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Abstract

A microprocessor’s performance is fundamentally lim-

ited by the rate at which it can resolve branch mispredic-

tions. Control independence (CI) architectures look for use-

ful control and data independent instructions to fetch and

execute in the shadow of a branch misprediction. This pa-

per demonstrates that CI architectures can be guided to ex-

ploit substantial branch-mispredict level parallelism (BLP)

in existing control intensive applications. A program has

branch-mispredict level parallelism when its dynamic exe-

cution trace contains hard-to-predict branches that are both

control and data independent, and thus could, potentially,

be resolved in parallel.

Although applications have a high degree of inherent

BLP, we find that the amount of BLP exploited by naive CI

architectures tends to be quite small. We show that spawn

selection and data dependence handling policies in a CI ar-

chitecture should make choices that explicitly aim to maxi-

mize branch-mispredict level parallelism. We demonstrate

that with BLP-focussed policies, CI architectures can ex-

pose high amounts of branch-mispredict level parallelism

and achieve 50% to 90% improvements in IPC on several

of the SPEC 2000 Integer benchmarks.

1 Introduction

Mispredicted branches, and the backwards slices of those

branches, comprise a large fraction of the critical paths

through control intensive programs [9, 4, 31, 15]. The mean

time between branch mispredictions is a first order deter-

minant of superscalar performance [15] because the branch

misprediction feedback mechanism serializes branch mis-

prediction resolution [4, 31]. All instructions that were

fetched between the time a mispredicted branch is fetched

and the time it is resolved must be flushed, even if those

instructions performed, or will perform, useful work.

The impact of branch mispredictions can be mitigated

by better branch prediction (reducing the number of branch

mispredictions) or through multi-path execution [34] and

predication [16] techniques that fetch useful work during

the period while hard-to-predict branches are resolving.

Control independence processors [28, 5, 13, 3] fetch only

from a single path but find work along that path that is in-

dependent of a branch mispredict.

This paper explores overlapping the penalty of multi-

ple mispredicts on control independence processors to al-

leviate the branch mispredict bottleneck. We demonstrate

that the performance of a control independence proces-

sor is strongly correlated to the average number of branch

mispredictions that it resolves in parallel. In analogy to

“Memory-Level Parallelism” (MLP), where one searches

for another cache miss to do in the shadow of a cache

miss [24, 32] we call this overlapping of branch mispredict

penalties “Branch-mispredict Level Parallelism” (BLP).

This paper introduces and formalizes the concept of

Branch-mispredict Level Parallelism (BLP). We show that

significant amounts of BLP exist in control-intensive appli-

cations, and that the BLP a control independence proces-

sor extracts from an application strongly correlates to the

performance the processor achieves. While BLP can be ex-

ploited by a control independence (CI) architecture, we find

find that BLP-centric spawn selection and data dependence

handling policies can dramatically affect the amount of BLP

exploited. On a 4-core setup, a BLP-centric system achieves

50% to 90% improvements in IPC on several of the SPEC

2000 Integer benchmarks, while a naive CI system achieves

a maximum of 15% improvement.

The rest of the paper is structured as follows. The next

section motivates branch-mispredict level parallelism. Sec-

tion 3 describes techniques we use to find BLP. Section 4

explains our experimental methodology and presents exper-

imental results. Finally, we conclude in Section 5.

2 Motivation

Serialized branch mispredictions bottleneck superscalar

performance. In this section, we explore the potential of

improving performance by resolving multiple independent

mispredicted branches in parallel.

Section 2.1 explains how serialized branch mispredic-

tions limit performance in conventional superscalar proces-

sors. Section 2.2 introduces the concept of BLP, and de-

scribes the conditions under which branch mispredicts can
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be parallelized. Section 2.3 describes related work in Con-

trol Independence (CI) architectures, which, unlike super-

scalars, can overlap the misprediction penalties of multiple

branches.

2.1 The Branch Misprediction Bottleneck

The top half of Figure 1 depicts the resolution of consecu-

tive mispredicted branches in a superscalar. Although the

superscalar can execute several branches simultaneously

and out-of-order, it can only resolve one misprediction at

a time. Even if the processor executes two mispredicted

branches (say A and E) in parallel, detection of the ear-

lier misprediction (A) causes all subsequent instructions, in-

cluding the mispredicted branch E, to be squashed, fetched

and executed again.

This is shown in more detail in Figure 1. The timeline

here refers to the flow graph in Figure 2(a). Basic block

A ends in a branch. Shown at the top of Figure 1 is the

stream of instructions fetched over time. The processor mis-

predicts the branch at the end of block A, and thus fetches

block B, when it should have fetched block C. It then in-

correctly fetches blocks E, F and H. Finally, the branch in

block A executes, and the misprediction is detected. All in-

structions from blocks B, E, F and H are flushed and fetch

is restarted at block C. Note, in particular, that an instance

(labeled E’) of block E has been fetched and possibly ex-

ecuted, but because this instance was squashed, block E

needs to be fetched again, and the resolution of the mis-

prediction in block E does not overlap the resolution of the

misprediction in block A.

