
Improving the Reliability of On-chip L2 Cache Using Redundancy

K. Bhattacharya, S. Kim and N. Ranganathan
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

{kbhattac,skim,ranganat}@cse.usf.edu

Abstract

The reliability of large on-chip L2 cache poses a signifi-
cant challenge due to technology scaling trends. As the min-
imum feature size continues to decrease, the L2 caches be-
come more vulnerable to multi-bit soft errors. Traditionally,
L2 caches have been protected from multi-bit soft errors us-
ing techniques like using error detection/correction codes
or employing physical interleaving of cache bit lines to con-
vert multi-bit errors into single-bit errors. These methods,
however, incur large overheads in area and power. In this
work, we investigate several new techniques for reducing
multi-bit errors in large L2 caches, in which the multi-bit
errors are detected using simple error detection codes and
corrected using the data redundancy in the memory hier-
archy. Further, we develop a reliability aware replace-
ment policy that dynamically trades performance for reli-
ability whenever the soft-error budget is exceeded. In order
to further improve reliability, we propose the duplication
of the data values in cache lines by exploiting their small
data widths. The proposed techniques were implemented in
the Simplescalar framework and validated using the SPEC
2000 integer and floating point benchmarks. The proposed
techniques improve the reliability of L2 caches by 40% and
32% on the average, for integer and floating point appli-
cations respectively, with little impact on performance and
area.

1. Introduction

The trends in technology scaling have helped the design
of modern microprocessors for higher performance and low
power consumption through the rapid shrinking of the min-
imum feature size as well as the reduction of supply volt-
ages. Unfortunately, however, these trends make them more
susceptible to transient faults [3, 6]. Transient faults occur
due to several reasons, such as soft errors, power supply
and interconnect noise, and electromagnetic interference.

Soft errors occur when the energetic neutrons coming from
space or the alpha particles arising out of packaging mate-
rials hit the transistors, which could change the states of the
memory bits or the outputs of the logic gates. The chip man-
ufacturers typically set budgets on soft error rates (SER)
which should be met by the design.

Memory structures like on-chip caches, DRAMs, and
register files have been considered as dominant sources of
transient errors in computer systems [1, 11, 16]. Spatial
multi-bit errors occur when a single particle strike upsets
multiple adjacent cells. The rate of spatial multi-bit er-
rors increases accross technology generations as device fea-
ture sizes shrink. With higher packing of the cells in the
same active area, a single radiation strike can affect mul-
tiple cells simulataneously, potentially leading to multi-bit
errors. Maiz et al. [10] report that double-bit spatial errors
constitute 1% and 2% of all transient errors in SRAMs with
130nm and 90nm technologies, respectively. With further
scaling of device geometries, spatial multi-bit errors will
become the significant contributor to on-chip SER.

Traditionally, the L2 caches have been protected against
soft errors using Error correction codes (ECC) codes [1, 11,
16]. Detecting and correcting soft errors using ECC codes,
however, incur a large penalty in area. For example, dou-
ble error correction and double error detection (DECDED)
codes require 14 bits, for each 64-bit memory word, cor-
responding to a 22% area overhead. Multi-bit error pro-
tection using sophisticated ECC protection will also require
more bit lines and wider sense amplifiers thus increasing the
cache access latency and power consumption. Spatial multi-
bit errors can also be avoided by using layout level tech-
niques like physical interleaving [13]. However, with higher
interleaving factors multiple word lines are needed to be
driven and data need to re-grouped or routed for read/write
operations, thus increasing the cache access latency.

Several schemes have been proposed in the literature to
reduce the area overhead associated with protecting mem-
ory by ECC codes. In [7], error protection is suggested for
frequently accessed cache lines. In [17], the authors de-

1-4244-1258-7/07/$25.00 ©2007 IEEE 224

scribed the use of a dead block prediction technique to hold
the copy of data found in active cache blocks. A larger ECC
word can also be used to compensate for the area overhead
[15]. However, since the unit of memory read/write is based
on word granularity, each memory read/write requires read-
ing several data words to generate SECDED check bits. In
[14], the authors have mentioned of using redundancy for
area efficient error protection. However, detailed results in
the context of multi-bit errors have not been provided.

