
Using Register Lifetime Predictions to Protect Register Files Against Soft Errors∗

Pablo Montesinos, Wei Liu and Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-Champaign
{pmontesi, liuwei, torrellas}@cs.uiuc.edu

http://iacoma.cs.uiuc.edu

Abstract

To increase the resistance of register files to soft errors,
this paper presents the ParShield architecture. ParShield is
based on two observations: (i) the data in a register is only
useful for a small fraction of the register’s lifetime, and (ii)
not all registers are equally vulnerable. ParShield selec-
tively protects registers by generating, storing, and check-
ing the ECCs of only the most vulnerable registers while
they contain useful data. In addition, it stores a parity bit
for all the registers, re-using the ECC circuitry for parity
generation and checking. ParShield has no SDC AVF and
a small average DUE AVF of 0.040 and 0.010 for the inte-
ger and floating-point register files, respectively. ParShield
consumes on average only 81% and 78% of the power of a
design with full ECC for the SPECint and SPECfp applica-
tions, respectively. Finally, ParShield has no performance
impact and little area requirements.

1. Introduction

With increased chip integration levels, reduced supply
voltages, and higher frequencies, soft errors are becoming a
serious threat for high-performance processors. Such errors
can be due to a variety of events, most notably the impact
of high-energy particles [2, 8, 23]. Since soft errors can
result in program visible errors [20], there have been pro-
posals for several architectural designs that protect different
structures of the processor, such as caches, memories, and
datapaths [6, 13, 16, 21].

One of the critical structures to protect in a processor is
the register file. It is a sizable structure that stores architec-
tural state. It often stores data for long periods of time and is
read frequently, which increases the probability of spread-
ing a faulty datum to other parts of the machine. For these
reasons, some commercial processors protect their regis-
ter files with either parity [3, 9] or error correcting codes
(ECC) [18]. Protecting the register file with only parity en-
ables error detection but not correction. In this case, when

∗This work was supported in part by the National Science Founda-
tion under grants CHE-0121357 and CCR-0325603; DARPA under grant
NBCH30390004; DOE under grant B347886; and gifts from IBM and In-
tel. Wei Liu is now at Intel Corporation. His email is wei.w.liu@intel.com.

the error is detected, recovery is only possible by invok-
ing a high-level operation at the OS or application level.
Since the software might not always be able to recover from
the error, the application may need to terminate. Full ECC
support, on the other hand, enables on-the-fly detection and
correction of errors. However, it does so at a cost in power
and possibly performance.

A cost-effective protection mechanism for soft errors in
register files should have no performance impact, keep the
remaining Architectural Vulnerability Factor (AVF) [11] to
a small value, consume modest power, and use little area.
To design such mechanism, we make two key observations
on the use of registers in general-purpose processors. The
first one is that the data stored in a physical register is not
always useful. A soft error in a physical register while it is
not useful will not have any impact on the processor’s ar-
chitectural state. Consequently, we only need to protect a
register when it contains useful data. The second observa-
tion is that not all the registers are equally vulnerable to soft
errors. A small set of long-lived registers account for a large
fraction of the time that registers need to be protected. The
contribution of most of the other registers to the vulnerable
time is very small.

Based on these two key observations, this paper proposes
ParShield, a novel architecture that provides cost-effective
protection for register files against soft errors. ParShield
relies on the Shield concept, which selectively protects a
subset of the registers by generating, storing, and checking
the ECCs of only the most vulnerable registers while they
contain useful data. Such support reduces the AVF of the
integer register file by an average of 73% to 0.040, and the
AVF of the floating-point register file by an average of 85%
to 0.010. ParShield also adds a parity bit for all the regis-
ters and re-uses the ECC circuitry for parity generation and
checking as well. As a result, ParShield has no Silent Data
Corruption (SDC) AVF (all single-bit errors are detected),
has a Detected Unrecoverable Error (DUE) AVF as low as
Shield’s AVF, and consumes on average only 81% and 78%
of the power of a design with full ECC for the SPECint and
SPECfp applications, respectively. Moreover, ParShield has
no performance impact and little area requirements.

The paper is organized as follows. Section 2 describes
the motivation of this work; Sections 3 and 4 describe the

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

PostLastReadUseful

Allocation Write Read1 Deallocation

PreWrite

Read2 Readlast

register version n

Time

n-1 n+1

Figure 1. Lifetime of a register version.

design and the implementation of ParShield; Sections 5
and 6 evaluate ParShield; and Section 7 describes related
work.

2. Motivation: Assigning Reliability Resources

2.1. Register Lifetime

Modern out-of-order processors use register renaming
with a large number of physical registers to support many
in-flight instructions [4]. After the processor decodes an in-
struction with a destination register, it allocates a free phys-
ical register, creating a new register version. Later, the in-
struction is executed, and its result is written to the cor-
responding physical register. Subsequent instructions that
use that value are renamed to read from that physical reg-
ister. The register version is kept until the instruction that
redefines the corresponding logical register retires — this is
necessary to handle precise exceptions. Note that a version
is written to only once but can be read multiple times.

As Figure 1 shows, the lifetime of a register version lasts
from register allocation to deallocation. We divide it into
three different periods: from allocation until write; from
write until last read; and from last read to deallocation. We
call these periods PreWrite, Useful, and PostLastRead, re-
spectively. Note that only the Useful period needs to be
protected.

2.2. Register ACE Analysis

Errors are usually classified as undetected or detected.
The former are known as Silent Data Corruption (SDC),
while the latter are usually referred to as Detected Unrecov-
erable Errors (DUE) [11]. Errors for which detection and
recovery succeeds are not treated as errors.

A structure’s Architectural Vulnerability Factor (AVF) is
the probability that a fault in that structure will result in an
error [11]. The SDC AVF and DUE AVF are the probabili-
ties that a fault causes an SDC or a DUE error, respectively.
In general, if a structure is protected by an error detection
mechanism, its SDC AVF is zero. If the structure has error
detection and correction capabilities, its DUE AVF is zero.
In this work, we assume that the AVF for a register file is
the average AVF of all its bits.

Mukherjee et al. [11] proposed the concept of Architec-
turally Correct Execution (ACE) to compute a structure’s
AVF. ACE analysis divides a bit’s lifetime into ACE and
un-ACE periods. A bit is in ACE state when a change in
its value will produce an error. The AVF for a single bit is
the fraction of time that it is in ACE state. To calculate the
total time a bit is in ACE state, we start by assuming that

ACE periodun-ACE period

Time

ta
tw td ta

tw
tr

1
tr

n
td

(a) Written but not read (b) Written and read n times

Time

un-ACE period

Figure 2. ACE periods of two register versions.

