
Compiler-Directed Energy Optimization
for Parallel-Disk-Based Systems

Seung Woo Son, Student Member, IEEE, Guangyu Chen, Student Member, IEEE,

Ozcan Ozturk, Student Member, IEEE, Mahmut Kandemir, Member, IEEE, and

Alok Choudhary, Fellow, IEEE

Abstract—Disk subsystem is known to be a major contributor to overall power consumption of high-end parallel systems. Past research
proposed several architectural-level techniques to reduce disk power by taking advantage of idle periods experienced by disks. Although
such techniques have been known to be effective in certain cases, they share a common drawback: They operate in a reactive manner,
i.e., they control disk power by observing past disk activity (for example, idle and active periods) and estimating future ones.
Consequently, they can miss opportunities for saving power and incur significant performance penalties due to inaccuracies in predicting
idle and active times. Motivated by this observation, this paper proposes and evaluates a compiler-driven approach to reducing disk
power consumption of array-based scientific applications executing on parallel architectures. The proposed approach exposes disk
layout information to the compiler, allowing it to derive the disk access pattern, i.e., the order in which parallel disks are accessed. This
paper demonstrates two uses of this information. First, we can implement proactive disk power management, i.e., we can select the most
appropriate power-saving strategy and disk-preactivation strategy based on the compiler-predicted future idle and active periods of
parallel disks. Second, we can restructure the application code to increase the length of idle disk periods, which leads to better
exploitation of available power-saving capabilities. We implemented both these approaches within an optimizing compiler and tested
their effectiveness using a set of benchmark codes from the Spec 2000 suite and a disk power simulator. Our results show that the
compiler-driven disk power management is very promising. The experimental results also reveal that, although proactive disk power
management is very effective, code restructuring for disk power achieves additional energy savings across all the benchmarks tested,
and these savings are very close to optimal savings that can be obtained through an Integer Linear Programming (ILP)-based scheme.

Index Terms—Disk subsystem, I/O traces, optimizing compilers, power-aware computing, parallel I/O.

Ç

1 INTRODUCTION AND MOTIVATION

POWER consumption is becoming a growing concern for
high-performance parallel systems that execute large

data-intensive applications. There are several reasons for
this. First, continuously increasing clock frequencies take
power consumption to dramatic levels, as noted by several
recent studies [11], [12]. Second, computing servers typi-
cally contribute a large fraction of the overall power
budgets of institutions and even cities [7], [5], [6]. Third,
from an environmental viewpoint, reducing power con-
sumption is desirable [1]. Therefore, several prior efforts
considered hardware and software optimizations for redu-
cing power consumption in high-end parallel systems. Past
research [13], [14], [5], [7], [11] indicates that disk
subsystems of parallel architectures can be a major power
consumer. One way of reducing this power consumption is
to adopt architectural mechanisms such as spinning down
idle disks [9], [10], [22] or rotating disks with reduced speed
[13], [5] when some amount of latency can be tolerated. A

review of the prior work on disk power management is
given in Section 2. Although such techniques have been
shown to be effective in certain cases, they have a common
drawback: They operate in a reactive manner, i.e., they
control disk behavior based on observed disk activity (for
example, idle and active periods). In practice, this can cause
two problems. First, they may fail to select the most
appropriate disk power management scheme since their
disk idleness estimations can be inaccurate. For example, if
disk idleness is underestimated, these schemes behave
conservatively in selecting the low-power mode to be
employed. Consequently, they may not be able to use the
most aggressive low-power mode. Second, they can incur
performance penalties if they cannot determine accurately
when an idle disk is going to be needed in the future. This is
one of the most pressing problems facing parallel systems,
where disk requests coming from individual processors can
interleave in time and eventually make disk idle time (and
active time) prediction very difficult.

Motivated by these observations, this paper proposes
and evaluates a compiler-directed disk power management
scheme targeting array-based scientific parallel applications
executing on environments with parallel disks. An optimiz-
ing compiler is in a very good position for the application
domain and execution platform stated above. This is
because the compiler can analyze the data access pattern
of a scientific application based on a high-level representa-
tion of the program [37], [23], which enables us to capture
how the disk-resident data are accessed and shared by
parallel processors. As for determining disk idle and active
periods, extracting the data access pattern alone may not be
sufficient, and one actually needs the disk access pattern. We
propose to obtain this pattern by exposing the layout

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007 1241

. S.W. Son, O. Ozturk, and M. Kandemir are with the Department of
Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802. E-mail: {sson, ozturk, kandemir}@cse.psu.edu.

. G. Chen is with Microsoft, One Microsoft Way, Redmond, WA 98052.
E-mail: guchen@microsoft.com.

. A. Choudhary is with the Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL 60208.
E-mail: choudhar@ece.northwestern.edu.

Manuscript received 22 Nov. 2005; revised 19 Oct. 2006; accepted 1 Nov.
2006; published online 9 Jan. 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0485-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1056.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

information of disk-resident data to the compiler. In other
words, the proposed compiler support obtains the disk
access pattern by using the data access pattern and disk
layout information for array data. Section 3 explains the
proposed disk access pattern extraction process in detail.

After extracting the disk access pattern, this information
can be used in at least two ways, both of which are explored in
this study. First, one can implement a proactive disk power
management strategy. What we mean by this is to let the
compiler decide the times at which disks are switched to a
low-power operating mode (for example, spinning down a
disk or operating it under reduced speed) and restored to the
active status. As will be demonstrated in this paper, this
proactive scheme can bring significant additional power
benefits over the state-of-the-art hardware-based reactive
power management strategies. Second, the compiler can
restructure the given application code to increase idle periods
of disks, thereby allowing a more effective disk power
management. We demonstrate that this code restructuring
can be expressed as a scheduling problem, which, in turn, can be
handled by any known heuristic or exact scheduling
algorithm. This paper discusses two variants of this schedul-
ing problem, one that considers the problem from each
processor’s perspective independently and one that accounts
for interprocessor disk sharing. Section 4 discusses proactive
disk power management, and Section 5 gives the details of
our code-restructuring strategy for reducing disk power,
which is the main contribution of this paper.

We built a prototype of our approach using an optimiz-
ing compiler [15] and measured energy savings through a
disk simulation environment. Our experimental results
obtained using several Spec 2000 benchmarks [34] with
disk-resident data sets show that, although proactive disk
management is very effective, code restructuring achieves
the best energy savings across all the applications tested.
Our results also indicate that the benefits of our compiler-
directed approach increase with the increasing number of
disks and data stripe sizes. Section 6 explains our experi-
mental platform, simulation environment, and benchmarks,
and Section 7 presents experimental data. To test the
behavior of our approach under different hardware and
software parameters, we also conduct a sensitivity study in
which we modify the default values of several simulation
parameters used in our experimentation and study their
impact. In addition, we compare our approach to an
optimal scheme implemented using Integer Linear Pro-
gramming (ILP) and show that our savings come very close
to optimal savings.

This study demonstrates that an optimizing compiler can
be very successful in reducing disk energy consumption in a
multiprocessor environment, provided that we can convey
the disk layout information to the compiler, thereby making
the compiler aware of how data is striped (distributed) across
parallel disks. Therefore, this paper discusses a different
(nontraditional) usage of the compiler technology developed
in the context of array-based parallel applications with
regular data access patterns. The paper also shows that a
compiler-directed scheme can be much more successful than
the state-of-the-arthardware-basedapproaches to diskpower
management for array-intensive scientific applications.

2 DISCUSSION OF RELATED WORK

There have been a significant number of past work on
power management of high-end computing systems [6],
[20], [8] and low-end embedded devices [26], [31], [3]. Due

to space concerns, we limit ourselves, in this section, to disk
energy optimization-related studies.

The basic approach to save disk power is based on
exploiting disk idle times, i.e., if there is enough idle time,
the disk is spun down, meaning that it is transitioned into a
low-power operating mode. The disk remains in the low-
power mode until a new request arrives. This technique,
denoted as traditional power management (TPM) [9], [22],
[10] in this paper, has been extensively studied in the context
of mobile disks since energy consumption in mobile systems
is an important metric to minimize. Since a TPM disk operates
in a reactive manner, i.e., the disk needs to be spun up before
servicing a request, it incurs some performance penalty in
general. To cut this potential performance penalty, determin-
ing a threshold value for an idle period by employing either
fixed or adaptive approaches is crucial in TPM. In this context,
the threshold value is the minimum duration of idleness for
which TPM makes sense. In addition to spinning down the
spindle of the disk, disk drive manufacturers employ several
other techniques that incur less spin-up penalty while
reducing power. These techniques include slowing or
stopping the embedded processor in the disk controller,
turning off the servo system that controls the disk arm, and
placing the head onto a landing position [18], [17]. Although
TPM is a good mechanism for conserving disk power in
laptop systems and embedded environments, recent studies
(for example, [13] and [14]) show that it is not a preferable
option in the server or cluster domains for two reasons. First,
the access patterns in server workloads are mainly small and
noncontiguous and, consequently, disk idle times are not
long enough to accommodate TPM. Second, for performance
reasons, server class disks are operated at very high
revolutions per minute (RPM), typically above 10,000 RPM,
and the disk spin-up/down times are very long, which, in
turn, makes the threshold value very large.

