
194 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

A Framework for Correction of Multi-Bit Soft Errors
in L2 Caches Based on Redundancy

Koustav Bhattacharya, Student Member, IEEE, Nagarajan Ranganathan, Fellow, IEEE, and
Soontae Kim, Member, IEEE

Abstract—With the continuous decrease in the minimum
feature size and increase in the chip density due to technology
scaling, on-chip L2 caches are becoming increasingly susceptible
to multi-bit soft errors. The increase in multi-bit errors could
lead to higher risk of data corruption and potentially result in the
crashing of application programs. Traditionally, the L2 caches
have been protected from soft errors using techniques such as:
1) error detection/correction codes; 2) physical interleaving of
cache bit lines to convert multi-bit errors into single-bit errors;
and 3) cache scrubbing. While the first two methods incur large
area overheads for multi-bit errors, identifying the time interval
for scrubbing could be tricky. In this paper, we investigate in
detail the multi-bit soft error rates in large L2 caches and propose
a framework of solutions for their correction based on the amount
of redundancy present in the memory hierarchy. We investigate
several new techniques for reducing multi-bit errors in large L2
caches, in which, the multi-bit errors are detected using simple
error detection codes and corrected using the data redundancy
in the memory hierarchy. We also propose several techniques to
control/mine the redundancy in the memory hierarchy to further
improve the reliability of the L2 cache. The proposed techniques
were implemented in the Simplescalar framework and validated
using the SPEC 2000 integer and floating point benchmarks for
L2 cache vulnerability, global cache miss-rate, average cycle count
and main memory write back rate, considering the area and
power overheads. Experimental results indicate that the vulner-
ability of L2 caches can be decreased by 40% on the average for
integer benchmarks and 32% on the average for floating point
benchmarks, with an average multi-bit error coverage of about
96%, with significantly less area and power overheads and with
virtually no performance penalty. The proposed techniques are
applicable to both single and multi-core processor-based systems.

Index Terms—Control/mine redundancy, error detection and
correction, l2 caches, multi-bit errors, soft errors.

I. INTRODUCTION

T HE trends in technology scaling have helped the design
of modern microprocessors for higher performance and

lower power consumption through the rapid shrinking of the
minimum feature size as well as the reduction of supply volt-
ages [5]. At the same time, microprocessors are being built

Manuscript received September 15, 2007; revised December 05, 2007. First
published December 09, 2008; current version published January 14, 2009. This
research is supported in part by a grant from Semiconductor Research Corpora-
tion (SRC) under Contract 2007-HJ-1596 and by National Science Foundation
(NSF) Computing Research Infrastructure under Grant CNS-0551621.

K. Bhattacharya and N. Ranganathan are with the Department of Computer
Science and Engineering, University of South Florida, Tampa, FL 33620 USA
(e-mail: kbhhatac@cse.usf.edu; ranganat@cse.usf.edu).

S. Kim is with the School of Engineering at Information and Communication
University, Daejeon 305-714, Korea (e-mail: skim@icu.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2008.2003236

with higher degree of spatial parallelism and deeper pipelines
to increase the clock frequency [14]. Unfortunately, however,
these trends make them more susceptible to transient faults
[10], [13], [16], [18], [31]. Transient faults occur due to several
reasons, such as soft errors, power supply and interconnect
noise, and electromagnetic interference. Soft errors occur when
the energetic neutrons coming from space or the alpha particles
arising out of packaging materials hit the transistors, which
could change the states of the memory bits or the outputs of the
logic gates. The soft errors that do not affect the program output
are considered benign as no error is observed by the user. This
situation can occur, for example, in branch prediction logic or
in the instructions from the misspeculated execution sequences
which never commit and thus, will never lead to visible error
states. Soft errors which affect the program output are typically
defined in terms of failures in time (FIT) [4], [26]. The chip
manufacturers typically set budgets on soft error rates which
should be met by the design.

Several different strategies have been investigated in the past
to avoid, detect and recover from soft errors [2]. These solutions
are applied at various levels of the system, from process tech-
nology, circuit to microarchitecture levels. However, solutions
are more effective at the architectural level, primarily because
a fault transforms into an error depending upon the current ar-
chitectural state of the processor. Moreover, typical solutions at
the architectural level consume much less area than the corre-
sponding solutions in the process technology or circuit levels.
Memory structures have been considered as dominant sources
of transient errors in computer systems [6], [24], [27], [28], [36].
These include on-chip caches, DRAMs, register files, and other
on-chip memory structures. Two competing factors determine
the soft error rate (SER) of memory, as the device feature size
decreases. With the shrinking of device geometries, the crit-
ical charge required for the occurrence of soft errors,
decreases. However, as the active silicon area of the cells also
decrease due to scaling, the probability of radiation strike also
decreases. Thus, the SER of caches has remained almost con-
stant due to technology scaling [32].

Although, with technology scaling the SER in SRAMs has
remained constant for a given cache size, the rate of multi-bit
errors has increased significantly with the shrinking device ge-
ometries. Spatial multi-bit errors occur when a single particle
strike upsets multiple adjacent cells. The rate of spatial multi-bit
errors increases accross technology generations as device fea-
ture sizes shrink. This is because due to the higher packing of
the cells in the same active area, a single radiation strike can

1063-8210/$25.00 © 2008 IEEE

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 195

Fig. 1. Taxonomy diagram: Works related to transient faults on caches.

now affect multiple cells simultaneously, potentially leading to
multi-bit errors. Maiz et al. [23] report that double-bit spatial er-
rors constitute 1% and 2% of all transient errors in SRAMs with
130- and 90-nm technologies, respectively. With further scaling
of device geometries, spatial multi-bit errors will become the
significant contributor to on-chip SER [24]. Multi-bit errors can
also arise in larger device geometries due to multiple single bit
errors over time. Thus, temporal multi-bit errors occur when
multiple independent particles, affect bits in the same word at
different times. Temporal multi-bit errors can occur predomi-
nantly in large caches due to the larger mean lifetime of cache
lines [35].

As shown in the taxonomy diagram given in Fig. 1, the L2
caches have been traditionally protected against soft errors using
Error correction codes (ECC) codes [6], [28], [36]. The tasks of
detecting and correcting soft errors using ECC codes, however,
incur a large penalty in area. For example, double error correc-
tion and double error detection (DECDED) codes require 14
bits, for each 64-bit memory word, corresponding to a 22% area
overhead. Multi-bit error protection using sophisticated ECC
protection will also require more bit lines and wider sense am-
plifiers thus increasing the cache access latency and power con-
sumption. Spatial multi-bit errors can also be avoided by using
layout level techniques like physical interleaving [32]. How-
ever, with higher interleaving factors multiple word lines are
needed to be driven and data need to regrouped or routed for
read/write operations, thus increasing the cache access latency.
Multi-bit errors can be avoided by correcting single-bit errors
during scrubbing, before they develop into temporal multi-bit
errors by another particle strike. However, choosing the right
scrub interval is often difficult [25]. Most importantly, scrubbing
cannot eliminate spatial multi-bit errors since spatial multi-bit
errors occur due to a single particle strike rather than evolving
over time.

