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Abstract 
Biometric computing is a technique that uses 

physiological and behavioral characteristics of persons to 
identify and authenticate individuals. Due to the increasing 
demand on security, privacy and anti-terrorism, biometric 
applications represent the rapidly growing computing 
workloads. However, very few results on the execution 
characteristics of these applications on the state-of-the-art 
microprocessor and memory systems have been published 
so far. 

This paper proposes a suite of biometric applications 
and reports the results of a biometric workload 
characterization effort, focusing on various architecture 
features. To understand the impacts and implications of 
biometric workloads on the processor and memory 
architecture design, we contrast the characteristics of 
biometric workloads and the widely used SPEC 2000 
integer benchmarks. 

Our experiments show that biometric applications 
typically show small instruction footprint that can fit in the 
L1 instruction cache. The loads and stores account for 
more than 50% of the dynamic instructions. This indicates 
that biometric applications are data-centric in nature. 
Although biometric applications work across large-scale 
datasets to identify matched patterns, the active working 
sets of these workloads are usually small. As a result, 
prefetching and large L2 cache effectively handle the data 
footprints of a majority of the studied benchmarks. Branch 
misprediction rate is less than 4% on all studied 
workloads. The IPC of the studied benchmarks ranges from 
0.13 to 0.77 indicates that out-of-order superscalar 
execution is not quite efficient. 

The developed biometric benchmark suite (BMW) and 
input data sets are freely available and can be downloaded 
from http://www.ideal.ece.ufl.edu/BMW. 

1. Introduction 
Biometric computing is a technique that uses 

physiological and behavioral characteristics (e.g. face, 
fingerprint, iris, signature, voice, or gait) of persons to 
identify and authenticate individuals. Due to the increasing 
demand on security, privacy and anti-terrorism, biometric 
applications are being deployed in many areas, such as 
passport authentication, airport and border control, 
electronic banking, financial transactions, law enforcement, 
health and social services. Unlike traditional methodologies 

(e.g. smart cards, encryption keys and digital signatures), 
biometric identifiers are inextricably linked to persons 
themselves and therefore can not be forgotten, 
counterfeited, or stolen. The trend of biometric growth is 
reported to be on the rise and biometric industry revenue is 
expected to grow as high as $4,639 million by 2008 [1]. 
Clearly, computing systems that can deliver high-
performance on the representative biometric applications 
play an important role on the further growth of biometric 
computing market. 

Despite the widespread usage of biometric applications, 
their execution characteristics on the state-of-the-art 
microprocessor and memory systems are largely unknown. 
In order to ensure good hardware performance on 
biometric applications, designers need to use the key 
benchmarks from this application domain for the 
performance measurement and evaluation. Therefore, there 
is a clear need for representative biometric workloads and 
detailed workload characterization of these applications. 
This paper deals with the collection of benchmarks to 
characterize the various architectural aspects of different 
biometric applications, such as handwriting, fingerprint, 
face, voice and gait recognition, and evaluation of the 
effectiveness of numerous architectural features, such as 
trace cache, out-of-order and speculative execution, branch 
prediction and memory system behavior. The goal of this 
paper is to understand the workload characteristics of 
important biometric techniques and to provide computer 
architects and the implementers of biometric software with 
detailed execution characteristics of the workloads, which 
may be useful in the hardware/software design trade-offs 
for the cost-effective biometric computing platforms. 

Depending on the context, a biometric system can be 
either a verification (authentication) system or an 
identification system. Verification (Am I whom I claim I 
am?) involves confirming or denying a person’s claimed 
identity. In identification, one has to establish a person’s 
identity (Who am I?). Each one of these approaches has its 
own complexities and could probably be solved best by a 
certain biometric system. As of today, most embedded 
processors focus on applications used for authentication. 
For example, Texas Instruments TMS320C600 and 
TMS320C500 processors are used for the FADT 
(Fingerprint Authentication Development Tool) [2]. Atmel 
has launched biometric systems based on Atmel’s 
AT91RM9200 ARM9 micro controller [3]. It has been 
designed for applications such as locks, and time and 
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attendance systems or other secure authentication 
applications. Identification systems are highly computation 
intensive and the use of general purpose processors is more 
common for these systems. This paper focuses on 
characterizing benchmarks for complex identification 
systems unlike the authentication systems catered by 
today’s embedded processors. Hence we selected a general 
purpose processor like the Pentium 4 as our baseline 
architecture due to its state-of-the-art design and 
popularity. 

The paper makes the following contributions: 
• First, it proposes a suite of representative biometric 

applications that could be used to evaluate the 
design of future processor and memory architecture 
on this emerging application domain. 