Since exploiting idle time is hardly a viable option for the
server-class disks, Gurumurthi et al. [13] proposed dynamic
RPM (referred to as DRPM in this paper), in which the disk
hardware/controller provides several RPM steps. Note that
the higher RPM a disk spins at, the faster it services the I/O
requests and the more power it consumes. The disk that
employs the DRPM technique is already commercially
available [17], though it is not a full-blown one. An
application that executes on a platform with DRPM
capability can select disk speed dynamically at runtime to
achieve the optimal balance point between energy con-
sumption and execution time. In a sense, DRPM is similar in
principle to CPU voltage scaling techniques proposed in the
literature [36], [28], [27] because the selection of RPM step is
made based on the change in the average disk response
time recorded for n-request windows. Note that DRPM also
incurs a performance penalty because a lower RPM can
potentially degrade response time. This can occur because a
hardware-based DRPM strategy (like TPM) works with an
estimation of disk idle times. If the estimation is not
accurate, DRPM can select a wrong disk speed. It has been
observed in the prior research [13] that DRPM can save a
significant amount of disk power by exploiting even small
idle times, and it incurs relatively small performance
penalty compared to TPM. A similar technique based on
modulating between only two disk speeds has been
proposed and evaluated in [5]. In the rest of this paper,
the term “low-power mode” (or “low-power state”) refers
to either a disk that is spun down (in TPM) or a disk whose
speed is set to a lower RPM than the maximum RPM
supported by the architecture (in DRPM). Although several

1242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

other mechanisms such as turning off the disk controller or
unloading the head from the media can be employed as an
alternative power management mechanism, these options
are not our focus because our goal is not to propose a new
hardware disk power management technique. The focus of
our approach instead is on maximizing the effectiveness of
TPM and DRPM by scheduling the order of disk accesses in
parallel-disk-based systems. Therefore, our approach can
work with both TPM-based and DRPM-based I/O systems.

Several studies have focused on disk power manage-
ment at the operating system (OS) layer and application/
compiler layer. The efforts at the OS layer include energy-
efficient caching and prefetching [25], power-aware least
recently used (PA-LRU) algorithm [40], and partition-
based least recently used (PB-LRU) algorithm [41]. The
motivation of these works stems from the fact that the idle
periods generated by conventional caching and prefetch-
ing techniques are not long enough to place idle disks into
low-power modes. Instead of spreading disk accesses
across the entire execution period, energy-efficient pre-
fetching generates burst disk access patterns, which are
more desirable from the energy-saving angle. On the other
hand, the PA-LRU and PB-LRU techniques increase disk
idle periods by selectively maintaining cache blocks from
certain disks, thereby increasing chances for the idle disks
to remain in low-power modes for a longer period of time.
More recently, Zhu et al. [39] proposed a holistic disk
power management technique, called Hibernator, that
combines three different techniques: dynamic disk speed
setting, multitier data layout, and data reorganization.
Rather than modulating disk speed at a fine granularity,
their idea is to adjust disk speed at coarse granularity,
which is preferable from the disk reliability perspective. In
an effort to save disk energy consumption at the compiler
layer, Heath et al. [16] propose an application code
transformation technique for energy/performance-aware
device management on laptop disks by utilizing available
buffer space. Our approach is different from their work in
that we focus on power management on parallel disk
systems, which exhibit entirely different idle period
patterns. In addition, since they target laptop-based
environments, they use a different set of applications. In
contrast to [16], our focus is on array-intensive scientific
applications that spend a large fraction of their power
budget on the disk subsystem. Since the strategy proposed
in [16] is a generic scheme (not exclusively for disks), one
can envision it coexisting with our scheme under a unified
optimization framework.

3 DISK ACCESS PATTERN EXTRACTION

Our focus is on array-based scientific applications with
affine references. One important characteristic of these
applications is that their data access patterns can be
analyzed by an optimizing compiler and can be reshaped
for different purposes, such as optimizing data locality or
improving parallelism. Before describing our disk access
pattern mechanism, we would like to mention briefly that,
even for real applications that show mixed access patterns,
our scheme can still be useful for analyzing and predicting
the behavior of the code portion where the access patterns
are regular. However, the energy savings we would achieve
can be reduced, depending on the amount of the code
portion whose access patterns are irregular.

One requirement for being able to use a compiler in
reducing disk power consumption is to capture how

parallel disks are accessed at a high level (that is, source
code level). We use the term disk access pattern in this paper
to refer to high-level information on the order in which
parallel disks are accessed by a given application code. This
order is important since it determines, for each disk in the
system, active and idle periods, which is the primary
information used for power management, as explained in
Section 2. Disk access patterns can be extracted at the loop
iteration, loop nest, procedure, or even larger granularity.
To obtain this information, the compiler needs the data
access pattern of the application code being optimized and
disk layout information for the array data (see Fig. 1a). The
first of these can be obtained by analyzing the application
source code. Since such an analysis is performed by many
optimizing compilers for different purposes (for example,
optimizing loop-level parallelism or cache locality), we do
not discuss its details in this paper. As for the second
parameter needed, we propose to expose the disk layout
information to the compiler. In this way, the compiler will
be aware of how array data are striped across the parallel
disks and can optimize the source code accordingly.

We next discuss what type of disk layout abstraction is
needed by the compiler in the proposed approach. File
striping is a technique that divides a large data into small
portions and stores these portions on separate disks in a
round-robin fashion (as depicted in Fig. 1b). This permits
multiple processes to access different portions of the data
concurrently without much disk contention. Although
striping can be performed manually, many file systems
today provide automatic support for it, as will be explained
below. In this work, we represent a disk layout of an array
using a triplet of the form

ðstarting disk; stripe factor; stripe sizeÞ:
The first component in this triplet indicates the disk from
which the array has started to get striped. The second
component gives the number of disks used to stripe the
data, and the third component gives the stripe (unit) size.
Note that the several current file systems and I/O libraries
for high-performance computing provide APIs to convey
the disk layout information when the file is created. For
example, in the Parallel Virtual File System (PVFS) [30], one
can change the default striping parameters by setting base

(the first I/O node to be used), pcount (stripe factor), and
ssize (stripe size) fields of the pvfs_filestat structure.
Then, the striping information defined by the user via this
pvfs_filestat structure is passed to the pvfs_open()
call’s parameter. When creating a file from within the
application, this layout information can be made available
to the compiler as well, and, as explained above, the
compiler uses this information in conjunction with the data

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1243

Fig. 1. (a) Determining disk access pattern. (b) Striping an array over

four disks.

access pattern it extracts to determine the disk access
pattern. On the other hand, if the file is already created on
the disk system and we want to obtain its layout, we can use
pvfs_ioctl() call along with the pvfs_filestat

structure, which fills in a data structure with the corre-
sponding disk layout. The obtained disk layout of the file in
question can then be passed to the compiler as a command
line parameter.

An important point to note is that we assume each data
array manipulated by the application is stored in a separate
file in the I/O system. Since each file can have a different
triplet of the kind shown above, each array can have a
different disk layout than the others. Clearly, one can also
optimize disk layout itself in an energy-efficient way without
incurring any degradation in disk performance, that is, one
can try to come up with a scheme that determines the optimal
number of disks to satisfy both energy and performance
constraints. Although combining our code-restructuring
algorithm with schemes that determine energy-efficient disk
layouts (such as that in [32]) is an interesting research topic
that we want to tackle in the future; in this paper, we
concentrate on code restructuring for low power. As a
consequence, we assume that the disk layout information is
given to the compiler (as explained above), which subse-
quently uses it for determining the disk access patterns.

Fig. 2 shows a sample data access pattern and the
corresponding disk access pattern. This disk access pattern
is obtained under the disk layout shown in the same figure.
In this layout, for illustrative purposes, the 12 elements of
an array are distributed (striped) across four disks (d0

through d3). In the disk access pattern, a hdi; tji means that
disk di is used for tj cycles. tj is estimated by the compiler. It
is to be noted that the compiler can represent a disk access
pattern using different representations and with different
granularities. Since a given disk access pattern captures idle
and active periods for each disk and their durations, it can
be used for proactive power management (Section 4) or to
restructure code to increase idle periods (Section 5).

4 PROACTIVE DISK POWER MANAGEMENT

After extracting disk access patterns, the compiler can insert
explicit disk power management calls (instructions) in
appropriate places in the source code. The purpose of these
calls varies based on the underlying disk capabilities (for
example, TPM versus DRPM). For TPM disks, we use
spin_up() and spin_down() calls. The format of the
spin_down() call is given as follows:

spin downðdiÞ;
where di is the disk ID. Since a disk access pattern indicates
not only idle times but also active times anticipated in the
future, we can use this information to preactivate disks that

have been spun down by a spin_down() call. To determine
the appropriate point in the code to start spinning up the
disk (that is, preactivation point), we take accounts of the
spin-up time (delay) of the disk (that is, the time it takes for
the disk to reach its full speed where it can perform read/
write activity). Specifically, the number of loop iterations
before which we need to insert the spin-up (preactivation)
call can be calculated as

Qsu ¼
Tsu

sþ Tm

� �
; ð1Þ

where Qsu is the preactivation distance (in terms of loop
iterations), Tsu is the expected spin-up time (in cycles), Tm is
the overhead incurred by a spin_up call, and s is the
number of cycles in the shortest path through the loop
body. It is to be noted that Tsu is typically much larger
than s. The format of the call that is used to preactivate (spin
up) a disk is given as follows:

spin upðdiÞ;
where, as before, di is the disk ID. Note that, if we do not
use preactivation, a TPM disk is automatically spun up
when an access (request) comes, but, in this case, we incur
the associated spin-up delay fully. The purpose of disk
preactivation is to eliminate this performance penalty.
Although our discussion so far has focused on TPM disks
as the underlying mechanism to save power, this compiler-
driven proactive strategy can also be used with DRPM
disks. The necessary compiler analysis and the disk access
pattern construction process in this case are the same as in
the TPM case. The main difference is how the collected disk
access pattern is used (by taking the times to change disk
speed into account) and the calls inserted in the code. In this
case, we employ the following call:

set RPMðrpm levelj; diÞ;

where di is the disk ID, and rpm levelj is the jth RPM level
(that is, disk speed) available. When executed, this call
brings the disk in question to the speed specified. The
selection of the appropriate disk speed is made as follows:
Since the transition time from one RPM step (level) to
another is proportional to the difference between the two
RPM levels involved [13], we need to consider the detected
idle time to determine the target RPM step. Consequently,
we select an RPM level if and only if it is the slowest
available RPM level that does not degrade the original
performance.