Given the impact of branch mispredictions on perfor-

mance, it is productive to find useful work to do in the

shadow of a branch misprediction [10, 30, 28, 5, 13, 3]. We

demonstrate in this paper that the number of mispredicted

branches resolved in the shadow of a mispredict strongly

correlates to performance improvement. This approach is

demonstrated in the bottom half of Figure 1. If the work

being done to resolve the branch at block E is independent

of the work being done in blocks A or C, then starting the

resolution of the misprediction in block E early might in-

crease performance. In Section 2.3 we describe how to use

a speculative multi-threading system to start the resolution

of block E early.

2.2 Branch-mispredict Level Parallelism

Branch-mispredict Level Parallelism (BLP) indicates the

extent to which the misprediction penalties of different

branches are overlapped. We say that a branch is unresolved

from the time it is fetched to the time it gets executed. Anal-

ogous to memory-level parallelism (MLP), BLP is defined

as the average number of independent (both from a control

and data standpoint) mispredicted branches that are unre-

solved, when at least onemispredicted branch is unresolved.

BLP takes into account only branches that successfully re-

tire. For a superscalar, BLP is exactly 1. Just like MLP,

different programs have different levels of BLP.

Figure 2 gives examples of the two basic conditions that

must be true of mispredicted branches for them to be re-

solved in parallel: the branchesmust be control independent

and data independent of each other. Consider the branch

at block A in Figure 2(a). The branch at block E can be

resolved in parallel with the branch at block A, while the

branch at block B can not be resolved in parallel with the

branch at block A. We say that block B is control dependent

on the branch at block A because, informally, the branch

at block A “decides” whether or not block B should exe-

cute. The branch in block E, on the other hand, is control

independent of the branch in block A, because no matter

which direction the branch at A goes, block E still needs to

be fetched and executed. From a microarchitectural stand-

point, the useful property is that if a block E postdominates

block A, then block E is control independent of block A.

We say that block E postdominates block A iff all paths

from block A to the program exit pass through block E [8].

In Figure 2(a) block E postdominates block A, while B does

not postdominate block A.

The second required condition for parallel resolution of

mispredictions is that there should be no data dependence

chains flowing to the second branch from regions that are

control dependent on the first branch. Consider, for exam-

ple the flow graph in Figure 2(b). The branch in block T is

control independent of the branch in block Q but data de-

pendent on the variable i, which is modified in blocks R

and S, both of which are control dependent on the branch

in block Q. The branch in block W, on the other hand, is

both control independent of the branch at Q and data inde-

pendent of blocks that are control dependent on the branch

at Q. Following the notation introduced by Al-Zawawi et

al [3] we use the acronymsCIDI, CIDD, and CD to indicate

that an instruction X is, respectively, control independent

and data independent of, control independent but data de-

pendent on, or control dependent on a particular branch, B.

While control independence has been explored before in

a variety of different circumstances, it is this second inde-

pendence condition that we explore in this paper. In Sec-

tions 3 and 4 we show that a large fraction of the branches

that postdominate low confidence branches are also data in-

dependent of those low confidence branches. We also show

that as in the example in Figure 2(b), of the several branches

that postdominate a low confidence branch, the ones that are

“farther away” are often data independent even if the closest

postdominating branch is data dependent.

2.3 Architectures that exploit BLP

Control Independence (CI) architectures are capable of ex-

ecuting mispredicted branches in parallel. Examples of CI

architectures include Thread-Level Speculation or Specu-

lative Multithreaded processors. These processors break

63



Time

misprediction at
A detected

misprediction at 
E detected

A E
B’ ...E’ F’ H’ F’’ H’’

G1
7C

(a) A superscalar processor serializes branch mispre-

dictions.

A

G

C

E
F’’ H’’ ...

B’ E’

block E fetched 
before branch at 
A resolved

misprediction at
A detected

misprediction 
at E detected

(b) Branch-mispredict level parallelism.

Figure 1: A timeline of two mispredicted branches (block

identifiers refer to the flow graph in Figure 2(a). (a) The pro-

cessor fetches block A, then (incorrectly) fetches block B.

When the branch at A finally executes all the subsequently

fetched instructions must be flushed. Even though block E

was already fetched it needs to be fetched again. Thus the

mispredicted branch at E is detected later than it could be.

(b) If we knew that the branch at E could execute indepen-

dently of the decision made by branch A we could start pro-

cessing it sooner, overlapping the penalty paid by the two

mispredicted branches.

A

B C

E: if (m=5)

m=y

F G

H

D

cd

ci

(a)
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R:i=5 S:i=10

T: if (i=5)

n=y

U V

W: if (n=5)

X Y

Z

cidd

cidi

(b)

Figure 2: (a) Branch E is control independent (ci) of

Branch A. Thus, Branch C does not necessarily need to be

squashed and refetched if Branch A mispredicts. Branch B

is control dependent (cd) on Branch A. Branch B is only use-

fully fetched on one of the two paths from Branch A. (b) Both

Branch T and Branch W are control independent of Branch

Q. Branch T, however, is data dependent (dd) on instruc-

tions that are control dependent on Branch Q, while branch

W is data independent (di) of Branch Q. Thus Branch T can

not be resolved before Branch Q is resolved, while branch

W can.

up a single-threaded program into multiple threads that

execute concurrently on an simultaneously multi-threaded

(SMT) processor [26, 29, 2, 20, 1] or a multi-core ma-

chine [30, 12, 33, 22, 18]. Skipper [5] is similar to Specu-

lative Multithreaded architectures implemented on an SMT

processor, except that only one thread is allowed to fetch

instructions at any given time.