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

vo
rt

ex

tw
ol

f

vp
r

In
tA

vg −

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

%
 L

ife
tim

e

0

20

40

60

80

100
PreWrite Useful PostLastRead

Figure 3. Integer versions lifetime breakdown.

its whole lifetime is in ACE state, and then we remove the
fraction that can be proven un-ACE. The fraction left is an
upper bound on the ACE time.

As an example, Figures 2(a) and (b) show two register
versions and their ACE and un-ACE periods. In both cases,
a free physical register R is allocated at time ta and deal-
located at time td. During its PreWrite period, it remains
in un-ACE state. At time tw, R is written to and, if it will
be consumed at least once, it switches to ACE state. Fig-
ure 2(a) depicts a register version that is never read, so it
remains in un-ACE state for its whole lifetime. Figure 2(b)
shows a register version that is consumed n times, so it en-
ters ACE state at tw and remains in it until it is read for the
last time at trn. A register version is in un-ACE state during
its PostLastRead period.

There is one case where a register is read and it should
still remain in un-ACE state. This is when the reader in-
structions are eventually squashed and, therefore, are never
committed. For simplicity, however, in this work we do not
consider it; if a register will be read, it is ACE.

2.3. Two Key Observations

Our analysis of SPECint and SPECfp 2000 applications
for an out-of-order superscalar processor with 128 integer
physical registers (Section 5) enables us to make two key
observations.

The Combined Useful Time of All the Registers is
Small. We observe that the time a register version is in
Useful state is only a small fraction of the register’s lifetime.
Figure 3 shows the average integer register’s PreWrite, Use-
ful, and PostLastRead times for both SPECint and SPECfp
applications. As shown in the figure, on average only 22%
and 15% of the register lifetime is Useful for SPECint and
SPECfp applications, respectively. Therefore, there is no
need to provide protection for the whole lifetime of a regis-
ter version.

Figure 4 shows the average number of integer physi-
cal registers that are in Useful state at a given time. For
SPECint, the average is less than 20 registers out of 128.
For SPECfp, it is approximately 17 out of 128.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

vo
rt

ex

tw
ol

f

vp
r

In
tA

vg −

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg#

 P
hy

si
ca

l R
eg

is
te

rs

0

6

12

18

24

30

Figure 4. Average number of integer physical reg-
isters in useful state.

(a) Allocated register versions

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

of

 v
er

si
on

s
(%

)

0

20

40

60

80

100
Long Short

(b) Useful lifetime

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

U
se

fu
l L

ife
tim

e
(%

)

0

20

40

60

80

100
Long Short

Figure 5. Short- and long-lived integer register ver-
sions characterization.

Overall, we conclude that it is possible to reduce the vul-
nerability of the register file by only protecting a subset of
carefully chosen registers at a time.

A Few Long-Lived Registers Provide Much of the To-
tal Useful Time. The second observation is that not all the
register versions are equally vulnerable to soft errors. A
small set of long-lived versions account for a large fraction
of the time that registers need to be protected. For this sec-
tion only, we say that a register version is short-lived if by
the time it is written, an instruction that reads or writes the
same architectural register has been renamed. We call the
other versions long-lived.

To see this effect, consider Figures 5(a) and 5(b). For
each SPEC application, Figure 5(a) shows the percentage
of long- and short-lived integer register versions. On aver-
age, less than 10% of the register versions are long-lived for
SPECint and SPECfp. Figure 5(b) shows the percentage of
the useful lifetime that long- and short-lived versions con-
tribute to. On average, about 40% of the contribution comes
from these few long-lived register versions. Specifically, in
the case of SPECfp, 5% of versions account for 46% of the
useful lifetime. Therefore, it is cost-effective to give higher
protection priority to these long-lived register versions.

3. ParShield: Protecting the Register File

To provide cost-effective protection for register files, we
propose ParShield. ParShield is composed of (i) the Shield

ECC

.

.

.

ECC

Generator To ROB

Original Datapath

Register File

Read / Write

ECC Table

Write

Read

Tag Data

ECC
Status

Read

RegData

Data ECC

ECC

ECC

Checker

.

.

.

Shield
Tag

Parity

Figure 6. Shield architecture.

structures and (ii) the parity support. In this section, we
describe the architecture, focusing mostly on Shield.

3.1. Shield Concept

ParShield relies on the Shield concept, which involves
using ECCs to selectively protect only the subset of most
vulnerable registers while they contain useful data. Shield
supports three operations on one such register: (i) when the
register is written, Shield generates and saves the ECC of
the written data, (ii) when the register is read, Shield checks
whether the register contents are still valid, and (iii) Shield
keeps the ECC of the data until the register is read for the
last time. Shield assumes a single-bit fault model.

Figure 6 shows the Shield architecture. It adds three
hardware components to a traditional register file for an out-
of-order processor: a table that stores the ECCs of some
registers, a set of ECC generators and a set of ECC check-
ers. The ECC table is organized as a CAM. It protects the
most vulnerable register versions in the register file. Each
entry protects one register version and consists of: (i) a tag
with the physical register number, (ii) a parity bit for the
tag, (iii) the ECC bits of the data in the register, and (iv) a
set of Status bits that are used during the replacement of the
ECC table entries.

When a physical register is about to be written, a request
for protection is sent to Shield. If Shield decides to pro-
tect the register, it tries to allocate an entry for that version.
The entries in the ECC table are not pre-allocated during
the register renaming stage because there is no need to pro-
tect a register version during PreWrite time. Once an entry
has been successfully allocated in the ECC table, an ECC
generator calculates the ECC of the register data in parallel
with the register write operation.

When a physical register is read, the register file sends
its data to both the datapath and Shield (Figure 6). Shield
checks whether there is an entry in the ECC table whose tag
matches the physical register number. If so, Shield checks
the tag’s parity, and sends the corresponding ECC to an
ECC checker to verify the data’s integrity. If an error is

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

detected in the tag — thanks to the parity bit — the cor-
responding entry in the ECC table is invalidated and the
processor proceeds. If the ECC checker detects an error in
the register data, the processor stalls and takes the follow-
ing actions to recover from the error: (i) it fixes the register
data, (ii) it flushes the reorder buffer (ROB) from the oldest
instruction that reads the register version, and (iii) it flushes
the whole ECC table and resumes. Finally, if there is no
error, the ECC checker signals no error and the processor
proceeds.