Several schemes have been proposed in the literature to re-
duce the area overhead associated with protecting memory by
ECC codes [39]. In [21], error protection is suggested for fre-
quently accessed cache lines. In [38], Zhang et al. described
the use of a dead block prediction technique to hold the copy

of data found in active cache blocks. A larger ECC word can
also be used to compensate for the area overhead [34]. How-
ever, since the unit of memory read/write is based on word gran-
ularity, each memory read/write requires reading several data
words to generate SECDED check bits. In [37], a small fully as-
sociative “replication cache” is maintained to maintain replicas
of writes which are used to detect and correct errors. In [33],
Sridharan et al. have mentioned of using redundancy for area
efficient error protection. However, detailed results in the con-
text of multi-bit errors have not been provided. Recently, in [3],
[11], and [20], several techniques have been proposed for area
efficient multi-bit error correction. In [11], Gold et al. have pro-
posed to reduce the multi-bit soft-errors of L1 caches using last
store prediction. In [20], Kim et al. have proposed the use of 2-D
error codes which can correct clustered 32 32 errors with sig-
nificantly smaller overheads in area, performance and power. In
[3], the use of the redundancy present in the memory hierarchy
for area-efficient error correction, has been explored.

In this work, we model the vulnerablity of the L2 caches due
to multi-bit errors using a probabilistic formulation character-
ized by extensive simulations for multi-bit errors in various L2
cache organizations. Based on this study, we propose and in-
vestigate a framework of solutions based on redundancy for the
correction of multi-bit soft errors. In our approach, simple error
detection codes like hamming distance or cyclic redundancy
codes (CRC) are used to detect the multiple-bit errors, and they
are corrected using the redundancy existing in the memory hier-
archy. We demonstrate that multi-bit errors in the L2 cache can
be corrected by exploiting the redundancy existing between the
write-through L1 cache and the L2 cache and the redundancy
existing between the clean data lines of the L2 cache and the
main memory. We found that the bandwidth and power require-
ment of the write-through L1 cache can be sufficiently reduced
by addition of a small merging write buffer between the L1
and L2 cache. We investigate methods to increase the amount
of redundancy in the memory hierarchy by employing a re-
dundancy-based replacement policy, the amount of redundancy
being controlled is based on a redundancy threshold which is
estimated using our probabilistic model. Finally, we investigate
how redundancy can be mined at the word level by duplicating
small memory values in the upper half of the memory word.
Multi-bit errors in the lower half of the word is corrected using
the duplicate copy in the upper half. The multi-bit errors which
cannot be corrected using the inherent redundancy are corrected
by using a small ECC cache.

The rest of this paper is organized as follows. In Section II,
we model the vulnerablity of the L2 caches due to multi-bit er-
rors using a probabilistic formulation characterized by exten-
sive simulations for multi-bit errors in various L2 cache or-
ganizations. In Section III, we present several schemes to im-
prove vulnerablity of the L2 cache based on exploiting the re-
dundancy present in the memory hierarchy. In Section IV, we
present schemes to control the redundancy for reducing the vul-
nerability of the L2 cache. Section V details the experimental
methodology and the results. Section VI compares our redun-
dancy based multi-bit error protection framework with several
recent works in literature. Finally, Section VII provides some
conclusions.

196 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

II. CHARACTERIZATION OF MULTI-BIT ERRORS IN

CONVENTIONAL CACHES

In this section, we provide a characterization of the multi-bit
error rate in conventional caches. In particular, we are interested
in characterizing how the multi-bit error rate changes with cache
size, associativity and cache line size. We assume that error de-
tection codes (EDC) like CRC or Hamming distance are main-
tained which require much less area overhead than error de-
tection and correction codes like ECC. Multi-bit errors in the
dirty bit lines of the L2 caches can be detected using these EDC
codes. However, unlike clean cache lines, the multi-bit errors
in the dirty cache lines cannot be corrected, as no duplicate of
the correct data is maintained. We therefore define the vulner-
ability of the L2 cache as the percentage of dirty cache lines
within a given time interval. Next, in Section II-A, we model
the vulnerablity of the L2 caches due to multi-bit errors using
a probabilistic formulation. In Section II-B, we characterize the
probabilistic model through extensive simulations for multi-bit
errors in various L2 cache organizations.

A. Probabilistic Characterization of Multi-Bit Error Rate

As discussed previously, the vulnerability of the L2 cache
is given by the expected number of dirty cache lines in a time
interval. The expected number of dirty cache lines (represented
as) in a time interval of , is the joint probability that a
block with address will be written and will not be replaced.
This can be represented mathematically as

(1)

where is the number of blocks in the cache. Let
represent the probability that a particular block is ac-

cessed, represent the probability that a write occurs at
that block, and represent the probability that the block is
evicted during the time period . Assuming that the events are
independent, we obtain from the previous equation

(2)

A block is evicted from the cache if the same set address
as that of block is generated, a tag match does not occur for
none of the blocks in the set and the block is selected for re-
placement by the replacement scheme. Representing this math-
ematically and again assuming independence, we have

(3)

In the previous equation, is the prob-
ability that a set address is generated that has the same set as
block , gives the probability that a tag match succeeds,
and is the probability that the block in that set
is selected for replacement by the replacement algorithm. Based
on a LRU replacement policy, for example, gives
the probability that the oldest block in the set is .

Based on the previous equations, we can thus characterize
the change in cache vulnerability due to changes in cache size.
However, characterizing L2 cache vulnerability directly from
the probabilistic model, due to changes in associativity and

cache line size is difficult. Therefore, we performed extensive
simulations on SPEC2000 benchmarks to characterize L2
cache vulnerability against changes in cache line size and as-
sociativity. Based on this study, we estimated the probabilities
for our model.

B. Vulnerability of Conventional Cache Organizations

In this subsection, we describe the experiments conducted to
study the vulnerability due to multi-bit errors for various L2
cache organizations for estimating the probabilities of the model
described in the previous subsection. Fig. 2 shows the results
for the SPEC2000 integer benchmarks. We varied cache sizes
from 16 to 64 kB and 256 kB and cache line sizes from 16
to 32 bytes and 64 bytes, assuming direct and set-associative
mapping. The vulnerabilities of the 16, 64, and 256 kB caches
were obtained to be 28%, 37%, and 46%, on the average, re-
spectively. Also, as shown in Fig. 2(d), changing associativity
does not affect much the vulnerability. The 2- and 4-way caches
show slightly lower vulnerability than the direct-mapped cache.
The results for the floating point benchmarks were similar to
that of the integer benchmarks as in Fig. 3. The vulnerability
is observed to be 39%, 43%, and 49% for the 16, 64, and 256
kB caches, respectively. The floating-point benchmarks show
higher vulnerability in small cache configurations than the in-
teger benchmarks. The previous results are used to estimate the
probabilities of the model described in the previous subsection.

III. REDUNDANCY-BASED ERROR PROTECTION

In this section, we present two new schemes that can exploit
the inherent redundancy existing in the memory hierarchy to im-
prove the vulnerablity of L2 cache. In Section III-A, we present
a scheme to exploit the redundancy existing between the write
through L1 cache and the L2 cache to reduce the vulnerablity of
the L2 cache. In Section III-B, we describe a scheme to exploit
the redundancy between the L2 cache and the main memory to
reduce the vulnerablity of the L2 cache.