Thread spawning in these CI architectures can be driven

by a postdominator analysis [1, 7]. For example, in Fig-

ure 3, block E postdominates block A. Thus, whenever

block A is reached, a new thread can be created starting

at block E, since the processor is guaranteed to reach block

E at some time in the future. For this thread, we call Block

A the spawner block and call block E the spawnee block.

The spawner thread fetches instructions as usual until it

reaches block E. At this point, the spawner stops fetch-

ing instructions (the work it is about to begin has already

been done by the spawnee thread). We say that the spawner

thread reconnectswith the spawnee. Since these processors

spawn threads at control-independent points, branch mis-

predictions in one thread don’t affect instructions in other

threads. These processors may thus have two mispredicted

branches resolving in parallel, if the branches are in sepa-

rate threads.

Although Speculative Multithreaded processors can ex-

ploit BLP, they are designed to exploit other program char-

acteristics, like loop-level and data parallelism. Since

BLP is an incidental phenomenon rather than the primary

goal of these architectures, the amount of BLP exploited

by these architectures can be low, such as for the naive

CI architecture shown in Section 4.3. This paper shows

that through BLP-focused processor policies, a Speculative

Multithreaded processor can exploit large amounts of BLP,

which directly results in substantial performance gains.

Section 3 gives more details about these BLP-centric poli-

cies.

The CI architectures mentioned above fall in the general

category of proactive CI architectures [13], where thread

spawn is independent of branch mispredictions. On the

other hand, reactive CI architectures [27, 3] reduce the im-

pact of branch mispredictions by selectively re-executing

only those instructions that are control-dependent on the
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Figure 3: Terminology used in this section. The diagram on the left shows a static control flow graph. The diagram on the

right shows a particular dynamic instantiation of the same code. In this case, the branch in block A is hard-to-predict, and the

system has decided to create a new thread starting at the beginning of block E.

mispredicted branch. The focus of this paper is exploiting

BLP in proactive CI architectures, although our techniques

could also, potentially, improve the performance of reactive

CI processors.

3 Strategies to Exploit BLP

The previous section introduced the concept of branch-

mispredict level parallelism (BLP), and explained how CI

architectures can leverage BLP to improve performance. In

this section, we describe techniques that allow a CI architec-

ture to maximize the BLP that it exploits in an application.

A CI architecture has a large number of spawn choices

available to it. Section 3.1 shows, with an example from the

SPEC2000 benchmarkvpr.route, that spawn choice has

a dramatic impact on the BLP exploited by a CI architec-

ture. We also show that exploited BLP strongly correlates

to improvements in performance.

Thus, a CI processor should choose spawns that max-

imize BLP. Towards this purpose, Section 3.2 describes

profile-based estimation of the BLP that will be uncovered

by different spawn choices. Section 3.3 presents examples

for estimated BLP profiles in different benchmarks, and

shows that estimates of BLP are strongly correlated with

performance in full simulation. Finally, Section 3.4 shows

that in addition to making the right spawn selection, a CI ar-

chitecture also needs efficient dependence-handlingmecha-

nisms to maximize the exploited BLP.

3.1 Making the Right Spawn Choice for BLP

This section presents an example illustrating the dramatic

effect that spawn choices have on BLP. Figure 4 shows the

control-flow graph for a loop from the SPEC2000 bench-

mark vpr.route. This loop has been inlined with its

caller function, for ease of explanation. Each rectangle in

the figure represents a basic block. Two important data-

dependences are also shown. Branches that mispredict fre-

quently are marked in gray.

P is a low-confidence branch (34% misprediction rate)

that alone accounts for almost half of the dynamic mispre-

dicts seen in vpr.route. As shown in Figure 4, P has

3 basic blocks (Q, R and S) as its postdominators. Thus,

from P, a Speculative Multithreaded system has the choice

to spawn either Q, R or S. These three potential spawnee

points have different BLP characteristics.

Spawn Q: If Q is spawned, the first low-confidence

branch that the spawnee thread will fetch is Q itself. How-

ever, because of the increment of variable i in block Z,

branch Q is CIDD. This branch will not be executed until

the spawner thread executes the increment instruction. As a

result, even if branches P and Q both mispredict, we would

not see an improvement in performance because the resolu-

tions of P and Q are serialized.