Each entry of the ROB is augmented with two Finish
bits, one for each of the two potential source operand regis-
ters. These bits are set if, when the corresponding operand
was read, it either completed the ECC check or was not pro-
tected by Shield. Single-operand instructions have one bit
always set.

When an instruction reaches the head of the ROB and is
ready to retire, the Finish bits are checked. If at least one of
the bits is not set, the instruction cannot retire; it has to wait
for the ECC checker to finish and set the bit(s), or for the
ROB to get full. In the latter case, the instruction is retired
without taking the Finish bits into consideration in order to
minimize performance degradation. Our experiments show
that the ROB provides enough slack for the ECC checker to
verify the integrity of the data without affecting the IPC.

An entry in the ECC table is deallocated and assigned to
another register version when the Shield replacement algo-
rithm decides to evict it or when a new version of the same
physical register is written and sent to Shield for protection.
When an entry is evicted from the ECC table, its associated
register version will no longer be protected.

3.2. Entry Allocation and Replacement

When Shield receives a request for protection for a phys-
ical register version, it tries to allocate an entry in the ECC
table. If there is an entry in the table protecting a previous
version of the same physical register, Shield re-assigns the
entry to the new version. Otherwise, Shield attempts to pick
a free table entry. Since the table is much smaller than the
register file, there may be no free entry, and a decision has to
be made to either replace an existing entry in the ECC table
or abort the allocation. Entry replacement has to be done
carefully. Replacing a recently-allocated entry that protects
a long-lived register to accommodate a new one that will
protect a short-lived register increases the vulnerability of
the system. Therefore, Shield needs to predict the lifespan
of register versions.

3.2.1. Predicting Short- and Long-lived Registers. When
Shield considers evicting an entry from the ECC table, it
does not know whether the register version that it protects
is still in its useful time or not. Shield’s goal is to evict the
entry that contributes the least to the overall register file’s
AVF. Since a long-lived register contributes more to the reg-
ister file’s AVF than a short-lived one, Shield tries to evict

LOAD R1 <- R3, 200

ADD R4 <- R1, R6

...

MUL R1 <- R8, R9

Original code

LOAD P12 <- P13, 200

ADD P7 <- P12, P16

...

MUL P21 <- P18, P19

Renamed code

0

1

12 # Regs - 1

Renamed Vector

Figure 7. Predicting short-lived registers.

short-lived registers. To this end, Shield extends the short-
lived register predictor proposed by Ponomarev et al. [12].
In the following, we first describe their approach and then
how we augment it.

Figure 7 illustrates how Ponomarev et al.’s short-lived
register predictor works. It maintains a bit vector, called
Renamed, that has one bit per physical register. In Figure 7,
under original code, a LOAD instruction loads into archi-
tectural register R1. After R1 is used in the ADD instruc-
tion, the MUL instruction overwrites R1. Therefore, the
MUL is a renamer for the LOAD. In the renamed code, R1
has been renamed to P12. When the MUL is renamed, it
sets the bit Renamed[12]. If by the time the LOAD loads
the data into P12, the Renamed[12] bit is set, P12 is consid-
ered to be short-lived.

Although this predictor is simple and often effective, it
is limited. Specifically, suppose that the ADD is the only
consumer of R1. In this case, we would want to consider
P12 to be a short-lived register. However, if the LOAD has
loaded the data before the MUL is renamed, P12 will not be
predicted as a short-lived register.

To extend the capability of Ponomarev et al.’s algo-
rithm, we reformulate the Renamed vector. We call it the
Events vector, and it has two bits for each physical register,
namely Events.Renamed and Events.Used. The rules for the
Events.Renamed bit are identical to the Ponomarev et al.’s
scheme. The new Events.Used bit is set when renaming an
instruction that consumes the physical register. Based on
the Used and Renamed bits, when we are about to write
to a physical register, we predict the register’s lifespan as
one of the following four types: 1) long-lived, if both Used
and Renamed bits are reset, 2) dead, if only the Renamed
bit is set, 3) short-lived, if only the Used bit is set, and 4)
ultrashort-lived, if both Used and Renamed bits are set.

Figure 8 shows an example of how our proposed predic-
tor works. In the original code, the MUL and DIV instruc-
tions act as the renamers for the first and second LOAD
instructions, respectively. Therefore, the Events.Renamed
bits of P12 and P7 are both set. Our algorithm also sets
the Events.Used bit of P12 because R1 is used by the ADD.
However, since R2 is never used, the Events.Used bit of P7
remains reset. The four possible combinations of the Used
and Renamed bits are shown in Figure 8(b). Dead register
versions are not protected by Shield.

3.2.2. Entry Replacement. For each protection request,
Shield receives the register’s Events bits along with the reg-
ister number and data. If there is neither an entry protect-
ing the same physical register nor a free entry in the ECC

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

LOAD R1 <- R3, 200

LOAD R2 <- R3, 500

ADD R4 <- R1, R6

...

MUL R1 <- R8, R9

DIV R2 <- R10, R11

Original code

LOAD P12 <- P13, 200

LOAD P7 <- P13, 500

ADD P14 <- P12, P16

...

MUL P21 <- P18, P19

DIV P22 <- P20, P21

Renamed code

(a) Updating the Events Vector

Used Renamed Prediction

0 0
0 1
1 0
1 1

long
dead
short
ultrashort

(b) Prediction based on the Events bits

Events Vector

0 12 # Regs - 17

1 10 1

Used
Renamed

Figure 8. Predicting the lifespan of physical register versions.

table, Shield has to replace an existing entry or abort the al-
location. Note that ECC table entries can only be allocated
when a register version is written. Once a register version
loses its ECC table entry, it cannot get a new one, and re-
mains unprotected for the rest of its lifetime.

We propose a replacement policy that we call Effective.
It uses the expected lifespan of a register version to select
the entry to replace. It works as follows: when a victim
entry is needed, Shield tries to select an entry that protects
a register version with a shorter or same expected lifespan
than the one to be protected. If such an entry is unavailable,
Shield aborts the allocation. Table 1 shows the types of en-
tries that can be replaced for a register version according
to its prediction. For example, if a register version is pre-
dicted as short, it tries to replace an entry marked as free,
ultrashort, and then short — in this priority order.