• Second, it provides a detailed quantitative workload 
characterization of important biometric applications. 
We use hardware performance counters to measure a 
wide range of architectural features of a Pentium 4 
based machine running various biometric 
applications. We study the basic workload 
characteristics and examine the efficiency of 
caching, out-of-order execution, branch prediction 
and speculative execution. Our analysis is 
specifically oriented towards the microprocessor and 
memory architecture efficiency for biometric 
applications, where very few results have been 
published so far. 

The rest of this paper is organized as follows: Section 2 
presents the proposed biometric benchmark suite - BMW. 
Section 3 describes the experimental methodology used in 
this study. Section 4 presents the detailed workload 
characterization results and discusses their architectural 
implications. In Section 5, we conclude the paper and 
outline our future work. 
2. The BMW (BioMetric Workload) Suite 

To characterize the architectural aspects of biometric 
applications, various sets of benchmarks are collected. 
Currently, the proposed biometric benchmark suite (BMW) 
contains five applications (i.e., handwriting, fingerprint, 
face, voice and gait recognition) which cover a variety of 
the major biometric technique (see Table 1 for benchmark 
description and S100 input data sets). The datasets we used 
were collected from several popular databases released by 
NIST (National Institute of Standards and Technology). 
We provide three input data sets – S1, S10 and S100 for 
each benchmark. This section describes the selected 
applications. 
2.1 Handwriting 

We use hsfsys2, a form-based optical character 
recognition (OCR) system developed by the National 
Institute of Standards and Technology (NIST) [4, 5]. The 
hsfsys2 performs various tasks such as form 
registration/removal, field isolation/segmentation, 

character normalization, feature extraction, character 
classification, and dictionary based post-processing. Each 
handwriting form contains 34 fields including the digit 
fields, lower case field, upper case field, and the 
constitution box. As the first phase of handwriting 
recognition, the forms are registered or aligned so that 
fields in the image correspond with the prototypical 
template of fields. To extract the featured vectors from 
characters, all characters are represented by 1024 binary 
pixel values. The Karhunen Loève (KL) [6] transform is 
applied to these binary pixel vectors to reduce 
dimensionality, suppress the noise, and produce optimally 
compact features for classification. The hsfsys2 system 
uses Multi-Layer Perceptron [7] method for character 
recognition. To classify a character, the appropriate 
eigenvectors and MLP weight matrices are first loaded. 
Using the eigenvectors, the normalized image is 
transformed into a feature vector. The feature vector is 
then presented to the MLP network. The result is assigned 
classification along with a confidence value. After spell-
correct processing, hsfsys2 system yields the final output 
as assigned class for each field and its associated 
confidence as determined by MLP classifier. 
2.2 Face 

We choose Colorado State University’s Face 
Identification Evaluation System [8] as a face recognition 
application. It provides standard face recognition 
algorithms and statistical methods for comparing face 
recognition algorithms. The system includes standardized 
image pre-processing software and four distinct face 
recognition algorithms. Preprocessing consists of five 
steps in converting an original PGM FERET image to a 
normalized image. These steps include integer to float 
conversion, geometric normalization, masking, histogram 
equalization and pixel normalization. Using principle 
components analysis (PCA) [9] algorithm, feature vectors 
are formed by concatenating the pixel values from the 
images. Linear discriminant analysis (LDA) [10] is then 
applied to form a subspace that is linearly separable 
between classes. Bayesian intrapersonal/extrapersonal 
classifier estimates the statistical properties of two 
subspaces based on a maximum a posteriori (MAP) and 
maximum likelihood (ML) classifier [11]: one for 
difference images that belong to the intrapersonal class 
which originates from two photos of the same subject and 
another for difference images that belong to the 
extrapersonal class which originates from two photos of 
different subjects. During the testing phase, the classifier 
takes each image of unknown class membership and uses 
the estimates of the probability distributions as a means of 
identification. 
2.3 Fingerprint 

We use NIST Fingerprint Image Software 2 (NFIS2) as 
our biometric fingerprint benchmark. Nfis2 has been 
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adopted by the Federal Bureau of Investigation (FBI) and 
Department of Homeland Security (DHS). The nfis2 
software is organized into seven major packages [12]. 
Among them, we choose the PCASYS application which is 
a neural network based fingerprint pattern classification 
system. 

The PCASYS performs various tasks such as 
segmentation, image enhancement, ridge-valley orientation 
detection, feature set transform, probabilistic and multiple-
layer neural network classification. The segmentor first 
reads the input fingerprint image (8-bit grayscale, 512×480 
pixels) and cuts a rectangular region of the input image. 
The image enhancement routine enhances the segmented 
fingerprint image by snips out a sequence of squares each 
of size 32×32 pixels, with the snipping positions spaced 16 

pixels apart in each dimension to produce overlapping. 
Ridge-valley orientation detector finds the local 
orientation of the ridges and valleys of the finger surface 
image, and produces an array of regional averages of these 
orientations. Feature set transformation performs a linear 
transform to the orientation array. The Probabilistic Neural 
Network (PNN) algorithm classifies an incoming feature 
vector. Additionally, the pseudo-ridge tracing step takes a 
grid of ridge orientations of the incoming fingerprint and 
traces pseudo-ridges, which are trajectories that 
approximately follow the flow of the ridges. As the final 
processing step, PCASYS takes the outputs of the neural 
network classifier and the auxiliary pseudo-ridge tracer, 
and makes the decision as to what class, and confidence, to 
assign to the fingerprint. 