It must be mentioned that a wrong placement of the
spin_up(), spin_down(), and set_RPM() calls in the
code does not create a correctness issue. In the worst-case
scenario, they increase execution cycles and/or energy
consumption. For example, prematurely spinning down a
disk (in the TPM-based architecture) delays the time to
service the next request and leads to some extra energy
consumption. Similarly, selecting a wrong RPM level to use
(in the DRPM-based architecture) can increase disk energy
consumption (if the selected level is faster than the optimal
one) or execution time (if the selected level is slower than
the optimal one). In either case, however, this is not a
correctness issue. Notice, however, that the compiler places
these power management calls into the code based on the
disk access pattern it constructs for each disk. Since the
compiler is conservative in handling the control flow within
the loop bodies (i.e., it assumes that all branches of a
conditional construct can be taken at runtime with an equal

1244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 2. A data access pattern and the corresponding disk access pattern.

< di; tj > means that disk di is (estimated to be) used for tj cycles.

probability), the information it extracts (regarding disk
idle/active times) may not be 100 percent accurate. The
experimental results presented in this paper include such
inaccuracies arising from the imperfect knowledge of the
future access patterns. Notice also that, although this
compiler-directed proactive management can be very
effective in reducing disk power (as will be shown by our
experimental analysis), one can go beyond this by restruc-
turing the source code so that disk reuse can be increased
significantly. The second contribution of this paper is such a
compiler-guided code-restructuring strategy and is ex-
plained in Section 5 in detail.

Fig. 3 illustrates the difference between the hardware-
based TPM and the compiler-directed TPM. Compared to
the hardware-based TPM, our approach has two advan-
tages. First, the compiler-directed TPM can put idle disks in
low-power mode earlier than the hardware-based TPM can.
Second, the compiler-directed TPM can avoid the perfor-
mance overhead, using preactivation, due to the spin-up
latency when an idle disk is accessed. Fig. 4 presents our
compiler algorithms for disk energy optimization for the
TPM case. Our algorithm works in two steps. In the first
step, we build a Loop Transition Graph (LTG) for a given
procedure.1 Each node Li in the LTG corresponds to a loop
nest in the procedure. A loop nest whose execution time is
longer than a given threshold Q is recursively broken down
into smaller loop nests until no loop nest contains any
internal loop, or the execution time of the loop is shorter
than Q. Each edge (from Li to Lj) in the LTG has a tag Ci;j,
indicating the condition under which the flow of execution
transitions from loop nest Li to Lj. Fig. 5b shows an LTG for
the code fragment in Fig. 5a. In the second step, our
algorithm inserts a code to the program to spin the disks
up/down. Specifically, for each node Li in the LTG, our
algorithm inserts, before the entry of Li, the spin_down

calls for the disks that are not accessed in Li. Further, if
node Li has a successor Lj that accesses a disk that has been
spun down in Li, we split Li into two consecutive loop
nests, L0i and L00i , such that the execution time of L00i is equal
to Qsu, the time required to spin up a disk. Before L00i , our
algorithm inserts the spin_up calls for the disks that will
be used in Lj. By performing this transformation, we hide
the performance overhead due to disk spin up. That is, as
explained earlier, this preactivation eliminates potential
performance penalty. Fig. 5c is the transformed code
fragment after applying our algorithm.

5 CODE RESTRUCTURING FOR REDUCING DISK

ENERGY CONSUMPTION

In this section, we present a strategy that restructures a
given procedure for increasing the benefits that could be
obtained from the proactive disk power management
scheme discussed above. This code restructuring approach
operates on a graph representation called the Interprocessor
Disk Access Graph (or IDAG for short). An IDAG is
composed of a number of Processor Disk Access Graphs
(PDAGs). Each node in an IDAG represents a set of loop
iterations (as will be explained shortly), and the directed
edges between nodes capture data dependences.

We assume that the set of loop iterations that will be

executed by each processor has already been determined

prior to the approach. For this purpose, either user-assisted

(for example, [21]) or compiler-directed (for example, [2])

code parallelization methods can be employed. The selection

of the method to be used for assigning loop iterations to

parallel processors in the system is orthogonal to the focus of

this paper. Let Ip represent the set of loop iterations assigned

to processor p (as a result of loop parallelization), where

0 � p � P � 1. We note that, for any legal parallelization

scheme, we have
SP�1
p¼0 Ip ¼ I total, where I total is the set of

total iterations in the procedure (including all the loop nests).

We attach a tag, denoted as T , consisting of D bits,

where D is the number of parallel disks in the I/O

system to each iteration I in Ip. A bit in the dth position

of T ð0 � d � D� 1Þ is 1 if and only if loop iteration I

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1245

1. Our current implementation is applied to each procedure separately;
that is, we do not perform any interprocedural optimization.

Fig. 3. Comparison of the hardware-based TPM and the proposed

compiler-directed TPM. In the hardware-based scheme, period Tw is for

detecting idleness, and Tsu is the spin-up latency. The compiler-directed

scheme can eliminate the impact of both these latencies.

Fig. 4. Compiler algorithm for inserting disk power management calls in

a given code fragment.

accesses disk d.2 Otherwise, we set this bit to 0. For the

sake of explanation, we assume existence of a function

called tagðÞ that gives the tag of any iteration I, given as

an input. Now, we can classify the loop iterations in I p
into 2D classes. The common characteristic of the

iterations assigned to a class is that they have the same

tag. In mathematical terms, we have

Ip;T ¼ fI j I 2 I p ^ tagðIÞ ¼ Tg; ð2Þ

that is, Ip;T holds the loop iterations that are assigned to
processor p and have the tag T .

From the disk power management perspective, it is
beneficial to execute iterations in I p;T one after another. This
is because all the iterations in this set access the same set of
disks, and the remaining disks can be placed into a low-
power mode during these accesses to save power. However,
it is also important to determine a good execution order for
different I p;T s. In Sections 5.1 and 5.2, we present schedul-
ing schemes, where the problem is considered from a single
processor’s perspective and multiprocessors’ perspective,
respectively. What we mean by “scheduling” in this context
is determining an order in which the nodes in an IDAG (or
PDAG when considering from the perspective of a single
processor) are executed. In Sections 5.1 and 5.2, we explain
our approach, assuming that PDAGs (or IDAG) in question
are cycle free. Later, in Section 5.3, we discuss code
transformations to eliminate cycles in the IDAG/PDAGs.
After these code restructurings, the resulting code is further
modified by inserting the proactive disk power manage-
ment calls, as has been discussed in Section 4.

5.1 Single Processor Perspective

Each Ip;T class (set of iterations) is represented by a node in
PDAGp, the PDAG for processor p. We can formally define
a data dependence from Ip;T to I p;T 0 as follows:

depðp; T ; T 0Þ ¼
true; if 9I 2 Ip;T ; I 0 2 Ip;T 0 : such that I ! I 0

false; otherwise;

�

where symbol! represents a data dependence. We have a
directed edge in PDAGp from the node that represents I p;T
to the node that represents I p;T 0 if and only if depðp; T ; T 0Þ
holds true.

We now discuss how PDAGp can be scheduled to reduce
energy consumption in a disk subsystem. As we discussed
earlier, it is important to schedule the loop iterations in a
class one after another. This is not difficult to achieve if we
just schedule these iterations such that any two iterations
keep their relative orders in the original iteration space
traversal (due to our cycle-free assumption). However, as
mentioned above, the effectiveness of disk power manage-
ment also depends on the order in which the nodes in
PDAGp are traversed. Specifically, to keep a given disk in
the idle state for longer durations of time, we need to select
the next node to schedule such that between the two
successively scheduled nodes, the disks maintain their
status as much as possible. Since each node represents a
class (a set of iterations) and the tag attached to it gives the
disks it uses (and the disks that it does not use), one can use
this information to select the next node to schedule.

We use a Hamming-distance-based approach to select
the next node to schedule. More specifically, the following
observation guides us in selecting a suitable order of
scheduling for classes:

If Ip;T and Ip;T 0 are the two nodes (in PDAGp) that are
successively visited, where T and T 0 are their respective tags,
the variation in disk activation and disk idleness patterns in
going from Ip;T to Ip;T 0 is a function of the Hamming
distance between T and T 0.

For instance, in an I/O system with eight disks, if we
schedule Ip;01101010 and Ip;01100101 one after another, the first
four disks would preserve their states (during this transi-
tion), whereas the remaining four disks would change their
states. Minimizing the Hamming distance between the tags
of classes that are visited successively is useful in reducing
the disks’ energy consumption. In other words, for a given
set of disks in the I/O system, in going from one class
(node) to another, it is better to keep the states of the disks
(active or idle) similar as much as possible. This is because if
the first state is 0 and the second is also 0, the disk in
question will have a long idle period (which is good from
an energy consumption viewpoint), and similarly, if both
the states in question are 1, this means that the active
periods are clustered together; so, we will also have
clustered idle periods for the disk (later when we visit the
remaining classes). Based on this observation, from the
viewpoint of a single processor ðpÞ, the problem of reducing
disk energy consumption becomes one of scheduling a
group of nodes taking into account of certain constraints
(interclass dependences) to minimize (optimize) a given
objective function (minimizing the Hamming distance
between the number of successively visited classes).

To demonstrate how such a scheduling can be beneficial,
we consider the example PDAGp shown in Fig. 6a. Each node

1246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

2. Our approach is conservative in the sense that, if I may access disk d
(depending on conditional execution flow at runtime), we conservatively
set the corresponding bit to 1.

