
Diverge-Merge Processor (DMP): Dynamic Predicated Execution of
Complex Control-Flow Graphs Based on Frequently Executed Paths

Hyesoon Kim José A. Joao Onur Mutlu§∗ Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin

{hyesoon, joao, patt}@ece.utexas.edu

§Microsoft Research
onur@microsoft.com

Abstract
This paper proposes a new processor architecture for handling

hard-to-predict branches, the diverge-merge processor (DMP). The
goal of this paradigm is to eliminate branch mispredictions due to
hard-to-predict dynamic branches by dynamically predicating them
without requiring ISA support for predicate registers and predicated
instructions. To achieve this without incurring large hardware cost
and complexity, the compiler provides control-flow information by
hints and the processor dynamically predicates instructions only on
frequently executed program paths. The key insight behind DMP is
that most control-flow graphs look and behave like simple hammock
(if-else) structures when only frequently executed paths in the graphs
are considered. Therefore, DMP can dynamically predicate a much
larger set of branches than simple hammock branches.

Our evaluations show that DMP outperforms a baseline proces-
sor with an aggressive branch predictor by 19.3% on average over
SPEC integer 95 and 2000 benchmarks, through a reduction of 38% in
pipeline flushes due to branch mispredictions, while consuming 9.0%
less energy. We also compare DMP with previously proposed predica-
tion and dual-path/multipath execution paradigms in terms of perfor-
mance, complexity, and energy consumption, and find that DMP is the
highest performance and also the most energy-efficient design.

1. Introduction
State-of-the-art high performance processors employ deep

pipelines to extract instruction level parallelism (ILP) and to support
high clock frequencies. In the near future, processors are expected
to support a large number of in-flight instructions [30, 42, 10, 7,
13] to extract both ILP and memory-level parallelism (MLP). As
shown by previous research [27, 40, 41, 30, 42], the performance
improvement provided by both pipelining and large instruction
windows critically depends on the accuracy of the processor’s branch
predictor. Branch predictors still remain imperfect despite decades
of intensive research in branch prediction. Hard-to-predict branches
not only limit processor performance but also result in wasted energy
consumption.

Predication has been used to avoid pipeline flushes due to branch
mispredictions by converting control dependencies into data depen-
dencies [2]. With predication, the processor fetches instructions from
both paths of a branch but commits only results from the correct path,
effectively avoiding the pipeline flush associated with a branch mispre-
diction. However, predication has the following problems/limitations:

1. It requires significant support (i.e. predicate registers and predi-
cated instructions) in the instruction set architecture (ISA).

2. Statically predicated code incurs the performance overhead of
predicated execution regardless of whether a branch is easy to
predict or hard to predict at run-time. The overhead of predicated
code is twofolds: (i) the processor always has to fetch instruc-
tions from both paths of an if-converted branch, (ii) the processor
cannot execute predicated instructions or instructions that are de-
pendent on them until the predicate value is resolved, causing ad-

∗This work was done while the author was with UT-Austin.

ditional delay in execution. Previous research showed that pred-
icated execution sometimes hurts processor performance due to
this overhead [9, 22].

3. A large subset of control-flow graphs are usually not converted
to predicated code because either the compiler cannot if-convert
(i.e. predicate) them or the overhead of predicated execution is
high. A control-flow graph that has a function call, a loop, too
many exit points, or too many instructions between an entry point
and an exit point are examples [2, 32, 28, 9, 44, 31].

Several approaches were proposed to solve these prob-
lems/limitations. Dynamic-hammock-predication [23] was proposed
to predicate branches without ISA support. However, dynamic-
hammock-predication can predicate only simple hammock branches
(simple if-else structures with no nested branches), which account
for only a small subset of the mispredicted branches [23]. Wish
branches [22] were proposed to reduce the overhead of predicated
execution. However, wish branches inherit the limitations of software
predication (1 and 3 above) with the exception that they can be
applied to loop branches.

Our goal in this paper is to devise a comprehensive technique that
overcomes the three problems/limitations of predication so that more
processors can employ predicated execution to reduce the mispredic-
tion penalty due to hard-to-predict branches.

We propose a new processor architecture, called the Diverge-
Merge Processor (DMP). DMP dynamically predicates not only sim-
ple but also complex control-flow graphs without requiring predicate
registers and predicated instructions in the ISA and without incurring
large hardware/energy cost and complexity. The key mechanism of
DMP is that it dynamically predicates instructions only on frequently
executed control-flow paths and only if a branch is hard-to-predict at
run-time. Dynamically predicating only the frequently executed paths
allows DMP to achieve two benefits at the same time: 1) the processor
can reduce the overhead of predicated execution since it does not need
to fetch/execute all instructions that are control-dependent on the pred-
icated branch, 2) the processor can dynamically predicate a large set
of control-flow graphs because a complex control-flow graph can look
and behave like a simple hammock structure when only frequently ex-
ecuted paths are considered.

Figure 1 shows a control-flow graph example to illustrate the key
insight behind DMP. In software predication, if the compiler estimates
that the branch at block A is hard-to-predict, it would convert blocks
B, C, D, E, F, and G to predicated code and all these blocks would be
executed together even though blocks D, F, and G are not frequently
executed at run-time [31].1 In contrast, DMP considers frequently ex-
ecuted paths at run-time, so it can dynamically predicate only blocks

1If the compiler does not predicate all basic blocks between A and H be-
cause one of the branches is easy-to-predict, then the remaining easy-to-predict
branch is likely to become a hard-to-predict branch after if-conversion. This
problem is called misprediction migration [3, 39]. Therefore, the compiler (e.g.
ORC [31]) usually predicates all control-flow dependent basic blocks inside a
region (the region is A,B,C,D,E,F,G and H in this example.). This problem can
be mitigated with reverse if-conversion [46, 4] or by incorporating predicate
information into the branch history register [3].

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

B, C, and E. To simplify the hardware, DMP uses some control-flow
information provided by the compiler. The compiler identifies and
marks suitable branches as candidates for dynamic predication. These
branches are called diverge branches. The compiler also selects a
control-flow merge (or reconvergence) point corresponding to each
diverge branch. In this example, the compiler marks the branch at
block A as a diverge branch and the entry of block H as a control-
flow merge (CFM) point. Instead of the compiler specifying which
blocks are predicated (and thus fetched), the processor decides what to
fetch/predicate at run-time. If a diverge branch is estimated to be low-
confidence at run-time, the processor follows and dynamically predi-
cates both paths after the branch until the CFM point. The processor
follows the branch predictor outcomes on the two paths to fetch only
the frequently executed blocks between a diverge branch and a CFM
point.

A A A

A A A

H

H

H

H

H

H

Not frequently executed path
Frequently executed path

B C

D

E

F

NT T

T
NT

NT
T

CFM point

A

H

(b)

Diverge Branch

NT
T

G

(c)

(a)

if (cond1) {A

// block E

D

C

 else {

else {

 }

 if (cond2) {

 }

// block BB

// block F
F

}

// block C

 if (cond3 || cond4){

// block G

}

 }

// block H

Dynamically predicated block

Figure 1. Control-flow graph (CFG) example: (a) source code (b)

CFG (c) possible paths (hammocks) that can be predicated by DMP

The compiler could predicate only blocks B, C, and E based on pro-
filing [29] rather than predicating all control-dependent blocks. Un-
fortunately, frequently executed paths change at run-time (depending
on the input data set and program phase), and code predicated for
only a few paths can hurt performance if other paths turn out to be
frequently executed. In contrast, DMP determines and follows fre-
quently executed paths at run-time and therefore it can flexibly adapt
its dynamic predication to run-time changes (Figure 1c shows the pos-
sible hammock-shaped paths that can be predicated by DMP for the
example control-flow graph). Thus, DMP can dynamically predicate
hard-to-predict instances of a branch with less overhead than static
predication and with minimal support from the compiler. Further-
more, DMP can predicate a much wider range of control-flow graphs
than dynamic-hammock-predication [23] because a control-flow graph
does not have to be a simple if-else structure to be dynamically pred-
icated; it just needs to look like a simple hammock when only fre-
quently executed paths are considered.

Our evaluation shows that DMP improves performance by 19.3%
over a baseline processor that uses an aggressive 64KB branch pre-
dictor, without significantly increasing maximum power requirements.
DMP reduces the number of pipeline flushes by 38%, which results
in a 23% reduction in the number of fetched instructions and a 9.0%
reduction in dynamic energy consumption. This paper provides a de-
tailed description and analysis of DMP as well as a comparison of
its performance, hardware complexity, and power/energy consumption
with several previously published branch processing paradigms.