Table 1. Benchmark Description 

Software 
Package Program Description Input Data Set (S100) 

# Retired 
Instructions 

(Billions) 

Hand 
Writing hsfsys2 Use Multi-Layer Perceptron (MLP) 

classification to identify handwriting 

NIST Special Database 19(SD19) contains the 
full page binary image of 3,699 Handwriting 
Sample Form(HSF) and 814,255 segmented 
handprinted digit and alphabetic characters form 
those form 

1,147 

Face  csuFaceIdEv
al.5.0 

The standard statistical methods used for 
comparing face recognition algorithms 

The original Facial Recognition Technology 
(FERET) Database (released in 2001) consists of 
14,051 grayscale images 

534 

Finger 
Print nfis2 Neural network based fingerprint pattern 

classification system (PCASYS) 
A set of 2,700 WSQ compressed grayscale 
fingerprint images 254 

Voice Sphinx3-0.5 
Voice recognition system with an 
acoustic trainer, text recognition decoder 
and phoneme recognition decoder 

CMU Microphone array database and census 
database(AN4) 324 

Gait GaitBaseline 
V1.7 Identification of people from gait 

The USF-NIST data set consists of 1,870 
sequences from 122 subjects spanning 5 
covariates 

484 

 

 

2.4 Voice 
The voice recognition system we use is Sphinx-3 [13, 

14], which is one of the series of Sphinx system developed 
by CMU. It includes both an acoustic trainer and various 
decoders, i.e., text recognition, phoneme recognition, N-
best list generation, etc. A microphone converts the 
acoustic vibrations into an analog signal. This analog 
signal is then filtered to eliminate the frequency 
components of the signal. The filtered signal is then 
digitized using a sampling and quantization phase. The 
digitized waveform is then partitioned into fixed-duration 
time-slices, frames. In the encoding phase, audio signals 
are compressed and yield a stream of feature vectors. Each 
signal transformed from time domain to the frequency 
domain with fixed loop bounds. The Hidden Markov 
Model, HMM [15] is used as the primary algorithm to 
recognize the voice. An HMM is a graph of states with arcs 

weighted by transition probabilities between the states, and 
recognition is performed by determining the most probable 
path through the HMM graph corresponding to a given 
input sequence of frames. Sphinx-3 performs recognition 
with the help of a dictionary broken down into four 
probabilistic models, i.e., phone model, acoustic model, 
language model and pronunciation dictionary model. At 
runtime, Sphinx-3 finds the highest probability path in a 
given input sequence of frames using a beam search. As a 
result of that, beam search yields a set of candidate frames 
and then Sphinx-3 selects the candidate with the highest 
probability and sequentially retraces its path to recreate the 
constructed sentence. 
2.5 Gait 

Gait recognition systems use the video-sequence 
footage of a walking person to measure several different 
movements of each articulate joint. It is input intensive and 
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computationally expensive. Gait recognition algorithm [16] 
consists of four-parts, namely, define bounding box, 
silhouette extraction, gait period detection and similarity 
computation. 

As the first part, gait algorithm semi-automatically 
defines bounding boxes around the moving person in each 
frame of a sequence. Prior to extracting the silhouette, a 
background model of the scene is built. In the first pass 
through a sequence, the software computes the mean and 
the covariances of the RGB values at each pixel location. 
Based on the Mahalanobis distance [17, 18], pixels are 
classified into foreground or background. Gait period 
detection is estimated by such methods that count the 
number of foreground pixels in the silhouette in each frame 
over time and compute the median of the distances 
between minima. Using those methods, two kinds of 
estimated gait cycles are generated and the average of 
these two median would be the final estimated gait period. 
The output from the gait recognition algorithm is a 
complete set of similarity scores between all gallery and 
probe gait sequences. Similarity scores are computed by 
spatial-temporal correlation. 

Table 1 summarizes the collected benchmarks as well as 
their default input data sets (S100). We provide three 
different input data sets (i.e. S1, S10, and S100) for each 
benchmark. The S10 data sets were created by scaling 
down the S100 data sets with a factor 10. Similarly, the S1 
data sets were made by scaling down the S10 data sets with 
a factor 10. 

