker dependent strength, so that we can exploit more 
parallelism from inter-blocks. And it is proportional to the 
potential depth of speculated execution, which means 
programs could benefit from speculating more blocks 
according to larger dependence depth. 

III. EXPERIMENTAL EVALUATION 

A. Methodology 
Our experiments are performed on the TRIPS toolchain 

which supports hyperblock-based multi-level speculation. 
TRIPS is a block-atomic execution model, the size of 
instruction window can reach up to 1024 by speculation. It 
contains compiler (Scale [3]), functional simulator tsim_arch 
and cycle-accurate simulator tsim_proc [6]. Tsim_proc can 
generate trace files containing all events of the simulating 
process. Although our experiments are based on TRIPS, our 
research is not limited to this architecture but aims at all 
current hyperblock-based execution models. We use 8 whole 
benchmarks written in C from SPEC2000 benchmark suite, 
including 3 float point benchmarks: art, ammp, equake, and 
5 integer benchmarks: gzip, mcf, parser, vortex, bzip2. 

B. The Speculative execution on control dependence 
between hyperblocks 
Large instruction window is built to issue more 

independent instructions per cycle, but the effective size of 
instruction window is limited by the depth of control-flow 
speculation, so we evaluate the feasibility of predicting more 
aggressively and analyze the appropriate depth of prediction.  

First, we evaluate prediction accuracy with different 
prediction depths; then we depict the depth distribution and 
predictability for all applications; finally, we analyze the 
expected prediction depth of different applications based on 
instructions distribution, which can help us adopt appropriate 
prediction depth while studying aggressive execution model, 
and we analyze impacts of expected prediction depth on 
different predictors and configurations. 

1) Evaluate predictors with certain prediction depth  
We evaluate prediction accuracy of global and local 

predictors with certain prediction depths (range from 1~7), 
as in figure 4, the prediction accuracy decreases while 
prediction depth increases, but the depressive gradient slows 
down with deeper depths, and most applications still keep a 
high prediction accuracy even the prediction depth is up to 7. 
This demonstrates deeper prediction is feasible to most 
applications. Global and local predictor both have strengths 
on different types of applications with small depths, but local 
predictor performs better with the increase of depth, which 
indicates that it is more powerful for deeper speculative 
execution. Tournament predictor performs best as it can 
adapt to pattern of applications with both previous predictors. 
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Figure 5.  Proportion of blocks VS. prediction depth 

2) Distribution of Prediction depth on blocks 
We introduce a quantitative method for denoting the 

potential of deep prediction of distinct applications 
intuitively. We predict each block with unbounded depths 
until the prediction cannot continue; thus each application 
can be divided into several block sequences with various 
block numbers. According to a statistical analysis of 
different prediction depths among various sequences, we can 
estimate the potential of deep prediction for applications. 

Figure 5 illustrates the proportion of blocks that predicted 
with different prediction depths (0~1, 2~5, 6~10, 10~∞) on 
tournament predictor, among which the depth 0 indicates 
blocks cannot be predicted. Vortex, art and ammp have high 
proportions with deeper prediction depth; bzip and gzip are 
just the opposite in which the former group can be predicted 
aggressively and the latter are less predictable. 

3) Expected Prediction Depth 
Prediction depth distribution can not reflect actual quality 

of prediction depth for applications, so we further introduce 
the Expected Prediction Depth, mean value of prediction 
depth distribution that reflects the magnitude of prediction 
and even prediction accuracy. 

Figure 6 shows the expected prediction depth evaluated 
under the condition that size of local and global PHT is 
configured to 16348, we can see that the types of predictors 
have big impact on the expected prediction depth. For each 
predictor, applications has distinctive results, we can see 
values of ammp, art, mcf and vortex exceed 10, and others 
are around 5, which also shows that these applications can 
accommodate well to such prediction model. 
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Figure 6.  Expected prediction depth  
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Figure 7.  Expected prediction depth with different configured predictor  
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Figure 8.  Numbers of dependence instructions 

Figure 7 describes the expected prediction depth with 
tournament predictor which is configured with 16x the size 
of old PHT. From the results, we can see configurations of 
predictors have less impact on the expected prediction depth. 
In most applications, low prediction accuracy is not made by 
the conflict on PHT, but comes from the characteristic of 
applications, we should consider more improvements on the 
predictors in order to better adapt to patterns of applications. 

