
A feasibility study on hyperblock-based aggressive speculative execution model

Ming Cong, Hong An, Yongqing Ren, Canming Zhao, Jun Zhang
Department of Computer Science and Technology

University of Science and Technology of China
Hefei, 230027, China

Key Laboratory of Computer System and Architecture
Chinese Academy of Sciences

Beijing, 100080, China
mcong@mail.ustc.edu.cn, han@ustc.edu.cn, {renyq, zcm, junzh}@mail.ustc.edu.cn

Abstract—Speculation execution model which executes sequential
programs in parallel through speculation is an effective technique
for making better use of growing on-chip resources and exploiting
more instruction-level parallelism of applications. However,
accompanied high communication overheads and roll-back
penalties can not be neglected. This paper focuses on analyzing the
feasibility of aggressive speculation execution model and finding
an appropriate degree of “aggressiveness” under hyperblock-
based execution model. We analyze the characteristic of control
dependences and data dependences between adjacent hyperblocks,
and propose a quantitative analysis method to detect data
dependences on hyperblock-based execution model, and then
evaluate the feasibility of aggressive speculative execution model
on 8 applications from SPEC2K. Our experiments show most
applications can get high prediction accuracy on control-flow from
hyperblock-based prediction mechanisms, especially SPECFP.
Furthermore, we analyze factors which impact expected prediction
depth and find depth depends more on application than predictors.

Keywords-hyperblock; speculative execution; prediction;
control dependence; data dependence

I. INTRODUCTION
Modern CMOS technology brings the increasing number

of transistors on one chip, so how to effectively utilize the
growing resources and exploit more parallelism to accelerate
applications is an urgent problem for computer architects.
However, to expose potential of instruction-level parallelism
(ILP), control-flow and data-flow constraints inherent in a
program must be overcome. Speculative execution [1] which
executes programs aggressively has become a mainstream
technique to reduce the impacts of dependences in high
performance microprocessors.

The block-based execution model [4] has been proposed
to enlarge the instruction window, which may achieve high
ILP and high resource utilization. Recent works on
computer architectures, such as TRIPS and Multiscalar, use
block-atomic(tasks in Multiscalar [4]) execution, in which
each block is fetched, executed, and committed atomically,
behave like a conventional processor with sequential
semantics at the block level. A hyperblock [2][3] is a set of
predicated basic blocks combined by compiler in which
control flow only enters from the top, but may exit from one
or more locations. With hyperblock, larger instruction
window and more ILP can be achieved than basic block.

Similar to the multi-issue in superscalar, block-based
execution model utilizes additional resources to execute more

blocks simultaneously on the processor substrate, with all but
one executing speculatively. It’s obvious that the feasibility
of aggressive execution model depends largely on the
effectivity and prediction accuracy of speculation. However,
as speculation in high-ILP processors become more
aggressive, the number of mis-speculation increases with
growing numbers of inflight instructions/ blocks. Although
many mechanisms have been proposed for speculative
execution, efficiency is still limited because of mis-
speculation penalties, high communication overheads and etc.

This paper focuses on the analysis of hyperblock-based
aggressive execution model. We concentrate on finding a
tradeoff and maximum potential of aggressive execution that
can be exploited, and analyze dependent behaviors of
applications under this model. At the aspect of control-flow,
we evaluate performance of three branch predictors, and
estimate the expected prediction depth, and then analyze the
effecting factors of aggressive speculation with control-flow.
In the view of data-flow, we propose a quantitative analysis
of data dependence on hyperblock-based execution model,
and analyze the distributions of data dependences between
hyperblocks and their impacts on the depth of prediction.

We evaluate the feasibility of aggressive speculative
execution model on 8 applications from SPEC2K. Our
experiments show that most applications have good
predictability, and high prediction accuracy on control-flow
can be gained by using hyperblock-based branch prediction
mechanisms, especially SPECFP applications. Furthermore,
we analyze factors which impact expected prediction depth,
and find that it depends more on applications themselves
than predictors, and expected prediction depth differs
depending on the characteristics of each application.

The rest of this paper is organized as follows. Section II
describes the aggressive execution model in detail, and
analyzes it in the aspects of both control dependences and
data dependences. Section III experimentally evaluates and
analyzes the feasibility of aggressive execution, which
corresponds to the part in section II. Section IV introduces
related works on aggressive execution models. Finally in
section V we make our conclusions.

II. HYPERBLOCK-BASED AGGRESSIVE EXECUTION
MODEL

Current researches of ILP processors focus on exposing
more inherent parallelism in an application to obtain higher
performance. To effectively exploit ILP in programs, the

2009 International Conference on Computer Engineering and Technology

978-0-7695-3521-0/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCET.2009.30

119

dependences between instructions need to be detected and
avoided to prevent pipeline stalls, among which control
dependence and data dependence are of the most importance.