Spawn R: On the other hand, if block R is spawned, S

will be the first low-confidence branch (misprediction rate

39%) fetched by the spawnee thread. S is a CIDI branch,

since it doesn’t depend on any of the “skipped” instruc-

tions between block Q and block R. Moreover, following

branch S, low-confidence branch T is also CIDI. Note that

the spawner thread would be executing multiple instances

of low-confidence branches P and Q in a loop. Thus, the

two threads created by spawning block R from block P will

both be executing a number of independent, low-confidence
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Figure 4: The getHeapHead() function from vpr.route. The branch in basic block P is hard to predict (misprediction

rate 34%). Blocks Q, R and S are the three postdominators of block P, and thus, are all control independent of P. Q is data

dependent on P through the variable i. Block S is dependent on block R, thus if P spawns S directly the branch at S will be

data dependent, but if P spawns R (which immediately falls through to S) then the branch at S will be data independent.

branches. In other words, this spawn choice exposes a large

amount of BLP.

Spawn S: Spawning S directly from P will not lead to

high BLP. Branches S and T depend on instruction R, and

would therefore be marked CIDD in the spawnee thread.

Note that the same branch (e.g, T) can be CIDI (when R is

spawned) or CIDD (when S is spawned), depending on the

choice of spawn point.

To investigate how these three spawn choices affect per-

formance, we ran vpr.route on a 4 core Speculative

Multithreading simulator, spawning only one of the three

potential spawn points at a time. The machine configuration

is described in Section 4.1. The graph in Figure 4 shows the

results, where the y-axis on the left shows percent speedup

over a superscalar. The y-axis on the right shows measured

BLP, which is indicative of the extent to which mispredict

penalties are overlapped.

Figure 4 shows that spawning block R is the superior

choice: it results in a 35% speedup over a superscalar, while

spawning Q or S results in hardly any speedup. It also

demonstrates that spawning block R leads to a high degree

of overlap of misprediction penalties, as indicated by the

high value of measured BLP. Note that this performance

difference arises even though spawnees R and S differ by

only a single C statement.

3.2 Estimating BLP for Spawn Choices

The previous section shows that spawn choice impacts BLP

and thus performance. Our goal is to use BLP to drive

an intelligent policy that chooses the best postdominator

to spawn from a low-confidence branch. One possibility

would be to build a microarchitectural mechanism that dy-

namically learns the BLP characteristics of different post-

dominators. In this paper, we use an alternative, profile-

driven approach to choosing the best postdominator.

We have developed a profiler/trace-analyzer that chooses

the best spawn point for low-confidence branches based on

an estimate of BLP. We use strategies described in Sec-
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Figure 5: Application speedup versus estimated BLP for different postdominators of particular hard-to-predict branches in

twolf and vpr.place.

tion 4.4 to shortlist the possible set of candidate spawn pairs

that could be useful. The analyzer next takes each possible

pair one-by-one, and tries to estimate the BLP that would be

exposed when the postdominator is spawned on a Specula-

tive Multithreaded system. For each spawner, the spawnee

with maximum estimated BLP is selected. Note that while

estimated BLP and BLP are different measures, estimated

BLP is strongly correlated with the BLP observed during

full simulation.

In order to estimate BLP, we observe that a spawn

will expose more BLP if the spawned thread fetches

and resolves correct-path mispredicted branches before the

spawner thread has finished executing. Note that we choose

branches that mispredict frequently as spawners. Thus, if

we spawn a postdominator that also fetches and resolves

mispredicted branches, multiple mispredicted branches

from the spawner and the spawnee thread are likely to be

resolving in parallel. Estimated BLP is simply the aver-

age number of correct-path mispredicted branches resolved

by the spawnee thread before the spawner thread has fin-

ished executing all its instructions. Note that CIDD mis-

predicted branches do not contribute to estimated BLP. Es-

timated BLP for a branch-postdominator pair can be found

using profiling and memory-dependence analysis [23]. For

the experiments in this paper, we use trace based dataflow-

height analysis instead [19].

Going back to the example from vpr.route, we find

that because of CIDD branches, spawning Q and S results

in low estimated BLP (0.04 and 0.06 respectively). For ex-

ample, if Q is spawned and the first instance of branch Q

mispredicts, the spawnee thread will not be able to fetch any

more correct-path instructions before the spawner thread re-

connects to it. On the other hand, spawning R results in a

estimated BLP of 1.02, because the spawned thread fetches

CIDI low-confidence branches.

In the next section, we look at a few more examples from

SPEC2000 benchmarks which indicate that estimated BLP

is an excellent metric to choose spawns.

3.3 Estimated BLP and Performance

In this section, we investigate spawn choices for important

low-confidence branches in two SPEC2000 benchmarks:

twolf and vpr.place. We pick a single branch from

each of these benchmarks that contributes a significant

amount to the total number of branch mispredictions. We

estimate BLP as described above, and observe performance

using detailed simulation as described in Section 4.2. We

find that the performance of a spawn point is strongly cor-

related to estimated BLP.