C. The Speculative execution on Data dependence 
1) Numbers of dependent instructions in applications  

Data dependence between hyperblocks arises from the 
load or register-read instructions (dependent instructions). 
Figure 8 presents a statistic of the numbers of overall 
instructions, load instructions and register-read instructions 
within hyperblocks. Although these values are closely related 
to compiles, we can still find that the number of dependent 
instructions is considerable in hyperblock, from approxima-
tely 18% in gzip to 52% in ammp. We would not achieve the 
anticipated speedup if we only increase speculative depths 
without considering the impact of data dependence. 

2) Distribution of data dependences 
Previous statistic of instructions number only reflects the 

ubiquitous of data dependence under block-level execution 
model, but cannot completely substitute for the data 
dependence behaviors. Results may be inequable while a 
block has data dependences with blocks located in different 
place, so we further analyze the distribution of data 
dependence (Figure 9). Most data dependence of a 
hyperblock comes from its previous adjacent blocks, our 
experiments show 20% or even 40% [parse] of data 
dependence locates in two adjacent blocks, and an average of 
40% or even 60% [parse] locates in six contiguous blocks. 
These differences are totally attributed to the natural 
characteristics of applications. 

The unbalanced distribution on data dependences is not 
what we expect, as we cannot make subsequent blocks 
executed even increasing the speculation depth because of 
the serious dependence between adjacent blocks. 
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Figure 9.  Distribution of data dependence in applications 
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Figure 10.  Data dependence depth in applications 
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Figure 11.  Expected speculation depth VS. Different dependence depth 

3) Dependence Depth and Expected Prediction Depth 
Figure 10 shows dependence depth of applications, figure 

11 shows expected speculation depth under the constraints of 
certain data dependence proportion. As in equake, the 
expected speculation depth is only up to 5 with less than 
47.5% data dependence because data dependence within 6 
blocks is 48.696% (Fig. 9), bigger than 47.5%. Applications 
of SPECINT have low speculation depths less than 10(4~8 
on average), in contrast, applications of SPECFP have better 
speculation depth that up to 64 with 50% data dependence. 

IV. RELATED WORK 
Speculative executions on hyperblocks mainly focus on 

two directions. One is resolving control-flow between 
hyperblocks such as Multiple Branch Predictors and Region 
Predictors, the other is Predication which converts control 
dependence to data dependence by merging multiple control 
flows into a single control flow. 

Yeh et al. [5], Seznec et al. and Conte et al. studied multi-
branch predictors that typically predict 2 or 3 targets at a 
time, then Wallace et al. used saturating counters to predict 
multiple branches. Exit predictor is a region predictor first 
proposed by Pnevmatikatos et al. [8] in the context of 
Multiscalar processor, and subsequently refined by Jacobson 
et al. [7], exit predictors predict only the first branch that will 
leave a code region (such as a Multiscalar task). The local, 
global and path-based exit predictors, folding of exit 
histories and hysteresis bits in PHT we used in this paper are 
proposed from Jacobson et al. 

Predication of individual instructions was first proposed 
by Allen et al. in 1983 and implemented in the wide-issue 
Cydra-5. Mahlke et al. [4] first developed the modern notion 
of hyperblock, extended by August et al. who proposed a 
framework to balance control speculation and predication 
through smart basic block selection at hyperblock formation. 
Dynamic predication [3] predicates dynamically at run-time 
and allows predicating without predicated ISA support. 

V. CONCLUSIONS 
Hyperblock-based execution model can tremendously 

improve the size of instruction windows for high ILP and 
good performances. Since enlarging a hyperblock would 
become more difficult under the constraints of compiler 
technology and inherent characteristics of applications, we 
introduce a preliminary evaluation of aggressive execution 
model. Our experiments concentrate on the characteristics of 
dependence distribution and prediction depth in views of 
speculative execution both on control-flow and data-flow. 

Under this model, most applications have good predicta-
bility, high prediction accuracy and expected prediction 
depth with control-flow prediction mechanisms; and 
expected prediction depth which reflects the degree of 
predictability mainly depends on applications themselves 
rather than predictors. Moreover, although prediction 
accuracy on control-flow decreases while prediction depth 
increases, it remains high within acceptable bounds. Finally, 
we introduce a quantitative method for denoting speculative 
execution potentials for distinct applications intuitively, and 
analyze the distributions of data dependences between 
hyperblocks and their impacts on depth of prediction. As we 
observes, many applications have high expected prediction 
depth, but whether they are suitable for aggressive executing 
depends on data dependences between adjacent hyperblocks. 
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