3. Experimental Setup 
This section describes our experimental infrastructure, 

including the configuration of our machine, the 
microarchitecture features of the Pentium 4 processor and 
the methodology for collecting and analyzing hardware 
counter data. We choose Pentium 4 as our baseline 
architecture due to its state-of-the-art design and 
popularity. The use of performance counters allows us to 
examine the characteristics of entire program execution 
because these programs are fairly long-running. 
3.1 Machine Configuration 

Our system consists of a 3.0GHz Pentium 4 (Prescott) 
processor, populated with 1GB main memory (Samsung 
DDR2-SDRAM, 400MHz). The machine runs Red Hat 
Linux 9.0 kernel version 2.4.26. The system is configured 
with an 80GB Seagate 7200.7 SATA hard disk that stores 
the biometric datasets. The benchmarks have been 
compiled using the gcc compiler for Linux. All biometric 
benchmarks are executed to completion. To contrast the 
execution characteristics of biometrics workloads and the 
well known benchmark suite, we run all SPEC 2000 
integer benchmarks with their reference input datasets. Due 
to the space limitation, we only present the average 
statistics of the SPEC benchmarks. For some architecture 

characteristics, we also show the best and the worst 
scenarios in the SPEC integer suite. 
3.2 Pentium 4 Microarchitecture 

This section briefly describes the key features of the 
Intel Pentium 4 microarchitecture and provides the 
technical background to understand the results we present 
in Section 4. 

The front end of the Pentium 4 micro-architecture 
fetches and decodes instructions. Its builds the decoded 
instruction into sequences of µops called traces, which are 
stored in the execution trace cache. The Pentium 4 trace 
cache can hold approximate 12,000 µops. The Pentium 4 
processors have two areas where branch predictions are 
performed - in the front end of the pipeline, and at the 
execution trace cache (the trace cache uses branch 
prediction when it builds a trace). Front-end BTB (Branch 
Target Buffer, 4K entries) is accessed on a trace cache miss 
and smaller Trace-cache BTB (2K entries) is used to detect 
next trace line. The trace cache BTB, together with the 
front-end BTB, uses a highly advanced branch prediction 
algorithm. Static branch prediction will occur at decode 
time if the front-end BTB has no dynamic branch 
prediction data for a particular branch. Dynamic branch 
prediction accuracy is also enhanced by adding an indirect 
branch predictor. The out-of-order execution engine 
consists of the allocation, renaming, and scheduling 
functions. The processor can issue multiple µops per cycle 
to the next pipeline stage. To exploit the instruction level 
parallelism (ILP) in the programs, the Pentium 4 
microarchitecture provides a very large window of 
instructions from which the execution units can choose. 
The Pentium 4 processor has an 8-way, 16KB L1 data 
cache and an 8-way, 1MB, write-back L2 unified cache 
with 128 bytes/cache line. 
3.3 Pentium 4 Performance Counters 

We used the Pentium 4 hardware counters to measure 
architectural events [19]. The Pentium 4 performance 
counting hardware includes 18 hardware counters that can 
count 18 different events simultaneously in parallel with 
pipeline execution. The 18 Counter Configuration Control 
Registers (CCCRs), each associated with a unique counter, 
configure the counters for specific counting schemes such 
as event filtering and interrupt generation. The 45 Event 
Selection Control Registers (ESCRs) specify the hardware 
events to be counted and some additional Model Specific 
Registers (MSRs) for special mechanisms like replay 
tagging. These counters collect various statistics including 
the number and type of retired instructions, mispredicted 
branches, cache misses etc. We used a total of 59 event 
types for the data presented in this paper. 
4. Experimental Results 

This section presents a detailed characterization of the 
Pentium 4 processor running the proposed biometric 
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benchmark suite. We examine benchmark basic 
characteristics, cache, TLB and memory system behavior, 
and superscalar execution. 
4.1 Benchmark Basic Characteristics 
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Figure 1. Dynamic Instruction Mix 
Figure 1 shows the dynamic instruction mix of the 

biometric applications. On the average, the load, store, 
branch, floating point, and integer instructions account for 
41.9%, 13.5%, 16.1%, 12.1% and 16.4 % of the dynamic 
instructions respectively. On benchmarks handwriting, 
face, fingerprint and voice, loads comprise above 40% the 
dynamic instructions. These applications tend to find or 
generate information by working on large data sets. The 
proportion of store instructions ranges from 8.6% on voice 
to 16.51% on gait. The studied biometric workloads show 
large variation in floating point instruction distribution 
from 3.14% on gait to 21.15% on voice. And also in Figure 
1 and other figures, we add average SPEC 2000 integer 
benchmark data to compare the biometric benchmark data. 
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Figure 2. µops per Instruction 

In order to improve the efficiency of the superscalar 
execution and the parallelism of the program, each x86 
instruction is translated into one or more µops inside the 
Pentium 4 processor. Typically, a simple instruction is 
translated into around one to three µops. Figure 2 shows 
the average number of µops executed per instruction for 
each of the biometric benchmark. The range is from 1.44 to 
1.61, with an average around 1.51. Compared with SPEC 
benchmarks, biometric applications show similar number 
in µops per instruction. 
4.2 IPC and µPC 