Table 1. Effective replacement policy in ECC table.

Prediction Entries that can be replaced
Long Free, Ultrashort, Short, Long
Short Free, Ultrashort, Short

Ultrashort Free, Ultrashort

We also dynamically adjust the entry type to reflect
the fact that the expected lifespan gets shorter after reads.
When an ultrashort or short entry is read, the type changes
to free or ultrashort, respectively. The type of long entries
is never changed since these entries tend to have long lifes-
pans and may be read many times during their lifetime.

The information about the type of register version that
an ECC table entry contains is kept in two Status bits (Fig-
ure 6). The four possible states of the Status bits are long,
short, ultrashort, and free.

3.3. Entry Deallocation

An ECC table entry protects a given register version un-
til the replacement algorithm reassigns the entry to another
version. After a register version is read for the last time, it
is effectively stale, and it is useless to protect it anymore.
Ideally, Shield would like to know the time of the last read
to a register version so that it can deallocate the entry then.
However, Shield has no way of knowing whether a read is
the last one. Therefore, it is possible to have stale entries
in the ECC table. These stale entries hurt the efficiency of
Shield because they protect nothing and occupy resources.
The situation is worse if these stale entries are marked as

long, because they have less chance of being replaced com-
pared to short ones.

To remove stale entries from the ECC table — especially
the ones marked as long — we send explicit signals (called
eviction signals) to the ECC table to indicate which entries
just became stale. When the ROB sends a signal to release
a physical register, this same signal is also forwarded to the
ECC table as an eviction signal. If the ECC table has the
corresponding entry, it marks it as free.

3.4. Error Recovery

Since we use single error correction with double error
detection (SEC-DED) codes in this study, Shield allows the
processor to recover from transient single-bit errors in the
register file and detect double-bit errors. Although the pro-
cessor may also recover from some double-bit errors, in this
paper we only focus on single-bit errors.

When an ECC checker detects that the register data read
by instruction I has a single-bit error, the processor stalls
and enters recovery mode. First, the checker fixes the error
and writes the corrected data back to the physical register
(say P). Second, Shield examines the ROB looking for the
oldest instruction that reads P and flushes that instruction
as well as the others that follow it. Note that only flush-
ing I and the instructions that follow it is not enough to
recover from the error. Imagine that an instruction J older
than I reads P after I did, but before the error is detected
by the ECC checker. The data that J reads has already been
corrupted. Consequently, the processor has to flush from
the oldest instruction that reads P . The ECC table is then
flushed so no entry in the ECC table protects one of the
registers that were removed from the ROB. Finally, the pro-
cessor can resume.

If an error occurs in a mispredicted path, Shield will still
recover from it for simplicity.

3.5. AVF of a Register File with Shield

Figure 9 shows different physical register versions, their
associated ECC table entry, and the time during which they
are vulnerable to errors (ACE cycles). In Figure 9(a), Shield
cannot allocate an entry for the register version and, there-
fore, the register is in ACE state during its whole useful
lifetime. In Figure 9(b), an entry was protecting the regis-
ter version but is evicted before the version is read for the
first time. As a result, the register is in ACE state during its
whole useful lifetime. In Figure 9(c), the entry is evicted
after the register version is read at least once but before its

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

ACEun-ACE Entry Allocated in the ECC table

time

a) Not Allocated

X

Register

ECC Table
Entry

b) Wasted c) Insufficient d) Exceeding

ta tw
tr

1
tr

n
td ta tw

tr
1

tr
n

td ta tw
tr

1
tr

n
td ta tw

tr
1

tr
n

td
tr

2

Figure 9. Computing the AVF of different physical register versions.

last read. Consequently, Shield only protects the version
until the read just before the eviction. After that read, the
register is in ACE state. Finally, in Figure 9(d), the ECC
entry remains allocated for the whole useful lifetime of the
register version. The version is completely protected and
is never in ACE state. However, the longer an entry pro-
tects a dynamically dead register, the less efficient Shield
is. By using the eviction signal described in Section 3.3, we
are able to mitigate this effect. Using the four cases in this
figure, we can compute the ACE cycles of each register ver-
sion. Since the AVF of a physical register is the fraction of
ACE cycles, we can then easily compute the AVF of each
physical register and of the whole register file.

To calculate the overall AVF of the system, we also have
to take into account the possibility of a bit flip in the ECC
table or the Finish bits in the ROB. The tag in the ECC table
is protected by the parity bit, and therefore a bit flip in this
field can be detected. Shield then deallocates the damaged
entry from the ECC table. A bit flip in the ECC field can
be easily detected and corrected during the integrity check.
A bit flip in the Status bits will not affect the correctness of
the system — only the efficiency of Shield. Thus, the AVF
of the ECC table is 0.

Finally, the AVF of the Finish bits is also 0, assuming a
single-bit error model. If any of the Finish bits flips to 0,
the corresponding instruction will stay longer at the head
of the ROB, but will eventually retire when the ROB gets
full. If any of the Finish bits flips to 1, the instruction might
retire before it is actually checked. However, since we are
assuming than only one error can occur at a time, no other
error can occur and the register data has to be correct.

3.6. ParShield: Shield Plus Full Register Parity

Finally, we extend Shield with storage for a parity bit
for all the physical registers in the processor, and re-use the
ECC circuitry for parity generation and checking as well.
The result is the complete ParShield architecture. With the
parity bit, ParShield reduces the SDC AVF to zero (all er-
rors are detected) — although the DUE AVF is equal to the
AVF of plain Shield (the exposure to non-correctable errors
remains the same as in plain Shield). Moreover, this is ac-
complished at a very small cost in hardware and power.

Specifically, consider when a register write sends a pro-
tection request to the ECC table. While ParShield is check-
ing if it should generate the data’s ECC and enter them in
the table — depending on the type of register version and
the current contents of the ECC table — ParShield uses one
ECC generator to compute the data’s parity and store it in

a Parity bit vector. Such operation takes a small fraction of
the time taken by the generation of the full ECC.

In the same way, consider when a register read sends
a request to the ECC table. While ParShield is check-
ing if the ECC table contains the corresponding entry,
ParShield reads the Parity bit vector and uses one ECC
checker to check the parity. Again, this operation takes lit-
tle time. Moreover, computing and checking the parity bits
consumes much less power than computing and checking
ECCs.