In this work, we develop several low-cost mechanisms
to improve the reliability of the L2 caches against multi-
bit errors. Simple error detection codes like Hamming dis-
tance or Cyclic Redundancy Codes (CRC) are used to detect
multiple-bit errors, and corrected using the redundancy ex-
isting in the memory hierarchy. We demonstrate that multi-
bit errors in the L2 cache can be corrected by exploiting the
redundancy existing between the write-through L1 cache
and the L2 cache and the redundancy between the clean
data in the L2 cache and the main memory. To mine more
redundancy in the memory hierarchy and hence further im-
prove the reliability of the L2 cache, we propose a novel
replacement policy biased toward reliability and detect and
duplicate small values at word level.

The rest of the paper is organized as follows. In Sec-
tion 2, we present our proposed schemes to improve the
reliability of the L2 cache based on exploiting the redun-
dancy present in the memory hierarchy. In Section 3, we
present our schemes to control the redundancy in the mem-
ory hierarchy for further improving the reliability. Section
4 details the experimental methodology and illustrates the
results. Finally, Section 5 concludes the paper.

2 Redundancy-based Error Protection

In this section, we present two new schemes that ex-
ploit the inherent redundancy existing in the memory hi-
erarchy to improve the reliability of L2 cache. In Section
2.1, we present a scheme to exploit the redundancy existing
between the write through L1 cache and the L2 cache. In
Section 2.2, we describe a scheme to exploit the redundancy
between the L2 cache and the main memory to improve the
reliability of the L2 cache.

2.1 Exploiting L1/L2 Redundancy

The redundancy inherent in the memory hierarchy of
high performance processors can be exploited to improve
the reliability of the L2 cache against soft errors. Most com-
mercial processors support a write-through L1 cache with
no-write-allocate-policy and a write-back L2 cache with a
write buffer in between. As the L1 cache is write-through,
the write operations are performed on both the L1 and the
L2 cache thus maintaining redundant copies of the data.

1 11

 0

01

Redundancy

Vulnerable

Non−vulnerable

Legend

L1 Cache Main Memory

Inclusion bit Dirty bits(2)

L2 Cache

 0

00 1

11

������

�����
�����
�����
�����

�������
�������
�������
�������

����������������������

Figure 1. Illustrating schemes IP and FGD

Also, there are many cache lines that reside in both the
L1 cache and the L2 cache since they are placed in both
of them on L2 cache read misses. We define this implicit
redundancy between the L1 and the L2 cache lines as the
inclusion property (IP) of the L2 cache.

The soft errors become effective when the data items
with errors are replaced from the L2 cache and written into
the main memory. If the data items are referenced again
from the main memory, the errors will affect program out-
put. This however can be avoided as redundant correct data
is present in the L1 cache. Thus, when a L2 cache line is
replaced, they have to be checked for soft errors. All multi-
bit errors can be detected with conventional error detecting
codes and corrected by fetching non-corrupt data from the
L1 cache.

We assume that the small L1 cache is ECC-protected and
thus duplicate data found in L1 cache can be used to correct
errors in the L2 cache. In order to support our scheme, an
inclusion bit is maintained with each L2 cache line. On a
read operation, with a L1 cache miss but a L2 cache hit,
the inclusion bit is set to 1 for the corresponding L2 cache
block. Also, the L1 cache block that is being replaced due
to the miss will cause the corresponding L2 cache block to
have no duplicates in the L1 cache. So the inclusion bit
of the L2 cache block corresponding to the replaced block
from the L1 cache is reset to zero. On a write operation,
with a miss on both the L1 cache and the L2 cache, the in-
clusion bit is reset to zero for the L2 cache block (no-write-
allocate policy for L1). The L1 cache line is also invalidated
corresponding to the replaced L2 cache block. On a read op-
eration, with a miss on both L1 and L2 cache, the inclusion
bit is set to 1 for the new L2 cache line.

2.2 Fine Grain Dirtiness

Errors in the clean L2 cache lines can be corrected by re-
fetching them from the main memory, whereas, the errors

225

in the dirty cache lines are not correctable. In the standard
cache architecture, even when only one word is modified,
the dirty bit for the entire cache line containing that word
is set to one. Thus, we lose the information that the other
words in the cache line are clean. This problem can be al-
leviated by adding more dirty bits for each cache line. We
define this as supporting fine-grain dirtiness (FGD) in the
L2 cache. FGD can be supported, for example, if one dirty
bit is allocated for each memory word. When an error is
detected in a clean L2 cache word during a cache read or
a cache line replacement, the error can be corrected by re-
fetching the word from the main memory. The area over-
head is small for FGD, as only one dirty bit for each mem-
ory word is maintained. Further, FGD can be supported at
the sub-block level for various multiples of the word-size.
Thus, one can trade area overhead with vulnerablity of the
L2 cache.