Figure 5(a) shows the performance and estimated BLP

for different postdominators of a low confidence branch

in the benchmark twolf.1 The x-axis shows the average

number of dynamic instructions on the path from the low-

confidence branch to each of its postdominators. The left y-

axis shows speedup over a superscalar processor, with ma-

chine parameters described in Section 4.1. The right y-axis

shows estimated BLP. Recall that an estimated BLP of 2

indicates that on average, the spawnee thread is expected

to fetch and execute two mispredicted branches before the

spawner thread reconnects to it.

The structure of the code dictates the shape of the

curves in Figure 5(a). This portion of twolf has a se-

ries of short loops, interspersed with if-else blocks. The

low-performance postdominators in the beginning repre-

sent spawning to an if-else block, where the if-statement

is CIDD. The low-performance postdominators around 65

dynamic instructions from the low-confidence branch are

from a loop that uses values produced by the immediately

preceding loop so these low-confidence branches are CIDD.

1All the experiments in this section, and with vpr.route, were per-

formed with the register and memory dependence-based BLP optimiza-

tions enabled. These optimizations are described later.
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The figure demonstrates that the estimated BLP for a

spawn point is correlated with its performance in a detailed

simulation. The last spawn point is an outlier that suffers

from load imbalance problems for which the estimated BLP

metric does not account.

Figure 5(b) shows the analogous graph for an important

branch in vpr.place. We note that the second postdom-

inator in vpr.place performs poorly, even though it has

quite high estimated BLP. This is because of memory mis-

speculations, which are hard to estimate using a profile anal-

ysis.

These figures, and the vpr.route example from the

previous section demonstrate that estimated BLP is a good

metric for making a spawn selection. Note that while

the immediate postdominator frequently gets low BLP, we

are often able to find a better control-independent point to

spawn to.

3.4 Improved dependence handling for BLP

Before a BLP-driven spawn selection policy is applied, we

find that the BLP in the baseline configuration of CI ar-

chitectures that spawn immediate postdominators of low-

confidence branches can be quite low. Inefficient handling

of register and memory dependences is a major cause of

low BLP. With registers, the problem is false dependences

introduced by restores to callee-saved registers. On the

other hand, memory dependences are a problem because of

squashes that are a result of true dependence violations be-

tween loads and stores in different threads.

Improving BLP across function calls

False register dependences because of restores to callee-

saved registers reduce the amount of BLP that can be ex-

ploited across function calls. We describe this phenomenon

in this section, and also present a simple hardware solu-

tion. To identify CIDD instructions, we use a register-

dependence predictor that dynamically learns the set of

registers written between the spawn PC and the reconnect

PC. This predictor is quite similar to the one proposed by

Cher [5].

The values of callee-saved registers are guaranteed to be

preserved across function calls. If a function uses a callee-

saved register, it must save the register on the stack, and re-

store it before returning to the caller. As has been observed

by Ohsawa [25], if a callee-saved register is written between

the spawn and the reconnect point, it does not necessar-

ily represent a true data dependence: the write may simply

be restoring the old value of the register. However, an un-

sophisticated register-dependence predictor would consider

such writes as true data dependences. We find that false

dependences arising from callee-saved registers reduce that

amount of BLP that can be exploited across function calls,

because more mispredicted branches in spawnee threads

are marked CIDD. Such branches cannot execute in paral-

lel with mispredicts in the spawner thread, thus decreasing

BLP.

We extend Skipper’s register synchronization mecha-

nism to keep track of call-depth. Any writes to a callee-

saved register that are performed at a call-depth greater than

that of the spawn point do not train the predictor. Remov-

ing these false dependences improves performance by re-

ducing the number of CIDDmispredicted branches, thereby

increasing BLP. We analyze the performance of this opti-

mization in Section 4.4. The effectiveness of this optimiza-

tion is dictated by our instruction set architecture. Archi-

tectures, like SPARC, that use register windows can often

avoid register spills during procedure linkage, while x86,

with its small register space, tends to have more spills.

Memory Dependences

Most speculative multi-threaded systems suffer from the

problem of inter-thread memory dependence violations.

These violations occur when loads and stores to the same

address are executed out-of-program-order in different

threads. Such violations may flush already-resolved CIDI

mispredicted branches, which decreases BLP because these

branches will need to be fetched and executed again.

To reduce the number of memory violations, along with

synchronizing registers, we also synchronize memory oper-

ations across different threads. We do this by treating store-

set IDs [6] as architectural registers, and extending the Skip-

per register synchronization mechanism to keep track of the

store-set IDs that are written between the spawn PC and the

reconnection PC [21]. Thus, load instructions in a spawnee

thread are occasionally marked as CIDD, if there is a store

to the corresponding store-set in the skipped computation.

However, since store-sets are only approximate indica-

tors of dependences between loads and stores, this tech-

nique of synchronizing loads and stores can sometimes im-

pose conservative constraints, thereby decreasing perfor-

mance. For example, the benchmark vpr.route oper-

ates on a large heap data structure, as shown in Figure 4.