2. The Diverge-Merge Concept
2.1. The Basic Idea

The compiler identifies conditional branches with control flow suit-
able for dynamic predication as diverge branches. A diverge branch is
a branch instruction after which the execution of the program usually
reconverges at a control-independent point in the control-flow graph,

a point we call the control-flow merge (CFM) point. In other words,
diverge branches result in hammock-shaped control flow based on fre-
quently executed paths in the control-flow graph of the program but
they are not necessarily simple hammock branches that require the
control-flow graph to be hammock-shaped. The compiler also identi-
fies a CFM point associated with the diverge branch. Diverge branches
and CFM points are conveyed to the microarchitecture through modi-
fications in the ISA, which are described in Section 3.11.

When the processor fetches a diverge branch, it estimates whether
or not the branch is hard to predict using a branch confidence esti-
mator. If the diverge branch has low confidence, the processor enters
dynamic predication mode (dpred-mode). In this mode, the proces-
sor fetches both paths after the diverge branch and dynamically predi-
cates instructions between the diverge branch and the CFM point. On
each path, the processor follows the branch predictor outcomes until
it reaches the CFM point. After the processor reaches the CFM point
on both paths, it exits dpred-mode and starts to fetch from only one
path. If the diverge branch is actually mispredicted, then the processor
does not need to flush its pipeline since instructions on both paths of
the branch are already fetched and the instructions on the wrong path
will become NOPs through dynamic predication.

In this section, we describe the basic concepts of the three major
mechanisms to support diverge-merge processing: instruction fetch
support, select-µops, and loop branches. A detailed implementation
of DMP is described in Section 3.

2.1.1. Instruction Fetch Support In dpred-mode, the processor
fetches instructions from both directions (taken and not-taken paths)
of a diverge branch using two program counter (PC) registers and a
round-robin scheme to fetch from the two paths in alternate cycles. On
each path, the processor follows the outcomes of the branch predictor.
Note that the outcomes of the branch predictor favor the frequently
executed basic blocks in the control flow graph. The processor uses
a separate global branch history register (GHR) to predict the next
fetch address on each path, and it checks whether the predicted next
fetch address is the CFM point of the diverge branch.2 If the processor
reaches the CFM point on one path, it stops fetching from that path
and fetches from only the other path. When the processor reaches the
CFM point on both paths, it exits dpred-mode.

2.1.2. Select-µops Instructions after the CFM point should have
data dependencies on instructions from only the correct path of a di-
verge branch. Before the diverge branch is executed, the processor
does not know which path is correct. Instead of waiting for the res-
olution of the diverge branch, the processor inserts select-µops to
continue renaming/execution after exiting dpred-mode. Select-µops
are similar to the φ-functions in the static single-assignment (SSA)
form [14] in that they “merge” the register values produced on both
sides of the hammock.3 Select-µops ensure that instructions depen-
dent on the register values produced on either side of the hammock
are supplied with the correct data values that depend on the correct
direction of the diverge branch. After inserting select-µops, the pro-
cessor can continue fetching and renaming instructions. If an instruc-
tion fetched after the CFM point is dependent on a register produced
on either side of the hammock, it sources (i.e. depends on) the output
of a select-µop. Such an instruction will be executed after the diverge
branch is resolved. However, instructions that are not dependent on
select-µops are executed as soon as their sources are ready without
waiting for the resolution of the diverge branch. Figure 2 illustrates
the dynamic predication process. Note that instructions in blocks C,

2When the predicted next fetch address is the CFM point of the diverge
branch, the processor considers that it has reached the CFM point.

3Select-µops handle the merging of only register values. We explain how
memory values are handled in Section 3.8.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

B, and E, which are fetched during dpred-mode, are also executed be-
fore the resolution of the diverge branch.

H

A

C

E

B

select−uop pr43 = p1? pr13 : pr33
select−uop pr40 = p1? pr20 : pr30

add pr21 <− pr13, #1
pr20 = (cond2)
branch pr20, G

C

add pr31 <− pr12, #−1

sub pr33 <− pr31, pr12
branch.uncond H

B

E

H add pr24 <− pr41, pr43

select−uop pr41 = p1? pr21 : pr31

branch pr10, C

A pr10 = (cond1)
p1 = pr10

(!p1)
(!p1)

(!p1)
pr30 = (cond3) (!p1)

(!p1)

(p1)
(p1)
(p1)

branch pr30, E

(b)(a) (c)

add r1 <− r3, #1 C
r0 = (cond2)
branch r0, G

branch r0, E
r0 = (cond3)
add r1 <− r2, #−1B

sub r3 <− r1, r2
branch.uncond H

E

add r4 <− r1, r3 H

branch r0, C
r0 = (cond1)A

Figure 2. An example of how the instruction stream in Figure 1b

is dynamically predicated: (a) fetched blocks (b) fetched assembly

instructions (c) instructions after register renaming

2.1.3. Loop Branches DMP can dynamically predicate loop
branches. The benefit of dynamically predicating loop branches using
DMP is very similar to the benefit of wish loops [22]. The key mech-
anism to predicate a loop-type diverge branch is that the processor
needs to predicate each loop iteration separately. This is accomplished
by using a different predicate register for each iteration and inserting
select-µops after each iteration. Select-µops choose between live-out
register values before and after the execution of a loop iteration, based
on the outcome of each dynamic instance of the loop branch. Instruc-
tions that are executed in later iterations and that are dependent on
live-outs of previous predicated iterations source the outputs of select-
µops. Similarly, instructions that are fetched after the processor ex-
its the loop and that are dependent on registers produced within the
loop source the outputs of select-µops so that they receive the correct
source values even though the loop branch may be mispredicted. The
pipeline does not need to be flushed if a predicated loop is iterated
more times than it should be because the predicated instructions in the
extra loop iterations will become NOPs and the live-out values from
the correct last iteration will be propagated to dependent instructions
via select-µops. Figure 3 illustrates the dynamic predication process
of a loop-type diverge branch (The processor enters dpred-mode after

pr20 = (cond1)
add pr21 <− pr11, #1

p2= pr20branch A, pr20

select−uop pr22 = p1? pr21 : pr11
select−uop pr23 = p1? pr20 : pr10

A add pr31 <− pr22, #1
pr30 = (cond1)

select−uop pr32 = p2? pr31 : pr22
select−uop pr33 = p2? pr30 : pr23

add pr17 <− pr32, #10B

(c)

branch A, pr10

A

pr10 = (cond1)
add pr11 <− pr1, #1 A

(b)(a)

A

B

p1= pr10

NT T

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r7 <−r1, #10B

(p1)
(p1)
(p1)

(p2)
(p2)
(p2)branch A, pr30

Figure 3. An example of how a loop-type diverge branch is dynam-

ically predicated: (a) CFG (b) fetched assembly instructions (c)

instructions after register renaming

the first iteration and exits after the third iteration).
There is a negative effect of predicating loops: instructions that

source the results of a previous loop iteration (i.e. loop-carried depen-
dencies) cannot be executed until the loop-type diverge branch is re-
solved because such instructions are dependent on select-µops. How-
ever, we found that the negative effect of this execution delay is much
less than the benefit of reducing pipeline flushes due to loop branch
mispredictions. Note that the dynamic predication of a loop does not
provide any performance benefit if the branch predictor iterates the
loop fewer times than required by correct execution, or if the predictor
has not exited the loop by the time the loop branch is resolved.

2.2. DMP vs. Other Branch Processing Paradigms
We compare DMP with five previously proposed mechanisms in

predication and multipath execution paradigms: dynamic-hammock-
predication [23], software predication [2, 32], wish branches [22],
selective/limited dual-path execution (dual-path) [18, 15], and mul-
tipath/PolyPath execution (multipath) [34, 25]. First, we classify
control-flow graphs (CFGs) into five different categories to illustrate
the differences between these mechanisms more clearly.

Figure 4 shows examples of the five different CFG types. Sim-
ple hammock (Figure 4a) is an if or if-else structure that does
not have any nested branches inside the hammock. Nested hammock
(Figure 4b) is an if-else structure that has multiple levels of nested
branches. Frequently-hammock (Figure 4c) is a CFG that becomes a
simple hammock if we consider only frequently executed paths. Loop
(Figure 4d) is a cyclic CFG (for, do-while, or while structure).
Non-merging control-flow (Figure 4e) is a CFG that does not have
a control-flow merge point even if we consider only frequently ex-
ecuted paths.4 Figure 5 shows the frequency of branch mispredic-
tions due to each CFG type. Table 1 summarizes which blocks are
fetched/predicated in different processing models for each CFG type,
assuming that the branch in block A is hard to predict.

