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Abstract

Instruction scheduling is one of the most important steps

for improving the performance of object code produced by

a compiler. A fundamental problem that arises in instruc-

tion scheduling is to find a minimum length schedule for a

basic block—a straight-line sequence of code with a sin-

gle entry point and a single exit point—subject to prece-

dence, latency, and resource constraints. Solving the prob-

lem exactly is NP-complete, and heuristic approaches are

currently used in most compilers. In contrast, we present

a scheduler that finds provably optimal schedules for basic

blocks using techniques from constraint programming. In

developing our optimal scheduler, the key to scaling up to

large, real problems was in the development of preprocess-

ing techniques for improving the constraint model. We ex-

perimentally evaluated our optimal scheduler on the SPEC

2000 integer and floating point benchmarks. On this bench-

mark suite, the optimal scheduler was very robust—all but a

handful of the hundreds of thousands of basic blocks in our

benchmark suite were solved optimally within a reasonable

time limit—and scaled to the largest basic blocks, including

basic blocks with up to 2600 instructions. This compares

favorably to the best previous exact approaches.

1. Introduction

Modern architectures are pipelined and can issue multi-

ple instructions per clock cycle. On such processors, the or-

der in which the instructions are scheduled can significantly

impact performance. A fundamental problem that arises in

instruction scheduling is to find a minimum length schedule

for a basic block—a straight-line sequence of code with a

single entry point and a single exit point—subject to prece-

dence, latency, and resource constraints.

Basic block instruction scheduling for realistic multiple-

issue processors is NP-complete [9], and most compilers

use a heuristic approach—a fast method that sometimes

gives sub-optimal solutions—rather than an exact approach

to basic-block scheduling (e.g., see [6, 12]). Although

heuristic approaches have the advantage that they are fast, a

basic block scheduler which finds provably optimal sched-

ules may be useful where longer compile times are tolera-

ble, such as when compiling for software libraries, digital

signal processing, or embedded applications [6].

Previous work on optimal basic block schedulers has

taken several approaches, including: branch-and-bound

enumeration [3, 7, 8], dynamic programming [10], integer

linear programming [1, 2, 17], and constraint programming

[5, 16]. With the exception of [8, 16, 17], to which we do

detailed comparisons later in the paper, these previous ap-

proaches have only been evaluated on a few problems with

the sizes of the problems ranging between 10 and 50 in-

structions. Further, their experimental results suggest that

none of them would scale up beyond problems of this size.

A major challenge when developing an exact approach to an

NP-complete problem is to develop a solver that scales and

is robust in that it rarely fails to find a solution in a timely

manner on a wide selection of real problems.

In this paper, we present a constraint programming ap-

proach to instruction scheduling for multiple-issue proces-

sors that is robust and optimal. In a constraint programming

approach, a problem is modeled by stating constraints on

acceptable solutions, where a constraint is simply a relation

among several unknowns or variables, each taking a value in

a given domain. The constraint model is then usually solved

using a backtracking search. The novelty of our approach is

in the extensive computational effort put into a preprocess-

ing stage in order to improve the constraint model and thus

reduce the effort needed in backtracking search.

We experimentally evaluated our optimal scheduler on

the SPEC 2000 integer and floating point benchmarks, us-

ing four different architectural models. On this bench-

mark suite, the optimal scheduler scaled to the largest basic

blocks and was very robust. Depending on the architectural

model, at most two or three basic blocks out of the hundreds

of thousands of basic blocks used in our experiments could

not be solved within a 10-minute time bound. This repre-

sents approximately a 50-fold improvement over previous
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(a)

A r1← a
B r2← b

NOP

NOP

D r1← r1 + r2

C r3← c
NOP

NOP

E r1← r1 + r3

(b)

A r1← a
B r2← b
C r3← c

NOP

D r1← r1 + r2

E r1← r1 + r3

(c)

Figure 1. Dependency DAG and two possible schedules.

work. As well, the scheduler was able to routinely solve

the largest basic blocks that we found in practice, including

basic blocks with up to 2600 instructions.

An extended version of this paper containing proofs, ad-

ditional descriptions of the constraints, and additional ex-

perimentation is available [11].

2. Background

In this section, we define the instruction scheduling prob-

lem studied in this paper followed by a brief review of the

needed background from constraint programming.