A. Speculation execution on the control-flow
1) Differences between hyperblock branch predictor

and conventional predictor
Branch predictions are made based on branch history

information, so that the accuracy of predictors depends on
the frequency of historical representation of previous branch
target address. Branch predictions in hyperblock-based
model have high parallelism, but their mechanisms are much
different with those in conventional superscalar processors
from following aspects.

First, in superscalar model, each branch has only one exit
so that one bit of exit information is enough for representing
taken or not taken (T/NT); while in block-based model, each
block has several exit points, predicting the exit taken out of
multiple possible exits is a multi-way branching problem,
some bits of exit ID or target address of the branch should be
reserved as the exit information.

Secondly, dedicated adder in the fetch mechanism and
branch target buffer (BTB) of RISC architectures can be
used to compute PC relative target addresses before they are
computed by ALU(s) in execution stage; but in hyperblock-
based model, the variable block sizes and different target
addresses which exit may correspond to force us to predict
target addresses of all exit point.

Thirdly, A return address stack (RAS) used for return
address prediction makes it more accurate, and the type of
branch instruction can be easily got from a pre-decoder in
RISC architectures, but the type of exit points in blocks is
hard to get before block committing. So we need a
mechanism to predict the type of exit points.

2) Design space of hyperblock-based branch predictors
In this section we describe the design space of

hyperblock-based branch predictors in detail. Based on
conventional branch predictors and the characteristics of
hyperblocks, we consider a two-level predictor [5] which
predicts the first branch that will be taken in a hyperblock.
As shown in Figure 1, the first level predicts the exit point,
and then the second level produces the branch target address.

Figure 1. 2-level hyperblock-based branch predictors

a) Exit predictor: Corresponding to branch behaviors
of conventional branch predictors, the predictors for exit [7]
can be organized around following methods.

Global predictor: Global predictor indexes the table of
bimodal counters with the recent global history integrated
with branch instruction addresses to get branch behavior. In
hyperblock-based model, we replace the T/NT stored in
Pattern History Table (PHT) with exit numbers of each
block; branch behaviors in History Register Table (HRT) are
also replaced by recent exit history of blocks. In addition, for

the accuracy of prediction, we use two HRT, one for
updating the prediction information, the other for recovering.

Local predictor: Local branch predictor keeps two tables.
One is a local BHT indexed by the low-order bits of each
branch instruction’s address; it records T/NT history of N
most recent executions of each branch, which is different
from global predictor. The other is a PHT indexed by the
generated value from the branch history in BHT. Local
prediction is slower than global prediction because it requires
two subsequent table lookups for each prediction, but it may
be favorable for deep prediction of a certain local branch.

Tournament predictor: Since different branches may be
predicted better with either local or global techniques,
tournament predictor uses a choice predictor to dynamically
select the best method between two prediction for each
branch, it is nearly as accurate as local predictor, and almost
as fast as global predictor. The choice prediction is made
from the table of 2-bit prediction counters indexed by path
history; processor trains counters to prefer the correct
prediction whenever the local and global predictions differ.

b) Block target address prediction
Block branch target address determined by the exit

instruction is the starting block address of next task. After
the exit is predicted, we use both predicted exit and branch
address to determine the target. Conventional methods
usually use BTB and RAS, in which BTB handles prediction
of branch and call exit, RAS predicts address of return exits
with known types of each exit, this will certainly degrade
prediction accuracy and increase its complexity. So we only
use BTB for the prediction, which is easy and versatile.

Figure 2. Structure of the BTB

As shown in Figure 2, each item of BTB maintains target
addresses of several exit and hysteresis bits, indexed by the
block address and exit ID which was predicted by branch
predictor, to obtain the Block Target Address.

3) Evaluation of three branch predictors
In this section we evaluate prediction accuracy of exit

predictors with block target address predictor presented
previously on 8 benchmarks from SPEC2000. Both Global
predictor and Local predictor are configured to be 16384

76%
78%
80%
82%
84%
86%
88%
90%
92%
94%
96%

ammp art bzip equake gzip mcf vortex parser

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Global
Local
Tournament

Figure 3. prediction accuracy of three branch predictors

120

Branch Predictor with Global-Predictor

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7
Prediction Depth

Pr
ed

ic
tio

n
A

cc
ur

ac
y

f

Branch Predictor with Local-Predictor

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7
Prediction Depth

Pr
ed

ic
tio

n
A

cc
ur

ac
y

f

Branch Predictor with Tournament-Predictor

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7
Prediction Depth

Pr
ed

ic
tio

n
A

cc
ur

ac
y

f

ammp
art
bzip
equake
gzip
mcf
vortex
parser

 (a) (b) (c)

Figure 4. Prediction accuracy of different branch predictor

entries, Tournament predictor contains 8192 entries for both
global and local predictor; The BTB has 1024 entries.