Frequently executed path

A

B C

A

F

E

D

A

C

F

E

D

A

C

AA

GG D E

EE

(a)

(e)

BB

(b)

B C

ED F

H

I

B C

ED F

H

I

F G

(d)

C

L

A

B

(c)

BB

F

AA

D

CC

DG

H

Not frequently executed path

Figure 4. Control-flow graphs: (a) simple hammock (b) nested ham-

mock (c) frequently-hammock (d) loop (e) non-merging control flow

Dynamic-hammock-predication can predicate only simple ham-
mocks which account for 12% of all mispredicted branches. Simple
hammocks by themselves account for a significant percentage of mis-
predictions in only two benchmarks: vpr (40%) and twolf (36%). We
expect dynamic-hammock-predication will improve the performance
of these two benchmarks.

Software predication can predicate both simple and nested ham-
mocks, which in total account for 16% of all mispredicted branches.
Software predication fetches all basic blocks between an if-converted
branch and the corresponding control-flow merge point. For example,
in the nested hammock case (Figure 4b), software predication fetches
blocks B, C, D, E, F, G, H, and I, whereas DMP fetches blocks B, C,
D, G, H, and I. Current compilers usually do not predicate frequently-
hammocks since the overhead of predicated code would be too high if

4If the number of static instructions between a branch and the closest
control-flow merge point exceeds a certain number (T), we consider that the
CFG does not have a control-flow merge point. T=200 in our experiments.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 1. Fetched instructions in different processing models (after the branch at A is estimated to be low-confidence) We assume that the

loop branch in block A (Figure 4d) is predicted taken twice after it is estimated to be low-confidence.
Processing model simple hammock nested hammock frequently-hammock loop non-merging

DMP B, C, D, E, F B, C, D, G, H, I B, C, D, E, H A, A, B, C can’t predicate
Dynamic-hammock-predication B, C, D, E, F can’t predicate can’t predicate can’t predicate can’t predicate
Software predication B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicate can’t predicate can’t predicate
Wish branches B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicate A, A, B, C can’t predicate

path1: B, D, E, F path1: B, D, H, I path1: B, D, E, H path1: A, A, B, C path1: B ...Dual-path
path2: C, D, E, F path2: C, G, H, I path2: C, E, H path2: B, C path2: C ...

0

1

2

3

4

5

6

7

8

9

10

M
is

pr
ed

ic
ti

on
s

pe
r

ki
lo

 in
st

ru
ct

io
ns

 (
M

P
K

I) non-merging
loop
frequently
nested
simple

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

16.6

Figure 5. Distribution of mispredicted branches based on CFG type

these CFGs include function calls, cyclic control-flow, too many exit
points, or too many instructions [2, 32, 44, 28, 9, 31]. Note that hyper-
block formation [29] can predicate frequently-hammocks at the cost
of increased code size, but it is not an adaptive technique because fre-
quently executed basic blocks change at run-time. Even if we assume
that software predication can predicate all frequently-hammocks, it
could predicate up to 56% of all mispredicted branches.

Wish branches can predicate even loops, which account for 10%
of all mispredicted branches, in addition to what software predica-
tion can do. The main difference between wish branches and soft-
ware predication is that the wish branch mechanism can selectively
predicate each dynamic instance of a branch. With wish branches, a
branch is predicated only if it is hard to predict at run-time, whereas
with software predication a branch is predicated for all its dynamic
instances. Thus, wish branches reduce the overhead of software pred-
ication. However, even with wish branches, all basic blocks be-
tween an if-converted branch and the corresponding CFM point are
fetched/predicated. Therefore, wish branches also have higher perfor-
mance overhead for nested hammocks than DMP.

Note that software predication (and wish branches) can eliminate
a branch misprediction due to a branch that is control-dependent on
another hard-to-predict branch (e.g. branch at B is control-dependent
on branch at A in Figure 4b), since it predicates all the basic blocks
within a nested hammock. This benefit is not possible with any of
the other paradigms except multipath, but we found that it provides
significant performance benefit only in two benchmarks (3% in twolf,
2% in go).

Selective/limited dual-path execution fetches from two paths af-
ter a hard-to-predict branch. The instructions on the wrong path are se-
lectively flushed when the branch is resolved. Dual-path execution is
applicable to any kind of CFG because the control-flow does not have
to reconverge. Hence, dual-path can potentially eliminate the branch
misprediction penalty for all five CFG types. However, the dual-path
mechanism needs to fetch a larger number of instructions than any of
the other mechanisms (except multipath) because it continues fetching

from two paths until the hard-to-predict branch is resolved even though
the processor may have already reached a control-independent point in
the CFG. For example, in the simple hammock case (Figure 4a), DMP
fetches blocks D, E, and F only once, but dual-path fetches D, E, and
F twice (once for each path). Therefore, the overhead of dual-path
is much higher than that of DMP. Detailed comparisons of the over-
head and performance of different processing models are provided in
Section 5.

Multipath execution is a generalized form of dual-path execution
in that it fetches both paths after every low-confidence branch and
therefore it can execute along many (more than two) different paths
at the same time. This increases the probability of having the cor-
rect path in the processor’s instruction window. However, only one
of the outstanding paths is the correct path and instructions on every
other path have to be flushed. Furthermore, instructions after a control-
flow independent point have to be fetched/executed separately for each
path (like dual-path but unlike DMP), which causes the processing re-
sources to be wasted for instructions on all paths but one. For exam-
ple, if the number of outstanding paths is 8, then a multipath processor
wastes 87.5% of its fetch/execution resources for wrong-path/useless
instructions even after a control-independent point. Hence, the over-
head of multipath is much higher than that of DMP. In the example
of Table 1 the behavior of multipath is the same as that of dual-path
because the example assumes there is only one hard-to-predict branch
to simplify the explanation.

DMP can predicate simple hammocks, nested hammocks,
frequently-hammocks, and loops. On average, these four CFG types
account for 66% of all branch mispredictions. The number of fetched
instructions in DMP is less than or equal to other mechanisms for all
CFG types, as shown in Table 1. Hence, we expect DMP to eliminate
branch mispredictions more efficiently (i.e. with less overhead) than
the other processing paradigms.

3. Implementation of DMP
3.1. Entering Dynamic Predication Mode

The diverge-merge processor enters dynamic predication mode
(dpred-mode) if a diverge branch is estimated to be low-confidence
at run-time.5 When the processor enters dpred-mode, it needs to do
the following:

1. The front-end stores the address of the CFM point associated
with the diverge branch into a buffer called CFM register. The
processor also marks the diverge branch as the branch that caused
entry into dpred-mode.

2. The front-end forks (i.e. creates a copy of) the return address
stack (RAS) and the GHR when the processor enters dpred-
mode. In dpred-mode, the processor accesses the same branch
predictor table with two different GHRs (one for each path) but
only correct path instructions update the table after they commit.

5The compiler could also provide a hint bit to indicate that it is better to en-
ter dpred-mode regardless of the confidence estimation. This additional mech-
anism is called short-hammocks [21].

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

A separate RAS is needed for each path. The processor forks the
register alias table (RAT) when the diverge branch is renamed
so that each path uses a separate RAT for register renaming in
dpred-mode. This hardware support is similar to the dual-path
execution mechanisms [1].

3. The front-end allocates a predicate register for the initiated
dpred-mode. An instruction fetched in dpred-mode carries the
predicate register identifier (id) with an extra bit indicating
whether the instruction is on the taken or the not-taken path of
the diverge branch.

3.2. Multiple CFM points
DMP can support more than one CFM point for a diverge branch to

enable the predication of dynamic hammocks that start from the same
branch but end at different control-independent points. The compiler
provides multiple CFM points. At run-time, the processor chooses the
CFM point reached first on any path of the diverge branch and uses it
to end dpred-mode. To support multiple CFM points, the CFM register
is extended to hold multiple CFM-point addresses.

3.3. Exiting Dynamic Predication Mode
DMP exits dpred-mode when either (1) both paths of a diverge

branch have reached the corresponding CFM point or (2) a diverge
branch is resolved. The processor marks the last instruction fetched in
dpred-mode (i.e. the last predicated instruction). The last predicated
instruction triggers the insertion of select-µops after it is renamed.

DMP employs two policies to exit dpred-mode early to increase the
benefit and reduce the overhead of dynamic predication:

1. Counter Policy: CFM points are chosen based on frequently
executed paths determined through compile-time profiling. At run-
time, the processor might not reach a CFM point if the branch pre-
dictor predicts that a different path should be executed. For example,
in Figure 4c, the processor could fetch blocks C and F. In that case,
the processor never reaches the CFM point and hence continuing dy-
namic predication is less likely to provide benefit. To stop dynamic
predication early (before the diverge branch is resolved) in such cases,
we use a heuristic. If the processor does not reach the CFM point
until a certain number of instructions (N) are fetched on any of the
two paths, it exits dpred-mode. N can be a single global threshold or
it can be chosen by the compiler for each diverge branch. We found
that a per-branch threshold provides 2.3% higher performance than a
global threshold because the number of instructions executed to reach
the CFM point varies across diverge branches. After exiting dpred-
mode early, the processor continues to fetch from only the predicted
direction of the diverge branch.