Throughout the paper, the number of elements in a set U
is denoted by |U |, the minimum and maximum values in a

finite set U of integers are denoted by min(U) and max(U),
respectively, and the interval notation [a, b] is used as a

shorthand for the set of integers {a, a + 1, . . . , b}.
We consider multiple-issue pipelined processors. On

such processors, there are multiple functional units, and

multiple instructions can be issued (begin execution) each

clock cycle. Associated with each instruction is a delay or

latency between when the instruction is issued and when the

result is available for other instructions that use the result.

Each instruction has a type and can only execute on a func-

tional unit of that type. Examples of instruction types are

load/store, integer, floating point, and branch.

We use the standard labeled directed acyclic graph

(DAG) representation of a basic-block. Each node corre-

sponds to an instruction and there is an edge from i to j
labeled with a non-negative integer l(i, j) if j must not be

issued until i has executed for l(i, j) cycles. In particular,

if l(i, j) = 0, j can be issued in the same cycle as i; if

l(i, j) = 1, j can be issued in the next cycle after i; and if

l(i, j) > 1, there must be some intervening cycles between

when i is issued and when j is subsequently issued. These

cycles can possibly be filled by other instructions.

The critical-path distance from a node i to a node j in

a DAG, denoted cp(i, j), is the maximum sum of the laten-

cies along any path from i to j. A node i is a predecessor

of a node j if there is a directed path from i to j; if the path

consists of a single edge, i is also called an immediate pre-

decessor of j. A node j is a successor of a node i if there

is a directed path from i to j; if the path consists of a single

edge, j is also called an immediate successor of i. A sink

node is a node with no successors. For convenience, we

assume that a fictitious sink node, hereafter called the sink

node, is added to each DAG and that an edge is added from

each node i in the DAG to the sink node, where the label on

the edge is the latency of instruction i.

Given a labeled dependency DAG for a basic block, a

schedule for a multiple-issue processor specifies an issue

or start time for each instruction or node such that the la-

tency and resource constraints are satisfied. The length of a

schedule is the number of the cycle in which the sink node

is issued. The basic block instruction scheduling problem is

to construct a schedule with minimum length.

Example 1 Figure 1 shows a simple dependency DAG and

two possible schedules for the DAG, assuming a single-

issue processor that can execute all types of instructions.

The schedule (b) requires four NOP instructions (null oper-

ations) because the values loaded are used by the following

instructions. The better schedule (c), the optimal or mini-

mum length schedule, requires only one NOP and completes

in three fewer cycles.

Constraint programming is a methodology for solving

combinatorial problems, where a problem is modeled in

terms of variables, values, and constraints.

Definition 1 (Constraint Model) A constraint model con-

sists of a set of n variables, {x1, . . . , xn}; a finite domain

dom(xi) of possible values for each variable xi, 1 ≤ i ≤ n;

and a collection of r constraints, {C1, . . . , Cr}. Each con-

straint Ci, 1 ≤ i ≤ r, is a constraint over some set of

variables, denoted by vars(Ci), that specifies the allowed
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combinations of values for the variables in vars(Ci). A so-

lution to a constraint model is an assignment of a value to

each variable that satisfies all of the constraints.

Constraint models are often solved using a backtrack-

ing algorithm. At every stage of the backtracking search,

there is some current partial solution that the algorithm at-

tempts to extend to a full solution by assigning a value

to an uninstantiated variable. One of the keys behind the

success of constraint programming is the idea of constraint

propagation. During the backtracking search when a vari-

able is assigned a value, the constraints are used to reduce

the domains of the uninstantiated variables by ensuring that

the values in their domains are “consistent” with the con-

straints. The form of consistency we use in our approach to

the instruction scheduling problem is bounds consistency. A

constraint C is bounds consistent if for each x ∈ vars(C),
the value min(dom(x)) has a support in C—there exists

values for each of the other variables in C such that C is

satisfied— and the value max(dom(x)) has a support in C.

A constraint model can be made bounds consistent by re-

peatedly removing unsupported values from the domains of

its variables.