4. Implementation Issues

4.1. Bypass Network

Processors use the bypass network to send results from
one functional unit to another so that dependent instructions
can execute back to back. We therefore need to include
register bypassing in our model of AVF. We distinguish two
kinds of bypasses for a register version: (i) all its consumers
read the value from the bypass network, and (ii) some of the
consumers read it from the register file while others read it
from the bypass network. We refer to the former as full
bypass and to the latter as partial bypass.

Calculating the AVF for register versions that are fully
bypassed is straightforward. Since the data stored in the
register file is never used, their AVFs are zero. On the other
hand, partially bypassed versions need to be protected from
the time the data is written until their last non-bypassed
read.

Figure 10(a) shows an example where an ADD instruc-
tion generates a version of register P1, which is then read
by subsequent MUL and SUB instructions. We assume that
the SUB is P1’s last use. Figure 10(b) shows the ACE and
un-ACE periods if the result is fully bypassed. Neither the
MUL nor the SUB accesses the register file. Therefore, this
P1 version remains un-ACE during its entire lifetime. In
Figure 10(c), the SUB instruction reads P1 from the register
file and, therefore, P1 remains ACE until the SUB executes.

4.2. Accessing the ECC Table

The ECC table needs fewer ports than the register file.
The reason is that the table is not as performance-critical as
the register file and, therefore, does not need to be multi-
ported for the worst case — twice as many read ports as the
issue width and as many write ports as the issue width. Con-
sequently, we reduce the number of ports and perform the
ECC generation and checking off the critical path. If nec-
essary, we support some small queueing of requests, which

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

ACE

un-ACE

b) Fully bypassed P1

time
P1

alloc write, readmul, readsub
dealloc

ADD P1 <- P2, P3

MUL P6 <- P1, P8

SUB P7 <- P1, P9

time
P1

c) Partially bypassed P1

alloc Write, readmul readsub deallocun-ACE

a) Source code

Figure 10. ACE and un-ACE periods for fully and partially bypassed register versions.

does not affect performance because instructions often wait
in the ROB for a long period before committing.

In reality, there is rarely any queueing. One reason is that
many instructions have fewer than two register operands.
Moreover, many reads obtain their data from the bypass
network and, therefore, do not access the ECC table. In
addition, many register writes do not create an entry in the
ECC table. Specifically, dead versions (Section 3.2.1), ul-
trashort versions that find the table full with non-ultrashort
versions, and short versions that find the table full with long
versions, skip ECC generation and table update.

In some cases, ParShield adds additional updates to the
ECC table tags. These are caused by the eviction signals
(Section 3.3). However, these signals are infrequent. They
are only sent when the physical register to be freed was pre-
dicted as long. The rationale is that short and ultrashort
register versions are aged automatically and evicted from
the ECC table at a much faster pace than long ones — typi-
cally before the register is freed. Since Figure 5 shows that,
on average, less than 10% of the register versions are long,
the eviction signals are infrequent.

4.3. Using More Architectural Knowledge to Im-
prove Efficiency

We extend the algorithm of Section 3.2.1 that predicts
the lifespan of register versions, to leverage the usage pat-
terns of one architectural register. The goal is to improve
the prediction accuracy, given that some architectural reg-
isters have a specific purpose and, therefore, special usage
patterns. Specifically, the global pointer register is writ-
ten very few times during the execution of a program but is
read many times and has a very long lifespan. Therefore,
in the ECC table, we pin the entry that protects the physical
mapping of the global pointer until it receives an eviction
signal. Similar optimizations could be done by also consid-
ering other architectural registers.

5. Evaluation Methodology

We use a cycle-accurate execution-driven simulator [14]
to model the processor and memory system architecture of
Table 3. The architecture is a MIPS-like 3-issue out-of-
order processor with two levels of caches, a 128-entry inte-
ger register file with 6 read and 3 write ports, and a 64-entry
floating-point register file with 4 read and 2 write ports.

We evaluate the performance and the power of this ar-
chitecture with the register file configurations of Table 2.
Baseline is the architecture with no protection for the reg-
ister files. Shield is Baseline plus the Shield architecture of
Section 3.1. As shown in Table 3, the ECC table for the

Table 2. Register configurations evaluated.

Configuration Description
Baseline Register files with no parity or ECC protection
Shield Baseline + Shield (Section 3.1)
ParShield Shield + parity for all registers (Section 3.6)
FullECC Baseline + ECC for all registers

integer register file has 32 entries and 3 read and 3 write
ports; the ECC table for the floating-point register file has
16 entries and 2 read and 2 write ports. The number of ECC
generators and checkers is the same as the number of write
and read ports in the ECC table, respectively. ParShield is
Shield plus the parity bit for all registers (Section 3.6). Fi-
nally, FullECC is Baseline plus ECC for all the 128 integer
registers and 64 floating-point registers. In all cases, 8-bit
ECC codes are used to protect the 64-bit registers.

We evaluate the architectures with SPECint and SPECfp
2000 applications running the Ref data set. All of the appli-
cations are included except those that are not supported by
our current framework. The applications are compiled us-
ing gcc-3.4 with -O3 optimization enabled. After skipping
the initialization (typically 1-6 billion instructions), each
application executes around 1 billion instructions.

Since applications do not run to completion, we are un-
able to determine whether or not a register is in ACE state
when the simulation finishes. For example, if a simulation
ends right after tw in Figure 2(a), we would not know if the
period after the write is ACE or un-ACE. To handle these
edge effects, we use the cooldown technique that was pro-
posed by Biswas et al. [1]. During the cooldown interval,
we track the registers that were live at the moment that the
simulation stopped. This helps us determine if a register
was in ACE or un-ACE state.

6. Evaluation

In this section, we first examine the AVF results and
the power and area consumption, then perform a sensitivity
analysis, and finally examine register lifespan prediction.

6.1. AVF Results

We compare the AVF of Baseline to that of Shield with
different replacement policies in the ECC table: Random,
LRU, Effective (proposed in Section 3.2.2), and OptEffec-
tive. The latter augments Effective with the pinning opti-
mization described in Section 4.3. Recall that ParShield
has an SDC AVF equal to zero (all errors are detected) and
a DUE AVF equal to Shield’s AVF. Finally, the AVF of Ful-
lECC is zero.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

Table 3. Processor and memory system modeled. Cycle counts are in processor cycles.