2. Yield Policy: DMP fetches only two paths at the same time. If
the processor encounters another low-confidence diverge branch dur-
ing dpred-mode, it has two choices: it either treats the branch as a
normal (non-diverge) branch or exits dpred-mode for the earlier di-
verge branch and enters dpred-mode for the later branch. We found
that a low-confidence diverge branch seen on the predicted path of a
dpred-mode-causing diverge branch usually has a higher probability to
be mispredicted than the dpred-mode-causing diverge branch. More-
over, dynamically predicating the later control-flow dependent diverge
branch usually has less overhead than predicating the earlier diverge
branch because the number of instructions inside the CFG of the later
branch is smaller (since the later branch is usually a nested branch of
the previous diverge branch). Therefore, our DMP implementation ex-
its dpred-mode for the earlier diverge branch and enters dpred-mode
for the later diverge branch.

3.4. Select-µop Mechanism
Select-µops are inserted when the processor reaches the CFM point

on both paths. Select-µops choose data values that were produced

from the two paths of a diverge branch so that instructions after the
CFM point receive correct data values from select-µops. Our select-
µop generation mechanism is similar to Wang et al.’s [45]. However,
our scheme is simpler than theirs because it needs to compare only two
RATs to generate the select-µops. A possible implementation of our
scheme is explained below.

When a diverge branch that caused entry into dpred-mode reaches
the renaming stage, the processor forks the RAT. The processor uses
two different RATs, one for each path of the diverge branch. We
extend the RAT with one extra bit (M -modified-) per entry to indi-
cate that the corresponding architectural register has been renamed in
dpred-mode. Upon entering dpred-mode, all M bits are cleared. When
an architectural register is renamed in dpred-mode, its M bit is set.

When the last predicated instruction reaches the register renam-
ing stage, the select-µop insertion logic compares the two RATs.6

If the M bit is set for an architectural register in either of the two
RATs, a select-µop is inserted to choose, according to the predi-
cate register value, between the two physical registers assigned to
that architectural register in the two RATs. A select-µop allo-
cates a new physical register (PRnew) for the architectural regis-
ter. Conceptually, the operation of a select-µop can be summa-
rized as PRnew=(predicate register value)?PRT:PRNT ,
where PRT(PRNT) is the physical register assigned to the architec-
tural register in the RAT of the taken (not-taken) path.

A select-µop is executed when the predicate value and the selected
source operand are ready. As a performance optimization, a select-µop
does not wait for a source register that will not be selected. Note that
the select-µop generation logic operates in parallel with work done
in other pipeline stages and its implementation does not increase the
pipeline depth of the processor.

3.5. Handling Loop Branches
Loop branches are treated differently from non-loop branches. One

direction of a loop branch is the exit of the loop and the other direction
is one more iteration of the loop. When the processor enters dpred-
mode for a loop branch, only one path (the loop iteration direction)
is executed and the processor will fetch the same static loop branch
again. Entering dpred-mode for a loop branch always implies the exe-
cution of one more loop iteration.

The processor enters dpred-mode for a loop if the loop-type di-
verge branch is low confidence. When the processor fetches the same
static loop branch again during dpred-mode, it exits dpred-mode and
inserts select-µops. If the branch is predicted to iterate the loop once
more, the processor enters dpred-mode again with a different predicate
register id7, regardless of the confidence of the branch prediction. In
other words, once the processor dynamically predicates one iteration
of the loop, it continues to dynamically predicate the iterations until
the loop is exited by the branch predictor. The processor stores the
predicate register ids associated with the same static loop branch in a
small buffer and these are later used when the branch is resolved as
we will describe in Section 3.6. If the branch is predicted to exit the
loop, the processor does not enter dpred-mode again but it starts to
fetch from the exit of the loop after inserting select-µops.

3.6. Resolution of Diverge Branches
When a diverge branch that caused entry into dpred-mode is re-

solved, the processor does the following:

6This comparison is actually performed incrementally every time a register
is renamed in dpred-mode so that no extra cycles are wasted for select-µop
generation. We simplify the explanation by describing it as if it happens at
once at the end of dpred-mode.

7DMP has a limited number of predicate registers (32 in our model). Note
that these registers are not architecturally visible.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

1. It broadcasts the predicate register id of the diverge branch with
the correct branch direction (taken or not-taken). Instructions
with the same predicate id and the same direction are said to
be predicated-TRUE and those with the same predicate id but
different direction are said to be predicated-FALSE.

2. If the processor is still in dpred-mode for that predicate register
id, it simply exits dpred-mode and continues fetching only from
the correct path as determined by the resolved branch. If the
processor has already exited dpred-mode, it does not need to take
any special action. In either case, the pipeline is not flushed.

3. If a loop-type diverge branch exits the loop (i.e. resolved as
not-taken in a backward loop), the processor also broadcasts the
predicate id’s that were assigned for later loop iterations along
with the correct branch direction in consecutive cycles.8 This
ensures that the select-µops after each later loop iteration choose
the correct live-out values.

DMP flushes its pipeline for any mispredicted branch that did not
cause entry into dpred-mode, such as a mispredicted branch that was
fetched in dpred-mode and turned out to be predicated-TRUE.

3.7. Instruction Execution and Retirement
Dynamically predicated instructions are executed just like other in-

structions (except for store-load forwarding described in Section 3.8).
Since these instructions depend on the predicate value only for retire-
ment purposes, they can be executed before the predicate value (i.e.
the diverge branch) is resolved. If the predicate value is known to be
FALSE, the processor does not need to execute the instructions or allo-
cate resources for them. Nonetheless, all predicated instructions con-
sume retirement bandwidth. When a predicated-FALSE instruction
is ready to be retired, the processor simply frees the physical regis-
ter (along with other resources) allocated for that instruction and does
not update the architectural state with its results.9 The predicate reg-
ister associated with dpred-mode is released when the last predicated
instruction is retired.

3.8. Load and Store Instructions
Dynamically predicated load instructions are executed like normal

load instructions. Dynamically predicated store instructions are sent to
the store buffer with their predicate register id. However, a predicated
store instruction is not sent further down the memory system (i.e. into
the caches) until it is known to be predicated-TRUE. The processor
drops all predicated-FALSE store requests. Thus, DMP requires the
store buffer logic to check the predicate register value before sending
a store request to the memory system.

DMP requires support in the store-load forwarding logic. The for-
warding logic should check not only the addresses but also the pred-
icate register ids. The logic can forward from: (1) a non-predicated
store to any later load, (2) a predicated store whose predicate register
value is known to be TRUE to any later load, or (3) a predicated store
whose predicate register is not ready to a later load with the same
predicate register id (i.e. on the same dynamically predicated path).

8Note that only one predicate id needs to be broadcast per cycle because
select-µops from a later iteration cannot anyway be executed before the select-
µops from the previous iteration are executed (since select-µops of the later
iteration are dependent on the select-µops of the previous iteration).

9In a current out-of-order processor, when an instruction is ready to be re-
tired, the processor frees the physical register allocated by the previous instruc-
tion that wrote to the same architectural register. This is exactly how physical
registers are freed in DMP for non-predicated and predicated-TRUE instruc-
tions. The only difference is that a predicated-FALSE instruction frees the
physical register allocated by itself (since that physical register will not be part
of the architectural state) rather than the physical register allocated by the pre-
vious instruction that wrote to the same architectural register.

If forwarding is not possible, the load waits. Note that this mecha-
nism and structures to support it are the same as the store-load for-
warding mechanism in dynamic-hammock-predication [23]. An out-
of-order execution processor that implements software predication or
wish branches also requires the same support in the store buffer and
store-load forwarding logic.

3.9. Interrupts and Exceptions
DMP does not require any special support for handling interrupts

or exceptions. When the pipeline is flushed before servicing the inter-
rupt or exception, any speculative state, including DMP-specific state
is also flushed. There is no need to save and restore predicate reg-
isters, unlike software predication. The processor restarts in normal
mode right after the last architectural retired instruction after coming
back from the interrupt/exception service. Exceptions generated by
predicated-FALSE instructions are simply dropped.

3.10. Hardware Complexity Analysis
DMP increases hardware complexity compared to current proces-

sors but it is an energy efficient design as we will show in Section 5.5.
Some of the hardware required for DMP is already present in cur-
rent processors. For example, select-µops are similar to CMOV op-
erations and complex µop generation and insertion schemes are al-
ready implemented in x86 processors. Table 2 summarizes the addi-
tional hardware support required for DMP and the other processing
models. DMP requires slightly more hardware support than dynamic-
hammock-predication and dual-path but much less than multipath.