Example 2 Consider the constraint model of the small in-

struction scheduling problem in Example 1 with variables

A, . . . , E, each with domain {1, . . . , 6}, and the constraints,

C1: D ≥ A + 3, C3: E ≥ C + 3,

C2: D ≥ B + 3, C4: E ≥ D + 1,

C5: all-different(A, B, C, D, E),

where constraint C5 enforces that its arguments are pair-

wise different. The constraints are not bounds consistent.

For example, the minimum value 1 in the domain of D

does not have a support in C1 as there is no corresponding

value for A that satisfies the constraint. Enforcing bounds

consistency using constraints C1 through C4 reduces the

domains of the variables as follows: dom(A) = {1, 2},
dom(B) = {1, 2}, dom(C) = {1, 2, 3}, dom(D) = {4, 5},
and dom(E) = {5, 6}. Subsequently enforcing bounds

consistency using constraint C5 further reduces the domain

of C to be dom(C) = {3}. Now constraint C3 is no

longer bounds consistent. Re-establishing bounds consis-

tency causes dom(E) = {6}.

3. Our solution

In this section, we present our constraint model of the

basic block instruction scheduling problem, with a focus

on the preprocessing techniques we used for improving the

constraint model.

We model each instruction by a variable with names

1, . . . , n (we use i to refer interchangeably to variable i,

Table 1. Notation for specifying constraints.

kt number of functional units of type t

l(i, j) latency on edge between nodes i and j

cp(i, j) critical-path distance between nodes i and j

d(i, j) lower bound on distance between i and j

op(i, j, t) set of all nodes of type t that are on some

path from node i to node j. Note that i ∈
op(i, j, t) if i is of type t. Similarly for j.

These are all of the instructions of type t that

must be issued with or after node i is issued

and must all be issued with or before node j
is issued.

pred(i) set of all immediate predecessors of node i

succ(i) set of all immediate successors of node i

I([a, b], t) set of all variables of type t whose domains

intersect the interval [a, b]. These are all of

the instructions of type t that may need these

clock cycles to execute on functional units of

type t.

instruction i, and node i in the DAG). The domain of each

variable dom(i) is a subset of {1, . . . , m} which are the

available clock cycles. Assigning a value d ∈ dom(i) to a

variable i has the intended meaning that instruction i will be

issued at clock cycle d. The domain dom(i) = {a, . . . , b}
of a variable i is represented by the endpoints of the interval

[a, b].

We now specify the five types of constraints in the

model: latency, resource, distance, safe pruning, and dom-

inance constraints. Some of the notation we use is sum-

marized in Table 1. Given a labeled dependency DAG

G = (N, E), for each pair of variables i and j such that

(i, j) ∈ E, latency constraints of the form j ≥ i+ l(i, j) are

added to the constraint model. For each type t of instruc-

tion/functional unit a resource constraint is needed to en-

sure that the number of instructions of type t issued at each

clock cycle does not exceed the number of functional units

of type t. Such resource constraints are a special case of

a well-studied constraint called the global cardinality con-

straint [14]. Note that when there is a single functional unit

for some type t, the global cardinality constraint is equiv-

alent to the well-known all-different constraint, which en-

forces that its arguments are pair-wise different.

As is clear, for a minimal correct model of the instruction

scheduling problem all that is needed are the latency and re-

source constraints. However, it is now well-established that

adding implied (or redundant) constraints and dominance
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Table 2. Notation for distance constraints.

r1(i, j, t) The minimum number of cycles that must

elapse before the first instruction in op(i, j, t)
can be issued; i.e., min{cp(i, k) | k ∈
op(i, j, t)}, the minimum critical-path dis-

tance from node i to any node in op(i, j, t).

r2(i, j, t) The minimum number of cycles to issue

all of the instructions in op(i, j, t); i.e.,

⌈|op(i, j, t)|/kt⌉, the size of the set of in-

structions divided by the number of func-

tional units that can execute instructions of

type t, rounded up to the next highest integer

value.

r3(i, j, t) The minimum number of cycles that must

elapse between when the last instruction in

op(i, j, t) is issued and node j can be issued;

i.e., min{cp(k, j) | k ∈ op(i, j, t)}, the min-

imum critical-path distance from any node in

op(i, j, t) to node j.

constraints to a constraint model can greatly improve the

efficiency of the search for a solution (see, e.g., [15]). Im-

plied constraints are constraints which do not change the set

of solutions to the constraint model. Dominance constraints

do not necessarily preserve the set of solutions but do pre-

serve at least one of the solutions. Both types of constraints

can increase the amount of constraint propagation and so

cause the domains of the variables to be further restricted.