Supporting a dirty bit for each memory word is straight-
forward. On a read miss in the L2 cache, all dirty bits are
reset to zero. The dirty bit corresponding to the modified
memory word is set to one on a L2 cache write. From
CACTI simulation [12], the latency and power overhead
due to additional dirty bits is much lower than 1% for a
256KB L2 cache with 32B cache lines.

Figure 1 illustrates a L2 cache, with the cache line size of
two words, that utilizes the inclusion property and supports
fine-grain dirtiness. A multi-bit error in the right half of the
L2 cache line with inclusion bit 0 and dirty bits 01, can be
corrected by re-fetching the matching data from the main
memory since the left half has not been modified. A multi-
bit error in the L2 cache line with inclusion bit 0 and dirty
bits 00, will cause no writeback when it is replaced thus
correcting the error. All L2 cache lines with their inclusion
bits 1 can be recovered from soft errors by re-fetching the
corresponding L1 cache lines.

We note that as the L1 cache lines are a small percentage
of L2 cache lines, the reliability of the L2 cache does not
improve significantly using this scheme. Also correcting
a clean cache word by accessing the corresponding mem-
ory word can create a performance bottleneck. Therefore,
we suggest more aggressive techniques in the next sec-
tion which combined with the techniques proposed in this
section will significantly improve the reliability of the L2
cache.

3 Controlling Redundancy for Reliability

In this section we propose two new schemes to
mine/control the additional redundancy in the memory hier-
archy. In Section 3.1, we propose a cache line replacement
policy biased towards reliability. In Section 3.2, we exploit
small data values in cache lines to increase redundancy at
the word level further improving reliability of the L2 cache.

01011

Duplication of small values

LRU bits

Dirty bits
NMW bits

Cleaned Cache
 Line

Threshold

Value bits

Hybrid

Replacement

Policy

Victim Cache
 Line���� �������� ����

Figure 2. Illustrating use of NMW and SV bits

3.1 Reliability-centric Replacement

The conventional cache line replacement policies are
generally based on access history of cache lines such as re-
cency and frequency of cache line accesses. However, the
cache line replacement policy can be adapted to improve
the reliability of the L2 cache. In addition to recency and
frequency information, we can also include dirtiness of the
cache blocks in selecting a victim cache line. A hybrid re-
placement policy has been developed by combining the con-
ventional LRU policy with the dirtiness-based replacement
policy. When there is no dirty cache line in the accessed set
of the L2 cache line, the LRU cache line is replaced. When
the LRU cache line is clean and a next LRU cache line is
dirty, the next LRU line is selected as a victim. Only the
LRU replacement policy is considered when the number of
dirty blocks in the L2 cache is below a vulnerability thresh-
old. Performance can be traded for higher reliability of the
L2 cache by controlling this threshold.

The hybrid replacement policy is supported by the addi-
tion of a bit called ”No More Write” (NMW) for each cache
line. Generational behavior of cache lines [9], is exploited
by using the NMW bit. The NMW bit in a cache line is
maintained using the following algorithm. The NMW bit
is reset to 0 when an L2 cache line is brought into the L2
cache. When the cache line is written more than one time,
its NMW bit is set to 1, indicating that they are likely to
be modified soon. NMW bits of L2 cache lines are reset
to zero periodically, resembling the popular CLK algorithm
implemented to maintain LRU bits. The optimal time in-
terval of periodic clearing of the NMW bit is determined
experimentally through simulations. Thus the NMW bits
acts as a 1-bit predictor of whether the cache line will be
written soon. The cache lines with their NMW bit set will
likely to be written very soon and thus will be vulnerable
again if cleaned. Cache lines which are dirty but have their
NMW bit 0 are predicted to be in their ”dead time” [9] and

226

can be cleaned to make them non-vulnerable. If the predic-
tion is incorrect, i.e., cache line has not yet reached its dead
time but has a NMW bit 0 (and became a candidate for evic-
tion), the cache block will suffer a cache miss, thus causing
a performance penalty.