3.11. ISA Support for Diverge Branches
We present an example of how the compiler can transfer diverge

branch and CFM point information to the hardware through simple
modifications in the ISA. Diverge branches are distinguished with two
bits in the ISA’s branch instruction format. The first bit indicates
whether or not the branch is a diverge branch and the second bit in-
dicates whether or not a branch is of loop-type. If a branch is a diverge
branch, the following N bits in the program code are interpreted as the
encoding for the associated CFM points. A CFM point address can be
encoded as a relative address from the diverge branch address or as an
absolute address without the most significant bits. Since CFM points
are located close to a diverge branch we found that 10 bits are enough
to encode each CFM point selected by our compiler algorithm. The
ISA could dedicate a fixed number of bytes to encode CFM points or
the number of bytes can vary depending on the number of CFM points
for each diverge branch. We allow maximum 3 CFM points per di-
verge branch. To support early exit (Section 3.3), the compiler also
uses L extra bits to encode the maximum distance between a branch
and its CFM point (L is a scaled 4-bit value in our implementation).

4. Methodology
4.1. Simulation Methodology

We use an execution-driven simulator of a processor that imple-
ments the Alpha ISA. An aggressive, 64KB branch predictor is used
in the baseline processor. The parameters of the baseline processor are
shown in Table 3.

We also model a less aggressive (base2) processor to evaluate the
DMP concept in a configuration similar to today’s processors. Table 4
shows the parameters of the less aggressive processor that are different
from the baseline processor.

The experiments are run using the 12 SPEC CPU 2000 integer
benchmarks and 5 SPEC 95 integer benchmarks.10 Table 5 shows
the characteristics of the benchmarks on the baseline processor. All

10Gcc, vortex, and perl in SPEC 95 are not included because later versions
of these benchmarks are included in SPEC CPU 2000.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 2. Hardware support required for different branch processing paradigms. (m+1) is the maximum number of outstanding paths in multipath.
Hardware DMP Dynamic-hammock Dual-path/Multipath Software predication Wish branches

CFM registers, +1 PC fetch both paths +1/m PC selection betweenFetch support
round-robin fetch in simple hammock round-robin fetch

-
branch/predicated code

Hardware-generated
predicate/path IDs

required required required (path IDs) - -

Branch pred. support +1 GHR, +1 RAS - +1/m GHR, +1/m RAS - -
BTB support mark diverge br./CFM mark hammock br. - - mark wish branches
Confidence estimator required optional (performance) required - required
Decode support CFM point info - - predicated instructions predicated instructions
Rename support +1 RAT +1 RAT +1/m RAT - -
Predicate registers required required - required required
Select-µop generation required required - optional (performance) optional (performance)
LD-ST forwarding check predicate check predicate check path IDs check predicate check predicate

check flush/no flushBranch resolution
predicate id broadcast

check flush/no flush check flush/no flush - check flush/no flush

Retirement check predicate check predicate selective flush check predicate check predicate

Table 3. Baseline processor configuration
Front End 64KB, 2-way, 2-cycle I-cache; fetches up to 3 conditional branches but fetch ends at the first predicted-taken branch; 8 RAT ports

64KB (64-bit history, 1021-entry) perceptron branch predictor [20]; 4K-entry BTBBranch Predictors
64-entry return address stack; minimum branch misprediction penalty is 30 cycles
8-wide fetch/issue/execute/retire; 512-entry reorder buffer; 128-entry load-store queue; 512 physical registersExecution Core
scheduling window is partitioned into 8 sub-windows of 64 entries each; 4-cycle pipelined wake-up and selection logic

On-chip Caches L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports; L2 cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port; LRU replacement and 64B line size
Buses and Memory 300-cycle minimum memory latency; 32 banks; 32B-wide core-to-memory bus at 4:1 frequency ratio; bus latency: 40-cycle round-trip
Prefetcher Stream prefetcher with 32 streams and 16 cache line prefetch distance (lookahead) [43]

DMP Support 2KB (12-bit history, threshold 14) enhanced JRS confidence estimator [19, 17]; 32 predicate registers; 3 CFM registers (also see Table 2)

Table 4. Less aggressive baseline processor (base2) configuration
Front End Fetches up to 2 conditional branches but fetch ends at the first predicted-taken branch; 4 RAT ports

16KB (31-bit history, 511-entry) perceptron branch predictor [20]; 1K-entry BTBBranch Predictors
32-entry return address stack; minimum branch misprediction penalty is 20 cycles

Execution Core 4-wide fetch/issue/execute/retire; 128-entry reorder buffer; 64-entry scheduling window; 48-entry load-store queue
128 physical registers; 3-cycle pipelined wake-up and selection logic

Buses and Memory 200-cycle minimum memory latency; bus latency: 20-cycle round-trip

binaries are compiled for the Alpha ISA with the -fast optimizations.
We use a binary instrumentation tool that marks diverge branches and
their respective CFM points after profiling. The benchmarks are run to
completion with a reduced input set [26] to reduce simulation time. In
all the IPC (retired Instructions Per Cycle) performance results shown
in the rest of the paper for DMP, instructions whose predicate values
are FALSE and select-µops inserted to support dynamic predication do
not contribute to the instruction count. A detailed description of how
we model different branch processing paradigms in our simulations is
provided in an extended version of this paper [21].

4.2. Power Model

We incorporated the Wattch infrastructure [5] into our cycle-
accurate simulator. The power model is based on 100nm technol-
ogy. The frequency we assume is 4GHz for the baseline processor and
1.5GHz for the less aggressive processor. We use the aggressive CC3
clock-gating model in Wattch: unused units dissipate only 10% of their
maximum power when they are not accessed [5]. All additional struc-
tures and instructions required by DMP are faithfully accounted for in
the power model: the confidence estimator, one more RAT/RAS/GHR,
select-µop generation/execution logic, additional microcode fields to
support select-µops, additional fields in the BTB to mark diverge
branches and to cache CFM points, predicate and CFM registers, and
modifications to handle load-store forwarding and instruction retire-
ment. Forking of tables and insertion of select-µops are modeled by
increasing the dynamic access counters for every relevant structure.

4.3. Compiler Support for Diverge Branch and CFM
Point Selection

Diverge branch and CFM point candidates are determined based
on a combination of CFG analysis and profiling. Simple hammocks,
nested hammocks, and loops are found by the compiler using CFG
analysis. To determine frequently-hammocks, the compiler finds CFM
point candidates (i.e. post-dominators) considering the portions of a
program’s control-flow graph that are executed during the profiling
run. A branch in a suitable CFG is marked as a possible diverge branch
if it is responsible for at least 0.1% of the total number of mispredic-
tions during profiling. A CFM point candidate is selected as a CFM
point if it is reached from a diverge branch for at least 30% of the
dynamic instances of the branch during the profiling run and if it is
within 120 static instructions from the diverge branch. The thresholds
used in compiler heuristics are determined experimentally. We used
the train input sets to collect profiling information.

5. Results
5.1. Performance of the Diverge-Merge Processor

Figure 6 shows the performance improvement of dynamic-
hammock-predication, dual-path, multipath, and DMP over the base-
line processor. The average IPC improvement over all benchmarks
is 3.5% for dynamic-hammock-predication, 4.8% for dual-path, 8.8%
for multipath,11 and 19.3% for DMP. DMP improves the IPC by more

11Klauser et al. [23] reported average 5% performance improvement for
dynamic-hammock-predication, Farrens et al. [15] reported average 7% per-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 5. Characteristics of the benchmarks: baseline IPC, potential IPC improvement with perfect branch prediction (PBP IPC ∆), total number of

retired instructions (Insts), number of static diverge branches (Diverge Br.), number of all static branches (All br.), increase in code size with diverge branch and

CFM information (Code size ∆), base2 processor IPC (IPC base2), potential IPC improvement with perfect branch prediction on the base2 processor (PBP IPC

∆ base2). perl, comp, m88 are the abbreviations for perlbmk, compress, and m88ksim respectively.
gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf comp go ijpeg li m88

Base IPC 2.02 1.50 1.25 0.45 2.54 1.50 3.26 2.27 2.88 3.37 1.48 2.18 2.18 0.97 2.73 2.15 3.27
PBP IPC ∆ 90% 229% 96% 113% 60% 137% 21% 15% 15% 16% 94% 112% 139% 227% 93% 60% 24%

Insts (M) 249 76 83 111 190 255 129 99 404 284 316 101 150 137 346 248 145
Diverge br. 84 434 1245 62 192 37 116 92 79 250 74 235 16 117 48 18 158
All br. (K) 1.6 4.2 29.5 1.4 5.1 3.7 4.9 9.4 4.6 13 1.4 4.7 0.6 7.7 2 1.2 1.7

Code size ∆(%) 0.12 0.35 0.23 0.1 0.13 0.03 0.01 0.03 0.03 0.09 0.11 0.16 0.02 0.08 0.04 0.02 0.13

IPC base2 1.77 1.39 0.98 0.52 1.76 1.36 2.05 1.36 2.03 1.73 1.39 1.71 1.79 0.86 2.05 1.69 2.10
PBP IPC ∆ base2 39% 84% 46% 58% 27% 65% 9% 7% 9% 8% 46% 46% 50% 101% 37% 34% 12%

than 20% on vpr (58%), mcf (47%), parser (26%), twolf (31%), com-
press (23%), and ijpeg (25%). A significant portion (more than 60%)
of branch mispredictions in these benchmarks is due to branches that
can be dynamically predicated by DMP as was shown in Figure 5.
Mcf shows additional performance benefit due to the prefetching effect
caused by predicated-FALSE instructions. In bzip2, even though 87%
of mispredictions are due to frequently-hammocks, DMP improves
IPC by only 12.2% over the baseline. Most frequently-hammocks in
bzip2 have more than one CFM point and the run-time heuristic used
by DMP to decide which CFM point to use for dynamic predication
(Section 3.2) does not work well for bzip2.