The loop in the figure performs stores to a large heap. As

shown earlier, the best spawn, P-to-R, spawns across the

entire loop. In the code below R (not shown in the figure),

the heap is accessed again by loads that feed data to several

low-confidence branches. These loads occasionally operate

on the same addresses as the stores in the loop containing P,

and thus, are assigned the same store-sets. However, since

the heap is large, most of the time these loads don’t access

the heap entries written by the most recent execution of the

loop. If load operations are synchronized conservatively,

some loads will be marked CIDD unnecessarily. As a re-

sult, many low-confidence branches that were CIDI become

CIDD instructions, thereby decreasing BLP.

To summarize, there is a tradeoff between decreasing the

violation rate and increasing the number of CIDD branches.

Instead of using an all-or-nothing approach to memory syn-
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chronization, we use an adaptive policy that dynamically

chooses whether or not to synchronize a load based on its

violation rate. An adaptive memory-dependence predic-

tor improves BLP and performance, by finding the right

balance between reducing the violation rate and increasing

CIDD mispredicted branches. We evaluate the performance

of our memory synchronization mechanism in Section 4.4.

4 Experimental Results

We evaluate the performance of a CI architecture tuned to

exploit BLP. We first describe the machine architecture and

simulation infrastructure. Next, we investigate the perfor-

mance of three BLP optimizations: removing false regis-

ter dependences, adaptive memory synchronization, and a

BLP-centric spawn selection policy.

4.1 Machine Architecture

We model a distributed architecture with 4 cores, where

each core is a 4-wide, out-of-order superscalar processor.

Important processor parameters are given in Table 1. Each

core has local L1 instruction and data caches and branch

predictors. The L1 data caches are kept coherent using

an idealized, update-based protocol. In Speculative Mul-

tithreaded processors only one core is retiring instructions

and committing stores to memory at a time and we model a

single-cycle broadcast of retiring stores.

When a core (say P) fetches a specified spawner instruc-

tion it sends its neighbor (say Q) the program counter of

the spawnee. We model a 4 cycle latency for this pro-

cess. Register values that need to be communicated be-

tween cores are sent on a register-value bus with a latency

of 4 cycles. On each core dependent instructions waiting

for register or memory values from a predecessor thread to

arrive (CIDD instructions) are stored in a FIFO called the

Divert Queue, similar to the structure used by Al-Zawawi

et al [3]. CIDI instructions are dispatched to the scheduler.

Goodpath stores write their values to a single, chip-level

speculative cache upon execution, as proposed by Garg et

al [11]. About 4% of dynamic loads receive their data from

this cache, which takes an extra 4 cycles. In the rare instance

that a spawner store executes after a dependent spawnee

load, an off-critical-path global load-queue detects the vi-

olation in the cycle after the store completes execution.

We use a mechanism similar to Skipper[5] to dynami-

cally identify and handle inter-thread register dependences.

As mentioned in Section 3.4, the same mechanism enforces

inter-threadmemory dependences by treating store set iden-

tifiers [6] as architectural registers [21]. Each core has a

large, aggressive, tournament branch predictor (192KB). At

large hardware budgets, this tournament predictor has an

accuracy very similar to that of a perceptron predictor [14].

The branch predictors of all cores are trained by retiring

branches. For a freshly-spawned thread, global history bits

corresponding to the most recent branches (in program or-

Parameter Value

Pipeline Width 4 instrs/cycle (retire 8 instrs/cycle)

Branch Predictor

192KB Combined, 64KB gshare,

64KB bimodal, 64KB selector 18

bits of history
Misprediction Penalty 10 cycles

Reorder Buffer 512 entries

Scheduler 64 entries

Functional Units 4 identical general purpose units

L1 I-Cache
32Kbytes, 4-way set assoc., 128

byte lines, 10 cycle miss

L1 D-Cache
32Kbytes, 4-way set assoc., 64

byte lines, 10 cycle miss

L2 Cache
512Kbytes, 8-way set assoc., 128

byte lines, 100 cycle miss
Diverter Queue 128 entries

Spawn Latency 4 cycles
Inter-core Register

Comm. Latency
4 cycles

Number of Store Sets 32
Register Dependence

Predictor
2KB, 2-way assoc

Memory Dependence

Predictor
2KB, 2-way assoc

Table 1: Pipeline parameters.

der) are not available: the instructions that generate these

bits will be executed by the spawner thread sometime in

the future. For most benchmarks, this phenomenon results

in higher branch misprediction rates for the CI architecture

compared to the superscalar, as shown in Table 2.

4.2 Simulation Methodology

Our experimental evaluation was performed on a fully

execution-driven simulator running a variant of the 64-bit

MIPS instruction set ISA. The ISA does not have any spe-

cial instructions to support multithreading. It not only sim-

ulates timing, but also executes instructions out-of-order in

the backend, writing results to the register file out of pro-

gram order. When an instruction is retired, its results are

compared against an architectural simulator, and an error

is signaled if the results don’t match. Whenever a branch

misprediction is discovered, the simulator immediately re-

claims backend resources (ROB and scheduler entries, etc.),

restores the RAT from the branch’s checkpoint, and begins

fetching instructions from the correct target of the mispre-

dicted branch.

For all the experiments in this paper, we execute 9

SPEC2000 integer benchmarks on the lgred input sets [17].