A. Exploiting L1/L2 Redundancy

The redundancy inherent in the memory hierarchy of high
performance processors can be exploited to impove the relia-
bility of the L2 cache against soft errors [17]. Most commercial
processors support a write-through L1 cache and a write-back
L2 cache. We assumed that the L1 cache supports a no-write al-
locate policy and a merging write buffer exists between the L1
cache and the L2 cache which prevents bandwidth and power
bottlenecks for the write-through L1 cache [30]. As the L1 cache
is write-through, the write operations are performed on both the
L1 and the L2 cache thus maintaining redundant copies of the
data. Also, there are many cache lines that reside in both the L1
cache and the L2 cache since they are placed in both of them on
L2 cache read misses. We define this implicit redundancy be-
tween the L1 and the L2 cache lines as the inclusion property of
the L2 cache.

Soft errors become effective when the data items with er-
rors are replaced from the L2 cache and written into the main
memory. If the data items are referenced again from the main
memory, the errors will be effective and affect program output.
This however can be avoided as redundant correct data is present

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 197

Fig. 2. Vulnerability of different cache organizations for SPECINT2000.

in the L1 cache. Thus when a L2 cache line is replaced, they
have to be checked for soft errors. All multi-bit errors can be
detected using conventional error detecting codes and corrected
by fetching non-corrupt data from the L1 cache.

In order to support the previous scheme, an inclusion bit is
maintaind with each L2 cache line. On a read operation, with a
L1 cache miss but a L2 cache hit, the inclusion bit is set to 1 for
the corresponding L2 cache block. Also, the L1 cache block that
is being replaced due to the miss will cause the corresponding
L2 cache block to have no duplicates in the L1 cache. So the
inclusion bit of the L2 cache block corresponding to the replaced
block from the L1 cache is reset to zero. On a write operation,
with a miss on both the L1 cache and the L2 cache, the inclusion
bit is reset to zero for the L2 cache block (no write-alloate policy
for L1). The L1 cache line is also invalidated corresponding to
the replaced L2 cache block. On a read operation, with a miss
on both the L1 and L2 cache, the inclusion bit is set to 1 for the
new cache line.

B. Fine Grain Dirtiness

The redundancy between L2 cache and main memory as-
sumes the form of clean L2 cache lines. Errors in clean L2
cache lines can be corrected by refetching them from the main
memory, whereas, the errors in the dirty cache lines are not cor-
rectable. This, however, assumes that whole data in the cache
line are modified. In the standard cache architecture, even when
only one word is modified, the dirty bit for the entire cache line
containing that word is set to one. Thus, we lose the informa-
tion that other words in the cache line are clean. This problem
can be alleviated by adding more dirty bits for each cache line.
We define this as supporting fine-grain dirtiness in the L2 cache.
Fine-grain dirtiness can be supported, for example, if one dirty
bit can be allocated for each memory word. Only the dirty bit

corresponding to modified memory word is set to one and other
dirty bits are not affected. When an error is detected in a clean
L2 cache word during a cache read or a cache line replace-
ment, the error can be corrected by refetching the word from
the main memory. Thus, we can correct multi-bit soft errors in
the L2 cache and improve recover-ability of the L2 cache. Area
overhead is small for fine-grain dirtiness: one dirty bit for each
memory word, which is the same overhead as parity check code.

Supporting a dirty bit for each memory word does not in-
crease the complexity of the cache hierarchy. On a read miss
in the L2 cache, all dirty bits are reset to zero. The dirty bit
corresponding to the modified memory word is set to one on a
L2 cache write. From CACTI simulation [29], the latency and
power overhead due to additional dirty bits is much lower than
1% for a 256 kB L2 cache with 32 B cache lines.

Fig. 4 illustrates our memory hierarchy that utilizes inclusion
property and supports fine-grain dirtiness. Without loss of gen-
erality, the L1 and the L2 cache line sizes have been assumed to
be the same. Often, the larger L2 cache line size is assumed to be
a multiple of the L1 cache line size as in [29], [31], and [30]. In
this case, to support inclusion property, we consider that the L2
cache line is divided into blocks of sizes equal to the L1 cache
size and provide multiple inclusion bits for the each of these
blocks. As illustrated in the figure, a multi-bit error in the right
half of the L2 cache line with inclusion bit 0 and dirty bits 10
can be corrected by refetching the matching data from the main
memory since the right half has not been modified. A multi-bit
error in the L2 cache line with inclusion bit 1 and dirty bits 00
will cause no writeback when it is replaced thus correcting the
error. All L2 cache lines with their inclusion bits 1 can be recov-
ered from soft errors by refetching the corresponding L1 cache
lines.

Since the L1 cache lines are a small percentage of L2 cache
lines, vulnerability of L2 cache does not reduce significantly

198 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 3. Vulnerability of different cache organizations for SPECFP2000.

Fig. 4. Illustrating inclusion property and fine grain dirtiness.

using this scheme. Also, correcting a clean cache word by ac-
cessing the corresponding memory word can create a perfor-
mance bottleneck. Therefore, we suggest more aggressive tech-
niques in Sections IV–VI which combined with the techniques
already proposed will significantly reduce the vulnerability of
the L2 cache.

IV. IMPROVING RELIABILITY BY CONTROLLING REDUNDANCY

In this section, we propose two new schemes to mine/con-
trol the additional redundancy in the memory hierarchy. In
Section IV-A, we propose a cache line replacement policy
biased towards reliability. The dirty cache blocks which have
no duplicates in the memory hierarchy are selected for replace-
ment on a cache miss, thus implicitly increasing redundancy
and improving reliability. In Section IV-B, we exploit small
data values in cache lines to increase redundancy at the word
level and hence further improve reliability of the L2 cache.

A. Reliability-Centric Replacement Policy

The conventional cache line replacement policies aim at
improving memory performance by reducing miss rates. They

are generally based on access history of cache lines such as re-
cency and frequency of cache line accesses. For example, least
recently used (LRU), most frequently used (MFU), and first-in
first-out (FIFO) use recency or frequency information. The
cache line replacement policy can be adapted to improve the
reliability of the L2 cache. In addition to recency and frequency
information, we can also include dirtiness of the cache blocks
in the process of selecting a victim cache line. If a dirty cache
line is chosen as a victim, the number of dirty cache lines in
the L2 cache per cycle will reduce and, thus, the vulnerability
of the L2 cache will reduce. As blind cache line replacements
may affect performance adversely, a hybrid replacement policy
has been developed by combining the conventional LRU policy
with the dirtiness-based replacement policy. When there is no
dirty cache line in the accessed set of the L2 cache line, the
LRU cache line is replaced. When the LRU cache line is clean
and a next LRU cache line is dirty, the next LRU line is selected
as a victim. Only the LRU replacement policy is considered
when the number of dirty blocks in the L2 cache is below a
vulnerability threshold. The estimated number of dirty cache
lines, , derived from the probabilistic model discussed in
Section II is used to determine the vulnerability threshold
as follows:

(4)

where is a user-defined constant and is the total number
of blocks in the cache. Thus, the vulnerability threshold de-
pends on the target application workload, which in our case
is the SPEC2000 benchmarks, while a user-defined soft-error
budget can be specified by controlling . Thus, using the
probabilistic model, average number of vulnerable blocks can
be estimated based on the cache design parameters and there-
fore can be used to set the vulnerability threshold appropriately.