In our context, adding the distance, safe pruning, and dom-

inance constraints was found to be essential in improving

the efficiency of the backtracking search for a schedule—

without them, only small problems could be consistently

solved. Many instances of each of these three types of con-

straints are added in an extensive preprocessing stage.

3.1. Distance constraints

For each pair of nodes i and j, a distance constraint

of the form j ≥ i + d(i, j) is considered for addition

to the constraint model. A distance constraint is added if

it is an improvement over the critical-path distance; i.e.,

d(i, j) > cp(i, j). (If the distance is not greater than the

critical-path distance, adding the constraint will have no ef-

fect as the latency constraints will derive a stronger result.)

The distance constraints are lower bounds on the number

of cycles that must elapse between when i is scheduled and

j is scheduled. Although syntactically identical to latency

constraints and hence propagated in the same manner, they

are conceptually distinct and are key factors in effectively

reducing the size of the search space.

In what follows, we are interested in subgraphs called

regions [17], which are induced from a given dependency

DAG. Basic blocks typically contain many such regions em-

bedded within them, with larger blocks containing many

thousands.

Definition 2 (Region [17]) A pair of nodes i, j in a DAG

define a region if there is more than one path between i and

j and there does not exist a node k distinct from i and j such

that every path between i and j goes through k.

Given a region defined by nodes i and j, we wish to add

a distance constraint j ≥ i + d(i, j), for some integer value

d(i, j). Following [17], if the region is small enough, we

solve the region exactly (in isolation) and determine the op-

timal value for d(i, j). To solve a region in isolation, we use

the same constraint solver as for an entire basic block.

For larger regions, we estimate the value, ensuring that

our estimate is always less than or equal to the optimal

value. We found that a threshold of 25 nodes worked well

in practice; for regions larger than this the distance was es-

timated. Consider the notation shown in Table 2. For larger

regions, initially we estimate d(i, j) using,

d(i, j) = max
t
{r1(i, j, t) + r2(i, j, t) + r3(i, j, t)− 1},

where we are finding the maximum over all instruction

types t. Note that the nodes that are on a path from node

i to node j can be determined quickly given the critical-

path distances between all pairs of nodes, since a node k is

on a path from i to j iff cp(i, k) ≥ 0 and cp(k, j) ≥ 0. The

estimate of the distance can sometimes be improved by “re-

moving” a small number of nodes (between one and three

nodes) from op(i, j, t). This was done whenever remov-

ing these nodes led to an increase in the value of d(i, j);
i.e., the decrease in r2(i, j, t) was more than offset by the

increase in r1(i, j, t) + r3(i, j, t). The estimate is a gen-

eralization and improvement over the distance constraints

presented in [16], to handle multiple-issue, multiple types

of instructions, and zero latency edges.

Example 3 Consider the dependency DAG shown in Fig-

ure 2 where the clear nodes are of one instruction type and

the shaded (yellow) nodes are of a different instruction type.

Assume there is a single functional unit for each type of

instruction. For the region defined by A and F, the initial

estimate of the distance is d(A, F) = 4. Similarly, for the

region defined by A and G, the initial estimate of the dis-

tance is d(A, G) = 5. The estimate of the distance d(A, G)
can be improved to d(A, G) = 6 by “removing” node G

from op(A, G, shaded). The distance constraints F ≥ A +
4 and G ≥ A + 6 would be added to the constraint model,
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Figure 2. Adding distance constraints.

as both d(A, F) and d(A, G) are improvements over the

critical-path distances between those nodes.

3.2. Safe pruning constraint

Given a constraint model, we say that it is safe to add

a constraint to a constraint model whenever it is the case

that, if there was a solution to the constraint model before

adding the constraint, there is still a solution after adding

the constraint. Adding safe pruning constraints is based on

the following theorem.