Fig. 5. An example that illustrates proactive disk power management.
(a) Original code fragment. (b) LTG for the code fragment in (a). Nodes
L1, L2, L3, and L4 correspond to the loop nests with labels L1, L2, L3,
and L4, respectively. (c) Transformed code fragment. The loops L1, L2,
and L3 in (a) are split. For example, loop L1 is split into L01 and L001 , and
the estimated execution time of L001 is equal to Qsu.

is annotated using its tag (assuming an I/O system with four
disks). The column titled “Random” in Fig. 6b gives a legal
schedule, wherein the next node to be scheduled is selected
randomly (by observing the dependences though). Assume
that each node takes the same amount of time. Assume
further that we have three power optimization schemes that
operate as follows (see Fig. 7). The first scheme ðS1Þ is
applicable when we have, for a disk, two consecutive 0s in the
schedule (that is, the same disk is idle in at least two
successively scheduled nodes). The second scheme ðS2Þ and
the third scheme ðS3Þ, on the other hand, are applicable when
we have at least three and four consecutive 0s, respectively, in
the schedule. Based on these power modes, the “Random”
scheme can use S2 for the third disk ðd2Þ and S3 for the fourth
disk ðd3Þ. In comparison, the last column of the table in Fig. 6b
shows the result of our scheduling that minimizes the
Hamming distance between the successively scheduled
nodes, as explained above. We see that this schedule is able
to use schemeS1 for disks d0 and d1 and schemeS3 for disks d2

and d3, resulting in a much better behavior compared to the
random scheduling case. This small example illustrates how
scheduling can impact the opportunities for disk power
management.

5.2 Multiprocessor Perspective

An IDAG is constructed from individual PDAGs. One
potential problem with the single-processor-based approach
explained above (that operates on individual PDAGs) is that
the scheduling is performed for each processor indepen-
dently. Consequently, although the resulting schedule can
appearverygoodfromthe perspectiveofagivenprocessor (as
far as reducing disk energy is concerned), when IDAGs are
considered together (i.e., the individual schedules are
executed in parallel by observing data dependences across
processors), they may not perform well. To illustrate this
point, let us consider an IDAG for a two-processor-based
system with four disks (see Fig. 8a). As before, each node is
annotated using its tag. Let us assume, for simplicity, that each
node takes the same time (C cycles) to execute. In Fig. 8c, the
columns titled p0 and p1 give the schedules for the two
processors (when each schedule is optimized independently
as explained in Section 5.1). The last column (marked
“Usage”), on the other hand, gives the disk usage when the
interleaving effect of these two schedules are taken into

account (i.e., each entry in the last column is the result of the
bitwise OR of the corresponding entries in the second and
third columns). Under the same power-saving schemes
assumed above (that is, S1, S2, and S3 in Fig. 7), looking at
the “Usage” column, we see that scheme S1 can be used for
disksd0,d1, andd2, and there is no opportunity for applyingS2

or S3. Fig. 8b shows the result of our proposed scheduling.
This scheduling, whose algorithm will be presented shortly,
captures interprocessor effects and results in the disk usage
shown in the last column of Fig. 8b. It can be observed that, in
this case, we are able to use scheme S1 for disks d0, d2, and d3

and scheme S2 for disk d1.
Our scheduling algorithm for an architecture with

P processors and D disks is given in Fig. 9. This algorithm
takes an IDAG as input and determines the schedule of nodes
for each processor by considering the global (interprocessor)
usage of the disks. It uses aD-bit global variableG to represent
the current usage of the disks. It schedules a node that is ready
to be scheduled for each processor that finishes its current
task. At each step, the algorithm first tries to schedule the node
whose disk requirement can be satisfied with the current set of
active disks, i.e., we can execute this node without requiring
any disks that are currently in low-power mode. If multiple
nodes satisfy this criterion, we select the one that requires the
maximum number of disks to make full utilization of the
currently active disks. If such a node does not exist, our
algorithmschedules thenode whosetag is the closest (in terms
of Hamming distance) toG, the bit pattern that represents the
current disk usage (that is, the disk usage at that particular
point during scheduling). This is to minimize the number of
disks whose (active/idle) states need to be changed.

5.3 Node Merging and Node Partitioning

In some cases, an IDAG may contain cycles that prevent a
legal traversal (scheduling). We refer to these types of
IDAGs as cyclic IDAGs. To schedule such graphs, we may
need to apply node transformations and eliminate the
cycles. An example cyclic IDAG is illustrated on the left side

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1247

Fig. 6. (a) An example PDAG. (b) Two different scheduling approaches.

Fig. 7. Example optimization schemes (low-power modes).

Fig. 8. An example application of our scheduling approach. (a) An

example IDAG constructed from PDAGs of processors p0 and p1.

(b) Scheduling obtained using our algorithm. (c) Another legal

scheduling.

of Fig. 10 for an I/O system with four disks. Notice that the
nodes (classes) with tags 1101, 0001, and 0010 form a cycle,
and thus, the IDAG shown in the figure is not schedulable.
In our framework, we handle such graphs using two
techniques, referred to as node merging and node partitioning.3

Our first transformation, node merging, combines all the
nodes involved in a cycle into a single node. All of the incident
edges on the nodes that merged become incident edges on the
combined node. The upper right part of Fig. 10 illustrates how
the nodes that form the cycle in our example can be merged,
resulting in a schedulable (acyclic) IDAG. The important
point to note is that node merging can be useful even when we
do not have any cycles. This is because merging two nodes
typically reduces the overhead to be incurred by the
generated code and code expansion. One can see this by
observing that the number of classes grows exponentially

with respect to the number of disks. Therefore, if the
underlying disk subsystem has too many disks, we may
end up with too many nodes in the IDAG, and for each node,
we need to generate a different code (as will be explained in
Section 5.4). In such cases, reducing the number of nodes in
the IDAG can be very useful since it helps reduce the size of
the generated code and improves performance. However, a
potential drawback of node merging is that the class that
represents the combined node accesses, in general, more
disks than the individual classes representing the merged
nodes. More specifically, the tag of the combined node is the
logical (bitwise) OR of the tags of the constituent nodes. For
example, in Fig. 10, the tag of the resulting node is 1111,
obtained by bitwise ORing 1101, 0001, and 0010.

The other technique that can be used for eliminating a
cycle in PDAG/IDAG is called node partitioning in this
paper. This transformation is, in a sense, the opposite of
node merging and generates multiple nodes from a single
node. To illustrate how it operates, we consider the original
cyclic IDAG shown on the left side of Fig. 10 again. The
lower part of the same figure illustrates the acyclic IDAG
obtained by partitioning the node with tag “1101.” It is
assumed for illustrative purposes that, after this partition-
ing, there is a dependence from node “1001” to one of the
new nodes and another dependence from node “0010” to
the other new node. Notice that, in the worst case, each of
these new nodes inherits the tag of the original node (as in
the case in Fig. 10). In general, the possibility of node
partitioning can be checked as follows: Let us assume
I ¼ Ip;T1

[I p;T2
[. . . [Ip;Tn , where I p;T1

; I p;T2
; . . . ; I p;Tn are

the nodes involved in a cycle. We select a node I p;Ti and
split it into two nodes (J p;T 0 and Kp;T 00) such that all the
following constraints are satisfied:

J p;T 0 \ Kp;T 00 ¼ �;

fJ ! KjJ 2 J p;T 0 ; K 2 Kp;T 00 g ¼ �;

fJ ! XjJ 2 J p;T 0 ; X 2 I � I p;Tig ¼ �;

fX ! KjX 2 I � I p;Ti ; K 2 Kp;T 00 g ¼ �:

Note that, if no node in the cycle can be split with respect
to these constraints, we cannot eliminate that cycle by
applying node partitioning. In our current implementation,
to eliminate a cycle, we first attempt node partitioning. If it
does not work, we use node merging.

1248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

3. An alternate approach would be constructing the IDAG in a cycle-free
manner in the first place. We omit the detailed discussion of this alternative
since the results it generated were very similar to those obtained using node
partitioning.

Fig. 9. Proposed scheduling algorithm.

Fig. 10. An example that illustrates node merging and node partitioning.

5.4 Implementation Details

This section gives details of how we generate the scheduled
code. The main issue here is to generate a code for a given
class ðIp;T Þ. Although one can propose an approach
employing classical loop transformations such as loop tiling
and loop interchange for this purpose, such an approach
would not be sufficient, mainly because the iterations that
belong to a class may not form a regular set that can easily
be captured by these (structured) code transformations.
Instead, in this study, we use a polyhedral tool called the
Omega Library to generate code. The Omega library [29]
provides a set of routines for manipulating linear con-
straints over integer variables, Presburger formulas, and
integer tuple relations and sets. In our context, this library
can be used for generating a code that enumerates the loop
iterations that belong to a given class. To see this, consider a
scenario where a nested loop accesses the arrays stored in
an I/O system that consists of two disks (each can hold
45 elements for illustrative purposes). Let us assume that
there are two arrays accessed in the nest (U and V) and that
the array-to-disk mappings are as follows:

d0 : fU ½i�j1 � i � 30g [fV ½i�j1 � i � 15g;
d1 : fV ½i�j16 � i � 30g:

We also assume that the references used in the nest are
U ½i� and V ½31� i� and that the loop iterator ðiÞ takes values
between 1 and 29. Using these mappings and references, we
can write Ip;10, the class that contains iterations that access
only d0, as

I p;10 ¼fi j ð1 � i � 29Þ ^ ð1 � i � 30Þ
^ ð1 � 31� i � 15Þ ^ :ð16 � 31� i � 30Þg:

The first constraint in this formulation, ð1 � i � 29Þ,
comes from the loop bounds. The second and third
constraints ensure that the array elements accessed by U
and V fall into the first disk ðd0Þ. Finally, the last constraint
guarantees that the elements referenced by V do not reside
in the second disk ðd1Þ. By simplifying this set formulation,
we obtain

I p;10 ¼ fi j ð16 � i � 29Þg:

Then, using the Omega Library’s code generator, we can
obtain a loop nest that enumerates only these iterations.
With a similar analysis, we can also show that

I p;01 ¼ ; and Ip;11 ¼ fi j ð1 � i � 15Þg:

6 EXPERIMENTAL SETUP

6.1 Setup and Benchmarks

To generate disk access patterns for our benchmark
programs, we designed and implemented a trace generator.
This trace generator creates a trace for each processor. The
generated trace (which captures parallel disk accesses) is
then fed to the simulator. The cycle estimates for the loop
nests were obtained from the actual execution of the
programs on a SUN Blade1000 machine (UltraSPARC-III
architecture operating at 750 MHz with Solaris 2.9), and
these estimates were used in all our simulations. In addition
to the I/O trace file, the simulator needs the disk layout
information for each array, which includes stripe unit size,
striping factor (the number of disks), and starting disk.
Using the disk layout parameters and traces, the simulator

determines, for each request, the I/O node(s) that need to
be accessed and the duration of access for each I/O node.
We assume that each I/O node has one disk and no further
striping is applied at the I/O node level, that is, the data is
striped across the I/O nodes only. In our simulator, the
striping information is provided from an external file along
with other simulation parameters. The default simulation
parameters are given in Table 1.