From Figure 3, it is clear that global predictor performs
better than local predictor on art, bzip, gzip and mcf in which
global histories is predominant; but equake and vortex on
which local histories have more impact perform better with
the local predictor. The tournament predictor takes full
advantage of global and local histories, achieves better
performance than both of them.

B. Speculative execution on the Data-flow
Data dependence is an important factor that influences

effectivity of multi-level speculative execution. In this
section, we conduct a quantitative analysis of data
dependence on hyperblock-based execution model, and
analyze its impact on the depth of prediction. To be able to
obtain benefits from data speculation, we must execute
instruction streams correctly, so we make two assumptions
before the analysis: (1) A perfect branch predictor is
assumed. (2) No complexity of hardware implementation is
taken into accounts. These assumptions would not affect the
analysis of the natural characteristic of programs.

The dependent relation between instructions in traditional
processors can be described by dependence-distance (the
number of instructions between data producers and
consumers); but it is no longer applicable for measuring
hyperblock-based model, because different impacts of
instructions on separating producer and consumer, and
instructions in the same block can execute in parallel.

1

 i
i

Dependence depeth P i
∞

=

= ×∑ (1)

We define the term “Dependence depth” to measure the
degree of dependences between blocks. There i denotes the
distance from current block; Pi denotes the proportion of
instructions which have dependence with instructions in the
previous ith block to the total number of instructions within
current block. Dependence depth describes the dependence
strength between blocks. The larger dependence depth means
the weaker dependent strength, so that we can exploit more
parallelism from inter-blocks. And it is proportional to the
potential depth of speculated execution, which means
programs could benefit from speculating more blocks
according to larger dependence depth.

III. EXPERIMENTAL EVALUATION

A. Methodology
Our experiments are performed on the TRIPS toolchain

which supports hyperblock-based multi-level speculation.
TRIPS is a block-atomic execution model, the size of
instruction window can reach up to 1024 by speculation. It
contains compiler (Scale [3]), functional simulator tsim_arch
and cycle-accurate simulator tsim_proc [6]. Tsim_proc can
generate trace files containing all events of the simulating
process. Although our experiments are based on TRIPS, our
research is not limited to this architecture but aims at all
current hyperblock-based execution models. We use 8 whole
benchmarks written in C from SPEC2000 benchmark suite,
including 3 float point benchmarks: art, ammp, equake, and
5 integer benchmarks: gzip, mcf, parser, vortex, bzip2.

B. The Speculative execution on control dependence
between hyperblocks
Large instruction window is built to issue more

independent instructions per cycle, but the effective size of
instruction window is limited by the depth of control-flow
speculation, so we evaluate the feasibility of predicting more
aggressively and analyze the appropriate depth of prediction.

First, we evaluate prediction accuracy with different
prediction depths; then we depict the depth distribution and
predictability for all applications; finally, we analyze the
expected prediction depth of different applications based on
instructions distribution, which can help us adopt appropriate
prediction depth while studying aggressive execution model,
and we analyze impacts of expected prediction depth on
different predictors and configurations.

1) Evaluate predictors with certain prediction depth
We evaluate prediction accuracy of global and local

predictors with certain prediction depths (range from 1~7),
as in figure 4, the prediction accuracy decreases while
prediction depth increases, but the depressive gradient slows
down with deeper depths, and most applications still keep a
high prediction accuracy even the prediction depth is up to 7.
This demonstrates deeper prediction is feasible to most
applications. Global and local predictor both have strengths
on different types of applications with small depths, but local
predictor performs better with the increase of depth, which
indicates that it is more powerful for deeper speculative
execution. Tournament predictor performs best as it can
adapt to pattern of applications with both previous predictors.

121

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ammp art bzip equake gzip mcf vortex parser

Pr
op

or
tio

ns
 o

f b
lo

ck
s

>10

6~10

2~5

0~1

Figure 5. Proportion of blocks VS. prediction depth

2) Distribution of Prediction depth on blocks
We introduce a quantitative method for denoting the

potential of deep prediction of distinct applications
intuitively. We predict each block with unbounded depths
until the prediction cannot continue; thus each application
can be divided into several block sequences with various
block numbers. According to a statistical analysis of
different prediction depths among various sequences, we can
estimate the potential of deep prediction for applications.

