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Abstract 

The exponential growth in the amount of genomic 

information has spurred growing interest in large scale 

analysis of genetic data. Bioinformatics applications 

represent the increasingly important workloads. However, 

very few results on the behavior of these applications running 

on the state-of-the-art microprocessor and systems have been 

published. 

This paper proposes a suite of widely used bioinformatics 

applications and studies the execution characteristics of these 

benchmarks on a representative architecture – the Intel 

Pentium 4. To understand the impacts and implications of 
bioinformatics workloads on the microprocessor designs, we 

contrast the characteristics of bioinformatics workloads and 

the widely used SPEC 2000 integer benchmarks. 

The proposed bioinformatics benchmark suite as well as 

the input datasets can be downloaded from the following 

website: http://www.ideal.ece.ufl.edu/BioInfoMark. 

1. Introduction 
Over the past few decades, advances in biology research 

have revolutionized our understanding of the basis of life. As 
genomics moves forward, having accessible computational 
methods with which to extract, view, and analyze genomic 
information, becomes essential. Bioinformatics allows 
researchers to sift through the massive biological data (e.g., 
nucleic acid and protein sequences, structures, functions, 
pathways and interactions) and identify information of 
interest. Bioinformatics is becoming increasingly important 
due to the interest of the pharmaceutical industry and 
biotechnology companies. A number of recent market 
research reports estimate the size of the bioinformatics market 
is projected to grow to $243 billion by 2010 [1].  

Despite the widespread usage of bioinformatics 
applications, very few results on the execution characteristics 
of these applications have been published. It is therefore 
important to understand how the representative workloads 
from this emerging application domain behave on the state-
of-the-art microprocessors and systems. Such studies can 
provide insights to computer architects on (1) how suitable 
current designs are for bioinformatics software, and (2) what 
optimizations will further improve the performance. 

This study characterizes the workload behavior of 17 
widely used bioinformatics tools. We use hardware 
performance counters to measure various architectural 
characteristics of a Pentium 4 based machine running the 

collected bioinformatics workloads. We chose Pentium 4 
architecture due to its state-of-the-art design and popularity. 
Since bioinformatics benchmarks are not well-known from 
the architecture perspective, we believe that an in-depth 
analysis of a wide variety of bioinformatics software on the 
representative architecture is crucial in understanding the 
implications of bioinformatics tools on today’s market. We 
study the basic workload characteristics and examine the 
efficiencies of trace cache, out-of-order execution, caches and 
TLBs, branch prediction and speculative execution. To better 
understand the impacts and implications of bioinformatics 
workloads on microprocessor designs, we further contrast the 
characteristics of bioinformatics workloads and the widely 
used SPEC 2000 integer benchmarks.  

To date, most published work related to bioinformatics 
applications either uses single program [2][3] or focuses on 
the high level, parallel programming issues [4][5]. Compared 
with the former work, our study is much wider in scope and 
our analysis is specifically oriented towards microprocessor 
and memory performance. Compared with a recent study 
reported in [6], our (independent) work covers much more (17 
vs. 7) bioinformatics tools and includes applications in protein 
structure analysis and molecular dynamics simulation. 
Moreover, our study is based on the more advanced Pentium 
4 microarchitecture whereas in [6] Pentium 3 is used as the 
reference machine. Compared with previous studies, the set of 
statistics collected in this work is more comprehensive and 
fine-grained. 

The contributions of this paper include: 

• Development of a benchmark suite that could be used to 
evaluate computer architecture performance on emerging 
bioinformatics applications

• Detailed workload characterization of widely used 
bioinformatics tools on a representative architecture – the 
Intel Pentium 4 

The rest of the paper is organized as follows. Section 2 
provides an introductory biology background and a brief 
review of bioinformatics study areas. Section 3 describes the 
benchmark applications. Section 4 describes the experimental 
setup. Section 5 presents detailed characterization of the 
benchmarks and their architectural implications. Section 6 
summarizes the major findings of this work. 