The hybrid replacement policy can be extended to fur-
ther improve the reliability of the L2 cache. When there are
other dirty cache lines in the same set as that of the replaced
cache line with their NMW bits set to 0, they can be cleaned
together with the victim cache block. Cache lines with their
NMW bits 0 are written back together to the main memory
since the lines are not likely to be modified soon. As these
cache blocks are not evicted, this will not increase the L2
cache miss rate. However, the reliability of the L2 cache is
improved as the number of dirty cache lines with no dupli-
cates in the memory hierarchy is reduced. If this clustered
cleaning of dirty cache lines is accurate the reliability of the
L2 cache will be improved and there will be no performance
penalty.

3.2 Exploiting Small Data Value Size

It is commonly known that a large percentage of memory
values are small in size and value [5, 8]. The small mem-
ory values, which use at most half of the memory word,
can be duplicated in their upper half of memory word bits,
thus increasing the degree of redundancy in the L2 cache at
the word level. If the value of the memory word is small,
a detected multi-bit error in the lower half bits can be cor-
rected by using the duplicate data found in the top half bits.
To implement the duplication of small memory values, each
memory word requires a ”small value bit” (SV bit) for in-
dicating that the value stored in the word is small and, thus,
duplicated in the upper half bits of the memory word. The
area overhead for supporting this scheme is small, as only
one bit is added for each memory word. Further, area over-
head can be traded for vulnerability by maintaining SV bits
only for frequently accessed cache lines in a smaller, faster
cache.

The tasks of detecting, duplicating, and un-duplicating
small memory values in the L2 cache require hardware
overhead. Small memory values can be detected by adding
zero detectors that can check the upper half bits of mem-
ory word. Memory values are duplicated using multiplex-
ers that can select between the lower half bits and the upper
half bits of the memory values for the upper half bits of the
memory word. Similarly, small memory values can be un-
duplicated with multiplexers that can select between zeros
and upper half bits of the memory values for the upper half
bits of results. The tasks of zero detection, duplication and
un-duplication are performed between the L2 cache and the
main memory to augment L2 cache line fillings and replace-
ments, and between the L1 data cache and the L2 cache to

support write-through requests from the write buffer.
Figure 2 illustrates how redundancy/vulnerability of the

L2 cache can be controlled by using a hybrid reliability-
centric replacement policy and small value duplication. For
simplicity, each cache line is assumed to contain four words
and SV bits are supported for each memory word.

4 Experimental Setup and Results

In this section we describe our experimental setup and
the simulation results of the various schemes proposed in
the paper for improving the reliability of the L2 cache. Ta-
ble 1 summarizes the various schemes that we have experi-
mented in our simulations.

Table 1. List of proposed schemes
scheme description

Baseline conventional L2 cache
I exploit inclusion property

IM exploit inclusion property
add multiple dirty bits

D replace a dirty cache line with NMW bit 0
DC replace a dirty cache line with NMW bit 0

clean dirty cache lines with NMW bit 0 in the same set
IDC-T1 exploit inclusion property

replace a dirty cache line with NMW bit 0
clean dirty cache lines with NMW bit 0 in the same set

enabled when the L2 cache vulnerability is higher than 25%
IDC-T2 exploit inclusion property

replace a dirty cache line with NMW bit 0
clean dirty cache lines with NMW bit 0 in the same set

enabled when the L2 cache vulnerability is higher than 10%
IMDC exploit inclusion property

add multiple dirty bits
replace a dirty cache line with NMW bit 0

clean dirty cache lines with NMW bit 0 in the same set
IMSDC exploit inclusion property

add multiple dirty bits
duplicate small memory values

replace a dirty cache line with NMW bit 0
clean dirty cache lines with NMW bit 0 in the same set

enabled when the L2 cache vulnerability is higher than 25%

We next describe our experimental setup followed by the
simulation results on our various proposed schemes.