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

dynamic-hammock
dual-path
multipath
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

hm
ea

n

Figure 6. Performance improvement provided by DMP vs. dynamic-

hammock-predication, dual-path, and multipath execution

Dynamic-hammock-predication provides over 10% performance
improvement on vpr and twolf because a relatively large portion of
mispredictions is due to simple hammocks. The performance bene-
fit of dual-path is higher than that of dynamic-hammock-predication
but much less than that of DMP, even though dual-path is applica-
ble to any kind of CFG. This is due to two reasons. First, dual-path
fetches a larger number of instructions from the wrong path compared
to dynamic-hammock-predication and DMP, as was shown in Table 1.
Figure 7 shows the average number of fetched wrong-path instructions
per each entry into dynamic-predication/dual-path mode in the differ-
ent processors. On average, dual-path fetches 134 wrong-path instruc-
tions, which is much higher than 4 for dynamic-hammock-predication,
and 20 for DMP (note that this overhead is incurred even if the low-
confidence branch turns out to be correctly predicted). Second, dual-
path is applicable to one low-confidence branch at a time. While a

formance improvement for dual-path (with extra execution resources to support
dual-path), and Klauser and Grunwald [24] reported average 9.3% performance
improvement for PolyPath (multipath) with a round-robin fetch scheme. The
differences between their and our results are due to different branch predic-
tors, machine configurations, and benchmarks. Our baseline branch predictor
is much more accurate than those in previous work.

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

W
ro

ng
-p

at
h

in
st

ru
ct

io
ns

 p
er

 e
nt

ry

dynamic-hammock
dual-path
multipath
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

Figure 7. Fetched wrong-path instructions per entry into dynamic-

predication/dual-path mode (i.e. per low-confidence branch)

dual-path processor is fetching from two paths, it cannot perform dual-
path execution for another low-confidence branch. However, DMP can
diverge again if another low confidence diverge branch is encountered
after the processor has reached the CFM point of a previous diverge
branch and exited dpred-mode. For this reason, we found that dual-
path cannot reduce as many pipeline flushes due to branch mispredic-
tions as DMP. As Figure 8 shows, dual-path reduces pipeline flushes
by 18% whereas DMP reduces them by 38%.

Multipath performs better than or similarly to DMP on gzip, gcc,
and go. In these benchmarks more than 40% of branch mispredic-
tions are due to non-merging control flow that cannot be predicated
by DMP but can be eliminated by multipath. Multipath also performs
better than dual-path execution on average because it is applicable to
multiple outstanding low-confidence branches. On average, multipath
reduces pipeline flushes by 40%, similarly to DMP. However, because
multipath has very high overhead (200 wrong-path instructions per
low-confidence branch, as shown in Figure 7), its average performance
improvement is much less than that of DMP.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

R
ed

uc
ti

on
 in

 p
ip

el
in

e
fl

us
he

s
(%

)

dynamic-hammock
dual-path
multipath
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

Figure 8. % reduction in pipeline flushes

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

5.2. Comparisons with Software Predication and
Wish Branches

Figure 9 shows the execution time reduction over the baseline for
limited software predication12 and wish branches. Since the number
of executed instructions is different in limited software predication and
wish branches, we use the execution time metric for performance com-
parisons. Overall, limited software predication reduces execution time
by 3.8%,wish branches by 6.4%, and DMP by 13.0%. In most bench-
marks, wish branches perform better than predication because they can
selectively enable predicated execution at run-time, thereby reducing
the overhead of predication. Wish branches perform significantly bet-
ter than limited software predication on vpr, parser, and ijpeg because
they can be applied to loop branches.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
xe

cu
ti

on
 t

im
e

no
rm

al
iz

ed
 t

o
th

e
ba

se
lin

e

limited software predication
wish branches
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

Figure 9. DMP vs. limited software predication and wish branches

There are some differences between previous results [22] and our
results in the benefit of software predication and wish branches. The
differences are due to the following: (1) our baseline processor already
employs CMOVs which provide the performance benefit of predica-
tion for very small basic blocks, (2) ISA differences (Alpha vs. IA-
64), (3) in our model of software predication, there is no benefit due to
compiler optimizations that can be enabled with larger basic blocks in
predicated code, (4) since wish branches dynamically reduce the over-
head of software predication, they allow larger code blocks to be pred-
icated, but we could not model this effect because Alpha ISA/compiler
does not support predication.

Even though wish branches perform better than limited software
predication, there is a large performance difference between wish
branches and DMP. The main reason is that DMP can predicate
frequently-hammocks, the majority of mispredicted branches in many
benchmarks as shown in Figure 5. Only parser does not have many
frequently-hammocks, so wish branches and DMP perform similarly
for this benchmark. Figure 10 shows the performance improvement of
DMP over the baseline if DMP is allowed to dynamically predicate:
(1) only simple hammocks, (2) simple and nested hammocks, (3) sim-
ple, nested, frequently-hammocks, and (4) simple, nested, frequently-
hammocks and loops. There is a large performance provided by the
predication of frequently-hammocks as they are the single largest
cause of branch mispredictions. Hence, DMP provides large perfor-
mance improvements by enabling the predication of a wider range of
CFGs than limited software predication and wish branches.

5.3. Analysis of the Performance Impact of Enhanced
DMP Mechanisms

Figure 11 shows the performance improvement provided by the en-
hanced mechanisms in DMP. Single-cfm supports only a single CFM
point for each diverge branch without any enhancements. Single-cfm
by itself provides 11.4% IPC improvement over the baseline proces-
sor. Multiple-cfm supports more than one CFM point for each diverge

12We call our software predication model “limited software predication” be-
cause we do not model compiler optimization effects enabled via if-conversion.

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

simple (1)
simple-nested (2)
simple-nested-frequently (3)
simple-nested-frequently-loop (4)

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

hm
ea

n

Figure 10. DMP performance when different CFG types are dynam-

ically predicated

branch as described in Section 3.2. Multiple-cfm increases the per-
formance benefit of DMP for most benchmarks because it increases
the probability of reaching a CFM point in dpred-mode and, hence,
the likelihood of success of dynamic predication. Mcfm-counter sup-
ports multiple CFM points and also adopts the Counter Policy (Sec-
tion 3.3). Counter Policy improves performance significantly in twolf,
compress, and go; three benchmarks that have a high fraction of large
frequently-hammock CFGs where the branch predictor sometimes de-
viates from the frequently executed paths. Mcfm-counter-yield also
adopts the Yield Policy (Section 3.3) to exit dpred-mode early, increas-
ing the performance benefit of DMP to 19.3%. Yield Policy is ben-
eficial for vpr, mcf, twolf, compress, and go benchmarks. In these
benchmarks, many diverge branches are control-flow dependent (i.e.
nested) on other diverge branches, and control-flow dependent diverge
branches are more likely to be mispredicted.

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

single-cfm
multiple-cfm
mcfm-counter
mcfm-counter-yield

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

hm
ea

n

Figure 11. Performance impact of enhanced DMP mechanisms

5.4. Sensitivity to Microarchitecture Parameters
5.4.1. Evaluation on the Less Aggressive Processor Fig-
ure 12 (left) shows the performance benefit for dynamic-hammock-
predication, dual-path, multipath, and DMP on the less aggressive
baseline processor and Figure 12 (right) shows the execution time re-
duction over the less aggressive baseline for limited software predi-
cation, wish branches, and DMP. Since the less aggressive processor
incurs a smaller penalty for a branch misprediction, improved branch
handling has less performance potential than in the baseline proces-
sor. However, DMP still provides 7.8% IPC improvement by reduc-
ing pipeline flushes by 30%, whereas dynamic-hammock-predication,
dual-path and multipath improve IPC by 1.6%, 1.5%, and 1.3% re-
spectively. Limited software predication reduces execution time by
1.0%, wish branches by 2.9%, and DMP by 5.7%.