Processor Register File Cache & Memory ParShield

Frequency 4 GHz Integer: L1 Cache: Integer:
Fetch/Issue/Retire 6/3/3 Entries 128 Size, assoc, line 16KB, 4, 64B ECC table entries, width 32, 18 bits
ROB size 126 Width 64 bits Latency 2 cycles R/W ports 3/3
I-window 68 R/W ports: 6/3 L2 Cache: ECC latency 4 cycles
LD/ST queue 48/42 Size, assoc, line 1MB, 8, 64B
Mem/Int/FP unit 2/3/2 FP: Latency 12 cycles FP:
Branch predictor: Entries 64 ECC table entries, width 16, 17 bits

Mispred. Penalty 14 cycles Width 64 bits Memory: R/W ports 2/2
BTB 2K, 2-way R/W ports: 4/2 Latency 500 cycles ECC latency 4 cycles

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

In
t.R

eg
.F

ile
 A

V
F

0

0.05

0.1

0.15

0.2

0.25

Baseline Random LRU Effective OptEffective

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

F
P

.R
eg

.F
ile

 A
V

F

0

0.03

0.06

0.09

0.12

0.15

Baseline Random LRU Effective OptEffective

Figure 11. Integer (top) and floating-point (bottom)
register file AVFs.

Figure 11 and shows the AVFs of the integer (AVFint)
and floating-point (AVFfp) register files for the described
configurations. The AVFs are shown for all simulated
SPECint and SPECfp applications. Since there are almost
no floating-point operations in the SPECint applications, we
do not discuss the AVFfp for SPECint, and only show it in
Figure 11 for completeness.

Figure 11 shows that, for all applications and on both
register files, Effective and, especially OptEffective, have an
AVF much lower than Baseline. For example, Effective re-
duces the AVFint for SPECint by 63% on average and the
AVFfp for SPECfp by 42% on average relative to Baseline.
OptEffective reduces the AVFint for SPECint by up to 84%
(on average 73%) and the AVFfp for SPECfp by up to 100%
(on average 85%) relative to Baseline. The resulting aver-
age AVFint for SPECint is 0.040 and the average AVFfp for
SPECfp is 0.010. As expected, Random and LRU perform
worse than chosen policies.

In general, Shield works slightly better for the floating-
point register file because it has a smaller fraction of reg-
isters in useful state than the integer one. In addition, it is
easier to predict the lifespan of floating-point registers. As
shown in Figure 11, Shield reduces the AVFfp to nearly zero
for art, mgrid, swim and wupwise.

6.2. Power and Area Consumption

Register files consume a significant fraction of the power
in modern processors. For example, one estimate suggests

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

N
or

m
al

iz
ed

 P
ow

er

0
0.5
1

1.5
2

2.5
3

Baseline Shield ParShield FullECC

Figure 12. Integer register file power consumption.

that the integer register file consumes around 14% of the dy-
namic power in the processor [17]. We use CACTI 4.2 [19]
to estimate the dynamic and static power of storage struc-
tures such as the register file, the ECC table, and the ECC
and parity bit-fields. We use HSpice [5] models to estimate
the dynamic and static power of the ECC logic.

In Figure 12, we show the total power (dynamic plus
static) consumed in the integer register file for the differ-
ent register configurations. For each application, the bars
are normalized to Baseline. We do not include data for
the floating-point register file because, as explained before,
many of our applications do not use it much and, therefore,
the average differences between configurations are small.

The figure shows that FullECC consumes on average
100% more power than Baseline for both SPECint and
SPECfp applications. This is due to the combination of
the ECC generators and checkers, and the additional stor-
age for the ECC bits. With Shield, the average power is
only 78% and 74% of FullECC for SPECint and SPECfp,
respectively. This results mainly from the fewer ECC gen-
erators and checkers, and the fewer ECC operations per-
formed — although the tags and ports in the ECC table are
a significant source of power consumption.

Figure 12 also shows that ParShield consumes only
slightly more power than Shield. The difference is small
because the parity bits consume little power to generate,
store and check. Overall, with ParShield, the average power
is 81% and 78% of FullECC for SPECint and SPECfp,
respectively. Both ParShield and Shield are more power-
efficient than FullECC.

Finally, we estimate the area of the register file and the
additional ECC and parity structures using CACTI 4.2. The
area of the ECC logic is not added because it is negligi-
ble. Adding up the contributions of both the integer and the
floating-point register files, we find that FullECC uses 4.9%
more area than Baseline. Moreover, Shield and ParShield

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg .0 ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

N
or

m
al

iz
ed

 IP
C

0

0.2

0.4

0.6

0.8

1
(6R,4W) (3R,3W) (2R,3W) (1R,3W)

Figure 13. Impact of the number of ECC table ports
on the IPC.

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

.

ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

F
P

A
vg

N
or

m
al

iz
ed

 A
V

F

0
0.5
1

1.5
2

2.5
3

(6R,4W) (3R,3W) (2R,3W) (1R,3W)

Figure 14. Impact of the number of ECC table ports
on the integer register file AVF.

use 15.7% and 17.6% more area than FullECC, respec-
tively. This area increase is tolerable, given the power sav-
ings provided.

6.3. Sensitivity Analysis

To gain insight into the operation of Shield, we examine
the impact of the number of read and write ports in the ECC
table. Figures 13 and 14 show the IPC (Instructions Per
Cycle) and the integer register file AVF, respectively, when
we use x read ports and y write ports (xR, yW) in the ECC
table. For each application, the bars are normalized to the
(6R, 4W) configuration.

Figure 13 shows that, as we go from (6R, 4W) — the
same number of ports and type as in the integer register
file — to (3R, 3W) — our design choice — the IPCs re-
main constant. This is because Shield performs the ECC
generation and checks off the critical path, queues requests
when necessary, and leverages the slack given by the ROB.
However, when we further reduce the number of read ports,
performance suffers. With (2R, 3W), the average IPC de-
creases by 6.9% for SPECint and by 4.2% for SPECfp.
With (1R, 3W), there is a 50% performance penalty because
now the ECC table becomes a major bottleneck.

Figure 14 shows the impact on the AVF of the integer
register file. With our design choice (3R, 3W), the AVF
changes negligibly over (6R, 4W). With (2R, 3W) and (1R,
3W), however, the AVF increases noticeably.

Overall, from this section and the previous one, we see
that the (3R, 3W) design corresponds to a good tradeoff be-
tween performance, AVF, and power.