4.1 Experimental Setup

We modified the SimpleScalar Version 3 Tool Suite [2]
for this study. Since we target high performance embedded
processors and/or desktop processors, our baseline proces-
sor models an out-of-order four-issue superscalar proces-
sor with a split transaction memory bus. Table 2 summa-
rizes the simulation parameters of this processor. Our sim-
ulations have been performed with a subset of SPEC2000
benchmarks [4]. These were compiled with DEC C V5.9-
008, Compaq C++ V6.2-024, and Compaq FORTRAN
V5.3-915 compilers using high optimization level. Eight
programs from each of floating-point and integer bench-
marks are randomly chosen for our evaluation. All bench-
marks are fast-forwarded for one billion instructions to
avoid initial start-up effects and then simulated for another

227

Table 2. Baseline processor configuration
Parameter Configuration

Issue window 64-entry RUU 32-entry LSQ
decode, issue and commit rate 4 instructions per cycle

Functional 4 INT add, 1 INT mult/div
units 1 FP add, 1 FP mult/div

L1 instruction cache 16KB 4-way, 32B line, 1-cycle
L1 data cache 16KB 4-way, 32B line, 1-cycle

L2 cache unified 256KB, 4-way, 32B line, 10-cycle
Main memory 8B-wide, 100-cycle

Branch prediction 2-level, 2K BTB, 32-entry RAS
Instruction TLB 64-entry, 4-way

Data TLB 128-entry, 4-way

Figure 3. Vulnerability for SPECINT2000.

one billion committed instructions. For all simulations, ref-
erence input sets are used.

4.2 Simulation Results

We measure the vulnerability of the L2 cache by com-
puting the average number of dirty blocks per cycle without
any dupicates in the memory hierarchy. Thus faults are not
specifically modelled/injected in our simulation setup. Fig-
ures 3 and 4 illustrates the vulnerabilities of the L2 cache for
various combination of schemes we have described in Table
1. Vulnerability of the L2 cache for the baseline configura-
tion is 64.6% and 61.4%, on the average, for the floating-
point and integer benchmarks, respectively. Schemes I,
D, DC, and IDC-T1, on the average, reduces vulnerabil-
ity to 61.4% , 53.9%, 43.4%, and 41%, respectively, for
the floating-point benchmarks. These percentages are 58%,
51.3%, 43.1%, and 40.6% for the integer benchmarks. The
maximum benefit from scheme I is limited to 6.25% since
at most 16KB of dirty data can be redundant between the
16KB L1 data cache and the 256KB L2 cache in our base-
line processor configuration. Scheme D does not show good
results when baseline vulnerability is high. This is because,
in these benchmarks, most of cache lines are dirty and,
thus, there is little difference between our reliability based
replacement and the LRU policies. In contrast, since L2

Figure 4. Vulnerability for SPECFP2000.

cache miss rate is very high (28.8%) and, thus, IPC is very
low (0.1) in ammp, (cache lines remain dirty when pipelines
are stalled for a long time due to the L2 cache misses thus
increasing vulnerability per cycle), scheme D makes those
dirty cache lines non-vulnerable by evicting them from the
L2 cache, reducing vulnerability per cycle. Scheme DC
works very well for mesa and parser, in which scheme D
was not effective in improving the vulnerability. A vulner-
ability threshold of 10% implemented in scheme IDC-T2,
further improves the vulnerability of the L2 cache, by 1%
and 2.3% for the floating-point and integer benchmarks, re-
spectively.

Scheme IM, which provided a dirty bit for each word in
a cache line, reduces the vulnerability of the L2 cache to
43% while scheme IMDC further reduces the vulnerabil-
ity to 33.5% for the integer benchmarks. These percentages
are 39.6% and 32.4%, respectively, for the floating-point
benchmarks. The combined optimization scheme IMSDC,
which exploits small memory values as well, reduces L2
cache vulnerability by 40% on the average for the integer
benchmarks compared to the baseline configuration. Float-
ing point benchmarks show a lesser decrease in vulnera-
blity, of about 32%, primarily because the floating point
values include a sign bit, exponent and mantissa fields and
hence cannot be detected by the small value detector.

As discussed previously the NMW bit provides a 1 bit
prediction for whether the cache line will be written soon.
We also experimented with 2 bit predictors but we did not
find any significant improvements in results from the 1
bit predictor case. We also measured L2 cache miss rate
change since our proposed schemes use either the conven-
tional LRU policy or the proposed reliability-centric policy.
We noted that using the reliability centric replacement pol-
icy does not increase the miss rate significantly compared
to the LRU policy. We also noted that the schemes pro-
posed decreases IPC by only 0.1% and 0.3% for the integer
and floating point benchmarks, respectively. For brevity, we

228

Figure 5. Write back rate for SPECINT2000.