Our system libraries do not currently support eon and gap.

We don’t simulate vortex and gzip as these benchmarks

have low mispredict rates (0.58% and 2.01% respectively)

on the aggressive tournament predictor. The simulator skips

the initialization phase of each benchmark, warming the

caches, and then executes 100 million instructions. All the

graphs that we present show the speedup of different Specu-
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Benchmark Superscalar SpecMT

bzip2 9.30 10.64

crafty 5.20 6.11

gcc 4.71 4.99

mcf 4.45 4.56

parser 4.17 5.18

perlbmk 10.84 10.29

twolf 11.56 11.66

vpr.place 9.44 9.99

vpr.route 8.38 8.03

Table 2: Branch Misprediction Rates in Superscalar and

SpecMT models

lative Multithreaded configurations over a superscalar with

the same configuration as a single core of the Speculative

Multithreaded processor.

Our spawn points are derived from control-independence

and profile analyses. The control-independence analysis is

performed on the benchmark binary and identifies the basic

blocks that postdominate each branch. The profile analy-

sis identifies high-BLP postdominators of low-confidence

branches on the lgred trace. As proposed by Agarwal [1],

a spawn cache can be used to store these postdominators.

Since the total number of distinct static low-confidence

branches is less than 100 for all applications other than gcc,

which has 415, we don’t model capacity or size constraints

for the spawn cache.

4.3 Baseline Configuration

The baseline proactive control-independence configuration

that we start with is called IPS (Immediate Postdominator

Spawning). This configuration is similar to Skipper [5], ex-

cept that we use a multi-core processor whereas the orig-

inal Skipper proposal was restricted to exploiting control-

independence on a single core. We use a 16KB enhanced

JRS predictor to identify low-confidence branches. When a

low-confidence branch is fetched and at least one of the four

processor cores is idle, the processor spawns the low con-

fidence branch’s immediate postdominator as long as the

postdominator is greater than 10 instructions and less than

500 dynamic instructions from the branch. The baseline IPS

configuration does not perform any memory synchroniza-

tion, nor does it remove false register dependencies arising

from restores to callee-saved registers.

The leftmost bar in Figure 6 shows the relatively small

performance improvements that our baseline IPS configu-

ration attains over a superscalar, which is similar to the

results in the original Skipper proposal [5], and recent re-

search [13]. Cher and Vijaykumar attributed the modest

performance gains seen by IPS architectures to low cov-

erage of mispredicted branches [5]. While low coverage is

certainly an issue, we find that CIDDmispredicted branches
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Figure 6: Speedup improvements from a BLP-centric

spawn policy. The first bar represents spawning immedi-

ate postdominators of all low-confidence branches. Subse-

quent bars add register and memory-based BLP optimiza-

tions, and a BLP-aware spawn policy.
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Figure 7: MeasuredBLP improvements from a BLP-

aware spawn policy. Improvements in measuredBLP cor-

relate strongly with improvements in performance.

are perhaps a bigger concern.

In particular, we find that the average dispatch-to-issue

latency for mispredicted branches in the IPS processor is

significantly higher than the corresponding latency in a su-

perscalar. This effect is largely due to CIDD instructions

that sometimes stay in the IPS processor’s scheduler for

hundreds of cycles, thereby mitigating the beneficial effects

of spawning across low-confidence branches. As a result of

the long latency of CIDD branches, the baseline IPS config-

uration is not able to exploit appreciable amounts of BLP,

as shown in the leftmost bar in Figure 7.

4.4 BLP Optimizations

To improve the amount of BLP exposed by our Proactive

Control-Independence architecture, we apply three BLP-

improving optimizations: improving BLP across function

calls by removing false register dependences, reducing

memory violation squashes by adaptive memory depen-

dence prediction, and choosing high-BLP spawns through

profiling and trace-analysis.
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Removing false register dependences

Section 3.4 pointed out that callee-saved registers intro-

duce false register dependences which increase the num-

ber of mispredicted branches that are marked CIDD. The

bar marked Reg opt in Figure 6 shows the performance im-

provement attained by removing these false dependences.

Figure 7 shows the corresponding improvement in BLP. Re-

moving these dependences leads to fewer CIDD branches,

and improves BLP on crafty, gcc, parser, vpr.-

place and vpr.route. This BLP increase translates to

performance improvement.

Adaptive memory synchronization

As indicated in Section 3.4, inter-thread memory viola-

tions reduce performance and BLP significantly. The bar

labeled Mem opt shows the speedup attained by an adap-

tive memory dependence predictor that synchronizes loads

if their violation rate is high, and otherwise speculates on

loads [21]. The predictor extends Skipper’s register syn-

chronization mechanism to memory by treating store-sets

as architectural registers. However, always synchronizing

can be extremely conservative and increase the number of

CIDD mispredicted branches. Adaptive memory synchro-

nization strikes the right balance between synchronization

and speculation. This leads to improvements in perfor-

mance in benchmarks like twolf and vpr.place, where

misspeculations were a problem, while preserving the ben-

efits of load speculation.