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 199

The probabilistic formulation decouples vulnerability, which is
a characteristic of the application and the cache architecture,
from the soft error rate which is characteristic of the environ-
ment in which the system is operating. Performance can also be
traded for higher reliability of the L2 cache by controlling .

Algorithm 1 The algorithm for L2-cache access for multi-bit
soft error protection

if CACHE HIT then
if then

if value generated is small then
set the corresponding small value bit / Small Value
Detection /

end if
if matched block in set-address(addr).dirty-bit
TRUE then

set-address(addr).written-bit (NMW bit) TRUE
end if
set-address(addr).dirty-bit TRUE

end if
else

if No. of dirty blocks/Total No. of blocks then
/ Use LRU replacement /

else
Select a Block for replacement such that
set-address(addr).dirty-bit TRUE and
set-address(addr).written-bit (NMW bit) FALSE
and
set-address(addr).inclusion-bit FALSE
If other blocks in this set are found with this property,
write these to lower level as well / Clustered Cleaning
/

end if
end if
/ Maintain inclusion property /

The hybrid replacement policy is supported by the addition
of a bit per cache line called “No More Write” (NMW). Gener-
ational behavior of cache lines is exploited by using the NMW
bit [19], [12]. Generational behavior of cache states that, cache
lines are brought in from the main memory on cache misses,
used frequently for a short period of time, and, then, not used
(dead) until they are evicted by another cache miss. The NMW
bit in a cache line is maintained using the following algorithm.
The NMW bit is reset to 0 when an L2 cache line is brought
into the L2 cache. When the cache line is written more than one
time, its NMW bit is set to 1, indicating that they are likely to be
modified soon. NMW bits of L2 cache lines are reset to zero pe-
riodically, resembling the popular CLK algorithm implemented
to maintain LRU bits. Thus, the NMW bits acts as a 1-bit pre-
dictor of whether the cache line will be written soon. Vulnerable
cache lines which are dirty but have their NMW bit 0 are in their
dead write time and can be cleaned and made non-vulnerable.
The LRU bits along with the NMW bit are used for selecting the
victim cache line to be replaced so that the cache line are close to
(or already in) their dead time. The cache lines with their NMW

bit set will likely to be written onto very soon and thus will be
vulnerable again if cleaned. If the prediction is incorrect, i.e.,
cache line has not yet reached its dead time but has a NMW bit
0 (and becomes a candidate for eviction), the cache block will
suffer a cache miss, thus causing a performance penalty.

The hybrid replacement policy can be extended to further
improve the reliability of the L2 cache by cleaning other dirty
cache lines on a replacement. When there are dirty cache lines
in the same set as that of the replaced cache line and they are
expected not to be modified for a long time, they can be cleaned
together with the victim cache block. This will not increase the
cache miss rate but can make the L2 cache more immune to er-
rors by reducing the average number of dirty cache lines per
cycle. When an L2 cache line is replaced, the other lines in the
same set are also checked for their NMWs. The cache lines with
their NMW bits set to 0 are written back together to the main
memory since the lines are not likely to be modified soon. If this
clustered cleaning of dirty cache lines is accurate, i.e., the lines
will not be modified for a fairly long time and then replaced, the
vulnerability of the L2 cache will be reduced and there will be
no performance penalty.

B. Exploiting Small Data Value Size

It is commonly known that a large percentage of memory
values are small [7], [15], [22]. Small memory values use at most
half of the memory word bits. These small memory values can
be exploited to increase redundancy and improve the reliability
of the L2 cache. The small memory values can be duplicated
in their upper half of memory word bits, which increases the
degree of redundancy in the L2 cache. If the value of the memory
word is small, a detected multi-bit error in the lower half bits
can be corrected by using the duplicate data found in the top
half bits. To implement the duplication of small memory values,
each memory word requires a “small value bit” for indicating
that the value stored in the word is small and, thus, duplicated
in the upper half bits of the memory word. The area overhead
due to the duplication is the same as that of a parity bit: one bit
for each memory word.

The tasks of detecting, duplicating, and unduplicating small
memory values in the L2 cache require hardware overhead. De-
tecting small memory values can be performed by adding zero
detectors that can check the upper half bits of memory word. Du-
plicating memory values can be done with multiplexers that can
select between the lower half bits and the upper half bits of the
memory values for the upper half bits of the results. Similarly,
unduplicating small memory values can be performed with mul-
tiplexers that can select between zeros and upper half bits of the
memory values for the upper half bits of results. When the dupli-
cate bit from the L2 cache is 1, zero is selected as the output of
the multiplexor. A typical hardware architecture for this scheme
is shown in Fig. 6. The tasks of zero detection, duplication and
unduplication are performed between the L2 cache and the main
memory to augment L2 cache line fillings and replacements,
and between the L1 data cache and the L2 cache to support
write-through requests from the write buffer. An outline of the
cache line access/replacement algorithm to control or mine re-
dundancy presented in this section is provided in Algorithm 1.

200 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 5. Illustrating reliability-centric replacement and small value duplication.

Fig. 6. Hardware architecture for small value detection and duplication.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe our experimental setup and the re-
sults of the various schemes proposed in the paper for improving
the reliability of the L2 cache. Table I summarizes the various
schemes that we have experimented in our simulations.

A. Experimental Setup

We modified the SimpleScalar version 3 tool suite [9] for this
study. Since we target high performance embedded processor
and/or desktop processors, our baseline processor models an
out-of-order four-issue superscalar processor with a split trans-
action memory bus. Table II summarizes the simulation param-
eters of this processor. Since SimpleScalar models a write back
L1 cache, we modified SimpleScalar to support a write-through
L1 cache. We also implemented a merging write buffer with
fully associative eight entries between the L1 and L2 cache and
each entry of the buffer contained four words. Inclusion property
is maintained between L1 and L2 caches. When an L2 cache line
with its inclusion bit set to one is replaced, the corresponding
cache line in the L1 cache is invalidated to maintain inclusion
property. The replacement policy for the L2 cache can be easily
extended to implement reliability-centric replacement; we only
add an NMW bit for each L2 cache line and a finite state ma-
chine for the replacement function is modified to take into ac-
count dirtiness, the NMW bit, and the inclusion bit of the cache
line. If the number of dirty cache lines is larger than dirtiness
threshold, the reliability-centric replacement policy is enabled

TABLE I
DESCRIPTION OF THE SCHEMES USED IN EXPERIMENTS

while the conventional LRU policy is used otherwise. Small
values are detected dynamically and maintained using a small
value bit. Multiple dirty bits for each cache line are maintained
to implement fine grain dirtyness. Our simulations have been
performed with a subset of SPEC2000 benchmarks [1]. These
were compiled with DEC C V5.9-008, Compaq C++ V6.2-024,
and Compaq FORTRAN V5.3-915 compilers using high opti-
mization level. Eight programs from each of floating-point and
integer benchmarks are randomly chosen for our evaluation. All
the benchmarks were fast-forwarded for one billion instructions
to avoid initial startup effects and then simulated for another one
billion committed instructions. We also simulated for another
one billion instructions after fast forwarding 10 billion instruc-
tions. For all simulations, the reference input sets were used.