Theorem 1 Suppose that all of the latency and resource

constraints have been propagated. If there exists an inter-

val [a, b] and a type t such that, (i) for all i ∈ I([a, b], t),
min(dom(i)) = a, (ii) for all i ∈ I([a, b], t), for all

k ∈ pred(i), k + l(k, i) ≤ i, and (iii) |I([a, b], t)| ≤ (b−
a+1)×kt, then adding the constraints i ≤ b, i ∈ I([a, b], t),
is safe.

A symmetric version of the theorem can be formulated

for safely pruning the lower bounds of variables.

Example 4 Consider the partial DAG shown in Figure 3,

where the domains of the variables are as shown. Assume

there is a single functional unit for each type of instruc-

tion. The safe pruning constraint can be applied iteratively

as follows. First, the interval [2,2], where I([2, 2], clear)
= {B}, satisfies the theorem. Hence, node B can have its

domain pruned to [2,2]. Second, the interval [3,3], where

I([3, 4], clear) = {C}, now satisfies the theorem. Hence,

node C can have its domain pruned to [3,3]. Third, the in-

terval [3,4], where I([3, 4], shaded) = {D, E}, also now

satisfies the theorem. Hence, nodes D and E can have their

domains pruned to [3,4].

 

 

[3, 11] 

    ⇓ 
 [3, 3] 

 

[3, 11] 

    ⇓ 
 [3, 4] 

 

[3, 11] 

    ⇓ 
 [3, 4] 

 

E C D 

1 
1 1 

[2, 10]  ⇒  [2, 2] B 

[1, 1] A 

1 

Figure 3. Improving bounds of variables us-

ing safe pruning constraints.

3.3. Dominance constraints

Heffernan and Wilken [8] present a set of graph trans-

formations for dependency DAGs for basic blocks and

show that optimally scheduling the transformed DAGs us-

ing branch-and-bound enumeration is faster and more ro-

bust. The DAG transformations reduce the search space

while preserving optimality. We found that adaptations of

these transformations also worked well in our constraint

programming approach. In our context, the transformations

add simple constraints to the model of the form i ≥ j, which

we call dominance constraints.

In what follows, we are interested in pairs of disjoint,

isomorphic subgraphs A and B induced from a given de-

pendency DAG. Subgraphs A and B are isomorphic if there

is a mapping from the node set of A to the node set of B
such that A and B are identical (identical instruction types,

edges, and latencies on the edges). Adding dominance con-

straints, when it is safe to do so, is based on the following

theorem.

Theorem 2 (Heffernan and Wilken [8]) Let A and B be

isomorphic subgraphs with node sets V (A) = {a1, . . . , ar}
and V (B) = {b1, . . . , br}. If, (i) ai is neither a predecessor

or a successor of bi, 1 ≤ i ≤ r, (ii) for all k ∈ pred(ai) such

that k 6∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r, (iii) for all

k ∈ succ(bi) such that k 6∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤
i ≤ r, and (iv) for any edge (bi, aj), l(bi, aj) ≤ cp(ai, bj),
then adding the constraints ai ≤ bi, 1 ≤ i ≤ r, is safe.

Example 5 Consider the DAG shown in Figure 4a. Domi-

nance constraints can be added iteratively as follows. First,

the subgraphs with nodes V (A) = {B, D} and V (B) = {C,

E} are isomorphic and satisfy the conditions of the theo-

rem. Hence, the constraints B ≤ C and D ≤ E can be added

to the model. Adding these constraints updates the criti-

cal path distances. In particular, cp(D, E) was −∞ and is

now 0. Second, the subgraphs with nodes V (A) = {F} and
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Figure 4. Adding dominance constraints.

V (B) = {E} are isomorphic and now satisfy the conditions

of the theorem. Hence, the constraint F ≤ E can be added

to the model.

Heffernan and Wilken [8] find isomorphic subgraphs that

satisfy the theorem using a backtracking search with a time

cutoff. In our work, we find isomorphic subgraphs by fo-

cusing on regions (see Definition 2) and using a heuristic

test. Focusing on regions appears to find the “right” con-

straints to add to the constraint model, and using the heuris-

tic greatly speeds up the computation.