The instructions-per-cycle (IPC) metric indicates how 
efficiently a microprocessor performs its functions. Using 
the Pentium 4 events that count the number of cycles, 
number of instructions retired and number of µops retired 
during the measurement period, we computed the IPC and 
µops per cycle (µPC) metrics for the biometric workloads 
(as shown in Figure 3). The biometric application IPC 
ranges from 0.13 to 0.77, with an average around 0.47. A 
lower IPC can be caused by an increase in cache misses, 
branch mispredictions, or pipeline stalls in the CPU. The 
IPCs are low on benchmarks face and voice due to the 
excessive data cache misses. On these two benchmarks, 
large data structures (e.g. HMM) are first created and then 
intensively accessed during the computation. The memory 
references to these data structures cause high miss rates due 
to their poor locality. Interestingly, the benchmark gait 
shows low IPC despite of its good cache and branch 
prediction performance. 
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Figure 3. IPC vs. µPC 

We believe that the low IPC stems from the limited ILP 
inherent to this benchmark. The µPC ranges from 0.2 to 
1.17, with an average around 0.7. Only two benchmarks 
(handwriting and fingerprint) achieve more than one µops 
per cycle. Figure 3 shows that compared with SPEC 
benchmarks, biometric applications show slightly lower 
IPC and µPC. The greatest IPC (fingerprint) that the 
processor can yield on biometric applications is similar to 
that on the SPEC benchmarks (gap). The observed lowest 
IPC (gait) is still better than the worst case (mcf) of SPEC 
benchmarks. 
4.3 Trace Cache 

As the front end, the Pentium 4 trace cache sends up to 3 
µops per cycle directly to the out-of-order execution engine, 
without the need for them to pass through the decoding 
logic. Only when there is a trace cache miss does the front 
end fetches x86 instructions from the L2 cache. There are 
some exceedingly long x86 instructions (e.g., the string 
manipulation instructions) that decode into hundreds of 
µops. For these long instructions, the Pentium 4 processor 
fetches µops from a special µops ROM that stores the 
canned µops sequence. Figure 4 shows the proportion of 
the µops fetched from the L2 cache, the trace cache, and 
the µops ROM respectively. As can be seen, a dominant 
fraction (97.22%) of the µops is supplied by the trace 
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cache. The L2 cache contributes to less than 0.17% of the 
µops on most of the benchmarks. This indicates that the 
Pentium 4 trace cache is highly efficient in providing the 
µops to the rest of the pipeline. 
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Figure 4. Source of the µops 

The trace cache operates in two modes: deliver mode 
and build mode. The deliver mode is the mode in which the 
trace cache is feeding stored traces to the execution logic to 
be executed. This is the mode that the trace cache normally 
runs in. When there is a trace cache miss, the trace cache 
goes into build mode. In this mode, the front end fetches 
x86 instructions from the L2 cache, translates into µops, 
builds a trace segment with it, and loads that segment into 
the trace cache to be executed. Figure 5 shows the 
percentage of non-sleep cycles that the trace cache is 
delivering µops from the trace cache, vs. decoding and 
building traces. As can be seen, the utilization of the trace 
cache is extremely high except on the benchmark 
fingerprint. The trace cache BTB yields high misprediction 
rate on the benchmark fingerprint. After branch outcomes 
are resolved, the speculatively built traces have to be 
squashed and rebuilt again. Figure 5 shows that the fraction 
of trace cache deliver mode on biometric application is 
higher than that on SPEC benchmarks. 
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Figure 5. Trace Cache: % of Cycles in Deliver Mode 

(fraction of all non-sleep cycles that the trace cache is 
delivering µops from vs. decoding and building traces) 

4.4 Cache Misses 
Figure 6 presents the counts of cache misses per 1000 

instruction retired. We see that instruction related cache 
misses are nearly fully satisfied by the trace cache. In most 
cases the trace cache misses are so small that they don’t 

even shown on the scale used in Figure 6. Data cache miss 
ratios are higher because the data footprint is much larger 
than the instruction footprint. For example, the benchmarks 
face and voice can cause more than 32 L1 data cache 
misses on every thousand instructions executed. On the 
average, the studied biometrics applications generate 16.69 
L1 cache misses per thousand retired instructions. Note 
that this number is likely to increase as (1) the size of the 
biometric databases grows and (2) the analysis methods get 
more complicated. Figure 6 shows that in the worst case 
(mcf), SPEC benchmarks yield a cache miss rate 6.5 times 
higher than the worst case of biometric workloads. On the 
average, the L1 D-cache miss rate on SPEC benchmarks is 
three times higher than that on biometric workloads. 
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Figure 6. Cache Misses per Thousand Instructions 