5.4.2. Effect of a Different Branch Predictor We also evalu-
ate DMP with a recently developed branch predictor, O-GEHL [37].

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

0

5

10

15

20

25

30
IP

C
 d

el
ta

 (
%

)

dynamic-hammock
dual-path
multipath
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

hm
ea

n 0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

limited software predication
wish branches
DMP

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

Figure 12. Performance comparison of DMP versus other paradigms on the less aggressive processor

The O-GEHL predictor requires a complex hashing mechanism to in-
dex the branch predictor tables, but it effectively increases the global
branch history length. As Figure 13 shows, replacing the base-
line processor’s perceptron predictor with a more complex, 64KB
O-GEHL branch predictor (OGEHL-base) provides 13.8% perfor-
mance improvement, which is smaller than the 19.3% performance
improvement provided by implementing diverge-merge processing
(perceptron-DMP). Furthermore, using DMP with an O-GEHL pre-
dictor (OGEHL-DMP) improves the average IPC by 13.3% over
OGEHL-base and by 29% over our baseline processor. Hence, DMP
still provides large performance benefits when the baseline processor’s
branch predictor is more complex and more accurate.

0

5

10

15

20

25

30

35

40

IP
C

 d
el

ta
 (

%
)

perceptron-dynamic-hammock
perceptron-dual-path
perceptron-multipath
perceptron-DMP
OGEHL-base
OGEHL-dynamic-hammock
OGEHL-dual-path
OGEHL-multipath
OGEHL-DMP

Figure 13. DMP performance with different branch predictors

5.4.3. Effect of Confidence Estimator Size Figure 14 shows
the performance of dynamic-hammock-predication, dual-path, mul-
tipath and DMP with 512B, 2KB, 4KB, and 16KB confidence esti-
mators and a perfect confidence estimator. Our baseline employs a
2KB enhanced JRS confidence estimator [19], which has 14% PVN
(� accuracy) and 70% SPEC (� coverage) [17].13 Even with a 512-
byte estimator, DMP still provides 18.4% performance improvement.
The benefit of dual-path/multipath increases significantly with a per-
fect estimator because dual-path/multipath has very high overhead
as shown in Figure 7, and a perfect confidence estimator eliminates
the incurrence of this large overhead for correctly-predicted branches.
However, even with a perfect estimator, dual-path/multipath has less
potential than DMP because (1) dual-path is applicable to one low-
confidence branch at a time (as explained previously in Section 5.1),
(2) the overhead of dual-path/multipath is still much higher than that
of DMP for a low-confidence branch because dual-path/multipath
executes the same instructions twice/multiple times after a control-
independent point in the program.

13These numbers are actually lower than what was previously published [17]
because our baseline branch predictor uses a different algorithm and has a much
higher prediction accuracy than that of [17].

0

5

10

15

20

25

30

35

IP
C

 d
el

ta
 (

%
)

512B
2KB
4KB
16KB
perfect

dynamic-hammock dual-path multipath DMP

Figure 14. Effect of confidence estimator size on performance

5.5. Power Analysis
Figure 15 (left) shows the average increase/reduction due to DMP

in the number of fetched/executed instructions, maximum power, en-
ergy, and energy-delay product compared to the baseline. Even though
DMP has to fetch instructions from both paths of every dynamically
predicated branch, the total number of fetched instructions decreases
by 23% because DMP reduces pipeline flushes and thus eliminates
the fetch of many wrong-path instructions. DMP executes 1% more
instructions than the baseline due to the overhead of select-µops and
predicated-FALSE instructions.

-25

-20

-15

-10

-5

0

5

de
lt

a
(%

)

fetched instructions
executed instructions
max power
energy
energy-delay product

baseline less-aggressive

Figure 15. Power consumption comparison of DMP with the base-

line processor (left) and less aggressive baseline processor (right)

Due to the extra hardware required to support DMP, maximum
power consumption increases by 1.4%. However, because of the re-
duction in fetched instructions, energy consumption is reduced by
9.0%. Moreover, energy-delay product decreases by 22.3% because
of both the performance improvement and energy reduction. Hence,
although DMP increases hardware complexity, it actually increases
energy-efficiency by reducing pipeline flushes due to branch mispre-
dictions. DMP is an energy-efficient design even in the less aggressive
processor configuration as Figure 15 (right) shows.

Table 6 provides a power/energy comparison of the branch pro-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 6. Power and energy comparison of different branch processing paradigms
Baseline processor Less aggressive baseline processor

DMP dyn-ham. dual-path multipath SW-pred wish br. DMP dyn-ham. dual-path multipath SW-pred wish br.

Max power ∆ 1.4% 1.1% 1.2% 6.5% 0.1% 0.4% 0.9% 0.8% 0.8% 4.3% 0.1% 0.4%
Energy ∆ -9.0% -0.7% -2.2% 4.7% -1.5% -2.9% -5.6% -0.8% 1.1% 3.7% -0.1% -1.5%

Energy × Delay ∆ -22.3% -0.9% -7.0% -4.3% -1.8% -6.1% -9.7% -0.5% 0.5% 2.2% 1.2% -2.1%

cessing paradigms. DMP reduces energy consumption and energy-
delay product much more than other approaches while it increases the
maximum power requirements slightly more than the most relevant
hardware techniques (dynamic-hammock-predication and dual-path).
Note that multipath significantly increases both maximum power and
energy consumption due to the extra hardware to support many out-
standing paths.

6. Related Work
6.1. Related Work on Predication

Software predication has been studied intensively to reduce
the branch misprediction penalty [28, 33, 44, 6] and to increase
instruction-level parallelism [2]. However, in a real IA-64 implemen-
tation, predicated execution was found to provide a small (2%) per-
formance improvement [9]. This small performance gain is due to
the overhead and limitations of compile-time predication (described in
Section 1), which sometimes offset the benefit of reducing the pipeline
flushes due to branch mispredictions. Kim et al. [22] proposed wish
branches to reduce the overhead of software predication by combining
conditional branching and predication. DMP can predicate a larger set
of CFGs than wish branches and it overcomes the major disadvantage
of wish-branches: the requirement for a predicated ISA. Klauser et
al. [23] proposed dynamic-hammock-predication for predicating only
simple hammocks without support for predicated instructions in the
ISA. DMP builds on dynamic-hammock-predication, but can predi-
cate a much larger set of CFGs. Hence, as we showed in Section 5,
DMP provides better performance and better energy efficiency.

Hyperblock formation [29] predicates frequently executed basic
blocks based on profiling data, and it can predicate more complex
CFGs than nested hammocks by tail duplication and loop peeling. The
benefits of hyperblocks are that they increase the compiler’s scope
for code optimization and instruction scheduling (by enlarging ba-
sic blocks) in VLIW processors and they reduce branch mispredic-
tions [28]. Unlike DMP, hyperblocks still require a predicated ISA,
incur the overhead of software predication, are not adaptive to run-
time changes in frequently executed control flow paths, and increase
the code size [38].

6.2. Related Work on Dual-/Multi-path Execution
Heil and Smith [18] and Farrens et al. [15] proposed selec-

tive/limited dual path execution mechanisms. As we showed in Sec-
tion 5, dual-path execution does not provide a performance improve-
ment as significant as that of DMP because dual-path execution al-
ways wastes half of the fetch/execution resources even after a control-
independent point in the program.

Selective eager execution (PolyPath) was proposed by Klauser et
al. [25] as an implementation of multipath execution [34]. Multipath
execution requires more hardware cost and complexity (e.g. multiple
RATs/PCs/GHRs/RASs, logic to generate/manage path IDs/tags for
multiple paths, logic to selectively flush the wrong paths, and more
complex store-load forwarding logic that can support multiple out-
standing paths) than DMP to keep multiple paths in the instruction
window. As we have shown in Section 5.5, multipath execution sig-
nificantly increases maximum power and energy consumption without
providing as large performance improvements as that of DMP.