Our disk power simulator, which is similar to DiskSim
[4], is driven by externally provided disk I/O request traces,
which are generated, as explained above, by the trace
generator. Each I/O request is composed of the following
five parameters:

. ID. The ID of the processor that issues the request.

. Request arrival time. Time (in milliseconds) specifying
the time at which the disk request arrives.

. Block number. An integer specifying a logical disk
block striped over several I/O nodes.

. Request size. An integer in bytes specifying the size of
a request.

. Request type. A character specifying whether the
request is a read (R) or a write (W) type.

Given an I/O trace file, the simulator generates statistical
data for performance and energy consumption. Both
performance and energy statistics were calculated based
on the figures extracted from the data sheet of the IBM
Ultrastar 36Z15 [19] and are given in Table 1. The values for
power mode transitions are also included in Table 1. In the
rest of the paper, when we say “energy,” we mean the
energy consumed in the disk subsystem. When we say
“execution time/cycles,” we mean the time/cycles it takes
to complete the application execution. The disk energy
consumption includes all the energy consumptions in both
active and idle periods, taking into account all the states
that the disks experience during the entire execution. Also,
the performance numbers include all conflicts in accessing
the parallel disk system.

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1249

TABLE 1
Default Simulation Parameters

Table 2 gives the set of array-based benchmark codes
used in this study. These benchmarks were randomly
chosen from the Spec 2000 floating-point benchmark suite
[34]. As none of the original Spec 2000 requires a memory
footprint larger than 200 Mbyte, we increased the data set
size by manipulating the dimension sizes of the arrays and
the corresponding loop bounds accordingly. We also made
the data manipulated by these benchmarks disk resident by
mapping each array data to the corresponding file stored in
the disk subsystem. As a result, each array reference causes
a disk access unless the data is captured in the buffer cache.
However, to be fair in our evaluation, we hand optimized
the I/O behavior of these applications as much as we could.
In other words, even the original versions of these
applications do not perform any unnecessary disk I/O.
Also, to complete our simulations within a reasonable
amount of time, we focused only on time-consuming loop
nests from these applications. Specifically, from each
application, we selected the loop nests whose cumulative
I/O times account for at least 90 percent of the total I/O
time of the application using the SUN Analyzer utility [35].
The second column in Table 2 gives the total disk-resident
data size manipulated by the selected loop nests, and the
third column shows the number of total disk requests made
by each application. The last two columns, on the other
hand, give the disk energy consumption and execution
time, respectively, for each application when no disk power
management is employed. The energy and performance
numbers presented in the rest of this paper are with respect
to the values listed in these last two columns of Table 2.

6.2 Versions

To compare the different approaches to disk power
management, we implemented and performed experiments
with nine schemes for each benchmark code in our
experimental suite:

. Base. This is the base version that does not employ
any power management strategy. All the reported disk
energy and performance numbers are given as normalized
values with respect to this version (see the last two
columns of Table 2).

. TPM. This is the traditional disk power management
strategy used in studies such as [9] and [10]. In this
approach, a disk is spun down after some idleness to
save power and is spun up when a new request
arrives. Since the performance cost of spinning up is
typically large, TPM can incur significant perfor-
mance degradations. Also, in order for this scheme
to save power, the idleness should be large enough
to compensate for the spin-up and spin-down
latencies.

. DRPM. This is the DRPM strategy proposed in [13].
Considering the predicted length of the idleness, it
sets the rotation speed of the disk to an appropriate
level to save power. Therefore, it is effective in

saving power even if the idle periods are short. Note
that the RPM level used is selected based on the
estimated idleness (as in [13]), and we may incur
performance penalties, depending on the accuracy of
idle time prediction.

. Compiler-directed TPM (C-TPM). This proactive
scheme lets the compiler estimate idle periods by
analyzing code and considering disk layouts and
then generates the necessary TPM power-manage-
ment calls (spin_down/up calls) based on this
information.

. Compiler-directed DRPM (C-DRPM). This proactive
scheme performs the same estimation of idle periods
as in C-TPM, but it generates explicit DRPM power-
management calls (set_rpm calls). Both C-TPM and
C-DRPM are discussed in Section 4.

. Intraprocessor TPM (Intra-P-TPM). This corresponds
to our code-restructuring-based approach (from a
single-processor perspective) when it is used with
C-TPM. The compiler restructures (schedules) the
code considering the disk layout information.

. Intraprocessor DRPM (Intra-P-DRPM). This corre-
sponds to our code-restructuring-based approach
(from a single-processor perspective) when it is used
with C-DRPM. It uses the same (restructured) code
as in Intra-P-TPM. The scheduling strategy used by
Intra-P-TPM and Intra-P-DRPM are explained in
Section 5.1.

. Interprocessor TPM (Inter-P-TPM). This corresponds
to our code-restructuring-based approach (from a
multiprocessor perspective) when it is used with
C-TPM. The compiler restructures code considering
disk layout information.

. Interprocessor DRPM (Inter-P-DRPM). This corre-
sponds to our code-restructuring-based approach
(from a multiprocessor perspective) when it is used
with C-DRPM. It uses the same restructured code as
in Inter-P-TPM. The scheduling strategy used by
Intra-P-TPM and Inter-P-DRPM are explained in
Section 5.2.

Note that the only modification to the input code made by
C-TPM and C-DRPM are insertions of the explicit disk power
management calls, which are then simulated by the disk
simulator. In comparison, the Intra-P-TPM, Intra-P-DRPM,
Inter-P-TPM, and Inter-P-DRPM schemes restructure the
application code using scheduling. The necessary code
modifications for these schemes are automated using the
Stanford University Intermediate Compiler (SUIF) infra-
structure [15], with the help of Omega Library [29], as has
been discussed earlier. As a result of these compiler
transformations, we observed that the original compilation
times were almost doubled. We believe that, considering
the large benefits of the approach, this increase in
compilation times is tolerable.

. ILP-based Scheme. In addition to the schemes
explained so far, we also implemented the optimal
scheme in order to demonstrate how close our
approach comes to the optimal solution. Specifically,
we implemented an ILP-based approach to determine
the maximum possible energy savings for a given disk
trace. Although other methods such as a direct
calculation of optimal disk power management
scheme from the given disk traces or those based on
genetic algorithms can also be used, we found ILP

1250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

TABLE 2
Benchmarks and Their Characteristics

useful in general since it can capture the scenarios
with multiple disks, multiple CPUs, and multiple
power modes. Note that our ILP-based formulation
neither resolves the dependency between I/O re-
quests nor finds the best ordering of I/O requests
experienced by a given program execution since the
disk trace of the restructured code already captures
the dependencies among different disk requests
(however, if explicit dependency information is given,
our ILP formulation can be modified to account for
that as well). Our ILP formulation instead determines
the optimal disk power mode (for example, TPM or
DRPM) and its value (for example, optimal RPM level)
that maximize energy savings using a given disk trace.
ILP provides a set of techniques that solve those
optimization problems in which both the objective
function and constraints are linear functions, and the
solution variables are restricted to be integers. The 0-1
ILP (also known as ZILP) is an ILP problem in which
each (solution) variable is restricted to be either 0 or 1
[24]. It is used in this paper for determining the RPM
levels of disks and the times at which to switch them.
Table 3 gives the constant terms used in our ILP
formulation. We used Xpress MP [38], a publicly
available tool to solve the resulting ILP problem.

Our objective is to find the RPM level of each disk during
servicing the requests for minimum energy consumption.
Based on a given number of disks and processors, we
determine the RPM level of each disk using the disk access
request pattern. We define 0-1 variables for each disk and
for every request. By using these 0-1 variables, we
determine whether TPM is used or not. Also, RPM levels
can be captured by these variables.