B. Simulation Results

We measure the vulnerability of the L2 cache by computing
the average number of dirty blocks per cycle without any dupli-
cates in the memory hierarchy. Figs. 7 and 8 present vulnera-
bilities of the L2 cache for various schemes we have proposed
in Table I including the baseline cache. Vulnerability of the L2
cache for the baseline configuration is 64.6% and 61.4%, on the
average, for the floating-point and integer benchmarks, respec-
tively. The mesa, gcc, and gzip benchmarks show higher than
90% vulnerability. Scheme I reduces vulnerability to 61.4% and
58%, on the average, for the floating-point and integer bench-
marks, respectively. These percentages are 53.9%, 43.4%, 41%,
and 39.5%, on the average, for schemes D, DC, IDC-T1, and
IDC-T2, respectively, for the floating-point benchmarks. These

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 201

TABLE II
BASELINE PROCESSOR CONFIGURATION

TABLE III
COMPARISON WITH RECENT WORKS IN LITERATURE

percentages are 51.3%, 43.1%, 40.6%, and 38.3% for the in-
teger benchmarks. The maximum benefit from scheme I is lim-
ited to 6.25% since at most 16 kB of dirty data can be redundant
between the 16 kB L1 data cache and the 256 kB L2 cache in
our baseline processor configuration. Scheme D does not show
good results when baseline vulnerability is high. For example,
in mesa, applu, gcc, and gzip, scheme D shows small reductions
in vulnerability. This is because, in these benchmarks, most of
cache lines are dirty and, thus, there is little difference between
our reliability based replacement and the LRU policies. In con-
trast, scheme D works well with ammp; vulnerability of the
L2 cache reduces to 26.2% from 82.9% in the baseline. Since
L2 cache miss rate is very high (28.8%) and, thus, IPC is very
low (0.1) in ammp, cache lines remain dirty when pipelines are
stalled for a long time due to the L2 cache misses, increasing
vulnerability per cycle. Scheme D makes those dirty cache lines
non-vulnerable by evicting them from the L2 cache, reducing
vulnerability per cycle. Scheme DC consistently reduces vul-
nerability by 10.5% and 8.3%, on the average, over and above
scheme D. Scheme DC works very well for mesa and parser,
in which scheme D was not effective in reducing the vulnera-
bility. Scheme IDC-T1 reduces additional 2.4% and 2.5% of
vulnerability for the floating-point and integer benchmarks, re-
spectively. A vulnerability threshold of 10% further reduces the
vulnerability of the L2 cache. The vulnerability reduces by 1%
and 2.3% for the floating-point and integer benchmarks, respec-
tively. The ammp, bzip2, and crafty benchmarks benefit most
from 10% threshold.

The fine grain dirtiness based method was implemented by
having four dirty bits per cache line for a cache line size of four
words. Scheme IM reduces the vulnerability of the L2 cache to
43% and 39.6%, on the average, for the floating-point and in-
teger benchmarks, respectively. Reductions in vulnerability are

Fig. 7. Vulnerability of the L2 cache for various schemes proposed in this paper
for SPECINT2000.

Fig. 8. Vulnerability of the L2 cache for various schemes proposed in this paper
for SPECFP2000.

18% and 21%, respectively, compared to Baseline. Scheme IM
is comparable to scheme IDC-T1 in reducing vulnerability as
can be observed in Figs. 7 and 8. In most floating-point bench-
marks, scheme IM shows better results than scheme IDC-T1.
Only mesa and galgel show worse results with scheme IM.
Half of the integer benchmarks show better results and the other
half show worse results with scheme IM. Scheme IMDC fur-
ther reduces the vulnerability to 33.5% and 32.4%, on the av-
erage, for the floating-point and integer benchmarks, respec-
tively. The applu, mgrid, gzip, and parser benchmarks show
large reductions in vulnerability with scheme IMDC compared
to scheme IM. As shown in the figures, we have also exper-
imented with our proposed scheme to exploit small memory
values. Our combined optimization scheme IMSDC reduces L2
cache vulnerability by 40% on the average for the integer bench-
marks. Floating point benchmarks show a lesser decrease in vul-
nerability, of about 32%, primarily because the floating point
values include a sign bit, exponent and mantissa fields and hence
cannot be detected by the small value detector. As discussed
later, with the significant reduction of the vulnerability by ex-
ploiting/mining redundancy and with the addition of a small di-
rect mapped ECC cache, for the error-correction of the vulner-
able blocks, an average multi-bit error coverage of about 96%
can be achieved with our approach.

202 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 9. Global miss rates of the L2 cache for various schemes proposed in this
paper for SPECINT2000.

Fig. 10. Global miss rates of the L2 cache for various schemes proposed in this
paper for SPECFP2000.

As discussed previously, the NMW bit provides a 1 bit predic-
tion for whether the cache line will be written soon. We also ex-
perimented with 2 bit predictors but we did not notice any signif-
icant changes from the 1 bit predictor case. We do not show these
results here for brevity. We also measured L2 cache miss rate
change since our proposed schemes use either the conventional
LRU policy or the proposed reliability-centric policy depending
on vulnerability of the L2 cache at a particular time and the
chosen vulnerability threshold. Figs. 9 and 10 present L2 cache
miss rate for various schemes proposed in this paper. We use
global cache miss rate in the figure. Cache miss rates increase
by 0.4%, 0.1%, 0.1%, and 0.4%, on the average, for schemes D,
DC, IDC-T1, and IDC-T2, respectively, for the floating-point
benchmarks. These percentages are 12.6%, 10.7%, 10.7%, and
10.7% for the integer benchmarks. The gcc benchmark shows
a decrease in miss rate, which demonstrates that the conven-
tional LRU policy is not optimal for all benchmarks. As shown
in the figure, the miss-rates reduces significantly when the re-
placement policy is changed from LRU replacement policy to a
replacement policy favoring replacement of dirty lines. We note
that replacement scheme based on LRU policy is based on the
approximation that the least recently used block will not be used
in the near future. As we also select that dirty cache line in the
set to replace which is oldest in terms of LRU, our simulations

Fig. 11. IPCs for various schemes proposed in this paper for SPECINT2000.

Fig. 12. IPCs for various schemes proposed in this paper for SPECFP2000.

show that the replacement scheme using such a technique pre-
dicts cache lines in their dead time very accurately and hence
has a significantly lower miss rate compared LRU.

Figs. 11 and 12 plots IPC results for various schemes pro-
posed in this paper. IPC reductions are 0.2%, 0.2%, 0.3%,
and 0.3%, on the average, for schemes D, DC, IDC-T1, and
IDC-T2, respectively, for the floating-point benchmarks. These
percentages are 0.1%, 0.1%, 0.1%, and 0.1% for the integer
benchmarks. IPC reduces slightly due to additional write
back traffic in our schemes. The gcc benchmark shows IPC
increase of 25% for scheme D. The benchmark showed high
miss rate reduction in Fig. 9 which translated directly into
improved performance. The other benchmarks show slight
decreases or increases in IPC. Our proposed scheme, especially
IDC-T1, reduces vulnerability by 23.6%, on the average, for
the floating-point benchmarks with 0.3% performance penalty.
For the integer benchmarks, vulnerability reduces by 23.1%,
on the average, with less than 0.1% performance loss.