We found that the L1 data cache misses on 3 out of the 5 
studied benchmarks can be nearly fully satisfied by the L2 
cache. The Pentium 4 processors use automatic hardware 
prefetch to bring cache lines into the unified L2 cache 
based on prior reference patterns. Prefetching is beneficial 
because many accesses to the biometric databases are 
sequential, and thus, predictable. With prefetching, the L2 
cache can handle the working sets of most of the studied 
benchmarks. Interestingly, the benchmarks (face and voice) 
with the highest L1 data cache misses also have the highest 
L2 misses, implying their poor data locality. Due to the 
irregular memory access patterns and poor locality, data 
accesses on these two benchmarks are difficult to absorb, 
even for the 1MB, 8-way set associative L2 cache with 
prefetching, which suggests that either larger L2 caches or 
better prefetching scheme could be beneficial for them. 
Figures 3 and 6 show a fairly strong correlation between 
the L2 misses and IPC, indicates that the L2 miss latency is 
more difficult to be completely overlapped by out-of-order 
execution. 

The Pentium 4 L2 cache uses write-back policy. Cache 
lines may be in one of four sates: modified (M), exclusive 
(E), shared (S) or invalid (I). The Pentium 4 counters allow 
us to monitor the MESI state of an L2 cache line on an 
access to the L2 cache. Accesses to invalid lines 
correspond to cache misses, while accesses to lines in other 
states correspond to hits to an L2 line found in that state, 
before any modifications due to that access are made. 
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Figure 7 shows the percentages of L2 accesses broken 
down by MESI states. Note that these references result in 
misses in the L1 cache. As expected, we see that a large 
fraction of accesses that hit in the L2 cache are to exclusive 
and modified cache lines. The exclusive state is heavily 
utilized for loads in the Pentium 4 processor. The high 
percentage of load hits to modified lines indicates that the 
processor reads data in the same line as it has recently 
written. 
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Figure 7. MESI Sates of L2 Line on L2 Accesses 

4.5 TLB Misses 
The Pentium 4 processor uses separate TLB (Translation 

Lookaside Buffer) to translate the virtual address into 
physical address for instruction and data accesses. Figure 8 
presents the ITLB and DTLB miss rates across the studied 
benchmarks. The ITLB miss rates are well below 2.0% on 
most benchmarks. Benchmark gait yields higher ITLB 
miss rates than others. This is due to the fact that gait has a 
very large percentage of branches in its instruction mix (as 
seen from Figure.1). Figure 8 also shows that most of the 
DTLB accesses can be handled very well by the Pentium 4 
processor. Nevertheless, benchmarks voice, which exhibits 
poor data locality, yields high (2.67%) DTLB miss rates. 
Figure 8 also presents the best (eon) and the worst (mcf) 
cases of DTLB miss rates on SPEC benchmarks. As can be 
seen, compared with SPEC benchmarks, biometrics 
applications show better DTLB but worse ITLB 
performance. 
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Figure 8. TLB Miss Rates 

We further characterize the DTLB misses on load and 
store operations. Figure 9 demonstrates that the DTLB 

miss rate of voice on load operation is higher than that on 
store operation. Inversely, DTLB miss rate of fingerprint 
on store operations is higher than that on load operation. 
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Figure 9. DTLB Miss Rates on Load and Store 

4.6 Load Replays 
Given that a large percentage of dynamic instructions are 

loads and stores, we investigate the efficiently of the 
processor in handling the load and store operations next. 

In an out-of-order-execution processor, stores are not 
allowed to be committed to permanent machine state (the 
L1 data cache, etc.) until after the store has retired. With 
the very deep pipeline of the Pentium 4 processor it takes 
many clock cycles for a store to make it to retirement. 
Often loads must use the result of one of these pending 
stores. The Pentium 4 processor uses a store-to-load 
forwarding technique to enable certain memory load 
operations (loads from an address whose data has just been 
modified by a preceding store operation) to complete 
without waiting for the data to be written to the cache. 

Memory Order Buffer (MOB) acts as a separate schedule 
and dispatch engine for data loads and stores and also 
temporarily holds the state of outstanding loads and stores 
from dispatch until completion. There are size and 
alignment restrictions for store-to-load forwarding cases to 
succeed, and when a restriction is not observed, the 
memory load operation stalls. Later, the load operation 
replays in the MOB. The MOB load replays event, 
indicates that store-to-load forwarding restrictions are not 
being observed. 
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Figure 10 shows the average number of MOB replays 
per retired load. One can see that the numbers are small for 
most of the benchmarks. There is significant store-to-load 
forwarding confliction on the benchmarks voice due to its 
irregular memory access patterns. We also plot the 
percentage of the MOB replayed loads that reach the 
retirement status and find the numbers vary significantly 
across different benchmarks. For example, gait shows 
higher MOB replayed load retire ratios than the others. 
This is because the inherent ILP in benchmark gait is low. 