6.3. Related Work on Control Flow Independence
Several hardware mechanisms were proposed to exploit control

flow independence [35, 36, 11, 8, 16]. These techniques aim to avoid
flushing the processor pipeline if the processor is known to be at a
control-independent point in the program when a mispredicted branch
is resolved. In contrast to DMP, they require complex hardware to
remove the control-dependent wrong-path instructions from the pro-
cessor and to insert the control-dependent correct-path instructions
into the pipeline after a branch misprediction. Hardware is also re-
quired to form correct data dependencies for the inserted correct path
instructions. Furthermore, control-independent instructions that are
data-dependent on the inserted or removed instructions have to be re-
scheduled and re-executed with the correct data dependencies and after
the processor finishes fetching and renaming the new inserted instruc-
tions. The logic required for ensuring correct data dependencies for
both control-dependent and control-independent instructions is com-
plicated as Rotenberg et al. pointed out [35].

Collins et al. [12] introduced dynamic reconvergence prediction,
a hardware-based technique to identify control reconvergence points
(i.e. our CFM points) without compiler support. This technique can
be combined with DMP (so that CFM points are discovered at run-
time rather than compile-time) and any of the mechanisms that exploit
control-flow independence.

7. Conclusion and Future Work
This paper proposed the diverge-merge processor (DMP) as an effi-

cient architecture for compiler-assisted dynamic predicated execution.
DMP dynamically predicates hard-to-predict instances of statically-
selected diverge branches. The major contributions of the diverge-
merge processing concept are:

1. DMP enables the dynamic predication of branches that result in
complex control-flow graphs rather than limiting dynamic pred-
ication to simple hammock branches. The key insight is that
most control-flow graphs look and behave like simple hammock
(if-else) structures when only frequently executed paths in the
graphs are considered. Therefore, DMP can eliminate branch
mispredictions due to a much larger set of branches than pre-
vious predication techniques such as software predication and
dynamic hammock predication.

2. DMP concurrently overcomes the three major limitations of soft-
ware predication (described in Section 1).

3. DMP eliminates branch misprediction flushes much more effi-
ciently (i.e. with less instruction execution overhead) than alter-
native approaches, especially dual-path and multipath execution
(as shown in Table 1 and Figure 7).

Our results show that DMP outperforms an aggressive baseline
processor with a very large branch predictor by 19.3% while con-
suming 9.0% less energy. Furthermore, DMP provides higher per-
formance and better energy-efficiency than dynamic hammock predi-
cation, dual-path/multipath execution, software predication, and wish
branches.

The proposed DMP mechanism still requires some ISA support.
A cost-efficient hardware mechanism to detect diverge branches and
CFM points at run-time would eliminate the need to change the ISA.
Developing such mechanisms is part of our future work. The results

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

presented in this paper are based on our initial implementation of DMP
using relatively simple compiler and hardware heuristics/algorithms.
The performance improvement provided by DMP can be increased
further by future research aimed at improving these techniques. On
the compiler side, better heuristics and profiling techniques can be de-
veloped to select diverge branches and CFM points. On the hardware
side, better confidence estimators are worthy of research since they
critically affect the performance benefit of dynamic predication.

Acknowledgments
Special thanks to Chang Joo Lee for the support he provided in

power modeling. We thank Paul Racunas, Veynu Narasiman, Nhon
Quach, Derek Chiou, Eric Sprangle, Jared Stark, other members of
the HPS research group, and the anonymous reviewers for their com-
ments and suggestions. We gratefully acknowledge the support of the
Cockrell Foundation, Intel Corporation and the Advanced Technology
Program of the Texas Higher Education Coordinating Board.

References
[1] P. S. Ahuja, K. Skadron, M. Martonosi, and D. W. Clark. Multipath exe-

cution: opportunities and limits. In ICS-12, 1998.
[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of

control dependence to data dependence. In POPL-10, 1983.
[3] D. I. August, D. A. Connors, J. C. Gyllenhaal, and W. W. Hwu. Architec-

tural support for compiler-synthesized dynamic branch prediction strate-
gies: Rationale and initial results. In HPCA-3, 1997.

[4] D. I. August, W. W. Hwu, and S. A. Mahlke. A framework for balancing
control flow and predication. In MICRO-30, 1997.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA-27, 2000.

[6] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang. Using predicated exe-
cution to improve the performance of a dynamically scheduled machine
with speculative execution. In PACT, 1995.

[7] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-performance
throughput computing. IEEE Micro, 25(3):32–45, May 2005.

[8] C.-Y. Cher and T. N. Vijaykumar. Skipper: a microarchitecture for ex-
ploiting control-flow independence. In MICRO-34, 2001.

[9] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of if-conversion
and branch prediction on program execution on the Intel Itanium proces-
sor. In MICRO-34, 2001.

[10] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for
exploiting memory-level parallelism. In ISCA-31, 2004.

[11] Y. Chou, J. Fung, and J. P. Shen. Reducing branch misprediction penalties
via dynamic control independence detection. In ICS-13, 1999.

[12] J. D. Collins, D. M. Tullsen, and H. Wang. Control flow optimization via
dynamic reconvergence prediction. In MICRO-37, 2004.

[13] A. Cristal, O. J. Santana, F. Cazorla, M. Galluzzi, T. Ramirez, M. Peri-
cas, and M. Valero. Kilo-instruction processors: Overcoming the memory
wall. IEEE Micro, 25(3):48–57, May 2005.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Ef-
ficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Sys-
tems, 13(4):451–490, Oct. 1991.

[15] M. Farrens, T. Heil, J. E. Smith, and G. Tyson. Restricted dual path ex-
ecution. Technical Report CSE-97-18, University of California at Davis,
Nov. 1997.

[16] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing branch mispredic-
tion penalty via selective recovery. In HPCA-10, 2004.

[17] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence esti-
mation for speculation control. In ISCA-25, 1998.

[18] T. Heil and J. E. Smith. Selective dual path execution. Technical report,
University of Wisconsin-Madison, Nov. 1996.

[19] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to con-
ditional branch predictions. In MICRO-29, 1996.

[20] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons.
In HPCA-7, 2001.

[21] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Diverge-merge processor
(DMP): Dynamic predicated execution of complex control-flow graphs

based on frequently executed paths. Technical Report TR-HPS-2006-008,
The University of Texas at Austin, Sept. 2006.

[22] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish branches: Combining
conditional branching and predication for adaptive predicated execution.
In MICRO-38, 2005.

[23] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic hammock
predication for non-predicated instruction set architectures. In PACT,
1998.

[24] A. Klauser and D. Grunwald. Instruction fetch mechanisms for multipath
execution processors. In MICRO-32, 1999.

[25] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution
on the polypath architecture. In ISCA-25, 1998.

[26] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Computer
Architecture Letters, 1, June 2002.

[27] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In
ISCA-19, 1992.

[28] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M.
Gallagher, and W. W. Hwu. Characterizing the impact of predicated exe-
cution on branch prediction. In MICRO-27, 1994.

[29] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.
Effective compiler support for predicated execution using the hyperblock.
In MICRO-25, 1992.

[30] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An
alternative to very large instruction windows for out-of-order processors.
In HPCA-9, 2003.

[31] ORC. Open research compiler for Itanium processor family. http://ipf-
orc.sourceforge.net/.

[32] J. C. H. Park and M. Schlansker. On predicated execution. Technical Re-
port HPL-91-58, Hewlett-Packard Labs, Palo Alto CA, May 1991.

[33] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and dynamic
branch prediction in dynamic ILP processors. In ISCA-21, 1994.

[34] E. M. Riseman and C. C. Foster. The inhibition of potential parallelism
by conditional jumps. IEEE Transactions on Computers, C-21(12):1405–
1411, 1972.

[35] E. Rotenberg, Q. Jacobson, and J. E. Smith. A study of control indepen-
dence in superscalar processors. In HPCA-5, 1999.

[36] E. Rotenberg and J. Smith. Control independence in trace processors. In
MICRO-32, 1999.

[37] A. Seznec. Analysis of the O-GEometric History Length branch predic-
tor. In ISCA-32, 2005.

[38] J. W. Sias, S. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and W. W.
Hwu. Field-testing IMPACT EPIC research results in Itanium 2. In ISCA-
31, 2004.

[39] B. Simon, B. Calder, and J. Ferrante. Incorporating predicate information
into branch predictors. In HPCA-9, 2003.

[40] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch pre-
diction, instruction-window size, and cache size: Performance trade-
offs and simulation techniques. ACM Transactions on Computer Systems,
48(11):1260–1281, Nov. 1999.

[41] E. Sprangle and D. Carmean. Increasing processor performance by im-
plementing deeper pipelines. In ISCA-29, 2002.

[42] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Con-
tinual flow pipelines. In ASPLOS-XI, 2004.

[43] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4
system microarchitecture. IBM Technical White Paper, Oct. 2001.

[44] G. S. Tyson. The effects of predication on branch prediction. In MICRO-
27, 1994.

[45] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P. Shen.
Register renaming and scheduling for dynamic execution of predicated
code. In HPCA-7, 2001.

[46] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau. Reverse if-
conversion. In PLDI, 1993.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