Table 4 lists the variables used in our ILP formulation.
We use 0-1 variables to specify the RPM level of each disk.
Specifically, a disk can be in two different states: DRPM
ðDRPMd;l;rÞ and TPM ðTPMd;rÞ. Although the former uses
a specific RPM level until the next request, the latter uses
the maximum RPM level until servicing the current request
and spins down until the next request if doing so reduces
the energy consumption. We consider both TPM and DRPM
in describing our set of ILP equation because we want to
formulate it in a more generic form that captures various

scenarios. This is because, depending on the disk idle
period a disk experiences, the TPM might generate better
energy savings than DRPM, whereas, in general, DRPM
performs better for shorter idle periods. We also want to
mention that our ILP formulation can be modified (if
desired) to employ only TPM or DRPM. For example, in (3),
we can omit the TPMd;r term and all associated terms (for
example, Tsup and Tsdown in (13)) if we want to consider only
DRPM. A disk may use different RPM levels for different
requests. Since a disk must be in one of these two states, the
following constraint must hold:

TPMd;r þ
XL
i¼1

DRPMd;i;r ¼ 1; 8d; r: ð3Þ

In the above equation, i iterates over the RPM levels. The
duration of a service depends on the RPM level of the disk
for the given request. For a given request, either TPM or
DRPM can be used because we want to select any of them
that gives the best result in our objective function, which is
to minimize the total energy consumption. Consequently,
we use DLen and TLen to distinguish between these two:

DLend;l;r ¼ DRPMd;l;r �
Reqd;rðt; loadÞ
RPMlðrateÞ

� �
; 8ðd; l; rÞ: ð4Þ

In the above equation, if the disk is using DRPM

ðDRPMd;l;r ¼ 1Þ;

then the time it takes to process the request is found by
dividing the request load ðReqd;rðt; loadÞÞ by the service rate
ðRPMlðrateÞÞ. Similarly, we have

TLend;r ¼ TPMd;r �
Reqd;rðt; loadÞ
RPMmaxðrateÞ

� �
; 8ðd; rÞ: ð5Þ

Since TPM uses the maximum RPM, the request load
should be divided by the service rate of the maximum RPM.
The final length is captured by

Lend;r ¼ TLend;r þ
XL
i¼1

DLend;i;r; 8ðd; rÞ: ð6Þ

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1251

TABLE 3
The Constant Terms Used in Our ILP Formulation

TABLE 4
The Variables Used in Our ILP Formulation

A new request is serviced only if the previous request is

finished. We express this constraint as follows:

Startd;r � Finishd;r�1; 8ðd; rÞ r � 2: ð7Þ

A request can start only after it is actually requested:

Startd;r � Reqd;rðt; loadÞ; 8ðd; rÞ: ð8Þ

Here, Reqd;rðt; loadÞ is the time of the request. A request

finishes only after it is serviced, i.e., we have

Finishd;r ¼ Startd;r þ Lend;r; 8ðd; rÞ: ð9Þ

A disk is inactive between the end of a request and the
start of the next one, which can be expressed as follows:

Inactived;r ¼ Startd;r � Finishd;r�1; 8ðd; rÞ r � 2: ð10Þ

For the first request of each disk Inactived;1 ¼ Startd;1,

since the disk is inactive until the first request is serviced.

During the inactive period, a disk can be in one of the two

modes, idle or standby:

Inactived;r ¼ Idled;r þ Standbyd;r; 8ðd; rÞ: ð11Þ

In DRPM, a disk cannot be in the standby mode; that is,
the disk should be in the idle mode. To ensure this, we use
the following constraint:

Standbyd;r � TPMd;r �MAXINT; 8ðd; rÞ: ð12Þ

If the disk is using DRPM, then TPMd;r ¼ 0. Conse-
quently, Standbyd;r � 0. However, if the disk is using TPM,
then Standbyd;r �MAXINT , which lets Standbyd;r to have
a suitable value. TPM can be used only if the idleness
period is sufficiently enough, and we can capture this using
the following expression:

Inactived;r � TPMd;r � ðTsup þ Tsdown þWÞ
þ Standbyd;r; 8ðd; rÞ:

ð13Þ

The disk needs to spin down ðTsdownÞ and spin back up
ðTsupÞ. In the above formulation, W is used as a delay to
ensure a sufficiently long period for TPM. On the other
hand, if DRPM is used, this constraint will not have any
effect since it is already covered by (11). RPM change in a
disk requires spin up/down, which, in turn, consumes
certain energy. RPM changes are captured by the use of
RPMCd;l1;l2;r. This indicates that the RPM level of disk d is
changed from l1 to l2 at a request r. Specifically, we have

RPMCd;l1;l2;r � DRPMd;l2;r þDRPMd;l1;r�1 � 1;

RPMCd;l1;max;r � TPMd;r þDRPMd;l1;r�1 � 1;

RPMCd;max;l1;r � DRPMd;l1;r þ TPMd;r�1 � 1;

8ðd; l1; l2; rÞ such that l1 6¼ l2; r � 2:

ð14Þ

The first constraint is used for the RPM changes within
the DRPM. The second and third constraints, however, are
used for a transition between TPM and DRPM. Here, max
denotes the maximum RPM level since TPM uses the
maximum RPM level.

Having specified the necessary constraints in our ILP
formulation, we next give our objective function. In our disk
energy model, there are four components of the total
memory energy consumption:

. Active. The energy consumed when the disk is
servicing a request.

. Idle. The energy consumed when the disk is running
but not servicing any requests.

. Standby. The energy consumed when the disk is in
standby mode.

. Spin up/down. The energy consumed to spin up/
down a disk.

The active energy is composed of DRPM and TPM
energies. Therefore, we can write

EA ¼
XD
i¼1

XL
j¼1

XR
k¼1

DLeni;j;k �RPMjðaeÞ

þ
XD
i¼1

XR
j¼1

TLeni;j �RPMmaxðaeÞ:
ð15Þ

The first term in the above expression is for DRPM, and
the second one is for TPM. The idle energy consumption for
each disk d and for each request r is captured by the
following expression:

IdleEd;r � Idled;r �RPMlðieÞ; 8ðd; l; rÞ: ð16Þ

We can obtain the idle energy consumption by adding
these IdleEd;r values:

EI ¼
XD
i¼1

XR
j¼1

IdleEi;j: ð17Þ

In a similar fashion, we capture the standby energy as
follows:

ES ¼
XD
i¼1

XR
j¼1

Standbyi;j �RPMmaxðseÞ: ð18Þ

Spin-up/down energy is composed of two portions. The
first portion is due to TPM going into standby mode, and
the second one is due to the RPM level change:

EP ¼
XD
i¼1

XR
j¼1

TPMi;j � RCCost0;max þRCCostmax;0
� �

þ
XD
i¼1

XL
j¼1

XL
k¼1;k 6¼j

XR
l¼1

RPMCi;j;k;l �RCCostj;k:

ð19Þ
The first part corresponds to the spin-up/down energy

due to the standby mode. Here, although max denotes the
maximum RPM level, 0 denotes the standby mode. Each
TPM will incur a spin up from standby mode to maximum
RPM level and a spin down from maximum RPM level to
standby mode. Similarly, each RPM change between DRPM
and/or TPM will incur some energy consumption due to
spin up/down. This is expressed in the second part of the
above expression.

Based on these constraints, we can express the disk
energy consumption ðEÞ as follows:

E ¼ EA þ EI þES þ EP : ð20Þ
In this formulation, EA, EI , ES , and EP correspond to

active energy, idle energy, standby energy, and spin-up/
down energy, respectively. Based on this formulation, our

1252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

0-1 ILP problem can be defined as one of “minimizing E
under constraints (3) through (19).”

7 EXPERIMENTAL RESULTS

The graph in Fig. 11 gives the energy consumptions of our
benchmarks under the different schemes explained above.
One can make several observations from these results. First,
the TPM scheme does not achieve any disk energy savings
since most of the disk idle times in these applications are not
very large, as shown in Fig. 13. Moreover, for very few
relatively long idle periods, the TPM scheme fails to exploit
them as well, mainly because it waits for some time (at the
beginning of each idle period) before spinning down the disk
(see Fig. 3). In comparison, C-TPM brings about 9 percent
energy savings by taking advantage of these few relatively
long idle periods, which demonstrates the benefits brought
by proactive disk power management. The second observa-
tion is that the DRPM scheme consumes more energy than the
original version (Base), due to poor estimation of idle periods.
However, its proactive version (C-DRPM) achieves nearly
24 percent disk energy savings on average. Our third
observation is that the best results for all applications are
obtained with the Inter-P-TPM and Inter-P-DRPM versions.
Specifically, they achieve, respectively, about 38 percent and
43 percent savings in disk energy. In comparison, Intra-P-
TPM and Intra-P-DRPM save approximately 18 percent and
30 percent disk energy, respectively. In other words,
capturing and exploiting interprocessor disk access pattern
is critical in maximizing savings. In fact, Inter-P-TPM
generates better energy savings on average than Intra-P-
DRPM, meaning that using a less powerful architectural
mechanism with more sophisticated code restructuring
generates better results than employing more powerful
architectural mechanism with less sophisticated code re-
structuring for this set of applications.

It is to be noted, however, that energy consumption is
just one part of the big picture. To have a fair comparison
between the different schemes tested, one needs to consider
their performances (that is, execution times/cycles) as well.
The bar chart in Fig. 12 gives the normalized execution
times (with respect to the base version) for the different
schemes evaluated. One can observe that only the DRPM
version incurs some performance penalty, 70 percent on the
average across our four benchmarks. The reason why TPM
does not incur any performance penalty is that it is not
generally applicable, given the short disk idle times as

discussed earlier. We also see that all the compiler-directed
schemes, namely, C-DRPM, C-TPM, Intra-P-TPM, Intra-P-
DRPM, Inter-P-TPM, and Inter-P-DRPM, incur almost no
performance penalty. The main reason for this is that these
schemes start to bring the disk to the desired RPM level
before it is actually needed (using preactivation), and the
disk becomes ready when the access takes place. This is
achieved by accurate prediction of the disk idle periods for
the application domain we target. These results, along with
those presented in Fig. 11, indicate that the compiler-guided
proactive disk power management and code restructuring
can be very useful in practice, in terms of both disk energy
consumption and execution time penalty, and the best
savings are achieved by our code-restructuring approach.
Note that, since our compiler approach does not increase
execution times, it does not cause much extra power
consumption on other system components. The only
additional energy overhead is due to execution of the
inserted power management calls (instructions), but we
found this cost to be negligible.

In the rest of our experimental analysis, we vary the
values of some of the simulation parameters and study their
impacts on energy consumption. We do not present any

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1253

Fig. 11. Energy consumptions with different schemes. Fig. 12. Execution cycles with different schemes.