4.7 Branches and Branch Prediction 
Figure 11 presents the fraction of branches that belongs 

to conditional branches, indirect branches, calls and returns. 
Conditional branches, ranging from 47.03% (gait) to 
92.90% (fingerprint) of the dynamic branches, dominate 
the control flow transfers in the biometric applications. 
Indirect branches account for more than 22.69% of the 
dynamic branches on benchmarks gait. On the average, 
conditional branches, indirect branches, call, and return 
contribute to the 78.99%, 8.65%, 6.19% and 6.18% of the 
total dynamic branches. Figure 11 shows that compared 
with the SPEC benchmarks, biometric applications show 
higher ratio of conditional branches in their control flow 
transfer instructions. 
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Figure 11. Dynamic Branch Mix 
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Figure 12. Branch Misprediction Rates 

 

Figure 12 shows the branch misprediction rates on the 
biometric applications. Due to the advanced branch 
prediction schemes, the overall branch misprediction rates 
are very low, except handwriting(3.23%) and voice(4%). 

Indirect branch misprediction rates are also low on the 
studied benchmarks. The calls and returns can be predicted 
accurately by the 16 entries return address stack. The 
accuracy of conditional branch prediction largely 
determinates the overall branch prediction performance. 
Figure 12 shows that SPEC benchmarks yields higher 
misprediction rates than biometric benchmarks. 
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Figure 13. Dynamic Branch Direction 

Figure 13 presents the branch directions (i.e., taken or 
not-taken) for both correctly predicted and incorrectly 
predicted conditional branches. As can be seen, a 
significant portion of the conditional branches are taken 
branches, implying there are abundant loop structures 
within the studied biometric applications. Strongly taken or 
strongly not-taken (i.e. strongly-biased) branches can be 
easily predicted by the Pentium 4 branch predictors. Even 
if the branch information can not be found in its dynamic 
branch predictors, the Pentium 4 can still predict the 
strongly-biased branches accurately using its static branch 
prediction scheme. The mispredicted branches are weakly-
biased in nature by showing the equal distribution on the 
taken and non-taken directions. Previous studies [20] show 
that the weakly-biased branches, when intermingling with 
the strongly-biased branches, can increase branch aliasing 
and degrade the prediction accuracy. It will be interesting 
to further investigate the branch aliasing caused by the 
weakly-biased branches. 

4.8 Speculative Execution 
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To reach high performance, the Pentium 4 machine 
fetches and executes instructions along the predicted path 
until the branch is resolved. In case there is a branch 
misprediction, the speculatively executed instructions 
along the mispredicted path are flushed. The speculative 
execution factor or the ratio of the total number of 
instructions decoded to the total number of instructions 
retired quantitatively captures how aggressively the 
processor executes the speculated instructions. 

Figure 14 shows the speculative execution factors for 
instruction and µops on the biometrics applications. On the 
average, the processor decodes 15% more instructions than 
it retires. Higher speculation factors are observed on 
benchmarks handwriting and voice. Note that there is a 
fairly strong correlation between the branch prediction 
accuracy and the speculative execution factor on these 
programs. Due to the use of deeply pipelined design to 
reach high operation clock frequency, the accuracy of 
branch prediction plays an important role on Pentium 4 
pipeline performance. Biometric benchmarks with higher 
mispredicted branches per instruction have higher 
speculated instructions, indicating these applications can 
further benefit from more accurate branch prediction. 

Figure 14 shows that on the average, the speculative factor 
on SPEC benchmarks is higher than biometrics workloads. 

4.9 Phase Behavior 
Recent computer architecture research has shown that 

program execution exhibits phase behavior, and these 
behaviors can be seen even on the largest of scales [21]. 
Program phases can be exploited to design adaptive 
microarchitecture, guide feedback compiler optimization 
and reduce simulation time. To reveal the phase behavior 
of biometric applications, we sampled performance 
counters at a time interval of 0.1 second. Figure 15 shows 
the sampled IPC during program execution. As can be 
seen, the studied biometric applications show 
heterogeneous phase behavior. For example, benchmark 
gait shows periodic spikes where program execution yields 
high IPC. Although benchmark face shows irregular 
behavior during initialization stage, its phase behavior is 
highly predictable for the majority of program execution. 
Benchmarks handwriting, fingerprint and voice exhibit 
irregular and unpredictable phase behavior during the 
entire program execution. 
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4.10 Performance Variability under Different 
Input Data Sets 