Figure 5 illustrates the proportion of blocks that predicted
with different prediction depths (0~1, 2~5, 6~10, 10~∞) on
tournament predictor, among which the depth 0 indicates
blocks cannot be predicted. Vortex, art and ammp have high
proportions with deeper prediction depth; bzip and gzip are
just the opposite in which the former group can be predicted
aggressively and the latter are less predictable.

3) Expected Prediction Depth
Prediction depth distribution can not reflect actual quality

of prediction depth for applications, so we further introduce
the Expected Prediction Depth, mean value of prediction
depth distribution that reflects the magnitude of prediction
and even prediction accuracy.

Figure 6 shows the expected prediction depth evaluated
under the condition that size of local and global PHT is
configured to 16348, we can see that the types of predictors
have big impact on the expected prediction depth. For each
predictor, applications has distinctive results, we can see
values of ammp, art, mcf and vortex exceed 10, and others
are around 5, which also shows that these applications can
accommodate well to such prediction model.

0

2

4

6

8

10

12

14

ammp art bzip equake gzip mcf vortex parser

Ex
pe

ct
ed

 P
re

di
ct

io
n

D
ep

th

Global

Local

Tournament

Figure 6. Expected prediction depth

0
2
4
6
8

10
12
14
16

ammp art bzip equake gzip mcf vortex parser

Ex
pe

ct
ed

 P
re

di
ct

io
n

D
ep

th

Old

New

Figure 7. Expected prediction depth with different configured predictor

0
5

10
15
20

25
30

35
40

mcf gzip vortex bzip2 parser art ammp equake

In
str

uc
tio

ns
 d

ist
rib

ut
io

n
in

 b
lo

ck
s

rd_reg insts

load insts
normal insts

Figure 8. Numbers of dependence instructions

Figure 7 describes the expected prediction depth with
tournament predictor which is configured with 16x the size
of old PHT. From the results, we can see configurations of
predictors have less impact on the expected prediction depth.
In most applications, low prediction accuracy is not made by
the conflict on PHT, but comes from the characteristic of
applications, we should consider more improvements on the
predictors in order to better adapt to patterns of applications.

C. The Speculative execution on Data dependence
1) Numbers of dependent instructions in applications

Data dependence between hyperblocks arises from the
load or register-read instructions (dependent instructions).
Figure 8 presents a statistic of the numbers of overall
instructions, load instructions and register-read instructions
within hyperblocks. Although these values are closely related
to compiles, we can still find that the number of dependent
instructions is considerable in hyperblock, from approxima-
tely 18% in gzip to 52% in ammp. We would not achieve the
anticipated speedup if we only increase speculative depths
without considering the impact of data dependence.

2) Distribution of data dependences
Previous statistic of instructions number only reflects the

ubiquitous of data dependence under block-level execution
model, but cannot completely substitute for the data
dependence behaviors. Results may be inequable while a
block has data dependences with blocks located in different
place, so we further analyze the distribution of data
dependence (Figure 9). Most data dependence of a
hyperblock comes from its previous adjacent blocks, our
experiments show 20% or even 40% [parse] of data
dependence locates in two adjacent blocks, and an average of
40% or even 60% [parse] locates in six contiguous blocks.
These differences are totally attributed to the natural
characteristics of applications.

The unbalanced distribution on data dependences is not
what we expect, as we cannot make subsequent blocks
executed even increasing the speculation depth because of
the serious dependence between adjacent blocks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mcf gzip vortex bzip2 parser art ammp equake

Ex
pe

ct
ed

 sp
ec

ul
at

io
n

de
pt

h
 >64blocks

33~64blocks
17~32blocks
11~16blocks
9~10blocks
7~8blocks
5~6blocks
3~4blocks
<=2blocks

Figure 9. Distribution of data dependence in applications

122

0
5

10
15
20
25
30
35
40
45

mcf gzip vortex bzip2 parser art ammp equake

D
at

a
D

ep
en

de
nc

e
D

ep
th

Figure 10. Data dependence depth in applications

0

10

20

30

40

50

60

70

<=20
%

<=22
.5%

<=
25

%
<=27

.5

<=
30

%

<=
32

.5%
<=35

%

<=37
.5%

<=
40

%

<=
42

.5%
<=

45
%

<=
47

.5%
<=50

%

Ex
pe

ct
ed

 s
pe

cu
la

tio
n

de
pt

h

mcf

gzip

vortex

bzip2

parser

art

ammp

equake

Figure 11. Expected speculation depth VS. Different dependence depth

3) Dependence Depth and Expected Prediction Depth
Figure 10 shows dependence depth of applications, figure

11 shows expected speculation depth under the constraints of
certain data dependence proportion. As in equake, the
expected speculation depth is only up to 5 with less than
47.5% data dependence because data dependence within 6
blocks is 48.696% (Fig. 9), bigger than 47.5%. Applications
of SPECINT have low speculation depths less than 10(4~8
on average), in contrast, applications of SPECFP have better
speculation depth that up to 64 with 50% data dependence.