Figure 6. Write back rate for SPECFP2000.

have ommitted illustrating these results here.
Since our replacement policies favor dirty cache lines,

we also measured write back traffic rate from the L2 cache
to the main memory. Write back traffic rate is measured as
the ratio of the number of writes from the L2 cache to all
L2 cache accesses. As shown in Figures 5 and 6, Scheme
DC increases memory write traffic significantly since it
performs clustered cleaning of dirty cache lines, however,
scheme IDC-T1 shows little difference in write back traf-
fic. Since redundant cache lines between L1 and L2 caches
are most active cache lines, they are likely to be modified
frequently. Cleaning these redundant cache lines does not
help in reducing vulnerability of the L2 cache

5 Conclusions

Multi-bit soft-errors are increasingly being observed on
large L2 caches due to technology scaling and higher de-
vice densities. Higher order bit-interleaving have high la-
tency overheads while, powerful multi-bit ECC codes are
prohibitive in terms of area. We have proposed several area-
efficient schemes that can improve the reliability of the L2

cache especially against spatial multi-bit soft errors. The
best combination of our proposed schemes improves the
reliability of the L2 cache by 40% and 32%, on the aver-
age, for integer and floating point benchmarks, respectively.
These reliability improvements of the L2 cache can be ac-
complished with virtually no performance penalty and with
very little area overhead.

References

[1] D. Bossen, J. Tendler, and K. Reick. Power4 system design
for high reliability. IEEE Micro, 22(2):16–24, 2002.

[2] D. Burger and T. Austin. The simplescalar tool set, version
2.0. Computer Architecture News, 25(3):13–25, 1997.

[3] P. Hazucha and C. Svensson. Impact of cmos technology
scaling on the atmospheric neutron soft error rate. Trans. on
Nuclear Science, 47(6):2586–2594, 2000.

[4] http://www.specbench.org/osg/cpu2000/. Spec2000 bench-
marks.

[5] J. Hu, S. Wang, and S. Ziavras. In-register duplication: Ex-
ploiting narrow-width value for improving register file reli-
ability. Proc. of the Intl. Conf. on Dependable Systems and
Networks, 0:281–290, 2006.

[6] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and
S. Borkar. Scaling trends of cosmic ray induced soft errors
in static latchesbeyond 0.18 µ. Digest of the Symp. on VLSI
Circuits, pages 61–62, 2001.

[7] S. Kim and A. Somani. Area efficient architectures for in-
formation integrity in cache memories. Proc. of ISCA, 1999.

[8] S. Kumar and A. Aggarwal. Reduced resource redundancy
for concurrent error detection techniques in high perfor-
mance microprocessors. Proc. of HPCA, 2006.

[9] H. Lee, G. Tyson, and M. Farrens. Eager writeback-a tech-
nique for improving bandwidth utilization. Proc. of the
Symp. on Microarchitecture, pages 11–21, 2000.

[10] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Charac-
terization of multi-bit soft error events in advanced srams.
Digest of IEDM, pages 21–24, 2003.

[11] N. Quach. High availability and reliability in the itanium
processor. IEEE Micro, 20(5):61–69, 2000.

[12] G. Reinman and N. Jouppi. An integrated cache timing and
power model. Compaq WRL Report, 1999.

[13] C. Slayman. Cache and memory error detection, correction,
and reduction techniques for terrestrial servers and worksta-
tions. Trans. on Device and Materials Reliability, 5(3):397–
404, 2005.

[14] V. Sridharan, H. Asadi, M. Tahoori, and D. Kaeli. Reducing
data cache susceptibility to soft errors. Trans. on Depend-
able and Secure Computing, 3(4):353–364, 2006.

[15] T. Tanzawa, T. Tanaka, K. Takeuchi, R. Shirota, S. Aritome,
H. Watanabe, G. Hemink, K. Shimizu, S. Sato, Y. Takeuchi,
et al. A compact on-chip ECC for low cost flash memories.
Journal of Solid-State Circuits, 32(5):662–669, 1997.

[16] K. Yeager. The mips r10000 superscalar microprocessor.
IEEE Micro, 16(2):28–41, 1996.

[17] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubra-
maniam. Icr: in-cache replication for enhancing data cache
reliability. Proc. of the Conf. on Dependable Systems and
Networks, pages 291–300, 2003.

229