6.4. Register Lifespan Prediction

Finally, we examine the accuracy of the register lifespan
predictor used in Shield (OptEffective). Figure 15 shows

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

R
eg

is
te

r
V

er
si

on
s

(%
)

0

20

40

60

80

100
Ultrashort Short Dead Long

Figure 15. Breakdown of the types of register ver-
sions predicted.

Useful lifespan (cycles)

0 10 20 30 40 50 60 70 80

R
eg

is
te

r
V

er
si

on
s

(%
)

0

20

40

60

80

100
Ultrashort Short Long

Figure 16. Cumulative distribution of useful lifes-
pan for Ultrashort, Short, and Long registers.

the fraction of integer register versions that OptEffective
predicts of each type. We can see that, on average, it pre-
dicts over 60% as Ultrashort and only 10% as Long. Fig-
ure 16 shows the cumulative distribution of the useful lifes-
pan for the register versions predicted as Ultrashort, Short,
and Long. From the figure, we see that OptEffective cor-
rectly separates the three types of registers. Indeed, most
register versions predicted as Long have over 30 cycles of
useful lifespan, while 95% of the register versions predicted
as Ultrashort have less than 10 cycles of useful lifespan.

However, OptEffective does not possess oracle knowl-
edge. Figure 17 compares Shield’s AVF using OptEffec-
tive and an oracle algorithm (Oracle) for register lifespan
prediction. For completeness, it also shows the AVF with
Ponomarev et al.’s predictor (Section 3.2.1). The figure
shows that, on average, OptEffective is very close to Ora-
cle. The remaining AVF largely results from the fact that,
for some parts of the applications, there are more registers
in Useful state than entries in the ECC table.

7. Related Work

Fully protected register files. Traditional fault-tolerant
designs protect the entire register file with parity or ECC.
The IBM S/390 G5 [18] uses duplicated, lockstepped
pipelines to ensure that only correct data updates the ECC-
protected structure that stores the architectural state of the
processor. The ERC32 [3] is a SPARC processor with
parity-protected registers and buses that also performs pro-
gram control flow, which imposes extra overhead. Like the
ERC32, the Intel Montecito [9] also utilizes parity to pro-
tect the whole register file. Both the ERC32 and the Intel
Montecito require software intervention to recover when a
fault is detected. Our ParShield design uses parity to de-
tect all single-bit errors, and the Shield concept to recover
from most single-bit errors — by selectively protecting the

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

bz
ip

2

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

In
tA

vg

A
V

F

0

0.04

0.08

0.12

0.16

0.2
Ponomarev Shield Oracle

Figure 17. Comparing the AVF for different register
lifespan prediction algorithms.

register versions that contribute the most to the overall vul-
nerability of the register file. Processor performance is not
affected. The result is a design with a very cost-effective
tradeoff between DUE AVF and power.

Partially protected register files. Memik et al. [10]
proposed the duplication of actively-used physical registers
in unused register locations. While their approach can en-
hance reliability with minimal performance degradation, it
can only detect errors, but not recover from them. Yan et
al. [22] proposed using the compiler to assign the most
vulnerable variables to a set of ECC-protected registers.
ParShield does not need to re-compile the programs because
it offers a hardware-only solution.

Register lifetime analysis. Lozano and Gao [7] used
the compiler to identify short-lived variables and prevented
their values from going to the register file, thus reducing
register pressure. Sangireddy and Somani [15] reduced the
access time to the register file by exploiting useless peri-
ods in the register lifetime. Ponomarev et al. [12] used a
small dedicated register file to cache short-lived operands
to reduce the energy consumption in the ROB and the ar-
chitectural register file. ParShield differs from all these pro-
posals in that it proposes a hardware scheme to distinguish
between ultrashort-, short- and long-lived operands, and ex-
ploits the difference to enhance the register file reliability.

8. Conclusions

Register files are vulnerable to soft errors because they
are large and contain architectural state. Registers often
store data for long periods of time and are read frequently,
which increases the probability of spreading a faulty datum.
A cost-effective protection mechanism for soft errors in reg-
ister files should have no performance impact, keep the re-
maining AVF to a small value, consume modest power, and
use little area.

In this paper, we have proposed one such mechanism,
namely the ParShield design. ParShield relies on the Shield
concept, which selectively protects a subset of the regis-
ters by generating, storing, and checking the ECCs of only
the most vulnerable registers while they have useful data.
Shield reduces the AVF of the integer register file by an av-
erage of 73% to 0.040, and the AVF of the floating-point
register file by an average of 85% to 0.010. ParShield ex-
tends Shield with a parity bit for all the registers and the
re-use of the ECC circuitry for parity generation and check-

ing as well. As a result, ParShield has no SDC AVF (all
single-bit errors are detected), has a DUE AVF as low as
Shield’s AVF, and consumes on average only 81% and 78%
of the power of a design with full ECC for the SPECint and
SPECfp applications, respectively. Moreover, ParShield has
no performance impact and little area requirements.

References
[1] A. Biswas et al. Computing architectural vulnerability fac-

tors for address-based structures. In International Sympo-
sium on Computer Architecture, June 2005.

[2] E. Czeck and D. Siewiorek. Effects of transient gate-level
faults on program behavior. In International Symposium on
Fault-Tolerant Computing, June 1990.

[3] J. Gaisler. Evaluation of a 32-bit microprocessor with built-
in concurrent error-detection. In International Symposium
on Fault-Tolerant Computing, 1997.

[4] G. Hinton et al. The microarchitecture of the Pentium 4 pro-
cessor. Intel Technology Journal, 2001.

[5] Hspice User’s Manual. Applications and examples, 1996.
[6] S. Kim and A. K. Somani. Area efficient architectures for

information integrity in cache memories. In International
Symposium on Computer Architecture, 1999.

[7] L. A. Lozano and G. R. Gao. Exploiting short-lived variables
in superscalar processors. In International Symposium on
Microarchitecture, 1995.

[8] W. MacKee et al. Cosmic ray neutron induced upsets as a
major contributor to the soft error rate of current and future
generation DRAMs. 1996 IEEE Annual International Reli-
ability Physics, 1996.

[9] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-
thread Itanium processor. IEEE Micro, 2005.

[10] G. Memik et al. Increasing register file immunity to transient
errors. In Design, Automation and Test in Europe, 2005.

[11] S. Mukherjee et al. A systematic methodology to compute
the architectural vulnerability factors for a high-performance
microprocessor. In International Symposium on Microarchi-
tecture, 2003.