Given a region defined by nodes i and j, we conceptually

remove the source node i and the sink node j of the region

and perform a depth-first search to find the separate com-

ponents or subgraphs of the region. We then check whether

pairs of components are isomorphic and satisfy the condi-

tions of the theorem (or can be made to do so by dropping

a few nodes). We focus on separate components of regions

as during the backtracking search for a solution, often both

orderings of these components must be tried to verify that

there is no solution. Thus, the dominance constraints, by es-

tablishing an ordering on the variables between these com-

ponents, can greatly reduce the search space.

Testing subgraph isomorphism is NP-complete in gen-

eral. Here, a fast heuristic test is used to determine whether

two components are isomorphic. The nodes in each com-

ponent are independently sorted based on features of the

nodes, and the order of the nodes constitutes a potential iso-

morphism mapping, which is then verified. Observe that

whenever the heuristic (sort) test returns true, the pair of

subgraphs is isomorphic, and that sometimes the heuris-

tic returns false even though there exists a true mapping.

However, experimental evidence suggests that the heuristic

works well. Consider the following sets S1 and S2, where

S1 ⊆ S2. Construct the first set S1 as follows. For all

pairs of components, add only those pairs to S1 that pass

the heuristic test. This gives some of the pairs of compo-

nents that are isomorphic (although it may miss some); i.e.,

S1 is a subset of the set of all isomorphic pairs of com-

ponents. Construct the second set S2 as follows. For all

pairs of components, add only those pairs to S2 that have

the same numbers of instructions of each instruction type.

This gives the pairs of components that are potentially iso-

morphic (although some may not be); i.e., S2 is a superset

of the set of all isomorphic pairs of components. We found

that the difference S2 − S1 was most often empty and al-

ways small, thus providing evidence that the heuristic test

catches almost all isomorphic pairs of components.

A special case of the theorem was found to occur often in

practice. Consider the DAG shown in Figure 4b where the

region defined by A and H contains many nodes all of the

same type and all at the same latencies. All of these nodes

are symmetric and the dominance constraints that would be

added are equivalent to so-called symmetry-breaking con-

straints [4]. We recognize this special case as follows. For

each instruction type t, we sort the variables by their lower

bounds, and then step through all instructions with the same

lower bound and check if the pairs of nodes satisfy the the-

orem. If so, dominance constraints are added.

Overall, we found that our techniques often discovered

many pairs of components within a basic block that sat-

isfied the theorem, sometimes with several hundred nodes

each. We also found that the dominance constraints that

were added greatly improved the efficiency of the back-

tracking search for a schedule.

3.4. Solving an instance

Solving an instance of an instruction scheduling problem

proceeds as follows.

We first construct the constraint model and use the con-

straints to establish the lower bounds of the variables and

a lower bound on the length m of an optimal schedule.

Given m, the upper bounds of the variables are similarly

established and the constraint model is passed to the back-

tracking algorithm. The backtracking search interleaves

constraint propagation with branching on variables. Dur-

ing constraint propagation, bounds consistency (and some-

times other forms of consistency) are enforced on the con-

straints until no further changes result. To enforce bounds

consistency on the global cardinality constraints, we used

the efficient algorithm presented in [13]. A dynamic vari-

able ordering is used to select the next variable to instan-

tiate. Given a selected variable x, the backtracking search

first branches on x assigned to min(dom(x)), then on x as-

signed to min(dom(x)) + 1, and so on, until either a solu-

tion is found or the domain of x is exhausted. If no solution

is found, a length m schedule does not exist and the value
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Table 3. Number of basic blocks where the optimal scheduler found an improved schedule (imp.),
percentage of basic blocks with improved schedules (%), and number of basic blocks where the
optimal scheduler failed to complete within a time limit of 10 minutes (t.o.), for ranges of basic block
sizes and various issue widths.

1-issue 2-issue 4-issue 6-issue

range #blocks imp. % t.o. imp. % t.o. imp. % t.o. imp. % t.o.