To understand the implication of using different data 
sets to evaluate the performance of biometric applications, 
we run each benchmark with S1 and S10 data sets. Table 2 
summarizes performance variability of biometric 
workloads under different input data sets. For the purpose 

of comparison, we also include the results of S100 data 
sets. As we expect, the scales of input data sets can have 
significant impact on the miss rates of L1 data cache and 
L2 cache. For instance, on benchmark face, the L1 data 
cache misses per thousand instructions increase from 19 to 
34 when the input data set is scaled from S10 to S100. In 
some cases, small data sets perform worse than large data 
sets due to cold start effect. 
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Table 2. Performance Variability under Different Input Data Sets 

Metrics  Hand 
writing Face Finger 

print Voice Gait 

S1 0.75 0.38 0.75 0.46 0.18 
S10 0.77 0.31 0.75 0.38 0.28 IPC 
S100 0.77 0.3 0.75 0.38 0.13 
S1 0.23 0.08 0.04 0.51 0.5 
S10 0.22 0.11 0.04 0.13 0.07 

Trace Cache Misses per 1000 
Instructions 

S100 0.13 0.07 0.03 0.12 0.05 
S1 12.58 19.48 3.62 23.4 0.71 
S10 12.75 19.86 3.66 31.37 0.72 

L1-D Cache Misses per 1000 
Instructions 

S100 10.37 34.3 3.78 32.56 2.43 
S1 0.53 2.11 0.08 5.39 0.08 
S10 0.52 2.01 0.08 8.74 0.07 L2 Cache Load Misses per 

1000 Instructions 
S100 0.31 2.77 0.08 8.48 0.11 
S1 1.18% 2.2% 0.2% 0.51% 2.28% 
S10 1.16% 1.67% 0.21% 1.03% 3.31% I-TLB Miss Rate 
S100 0.96% 1.79% 0.62% 1.4% 2.47% 
S1 0.82% 2.97% 0.92% 2.65% 0.03% 
S10 0.83% 2.39% 0.92% 2.88% 0.05% D-TLB Miss Rate 
S100 0.45% 0.78% 0.93% 2.67% 0.09% 
S1 86.25% 74.15% 97.26% 92.98% 23.1% 
S10 87.82% 75.55% 97.19% 96.26% 34.93% Trace Cache: % of Cycles in 

Deliver Mode 
S100 98.81% 97.18% 58.58% 99.64% 99.03% 
S1 1.81% 0.2% 1.19% 2.87% 0.19% 
S10 1.8% 0.11% 1.20% 3.69% 0.07% Overall Branch Misprediction 

Rates 
S100 3.23% 0.04% 1.17% 4.00% 1.41% 
S1 1.91% 0.19% 1.26% 3.54% 0.52% 
S10 1.90% 0.21% 1.27% 4.54% 0.21% 

Conditional Branch 
Misprediction Rate 

S100 3.55% 0.04% 1.23% 4.89% 2.99% 
S1 1.14 1 1.08 1.25 1.01 
S10 1.14 1 1.08 1.28 1.01 Instruction Speculative 

Execution Factor 
S100 1.23 1 1.07 1.29 1.14 

 

 

5. Conclusions 
Although biometric applications represent a rapidly 

growing security computing market, their implications on 
the computer architecture design are still unknown. In 
order to apply the quantitative approach in computer 
architecture design and performance evaluation, there is a 
clear need for representative biometric applications and 
detailed workload characterization of these applications. 

This paper proposes BMW, a group of programs 
representative of biometric workloads. These programs 
include popular biometrics identifications used for 
handwriting, face, fingerprint, voice and gait recognitions. 
This paper studies the characteristics of biometric 
workloads and evaluates the effectiveness of numerous 
architectural features, such as trace cache, out-of-order and 

speculative execution, branch prediction and memory 
system behavior. 

We find that the instruction footprints of biometric 
applications are typically small and can fit in the L1 
instruction cache. Loads and stores account for 55% of 
dynamic instructions executed. This indicates that 
biometric workloads are data-centric. Prefetching and the 
large L2 cache can efficiently handle the working sets of a 
majority of the studied benchmarks. Compared with SPEC 
benchmarks, the studied biometric applications show better 
performance in terms of data cache, D-TLB miss rates and 
branch misprediction rate. The IPC of the studied 
benchmarks ranges from 0.13 to 0.77. This indicates that 
out-of-order superscalar execution is not quite efficient. 

We believe that the development of representative 
biometric benchmarks and the workload characterization of 
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these benchmarks will help in understanding the design 
issues of processor architecture as well as evaluating 
computer system performance on these emerging 
workloads. In the future works, we will extend the current 
biometric benchmark suite with new applications such as 
iris, palm recognitions. It is also very interesting to study 
and compare the performance of biometric applications on 
other processor paradigms such as SMT (Simultaneous 
Multi-Threading) and CMP (Chip Multi-Processor). 
Additionally, we will explore the integrated 
software/hardware techniques to optimize the performance 
of biometric applications. 
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