Since our replacement policies favor dirty cache lines, we
also measured the write back traffic rate from the L2 cache to
the main memory as shown in Figs. 13 and 14. The write back
traffic rate is measured as the ratio of the number of writes
from the L2 cache to all L2 cache accesses. The write back
traffic is increased by 1.1% and 191.7%, 2.5%, and 2.8%, on
the average, for schemes D, DC, IDC-T1, IDC-T2, respec-
tively, the floating-point benchmarks. These percentages are

10.8%, 163.3%, 0.9%, and 0.8% for the integer benchmarks.

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 203

Fig. 13. Write back traffic rate to the main memory for various schemes pro-
posed in this paper for SPECINT2000.

Fig. 14. Write back traffic rate to the main memory for various schemes pro-
posed in this paper for SPECFP2000.

Scheme DC increases memory write traffic significantly since
it performs clustered cleaning of dirty cache lines. In contrast,
scheme IDC-T1 shows little difference in write back traffic
since it takes inclusion bits into account. Since redundant cache
lines between L1 and L2 caches are most active cache lines,
they are likely to be modified frequently. Cleaning these redun-
dant cache lines does not help reduce vulnerable cache lines in
scheme DC. Scheme IDC-T1 does not clean redundant cache
lines since they are highly likely to be written soon. Schemes
D and IDC-T1 even decrease memory write back traffic for the
integer benchmarks mainly because of gcc, where cache miss
rate decreases significantly for schemes D and IDC-T1, which
reduces dirty write backs from the L2 cache. IDC-T2 shows a
similar behavior to IDC-T1.

As previously discussed, we assumed that a small ECC
cache is maintained for error correction of the vulnerable cache
blocks, i.e., those dirty cache blocks that have no duplicates in
the memory hierarchy. The multi-bit error correction codes for
only the vulnerable blocks are maintained in this small ECC
cache. A multi-bit soft error is always detected by the low cost
error detection codes. If a L2 cache block is non-vulnerable, it is
corrected by exploiting the redundancy existing in the memory
hierarchy, while vulnerable blocks are corrected using the small
ECC cache. The significant reduction in vulnerability of the
L2 cache by exploiting/mining the redundancy in the memory

Fig. 15. Area overhead for a L2 cache with redundancy based error protection
compared to a baseline L2 cache with no error protection.

hierarchy allowed a ECC cache of significantly smaller size.
We found that a direct-mapped ECC cache, of size 8 kB was
sufficient for up to 6-bit error protection using our redundancy
based approach for most SPEC2000 benchmarks on 256 kB
L2 cache. Our simulations suggest that with a ECC cache
of size 4% of that of the L2 cache together with exploiting
our redundancy based approach, can provide a multi-bit error
error coverage of about 96% with significantly less area/power
overhead and with marginal performance penalty.

We estimated the area overhead of our redundancy based
scheme with a small ECC cache for multi-bit error protection
of the vulnerable blocks. We estimated the area overhead
of multi-bit error correction coding by using the following
formulation. As codes obtained by multi-bit errors from a valid
codeword must be disjoint from each other for correction to a
distinct valid code, we have for -bit error correction scheme
for a -bit word requiring check bits

(5)

where is number of possible ways a -bit error can happen
on a -bit word. Since this is the same as the number of ways
of choosing objects from objects

(6)

Solving these equations for , gives us an estimate of area
overhead for complete multi-bit error protection. The area
overhead for our redundancy-based multi-bit error correction
approach was estimated by considering the area overhead for
the small ECC cache and adding the number of status bits
(inclusion bit, small value bits, etc.) required for implementing
our redundancy-based approach. The area overhead of our re-
dundancy-based multi-bit error protection for fixed number of
ECC cache blocks is shown in Fig. 15. As shown in the figure,
our redundancy based multi-bit error protection for 6-bit errors
on a L2 cache with line size of 32 B incurs only a marginal area
overhead of 6%.

We also estimated the power overhead of our redundancy
based multi-bit error protection. We ported the Simplescalar-
based framework implementing our approach to the Wattch 2.0
[8] framework. Wattch performs architectural level power anal-
ysis for the cache by maintaining counters for number of read/
write accesses to the cache and multiplying it with the average

204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 16. Average dynamic power consumption for a L2 cache with a 8 kB ECC
cache compared with baseline L2 cache with no error protection.

Fig. 17. Average leakage power consumption for a L2 cache with small ECC
cache with fixed number of blocks for different sized multi-bit errors.

power required for a single read/write cache access in a partic-
ular process technology. We also estimated the leakage power
at the architectural level, which is a significant portion of total
power in current technology nodes. We used CACTI 4.2 [29] for
this analysis, which is a detailed cache access and power anal-
ysis tool. The cache size estimates made previously was pro-
vided to CACTI to obtain estimates of leakage power. With a
70 nm process technology model, the dynamic power overhead
of our redundancy based multi-bit error correction scheme with
different SPEC2000 benchmark circuits is plotted in Fig. 16. As
shown in the figure, our scheme increases the dynamic power
overhead by only about 13.75%. As shown in Fig. 17, marginal
overhead is also incurred in leakage power for our area efficient
multi-bit error correction scheme for different sized multi-bit er-
rors. This, thus makes the total power overhead of our approach
much smaller than that of most works found in literature for
moderately sized multi-bit errors.

VI. COMPARISON WITH RELATED WORKS

We note that many competing solutions have been proposed
in the literature for protecting caches against multi-bit errors
with low area/performance overhead. For comparison of our
work with recent works, we have used data reported in the re-
sults of the corresponding research papers and interpolated the
results according to our simulation setup. We have assumed an
average IPC of 2.5 and that the instruction mix contains 30%

memory reference instructions and 10% stores as is typical of
most SPEC benchmarks [1].

“In-Cache Replication (ICR),” has been proposed in [38] to
exploit “dead” blocks in the data cache to store the replicas of
the “hot” blocks. These duplicate blocks can be used to cor-
rect multi-bit errors in the active blocks. Although an area over-
head of less than 1% has been reported with a modest perfor-
mance penalty of 3.6%, the parity based multi-bit error protec-
tion scheme provides an error coverage of only 65%. Our re-
dundancy based approach has a error coverage of 96% with a
performance penalty of less than 1%. “Shadow Caching” [21],
maintains copies of most frequently used (MFU) cache lines in
separate shadow caches. In the context of error correction, at
least two shadow caches should be maintained to support correc-
tion using majority voting. The approach although significantly
better than blind NMR (N-modular redundancy), however, in-
curs significant area overhead. For example a 4-way associa-
tive shadow cache of 128 entries has an area overhead of about
28%. Also, as multiple copies of data are read for error detection
the cache access latency is increased, resulting in a performance
overhead of about 40% with a modest error coverage of about
85%. These overheads scale exponentially as higher order mul-
tiple-bit errors are considered. In comparison, our redundancy
based approach can achieve 96% error coverage with about 6%
area overhead with very little performance penalty.