Fig. 13. Cumulative distribution function (CDF) curves for disk idle times.
An ðx; yÞ point on a curve indicates that y percent of the idle times has a
duration of x (ms) or lower. As mentioned earlier, the minimum amount
of idle time required to compensate the cost of spinning down the disk
and up (under a TPM-based scheme) is called the threshold. Based on
the numbers from IBM Ultrastar 36Z15, the threshold is 15.19 seconds.
The results in this graph show that the idle disk times exhibited by these
array-based applications are much shorter than the threshold value.

further performance data, mainly because, except for the
DRPM scheme, none of the schemes evaluated causes any
substantial increase in the original execution cycles. More
specifically, except for DRPM, the average execution time
increase was always less than 1 percent. We focus on two
important parameters in our sensitivity analysis: disk
layout and number of processors. Since disk layout has
three components as explained in Section 3, we study each
of them separately. In each experiment, we change the
value of only one parameter; the rest of the simulation
parameters use their default values listed in Table 1. Also,
since our results with different benchmarks resulted in
similar trends and observations, we present the result for
the mgrid benchmark only.

Fig. 14 gives the normalized energy consumptions with
the different stripe sizes. We see from these results that the
energy savings brought by the compiler-based schemes
increase as the stripe size increases. This can be explained as
follows: When the stripe size is very small (16 Kbyte), disks
do not experience much idleness. In fact, the disk idleness
in this case becomes so small that even code restructuring
cannot take much advantage of it. When the stripe size is
increased, more disk requests can be serviced by a single
stripe, that is, the stripe-level data reuse improves. As a
result, the compiler-based approaches have more opportu-
nities for optimization, which, in turn, helps reduce disk
energy consumption. We see from Fig. 14 that Inter-P-
DRPM generates the best savings with 256 Kbyte stripe size,
and the difference between it and the DRPM scheme
reaches its peak at this value. The next parameter whose
variation we study is the stripe factor (the number of disks).
Recall that the default number of disks used so far in our
experiments was eight. Fig. 15 gives the normalized energy
values under different stripe factors. An observation we can
make from these curves is that, when we have only two
disks, there is not much opportunity for power saving (due
to lack of disk idleness), and (except for DRPM) all the
schemes behave similarly. As the number of disks is
increased, disk idleness increases, and consequently, the
compiler schemes exhibit a better behavior. When the
number of disks is very high (32), the disk idleness reaches
a very high level, and one may not need sophisticated code
restructuring in this case (for our particular data set sizes).
In fact, at this point, all the TPM-based compiler schemes
behave similarly, and all the DRPM-based compiler
schemes behave similarly.

We next study how the starting disk used for striping
could affect the results. To perform this set of experiments,
we generated a random integer number (for each array in
the mgrid benchmark) between 1 and 8 to select the disk
from which the array is striped. The results for five such
experiments are presented in Fig. 16. We see from these
results that the general trends (and our savings) are very
similar across these different layouts. This indicates that the
starting disk (for striping) may not be a very important
factor as far as the impact of our compiler-based schemes
are concerned.

The next parameter whose variation we study is the
number of processors. Fig. 17 gives the normalized energy
results with the different processor counts. As before, all
other parameters are set to their default values given in
Table 1. One can see from these results that the effectiveness
of the compiler-directed code restructuring is consistent
across the different processor counts. The reason that the
C-TPM and C-DRPM schemes do not behave very well with
the large number of processors is the difficulty in inserting
explicit power management calls, due to small iteration
counts with a large number of processors. This problem
does not usually exist in the code-restructuring-based
schemes since they cluster idle and active periods.

Our experimental results presented so far indicate that
our scheme successfully restructures a given program code
in such a way that the length of the disk idle time increased,
which, in turn, allows more disk to be placed into the low

1254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 14. Impact of stripe size on energy consumption. Fig. 15. Impact of stripe factor on energy consumption.

Fig. 16. Impact of starting disk on energy consumption.

power mode for a longer duration. In the next set of
experiments, we would like to show how close the disk
RPM level (either in TPM or DRPM) determined by our
scheme comes to the optimal one by the ILP formulation.
Recall that the problem we want to tackle using the ILP
formulation described in Section 6 is to determine the
optimal disk mode and value (for example, TPM versus
DRPM or optimal RPM level in the case of DRPM) with
given disk traces, which is generated by one of our code-
restructuring schemes. The graph in Fig. 18 gives the
normalized energy consumption values for the Inter-P-
DRPM and ILP schemes with respect to the Base version
explained in Section 6. We chose the Inter-P-DRPM scheme
in this comparison because it gives the best energy savings
among the schemes tested so far. Since it is infeasible to
solve the ILP problem described in Section 6 with the whole
disk traces, we obtained the results given in Fig. 18 using a
small fraction of the total number of traces that is less than
5 percent but captures most representing access patterns of
each benchmark. We can see from these results that the ILP
solution gives slightly better energy savings than the Inter-
P-DRPM scheme. Specifically, the difference between two
schemes is only 3 percent on the average. This shows that
our approach generates near-optimal solutions for all four
benchmarks as compared to the optimal energy consump-
tion achieved by the ILP solver. We also want to mention

that the ILP-based solution is not scalable. For our
applications, even with limited number of trace data, it
took more than 24 hours to generate optimal results. We
present the ILP results here only to demonstrate that our
approach is very effective in practice and generates near-
optimal results.

In our next set of experiments, we conduct an experi-
ment with up to 128 disks to see how the energy savings we
achieved are affected with the larger number of disks. We
also increased the problem size as we deal with the larger
amount of data. Fig. 19 shows the normalized energy
consumption results with the different number of disks,
from 8 to 128. As we can see, in most cases, the compiler-
directed schemes achieve better energy savings than the
hardware-based schemes such as TPM and DRPM. One
noticeable trend that can be observed is that the TPM
scheme increases energy consumption dramatically with
the larger number of disks. The main reason for this is that
TPM works in a reactive manner. That is, even if the disk
can have more chances to spin down due to the increase in
disk idle time with the increased number of disks, it also
needs to pay spin-up cost, which incurs both energy and
performance penalties. Another observation we can make
from these results is that, as the number of disks increases,
the TPM-flavored compiler schemes exhibit better energy
savings than the DRPM flavored ones. This is because
spinning down to shutdown mode consumes much less
energy than modulating the disk in a lower RPM, even if it
is the lowest one.

Last, we want to show how our approach can be used with
other techniques to achieve further energy savings. As shown
in [32], optimizing disk layout alone can also bring a
significant amount of energy savings. We present in Fig. 20
the normalized energy consumption for mgrid with 16
different schemes: eight original schemes we experimented
so far and the remaining eight schemes are the ones that
employ the OPT scheme, which determines energy-optimal
disk layout for each array with minimal degradation on
performance. As we can see from these results, the schemes
with OPT generate from 6 to 20 percent additional energy
savings over the original schemes, depending on the scheme
in question. This result clearly shows that the energy savings
from our approach can be increased further when it is used in
conjunction with other energy-saving techniques targeting
the disk subsystem.

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1255

Fig. 17. Impact of processor count on energy consumption.
Fig. 19. Scalability of various schemes experimented.

Fig. 18. Energy consumption with the Inter-P-DRPM- and ILP-based

schemes.

8 CONCLUDING REMARKS

Since disk subsystems of parallel architectures are known to
consume a large fraction of the overall power budget, they are
an important optimization target. Most of the prior work on
disk power management focused exclusively on hardware-
based approaches that operate with past history information
collected during execution. In contrast, this paper proposes a
compiler-driven approach to disk power management for
data-intensive scientific applications. The compiler in our
approach derives data access pattern and, by combining this
information with disk layout of array data, it obtains the disk
access pattern. This paper demonstrates two ways of utilizing
disk access patterns: proactive disk power management and
code restructuring for reducing disk power consumption.
Our experimental analysis are very promising and show that
the proposed compiler-driven proactive approach to disk
power management performs much better than existing
hardware-based techniques. Furthermore, when compared
with the results obtained from an ILP formulation, our
approach can generate near-optimal energy savings.

ACKNOWLEDGMENTS

A preliminary version of this paper appears in the
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’05) [33]. This
draft extends the PPoPP paper by providing an Integer
Linear Programming (ILP) formulation of the problem to
illustrate how close the results obtained by our approach
are to the results obtained through the ILP solver. This work
is supported in part by US National Science Foundation
Grants 0444158, 0406340, and 0093082 and a grant from
Gigascale Systems Research Center (GSRC).

REFERENCES

[1] “Where Are All the Green Computers?” http://environment.
about.com/od/greenschoolsupplies/a/computers.htm, 2004.

[2] J.M. Anderson, “Automatic Computation and Data Decomposi-
tion for Multiprocessors,” PhD thesis, CSL-TR-97-719, Stanford
Univ., 1997.

[3] L. Benini, G.D. Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic Synthesis of Clock-Gating Logic for Power Optimiza-
tion of Synchronous Controllers,” ACM Trans. Design Automation
of Electronic Systems, vol. 4, no. 4, pp. 351-375, 1999.

[4] J.S. Bucy et al., “The DiskSim Simulation Environment Version 3.0
Reference Manual,” Technical Report CMU-CS-03-102, CMU, Jan.
2003.

[5] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. 17th Int’l Conf. Supercomputing,
pp. 86-97, June 2003.

[6] J.S. Chase, D.C. Anderson, P.N. Thackar, A.M. Vahdat, and R.P.
Boyle, “Managing Energy and Server Resources in Hosting
Centers,” Proc. 18th Symp. Operating Systems Principles, pp. 103-
116, Oct. 2001.

[7] J.S. Chase and R.P. Doyle, “Balance of Power: Energy Manage-
ment for Server Clusters,” Proc. Eighth Workshop Hot Topics in
Operating Systems, p. 165, May 2001.

[8] X. Chen and L. Peh, “Leakage Power Modeling and Optimization
in Interconnection Networks,” Proc. Int’l Symp. Low Power and
Electronics Design, pp. 90-95, Aug. 2003.

[9] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive Disk Spin-
Down Policies for Mobile Computers,” Proc. Second Symp. Mobile
and Location-Independent Computing, pp. 121-137, 1995.