3–5 88,887 136 0.2 140 0.2 73 0.1 0 0.0

6–10 48,700 428 0.9 467 1.0 423 0.9 52 0.1

11–20 26,025 787 3.0 842 3.2 1,146 4.4 378 1.5

21–30 8,530 419 4.9 548 6.4 691 8.1 477 5.6

31–50 5,830 452 7.8 592 10.2 698 12.0 481 8.3

51–100 3,279 372 11.3 539 16.4 642 19.6 435 13.3

101–250 1,658 210 12.7 387 23.3 1 379 22.9 3 263 15.9

251–2600 203 63 31.0 2 78 38.4 2 83 40.9 61 30.0 3

Total 183,112 2,867 1.6 2 3,593 2.0 3 4,135 2.3 3 2,147 1.2 3

of m is incremented, the upper bounds of the variables are

re-established using the new value of m, and the new con-

straint model is passed to the backtracking algorithm. This

is repeated, each time incrementing m until a solution is

found, an upper bound on the length of an optimal schedule

is reached, or a time limit is exceeded. An upper bound on

the length of an optimal schedule is established by running a

list-scheduling algorithm using a critical-path heuristic (see

the next section). If a solution is found or the upper bound

on the length of an optimal schedule is reached, a provably

optimal solution has been found.

Further details on the solving process can be found in the

extended version of the paper [11].

4. Experimental evaluation

In this section, we describe the experimental evaluation

of our optimal basic block scheduler.

The constraint programming model was implemented

and evaluated on all of the basic blocks from the SPEC

2000 integer and floating point benchmarks1. The bench-

marks were compiled using IBM’s Tobey compiler targeted

towards the IBM R© PowerPC R© processor, and the basic

blocks were captured as they were passed to Tobey’s in-

struction scheduler. The basic blocks contain four types of

instructions: branch, load/store, integer, and floating point.

The range of the latencies is: all 1 for branch instructions,

1–12 for load/store instructions, 1–37 for integer instruc-

tions, and 1–38 for floating point instructions. The compila-

tions were done using Tobey’s highest level of optimization,

which includes aggressive optimization techniques such as

1http://www.spec.org

software pipelining and loop unrolling. The Tobey compiler

performs instruction scheduling before global register allo-

cation and once again afterward. Because of space limita-

tions, we report only on the experiments on the basic blocks

from after register allocation. A report on the full set of ex-

periments can be found in the extended version of the paper

[11].

We used the following four architectural models in our

evaluation: a 1-issue processor executes all types of in-

structions; a 2-issue processor with one floating point func-

tional unit and one functional unit that can execute integer,

load/store, and branch instructions; a 4-issue processor with

one functional unit for each type of instruction; and a 6-

issue processor with the following functional units: two in-

teger, one floating point, two load/store, and one branch.

The optimal constraint programming scheduler was

compared experimentally with list scheduling, the most

popular heuristic method for scheduling basic blocks in

compilers [6]. List scheduling is a greedy algorithm which

uses a heuristic for which instruction to schedule next. Fol-

lowing Muchnick [12], our heuristic used critical-path dis-

tance as the primary feature and earliest start time as a

tie-breaker. Although a popular heuristic, the primary rea-

son for adopting this heuristic is that critical-path heuristics

were also used in previous work [8, 16, 17], thus allowing

a fairly direct comparison of previous experimental results

with our experimental results.

Table 3 shows the number of basic blocks in the SPEC

2000 benchmark suite where the optimal scheduler found

a shorter schedule than the heuristic scheduler and also the

number of basic blocks where the optimal scheduler failed
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Table 4. Average and maximum percentage improvements in schedule length of optimal schedule
over schedule found by critical-path heuristic, for ranges of block sizes and various issue widths.
The average is over only the basic blocks where the optimal scheduler found an improved schedule.

1-issue 2-issue 4-issue 6-issue

range ave. % max. % ave. % max. % ave. % max. % ave. % max. %

3–5 13.7 16.7 13.9 25.0 12.6 20.0 0.0

6–10 7.9 15.4 8.2 16.7 9.3 25.0 12.0 25.0

11–20 5.0 14.3 5.2 21.4 7.0 27.3 8.0 20.0

21–30 3.3 12.0 4.0 16.0 5.0 17.6 5.7 15.0

31–50 2.5 11.1 3.5 20.0 4.0 24.2 4.2 17.6

51–100 1.8 9.4 2.6 12.5 2.7 14.6 2.7 17.1

101–250 1.2 7.9 1.7 10.8 1.5 13.1 1.7 10.6

251–2600 0.2 0.9 0.7 4.1 0.5 3.4 0.6 4.7

Overall 4.4 16.7 4.6 25.0 5.2 27.3 4.7 25.0

to complete within the given time limit of 10 minutes2. It

can be seen that the optimal scheduler is robust in that it

almost always completed within the given time limit. Al-

though not shown in the tables, this remains true even if

the time limit is decreased from 10 minutes to 100 seconds.