IV. RELATED WORK
Speculative executions on hyperblocks mainly focus on

two directions. One is resolving control-flow between
hyperblocks such as Multiple Branch Predictors and Region
Predictors, the other is Predication which converts control
dependence to data dependence by merging multiple control
flows into a single control flow.

Yeh et al. [5], Seznec et al. and Conte et al. studied multi-
branch predictors that typically predict 2 or 3 targets at a
time, then Wallace et al. used saturating counters to predict
multiple branches. Exit predictor is a region predictor first
proposed by Pnevmatikatos et al. [8] in the context of
Multiscalar processor, and subsequently refined by Jacobson
et al. [7], exit predictors predict only the first branch that will
leave a code region (such as a Multiscalar task). The local,
global and path-based exit predictors, folding of exit
histories and hysteresis bits in PHT we used in this paper are
proposed from Jacobson et al.

Predication of individual instructions was first proposed
by Allen et al. in 1983 and implemented in the wide-issue
Cydra-5. Mahlke et al. [4] first developed the modern notion
of hyperblock, extended by August et al. who proposed a
framework to balance control speculation and predication
through smart basic block selection at hyperblock formation.
Dynamic predication [3] predicates dynamically at run-time
and allows predicating without predicated ISA support.

V. CONCLUSIONS
Hyperblock-based execution model can tremendously

improve the size of instruction windows for high ILP and
good performances. Since enlarging a hyperblock would
become more difficult under the constraints of compiler
technology and inherent characteristics of applications, we
introduce a preliminary evaluation of aggressive execution
model. Our experiments concentrate on the characteristics of
dependence distribution and prediction depth in views of
speculative execution both on control-flow and data-flow.

Under this model, most applications have good predicta-
bility, high prediction accuracy and expected prediction
depth with control-flow prediction mechanisms; and
expected prediction depth which reflects the degree of
predictability mainly depends on applications themselves
rather than predictors. Moreover, although prediction
accuracy on control-flow decreases while prediction depth
increases, it remains high within acceptable bounds. Finally,
we introduce a quantitative method for denoting speculative
execution potentials for distinct applications intuitively, and
analyze the distributions of data dependences between
hyperblocks and their impacts on depth of prediction. As we
observes, many applications have high expected prediction
depth, but whether they are suitable for aggressive executing
depends on data dependences between adjacent hyperblocks.

ACKNOWLEDGEMENT
This research was supported financially by the National

Basic Research Program of China under contract
2005CB321601, the Natural Science Foundation of China
grant 60633040, the National Hi-tech Research and
Development Program of China under contract
2006AA01A102-5-2, the China Ministry of Education &
Intel Special Research Foundation for Information
Technology under contract MOE-INTEL-08-07.

REFERENCES
[1] A. Uht, V. Sindagi, and K. Hall, "Disjoint eager execution: An

optimal form of speculative execution," Micro-28, Dec. 1995, pp.
313-325.

[2] T. N. Vijaykumar. “Compiling for the Multiscalar Architecture”. In
Doctor of Philosophy at the university of Wisconsin 1998.

[3] Aaron Smith, Jon Gibson, Bertrand A. Maher, Nicholas Nethercote,
Bill Yoder, Doug Burger, Kathryn S. McKinley, “Compiling for
EDGE Architectures”. In Proceedings of the International Symposi-
um on Code Generation and Optimization, 2006, pp. 185-195.

[4] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective Compiler Support for Predicated Execution
Using the Hyperblock”, In Proceedings of the 25th International
Symposium on Microarchitecture, Dec. 1992, pp. 45-54.

[5] T.Y. Yeh and Y. Patt. Two-level adaptive branch prediction. In
Proceedings of the 24th International Symposium on
Microarchitecture, pages 51–61, 1994.

[6] TRIPS toolset, available from: http://www.cs.utexas.edu /~trips/dist/
[7] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Control flow

speculation in multiscalar processors. In Proceedings of the 3rd
International Symposium on High Performance Computer
Architecture, Feb. 1997.

[8] D. Pnevmatikatos, M. Franklin, and G. S. Sohi. Control flow
prediction for dynamic ilp processors. In Proceedings of the 26th
Annual International Symposium on Microarchitecture, 1993.

123