BLP-based spawn selection

Finally, we investigate the performance effects of a profile

driven spawn policy that uses BLP to choose which post-

dominator of a low-confidence branch should be spawned.

In this configuration, we don’t employ a dynamic confi-

dence predictor to identify low-confidence branches. In-

stead, profiling is used to statically identify branches that

mispredict frequently and contribute to 95% of the mispre-

dicts. Their postdominators constitute the possible spawn

points. To reduce the search space, we use profile informa-

tion to discard postdominators that are too far in the future.

For every such branch, the postdominator that has the

best estimated BLP is chosen. We often find low-confidence

branches for which none of the postdominators have a high

value of estimated BLP. Since low BLP values can cause

slowdowns compared to a superscalar (because extra la-

tency is added to CIDD mispredicts), an admittance thresh-

old of 0.1 is used: any postdominator for which estimated

BLP is less than the threshold is never spawned, even if it is

the postdominator with the highest BLP. Although this de-

creases the overall coverage of mispredicted branches, we

find that it results in better performance.

The bar labeled BLP Spawn in Figure 6 shows the

speedup of a BLP-centric spawn policy, over a policy

that spawns only the immediate postdominator (IPS). As

can be seen, BLP-centric spawning improves the perfor-

mance of all applications significantly, except for gcc and

perlbmk. Figure 7 shows the corresponding BLP. The

increases in BLP are correlated with increases in perfor-

mance.

For gcc, performance decreases slightly because of our

static BLP analyzer chooses branches that account for only

80% of the mispredicts in gcc (as opposed to 95% for other

applications. This is because for 95% coverage of mispre-

dicts, the analyzer would need to consider 50,000 branch-

postdom pairs, which it is not equipped to handle. We ana-

lyze the performance of perlbmk and bzip2 in the next

section.

Benchmark Analysis

Perlbmk is one benchmark which does not benefit from

control-independence, even though it has a high mispre-

dict rate. It also shows no branch-mispredict level paral-

lelism. This is because more than 90% of the mispredicts in

perlbmk can be attributed to a single, indirect call instruc-

tion. Perlbmk is an interpreter program. It has a number

of processing functions, one for each opcode that it expects

to interpret. In the main loop, a function pointer is used

to decide which processing function should be called. This

indirect call (in function runopsStandard) mispredicts

because it gets an incorrect target from the branch-target

buffer (BTB). The next opcode is read at the end of the pro-

cessing function, and returned back to the caller. The main

loop of perlbmk is shown below:

while (PLop = ((*PLop)->opPpaddr)(ARGS));

Intrinsically, there is little BLP in this code. If the next

loop iteration is spawned when the indirect call is reached,

the spawnee thread will get stuck at a CIDD mispredicted

branch (the next indirect call). This branch is CIDD, since

the current processing function returns the next function

that should be called. Thus, neither the IPS configuration,

nor a BLP-centric configuration achieves significant perfor-

mance gains on perlbmk.

As far as bzip2 is concerned, it spends a large amount

of time in sorting routines. For arrays that are short (en-

countered when bzip2 starts compression or decompres-

sion), bzip2 uses a sorting function called simpleSort.

The sorting loop in this function can be spawned across, and

relatively high speedups ( 80%) are observed. However, for

a large part of its execution, bzip2 encounters longer arrays

which are sorted using a version of quicksort. Quicksort

is known to be a highly sequential algorithm, and we are

unable to discover high-BLP spawns during this phase.

5 Conclusions and Future Work

CI architectures can search for useful work to do in the

shadow of a mispredicted branch. In this paper we have

argued that the most useful work to do in the shadow of a
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mispredicted branch is to resolve other branch mispredic-

tions. We introduced BLP, which is a metric that quantifies

the extent to which mispredict penalties are overlapped.

Although CI architectures are capable of executing mis-

predicts in parallel, we found that the amount of incidental

BLP exploited by these architectures tends to be quite small.

However, by focussing processor policies on mispredict

parallelization, we can dramatically improve the BLP ex-

ploited by a CI architecture. Efficient dependence-handling

mechanisms are required to expose more BLP. More im-

portantly, we find that the spawns chosen by a CI architec-

ture have a strong impact on the amount BLP that is ex-

tracted. We have demonstrated that the choice of where to

start a spawned thread has dramatic consequences on BLP,

and, as a result, performance. Choosing a control indepen-

dent spawn point that is just a few instructions earlier or

later can change the data dependence structure, changing

the next mispredicted branch from CIDI to a CIDD or from

CIDD to CIDI. When the next mispredicted branch is CIDI

rather than CIDD we find more parallelism. In our ongo-

ing work we are improving our data dependence analyzer

in two ways. First we are improving the efficiency of the

offline algorithms, and second we are working on microar-

chitectural mechanisms to dynamically search for spawns

with better BLP characteristics.

While branch mispredicts have a first order impact on

performance of integer applications, other performance de-

grading events like cache-missesmay be more important for

some applications. We are working on extending the pro-

posed spawn selection techniques to extract more memory-

level parallelism (MLP) in Speculative Multithreaded pro-

cessors.
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