The “ -cache” approach [37], maintains a small fully as-
sociative “replication cache” to detect and correct multi-bit
errors using copies of dirty data. The method achieves 100%
multi-bit error coverage. However, as multi-bit error detection
is achieved by parallel access of the -cache and the data
cache, a large latency overhead is incurred. For example, with a
2 cycle load latency for reads as reported in the work, a perfor-
mance penalty of about 7.31% can be incurred. As illustrated in
Section V, the performance penalty for our redundancy based
multi-bit error protection scheme is less than 1% with high
multi-bit error coverage. The “Last Store” prediction technique
[11], proposes the use of an accurate program-counter (PC)
trace-based predictor which immediately initiates a writeback
after observing a PC trace with a sequence of store instructions.
However, the hardware structures like “history table” and “sig-
nature table” incur an area overhead of about 8%. Assuming
that updating these hardware structures takes at least 1 cycle
latency during stores, a performance penalty of about 15% can
be incurred which is quite high compared to our redundancy
based approach. Our approach also achieves a higher error
coverage than that reported in their work. “Punctured Error
Recovery Cache (PERC)” [30], decouples error detection and
correction by maintaining the “punctured” error correction
codes in a separate cache. As error detection and correction is
separated, little performance overhead is incurred. However,
as the number of vulnerable blocks is not actively reduced,
complete multi-bit error coverage requires about 19% area
overhead.

We note that the techniques proposed in this work, although
primarily targeted at single core processors, however can be ex-
tended and applied to multi-core processors. The bandwidth re-
quired by the write-through L1 cache used in our approach can
be significantly reduced by employing a merging write-buffer

BHATTACHARYA et al.: FRAMEWORK FOR CORRECTION OF MULTI-BIT SOFT ERRORS IN L2 CACHES BASED ON REDUNDANCY 205

between the L1 and the L2 caches. For example, when a fully
associative merging write buffer with eight entries and with each
entry of the size of four words is placed between the L1 and the
L2 cache, a negligible increase of write-through bandwidth is
observed. Also, the techniques to mine redundancy using small
values and reliability centric replacement can be applied to a
cache hierarchy with non-inclusive L1 caches. In multi-core sys-
tems, the cache coherence protocol between the local L1 caches
and a shared L2 cache, which also acts as a synchronization
point, can lead to increased exploitation of the inclusion prop-
erty between the L1 and the L2 cache. A cache read of data in the
local L1 caches of a processor that has been modified by another
processor in a multi-core environment will lead to invalidation
requests by the cache controller and re-fetching of the modified
data from the shared L2 cache. As inclusion property is natu-
rally enforced between the L1 and the L2 caches, this leads to
increased redundancy between local L1 caches and shared L2
caches.

VII. CONCLUSION

Soft errors are increasing in the L2 cache with technology
scaling and increasing integration. Multi-bit soft-errors are in-
creasingly being observed on large L2 caches. Higher order
bit-interleaving have high latency overheads while, powerful
multi-bit ECC codes are prohibitive in terms of area. Scrub-
bing reduces temporal multi-bit errors but deciding the scrub
interval is tricky. Moreover, scrubbing does not correct spa-
tial multi-bit errors. We have proposed several cost-effective
schemes that can improve the reliability of the L2 cache espe-
cially against spatial multi-bit soft errors. The best combination
of proposed schemes shows improvement in reliability by up to
40% for integer benchmarks and 32% for floating point bench-
marks. With the significant reduction of the vulnerability by ex-
ploiting/mining redundancy and with the addition of a small di-
rect mapped ECC cache, for the error-correction of vulnerable
blocks, an average multi-bit error coverage of about 96% can be
achieved. These reliability improvements of the L2 cache can be
accomplished with significantly less area and power overheads
and with virtually no performance penalty.

REFERENCES

[1] SPEC, “ CPU 2000 Benchmarks,” 2000. [Online]. Available: http://
www.specbench.org/cpu2000/

[2] H. Asadi, V. Sridharan, M. Tahoori, and D. Kaeli, “Balancing perfor-
mance and reliablity in the memory hierarchy,” in Proc. Symp. Perform.
Anal. Syst. Softw., 2005, pp. 269–279.

[3] K. Bhattacharya, S. Kim, and N. Ranganathan, “Improving the relia-
bility of on-chip l2 cache using redundancy,” in Proc. ICCD, 2007, pp.
224–229.

[4] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-
based structures,” in Proc. ISCA, 2005, pp. 532–543.

[5] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol.
19, no. 4, pp. 23–29, Apr. 1999.

[6] D. Bossen, J. Tendler, and K. Reick, “Power4 system design for high
reliability,” IEEE Micro, vol. 22, no. 2, pp. 16–24, Feb. 2002.

[7] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proc.
HPCA, 1999, pp. 13–22.

[8] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. ISCA,
2000, pp. 83–94.

[9] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,” ACM
SIGARCH Comput. Arch. News, vol. 25, no. 3, pp. 13–25, 1997.

[10] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, Apr. 2003.

[11] B. Gold, M. Ferdman, B. Falsafi, and K. Mai, “Mitigating multi-bit
soft errors in L1 caches using last-store prediction,” presented at the
Federated Comput. Res. Conf., San Diego, CA, 2007.

[12] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi, “Speculative ver-
sioning cache,” in Proc. ISCA, 1998, pp. 195–205.

[13] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on
the atmospheric neutron soft error rate,” IEEE Trans. Nucl. Sci., vol.
47, no. 6, pp. 2586–2594, Dec. 2000.

[14] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel, “The microarchitecture of the pentium 4 processor,” Intel
Technol. J., vol. 1, pp. 1–13, 2001.

[15] J. Hu, S. Wang, and S. Ziavras, “In-register duplication: Exploiting
narrow-width value for improving register file reliability,” in Proc. Int.
Conf. Dependable Syst. Netw., 2006, pp. 281–290.

[16] N. Jha and S. Kundu, Testing and Reliable Design of CMOS circuits.
Norwell, MA: Kluwer, 1990.

[17] M. Kadiyala and L. Bhuyan, “A dynamic cache sub-block design to
reduce false sharing,” in Proc. ICCD, 1995, pp. 313–318.

[18] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, “Scaling
trends of cosmic ray induced soft errors in static latchesbeyond 0.18�,”
in Dig. Symp. VLSI Circuits, 2001, pp. 61–62.

[19] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gener-
ational behavior to reduce cache leakage power,” in Proc. ISCA, 1930,
pp. 240–251.

[20] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error
tolerant caches using two-dimensional error coding,” in Proc. IEEE
Micro, 2007, pp. 197–209.

[21] S. Kim and A. Somani, “Area efficient architectures for information
integrity in cache memories,” in Proc. ISCA, 1999, pp. 246–255.

[22] H. Lee, G. Tyson, and M. Farrens, “Eager writeback-a technique for
improving bandwidth utilization,” in Proc. Symp. Microarch., 2000, pp.
11–21.

[23] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of multi-bit soft error events in advanced srams,” in Dig. IEDM, 2003,
pp. 21–24.