(At most 8 additional failures resulted for each issue width

when scheduling after register allocation.) To systemati-

cally study the scaling behavior of the optimal scheduler, we

report the results broken down by increasing size ranges of

the basic blocks. For reference, the number of basic blocks

in each size range is also given. It can be seen that the op-

timal scheduler scales well, finding improved solutions for

large basic blocks. Not surprisingly, as the basic block size

increases, the heuristic method has more opportunities to

make a mistake and the fraction of basic blocks improved

by the optimal scheduler increases. For the largest basic

blocks, up to 40.9% of the schedules are improved by the

optimal scheduler.

Depending on the architectural model, the optimal

scheduler took between 1:48:49 (hh:mm:ss) and 2:05:55

to schedule all of the basic blocks in the entire SPEC

benchmark. The SPEC benchmark consists of 26 differ-

ent software projects. The maximum amount of time taken

scheduling the basic blocks in any individual project was

49:31 (mm:ss). While such long compile times would not

be tolerable in everyday use, these times are well within ac-

ceptable limits when compiling for software libraries, em-

bedded applications, or final release builds. We note that

adding the implied distance constraints and the safe pruning

and dominance constraints were critical to achieving this

performance. Without these constraints, many individual

2All of the experiments were run on a 2.40 GHz Intel R© Pentium R© 4

processor with 1 GB of main memory.

basic blocks could not be solved within the amount of time

that we can now solve the entire ensemble of basic blocks.

Wilken, Liu, and Heffernan [17] and van Beek and

Wilken [16] present experimental results for a 1-issue pro-

cessor. Note that, although both of these solvers could solve

all of the basic blocks in the SPEC95 floating point bench-

marks in seconds, when the solver in [16] was applied to

the current test suite of basic blocks, hundreds of problems

could not be solved. We speculate that the current test suite

contains more difficult problems for the following three rea-

sons. First, the current test suite contains longer and more

varied latencies (in [17], the latencies were uniformly 1 for

integer instructions, 2 for floating point instructions, and

3 for memory instructions). Second, the current test suite

contains shorter latencies (our DAGs contain many latency

0 edges, which are used to capture anti-dependencies and

output dependencies between two instructions). Third, the

current test suite contains many larger basic blocks (previ-

ous work used the GCC compiler and the largest DAG was

approximately 1000 instructions).

Heffernan and Wilken [8] were the first to present ex-

perimental results on solving large basic blocks targeted to-

wards a multiple-issue processor. Their test suite contains

the basic blocks from the SPEC 2000 floating point bench-

marks (with the Fortran90 benchmarks omitted) and are

from after register allocation. They report the number of ba-

sic blocks where their optimal scheduler failed to complete

within a time limit of 100 seconds. In their worst case, a

2-issue processor model, their optimal solver failed on over

200 basic blocks. If we restrict our experimental results to

the same benchmarks and the same time limit, our optimal

solver failed on only 4 basic blocks, a 50-fold improvement.

Table 4 summarizes the percentage improvements in

schedule length of the optimal schedule over the sched-
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ule found by a list scheduling algorithm using the critical-

path heuristic. Somewhat surprising is that on some size

ranges the optimal scheduler can find substantial improve-

ments, as measured by the maximum improvement. In

other words, critical-path list scheduling, a commonly used

heuristic method, sometimes finds schedules that are very

sub-optimal.

5. Conclusion

We presented a constraint programming approach to ba-

sic block instruction scheduling for multiple-issue proces-

sors that is optimal yet robust on large, real problems. The

key to scaling up to large, real problems was in the de-

velopment of preprocessing techniques for improving the

constraint model. We performed an extensive experimen-

tal evaluation and demonstrated that our approach compares

favorably to the best previous exact approaches. The sched-

uler rarely failed to find a solution within relatively short

time bounds, and was able to routinely solve the largest ba-

sic blocks that we found in practice, including basic blocks

with up to 2600 instructions.
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