[12] D. Ponomarev et al. Isolating short-lived operands for energy
reduction. IEEE Trans. Comput., 2004.

[13] J. Ray et al. Dual use of superscalar datapath for transient-
fault detection and recovery. In International Symposium on
Microarchitecture, 2001.

[14] J. Renau et al. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[15] R. Sangireddy and A. K. Somani. Exploiting quiescent states
in register lifetime. In ICCD, 2004.

[16] P. Shivakumar et al. Modeling the effect of technology trends
on the soft error rate of combinational logic. In International
Conference on Dependable Systems and Networks, 2002.

[17] K. Skadron et al. Temperature-aware microarchitecture. In
International Symposium on Computer Architecture, 2003.

[18] T. Slegel et al. IBM’s S/390 G5 microprocessor design. IEEE
Micro, 19, 1999.

[19] D. Tarjan et al. CACTI 4.0. Tech Report HPL-2006-86, 2006.
[20] N. J. Wang et al. Characterizing the effects of transient faults

on a high-performance processor pipeline. In International
Conference on Dependable Systems and Networks, 2004.

[21] C. Weaver et al. Techniques to reduce the soft error rate of a
high-performance microprocessor. In International Sympo-
sium on Computer Architecture, 2004.

[22] J. Yan and W. Zhang. Compiler-guided register reliability
improvement against soft errors. In International Conference
on Embedded Software, 2005.

[23] J. F. Ziegler et al. IBM experiments in soft fails in computer
electronics (1978-1994). IBM J. Res. Dev., 1996.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /AcademyEngravedLetPlain
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AlBayan
 /AlBayan-Bold
 /AmericanTypewriter
 /AmericanTypewriter-Bold
 /AmericanTypewriter-Condensed
 /AmericanTypewriter-CondensedBold
 /AmericanTypewriter-CondensedLight
 /AmericanTypewriter-Light
 /AndaleMono
 /Apple-Chancery
 /AppleGothic
 /AppleMyungjo
 /AppleSymbols
 /AquaKana
 /AquaKana-Bold
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialHebrew
 /ArialHebrew-Bold
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /Baghdad
 /BankGothic-Light
 /BankGothic-Medium
 /Baskerville
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /Baskerville-SemiBold
 /Baskerville-SemiBoldItalic
 /Batang
 /BigCaslon-Medium
 /BlackmoorLetPlain
 /BlairMdITCTTMedium
 /BodoniOrnamentsITCTT
 /BodoniSvtyTwoITCTTBold
 /BodoniSvtyTwoITCTTBook
 /BodoniSvtyTwoITCTTBookIta
 /BodoniSvtyTwoOSITCTTBold
 /BodoniSvtyTwoOSITCTTBook
 /BodoniSvtyTwoOSITCTTBookIt
 /BodoniSvtyTwoSCITCTTBook
 /BordeauxRomanBoldLetPlain
 /BradleyHandITCTTBold
 /BrushScriptMT
 /Chalkboard
 /Chalkboard-Bold
 /CharcoalCY
 /Cochin
 /Cochin-Bold
 /Cochin-BoldItalic
 /Cochin-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Copperplate
 /Copperplate-Bold
 /Copperplate-Light
 /CorsivaHebrew
 /CorsivaHebrew-Bold
 /Courier
 /Courier-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Cracked
 /DFKaiShu-SB-Estd-BF
 /DecoTypeNaskh
 /DevanagariMT
 /DevanagariMT-Bold
 /Didot
 /Didot-Bold
 /Didot-Italic
 /EuphemiaUCAS
 /EuphemiaUCAS-Bold
 /EuphemiaUCAS-Italic
 /Futura-CondensedExtraBold
 /Futura-CondensedMedium
 /Futura-Medium
 /Futura-MediumItalic
 /GeezaPro
 /GeezaPro-Bold
 /Geneva
 /GenevaCY
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GujaratiMT
 /GujaratiMT-Bold
 /Gulim
 /Handwriting-Dakota
 /Helvetica
 /Helvetica-Bold
 /HelveticaCYBold
 /HelveticaCYBoldOblique
 /HelveticaCYOblique
 /HelveticaCYPlain
 /HelveticaLTMM
 /HelveticaNeue
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-CondensedBlack
 /HelveticaNeue-CondensedBold
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItalic
 /Herculanum
 /HiraKakuPro-W3
 /HiraKakuPro-W6
 /HiraKakuStd-W8
 /HiraMaruPro-W4
 /HiraMinPro-W3
 /HiraMinPro-W6
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Impact
 /InaiMathi
 /JCHEadA
 /JCfg
 /JCkg
 /JCsmPC
 /JazzLetPlain
 /KufiStandardGK
 /LiGothicMed
 /LiHeiPro
 /LiSongPro
 /LiSungLight
 /LucidaGrande
 /LucidaGrande-Bold
 /MS-Gothic
 /MS-Mincho
 /MS-PGothic
 /MS-PMincho
 /MarkerFelt-Thin
 /MarkerFelt-Wide
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MonaLisaSolidITCTT
 /Monaco
 /MonotypeGurmukhi
 /Mshtakan
 /MshtakanBold
 /MshtakanBoldOblique
 /MshtakanOblique
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Nadeem
 /NewPeninimMT
 /NewPeninimMT-Bold
 /NewPeninimMT-BoldInclined
 /NewPeninimMT-Inclined
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-ExtraBlack
 /Optima-Italic
 /Optima-Regular
 /Osaka
 /Osaka-Mono
 /PMingLiU
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Papyrus
 /PartyLetPlain
 /PlantagenetCherokee
 /PortagoITCTT
 /PrincetownLET
 /Raanana
 /RaananaBold
 /SIL-Hei-Med-Jian
 /SIL-Kai-Reg-Jian
 /SantaFeLetPlain
 /SavoyeLetPlain
 /SchoolHouseCursiveB
 /SchoolHousePrintedA
 /SimSun
 /Skia-Regular
 /SnellRoundhand
 /SnellRoundhand-Black
 /SnellRoundhand-Bold
 /StoneSansITC-Bold
 /StoneSansSemITCTTSemi
 /StoneSansSemITCTTSemiIta
 /Symbol
 /SynchroLET
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesLTMM
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TypeEmbellishmentsOneLetPlain
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /ZapfDingbatsITC
 /Zapfino
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