[10] F. Douglis, P. Krishnan, and B. Marsh, “Thwarting the Power-
Hungry Disk,” Proc. Usenix Winter Conf., pp. 292-306, 1994.

[11] E.N.M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters,” Proc. Second Workshop Power Aware Computing
Systems, Feb. 2002.

[12] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy Conservation
Policies for Web Servers,” Proc. Fourth Usenix Symp. Internet
Technologies and Systems, Mar. 2003.

[13] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. Int’l Symp. Computer Architecture,
pp. 169-179, June 2003.

[14] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H.
Franke, N. Vijaykrishnan, and M.J. Irwin, “Interplay of Energy
and Performance for Disk Arrays Running Transaction Processing
Workloads,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, pp. 123-132, Mar. 2003.

[15] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, S.-W.
Liao, E. Bugnion, and M.S. Lam, “Maximizing Multiprocessor
Performance with the SUIF Compiler,” Computer, vol. 29, no. 12,
pp. 84-89, Dec. 1996.

[16] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini,
“Application Transformations for Energy and Performance-
Aware Device Management,” Proc. Int’l Conf. Parallel Architectures
and Compilation Techniques, pp. 121-130, Sept. 2002.

[17] “Hitachi Power and Acoustic Management—Quietly Cool,”
white paper, Hitachi Global Storage Technologies, http://
www.hitachigst.com/tech/techlib.nsf/productfamilies/White_
Papers, Mar. 2004.

[18] “Adaptive Power Management for Mobile Hard Drives,” technical
report, IBM Storage Systems Division, Apr. 1999, http://www.
almaden.ibm.com/almaden/pbwhitepaper.pdf.

[19] “Ultrastar 36Z15 Hard Disk Drive,” IBM, http://www.hitachigst.
com/hdd/ultra/ul36z15.htm, 2001.

[20] E.J. Kim, K.H. Yum, G. Link, M.K.N. Vijaykrishnan, M.J. Irwin, M.
Yousif, and C.R. Das, “Energy Optimization Techniques in Cluster
Interconnects,” Proc. Int’l Symp. Low Power Electronics and Design,
pp. 459-464, Aug. 2003.

[21] C.H. Koelbel, D.B. Loveman, and R.S. Schreiber, The High
Performance Fortran Handbook. MIT Press, 1993.

[22] K. Li, R. Kumpf, P. Horton, and T. Anderson, “A Quantitative
Analysis of Disk Drive Power Management in Portable Compu-
ters,” Proc. Usenix Winter Conf., pp. 279-292, 1994.

[23] S.S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[24] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization. Wiley-Interscience, 1988.

[25] A.E. Papathanasiou and M.L. Scott, “Energy Efficient Prefetching
and Caching,” Proc. Usenix Ann. Technical Conf., pp. 255-268, 2004.

[26] M. Pedram, “Power Optimization and Management in Embedded
Systems,” Proc. Conf. Asia South Pacific Design Automation, pp. 239-
244, 2001.

[27] T. Pering, T. Burd, and R. Brodersen, “The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms,” Proc. Int’l
Symp. Low Power Electronics and Design, Aug. 1998.

[28] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles, pp. 89-102, Aug. 2001.

1256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 20. Normalized energy consumption for our approach when used in

conjunction with energy-efficient disk layout scheme.

[29] W. Pugh, “A Practical Algorithm for Exact Array Dependency
Analysis,” Comm. ACM, vol. 35, no. 8, pp. 102-114, Aug. 1992.

[30] R.B. Ross, P.H. Carns, W.B. Ligon III, and R. Latham, “Using the
Parallel Virtual File System,” http://www.parl.clemson.edu/
pvfs/user-guide.html, July 2002.

[31] T. Simunic, L. Benini, and G.D. Micheli, “Energy-Efficient Design
of Battery-Powered Embedded Systems,” Proc. Int’l Symp. Low
Power Electronics and Design, pp. 212-217, Aug. 1999.

[32] S.W. Son, G. Chen, and M. Kandemir, “Disk Layout Optimization
for Reducing Energy Consumption,” Proc. 19th ACM Int’l Conf.
Supercomputing, pp. 274-283, June 2005.

[33] S.W. Son, G. Chen, M. Kandemir, and A. Choudhary, “Exposing
Disk Layout to Compiler for Reducing Energy Consumption of
Parallel Disk Based Systems,” Proc. ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, pp. 174-185, June
2005.

[34] “CFP 2000,” SPEC, http://www.specbench.org/cpu2000/
CFP2000/, 2000.

[35] “Analyzing Program Performance with Sun WorkShop,” Sun
Microsystems, http://doc-pdg.sun.com/806-7989/807-7989.pdf,
May 2000.

[36] M. Weiser, A. Demers, B. Welch, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. Symp. Operating System Design and
Implementation, pp. 13-23, Nov. 1994.

[37] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[38] Xpress-MP, http://www.dashoptimization.com/pdf/Mosel1.
pdf, May 2002.

[39] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes,
“Hibernator: Helping Disk Arrays Sleep through the Winter,”
Proc. 20th ACM Symp. Operating Systems Principles, Oct. 2005.

[40] Q. Zhu, F.M. David, C.F. Devaraj, Z. Li, Y. Zhou, and P. Cao,
“Reducing Energy Consumption of Disk Storage Using Power-
Aware Cache Management,” Proc. 10th Int’l Conf. High-Performance
Computer Architecture, pp. 118-129, 2004.

[41] Q. Zhu, A. Shankar, and Y. Zhou, “PB-LRU: A Self-Tuning Power
Aware Storage Cache Replacement Algorithm for Conserving
Disk Energy,” Proc. 18th Ann. Int’l Conf. Supercomputing, pp. 79-88,
2004.

Seung Woo Son received the BE and ME
degrees in computer engineering from Yeung-
nam University, Korea, in 1995 and 1997,
respectively. He is a PhD candidate in the
Department of Computer Science and Engineer-
ing, Pennsylvania State University. From 1997 to
2003, he was a research engineer at the Electro-
nics and Telecommunications Research Institute
in Korea. His research interests include power/
energy optimization for storage systems and

embedded software. He is a student member of the IEEE and the ACM.

Guangyu Chen received the PhD degree in
computer science and engineering from the
Pennsylvania State University in 2006. He is a
software engineer at Microsoft. His research
interests include software technologies for em-
bedded systems, resource-constrained Java
virtual machines, and on-chip networks for
multicore processors. He is a student member
of the IEEE.

Ozcan Ozturk received the BSc degree in
computer engineering from Bogazici University,
Istanbul, in 2000 and the MS degree in computer
engineering from the University of Florida,
Gainesville, in 2002. He is currently pursuing
the PhD degree in computer science and
engineering at the Pennsylvania State Univer-
sity. His research interests include on-chip
multiprocessing, power-aware architectures,
and compiler optimizations. He is a student

member of the IEEE.

Mahmut Kandemir received the BSc and MSc
degrees in control and computer engineering
from Istanbul Technical University, Istanbul, in
1988 and 1992, respectively, and the PhD
degree in electrical engineering and computer
science from Syracuse University, Syracuse,
New York, in 1999. He is an associate professor
in the Department of Computer Science and
Engineering, Pennsylvania State University. His
main research interests include optimizing com-

pilers, I/O intensive applications, and power-aware computing. His
research is currently funded by the US National Science Foundation,
DARPA, and SRC. He is a member of the IEEE, the IEEE Computer
Society, and the ACM.

Alok Choudhary received the MS degree from
the University of Massachusetts, Amherst, in
1986 and the PhD degree in electrical and
computer engineering from the University of
Illinois, Urbana-Champaign, in 1989. He is a
professor in the Electrical and Computer En-
gineering Department, Kellogg School of Man-
agement, Northwestern University. He joined
Northwestern in 1996. He is also the chair of
the Computer Engineering and Systems Division.

Prior to that, he was a faculty member of the ECE Department at
Syracuse University. His research interests are in databases and data
warehouses, storage systems, super computing and parallel computing,
embedded systems, computer architecture, e-commerce and Web-
based systems, system software and algorithms, data mining, marketing
and analytical marketing, customer relationship management, business
intelligence, and information security. He is also interested in high-level
synthesis on Systems-on-Chip applying compilation principles to the
synthesis process. He has published more than 300 papers in various
journals. He has also written a book and several book chapters. His
research has been sponsored by (past and present) DARPA, the US
National Science Foundation (NSF), NASA, AFOSR, ONR, DoE, Intel,
IBM, and TI. He is an area editor of the Journal of Parallel and Distributed
Computing, and served as an associate editor of the IEEE Transactions
on Parallel and Distributed Systems. He has served as a guest editor of
Computer. He is the founder and director of the Center for Ultra-scale
Computing and Information Security (CUCIS). He is a fellow of the IEEE.
He cofounded Accelchip, a developer of electronic design automation
tools and services and served as its vice president for research and
technology from 2000 to 2002. He also cofounded Nimkathana, a
company that provided consulting services in the area of software
systems, high-performance computing, cluster systems, data mining,
databases, data warehousing, and other related topics. He has served or
serves on technical advisory board of several companies. He is also on
the board of directors of the C3Research and is the director of the CRM
practice of C3Research. He has consulted with various small and large
(including Fortune 100) companies on various topics in the areas of
technology, management, and marketing. He served as the conference
cochair for the International Conference on Parallel Processing, and as
the chair of the International Workshop on I/O Systems in Parallel and
Distributed Systems. He has served on the program committees of more
than 50 conferences. He received the NSF’s Young Investigator Award in
1993 (1993-1999). He has also received an IEEE Engineering Founda-
tion award, an Intel research council award (1993-1997, 2003-2005), and
an IBM Faculty Development award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SON ET AL.: COMPILER-DIRECTED ENERGY OPTIMIZATION FOR PARALLEL-DISK-BASED SYSTEMS 1257

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