[24] S. Mitra, N. Kee, and S. Kim, “Robust system design with built-in soft-
error resilience,” IEEE Computer, vol. 38, no. 2, pp. 43–52, Feb. 2005.

[25] S. Mukherjee, J. Emer, T. Fossum, and S. Reinhardt, “Cache scrubbing
in microprocessors: Myth or necessity?,” in Proc. Int. Symp. Depend-
able Comput., 2004, pp. 37–42.

[26] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” IEEE Computer, vol. 39, no. 1, pp. 118–120, Jan. 2006.

[27] R. Phelan, “Addressing soft errors in arm core-based SOC,” ARM Ltd.,
White Paper, Dec. 2003.

[28] N. Quach, “High availability and reliability in the itanium processor,”
IEEE Micro, vol. 20, no. 5, pp. 61–69, May 2000.

[29] G. Reinman and N. Jouppi, “An integrated cache timing and power
model,” Compaq WRL Report, 1999.

[30] N. Sadler and D. Sorin, “Choosing an error protection scheme for a
microprocessor’s L1 data cache,” in Proc. ICCD, 2006, pp. 499–505.

[31] N. Seifert, D. Moyer, N. Leland, and R. Hokinson, “Historical trend in
alpha-particle induced soft error rates of the alpha microprocessor,” in
Proc. Int. Reliab. Phys. Symp., 2001, pp. 259–265.

[32] C. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 397–404, May 2005.

[33] V. Sridharan, H. Asadi, M. Tahoori, and D. Kaeli, “Reducing data
cache susceptibility to soft errors,” Trans. Depend. Secure Comput.,
vol. 3, no. 4, pp. 353–364, 2006.

[34] T. Tanzawa, T. Tanaka, K. Takeuchi, R. Shirota, S. Aritome, H.
Watanabe, G. Hemink, K. Shimizu, S. Sato, Y. Takeuchi, and K.
Ohuchi, “A compact on-chip ECC for low cost flash memories,” IEEE
J. Solid-State Circuits, vol. 32, no. 5, pp. 662–669, May 1997.

[35] Sun, “UltraSparc T1,” 2005. [Online]. Available: http://www.sun.com/
processors/whitepapers

[36] K. Yeager, “The mips r10000 superscalar microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28–41, Feb. 1996.

[37] W. Zhang, “Enhancing data cache reliability by the addition of a small
fully-associative replication cache,” in Proc. Int. Conf. Supercomput.,
2004, pp. 12–19.

[38] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam,
“ICR: In-cache replication for enhancing data cache reliability,” in
Proc. Int. Conf. Depend. Syst. Netw., 2003, pp. 291–300.

206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

[39] W. Zhang, M. Kandemir, A. Sivasubramaniam, and M. Irwin, “Perfor-
mance, energy, and reliability tradeoffs in replicating hot cache lines,”
in Proc. Int. Conf. Compilers, Arch. Synthesis Embedded Syst., 2003,
pp. 309–317.

Koustav Bhattacharya (S’06) received the B.Tech.
degree in computer engineering from Kalyani Uni-
versity, West Bengal, India, in 2002, and the Master’s
degree in computer technology from the Indian Insti-
tute of Technology, Delhi, India, in 2004. He is cur-
rently pursuing the Ph.D. degree in computer science
and engineering from the University of South Florida,
Tampa.

In 2004, he worked as a Design Engineer with ST
Microelectronics, Noida, India. His research interests
include design and optimization for reliable and se-

cure VLSI systems, VLSI design automation, and computer architecture.
Mr. Bhattacharya was a recipient of the Richard E. Merwin Scholarship in

2007.

Nagarajan Ranganathan (S’81–M’88–SM’92–
F’02) received the B.E. (honors) degree in elec-
trical and electronics engineering from Regional
Engineering College, Tiruchirapalli, University of
Madras, Madras, India, in 1983, and the Ph.D.
degree in computer science from the University of
Central Florida, Orlando, in 1988.

He is a Distinguished University Professor with
the Department of Computer Science and Engi-
neering, University of South Florida, Tampa. During
1998–1999, he was a Professor of electrical and

computer engineering with the University of Texas, El Paso. His research
interests include VLSI circuit and system design, VLSI design automation,
multi-metric optimization in hardware and software systems, biomedical
information processing, computer architecture, and parallel computing. He
has developed many special purpose VLSI circuits and systems for computer
vision, image and video processing, pattern recognition, data compression
and signal processing applications. He has coauthored over 220 papers in
refereed journals and conferences, 4 book chapters, and has received 6 U.S.
patents with one pending. He has edited 3 books titled VLSI Algorithms and
Architectures: Fundamentals (IEEE Press, 1999), VLSI Algorithms and Archi-
tectures: Advanced Concepts (IEEE, 1993) and VLSI for Pattern Recognition

and Artificial Intelligence, World Scientific Publishers (World Scientific, 1995),
and coauthored a book titled Low-Power High-Level Synthesis for Nanoscale
CMOS Circuits (Springer, 2008).

Dr. Ranganathan was elected as a Fellow of IEEE in 2002 for his contributions
to algorithms and architectures for VLSI systems. He is a member of the IEEE,
IEEE Computer Society, IEEE Circuits and Systems Society, and the VLSI
Society of India. He has served on the editorial boards for the journals: Pattern
Recognition (1993–1997), VLSI Design (1994-2008), IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS (1995–1997), IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS (1997–1999), and the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

(1997–2000). He was the chair of the IEEE Computer Society Technical
Committee on VLSI during 1997–2001. He served on the steering committee
of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS during 1999–2001, the steering committee chair during 2002–2003,
and the Editor-in-Chief for two consecutive terms during 2003–2007. He
served as the program co-chair for ICVLSID’94, ISVLSI’96, ISVLSI’05,
and ICVLSID’08 and as general co-chair for ICVLSID’95, IWVLSI’98,
ICVLSID’98, and ISVLSI’05. He has served on technical program committees
of international conferences including ICCD, ICPP, IPPS, SPDP, ICHPC,
GLSVLSI, ASYNC, ISQED, ISVLSI, ISLPED, CAMP, ISCAS, MSE, and
ICCAD. He was a recipient of the USF Outstanding Research Achievement
Award in 2002, the USF President’s Faculty Excellence Award in 2003, USF
Theodore-Venette Askounes Ashford Distinguished Scholar Award in 2003,
and the SIGMA XI Scientific Honor Society Tampa Bay Chapter Outstanding
Faculty Researcher Award in 2004. He was a corecipient of three Best Paper
Awards at the International Conference on VLSI Design in 1995, 2004, and
2006.

Soontae Kim (M’06) received the Bachelor’s
and Master’s degrees in computer science from
Chung-Ang University, Chung-Ang, Korea, in 1996
and 1998, respectively, and the Ph.D. degree in com-
puter science from Pennsylvania State University,
Philadelphia, in 2003.

He was an Assistant Professor with the Depart-
ment of Computer Science and Engineering, Univer-
sity of South Florida, Tampa, from 2004 to 2007. He
is currently an Assistant Professor with the School of
Engineering, Information and Communication Uni-

versity, Korea. His research interests include embedded system, multimedia,
power-aware IT, and reliable IT.