2. Background 

This section provides an introductory background for 
biology and illustrates the major fields of bioinformatics. 
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2.1 Introduction: DNA, Gene and Proteins 

One of the fundamental principles of biology is that within 
each cell, DNA that comprises the genes encodes RNA which 
in turn produces the proteins that regulate all of the biological 
processes within the organism.

DNA is a double chain of simpler molecules called
nucleotides. The nucleotides are distinguished by a nitrogen 
base that can be of four kinds: adenine (A), cytosine (C), 
guanine (G) and thymine (T). A DNA can be specified 
uniquely by listing its sequence of nucleotides, or base pairs. 

Proteins are the molecules that accomplish most of the 
functions of a living cell, determining its shape and structure. 
A protein is a linear sequence of molecules called amino 

acids. Twenty different amino acids are commonly found in 
proteins. Similar to DNA, proteins are conveniently 
represented as a string of letters expressing its sequence of 
amino acids.  

2.2 Biological Problems 

In this section, we illustrate the major problems in 
bioinformatics, including sequence analysis, phylogeny, 
protein structure analysis/prediction and molecular dynamics. 

(1) Sequence Analysis: Sequence analysis is perhaps the 
most commonly performed task in bioinformatics. Sequence 
analysis can be defined as the problem of finding similar and 
dissimilar parts of sequences (nucleotide or amino acid 
sequences). Comparison of sequences is crucial in 
understanding of their significance and functionality: high 
sequence similarity usually implies significant functional or 
structural similarity while sequence differences hold the key 
information of diversity and evolution. The most commonly 
used sequence analysis technique is pairwise sequence 
comparison. Multiple sequence alignment compares more 
than two sequences. 

(2) Phylogeny: Phylogeny infers lines of ancestry of genes 
or organisms. Phylogeny analysis provides crucial 
understanding about the origins of life and the homology of 
various species. Phylogenetic trees are composed of nodes 
and branches. Each leaf node corresponds to a gene or an 
organism. Internal nodes represent inferred ancestors. The 
evolutionary distance between two genes or organisms is 
computed as a function of the length of the branches between 
their nodes and their common ancestors. 

(3) Protein Structure Analysis: Once a protein is produced, 
it folds into a three-dimensional shape. Three-dimensional 
structures of only a small subset of proteins are known 
because expensive wet-lab experimentation is needed. 
Computationally determining the structure of proteins is an 
important problem as it accelerates the experimentation step 
and reduces expert analysis. Usually, the relationship among 
chemical components of proteins (i.e. their amino acid 
sequences) is used in determining their unique three-
dimensional native structures.  

(4) Molecular Dynamics: Molecular dynamics allows 
studying the dynamics of large macromolecules, including 
biological systems. Dynamic events play a key role in 
controlling processes which affect functional properties of 

biomolecules. Drug design is commonly used in the 
pharmaceutical industry to test properties of a molecule at the 
computer without the need to synthesize it (which is far more 
expensive). 

3. The Selected Bioinformatics Applications 

To characterize the architectural aspects of bioinformatics 
tools, various sets of applications are collected. Of the many 
bioinformatics applications, we currently select a subset of 17 
workloads based on their popularity, availability, and how 
representative they are in general. This section describes the 
selected programs, which can be classified using the 
categories we introduced in Section 2.2. 

3.1 Sequence Analysis Benchmarks 

The Blast (Basic Local Alignment Search Tool) programs 
[7] are a set of heuristic methods that are used to search 
sequence databases for local alignments to a query sequence. 
Blast is one of the most commonly used sequence comparison 
program. Over a hundred thousand queries are submitted to 
NCBI’s Blast server daily. Similar to Blast, Fasta [8] is a 
collection of local similarity search programs for sequence 
databases. While Fasta and Blast both do pairwise local 
alignment, their underlying algorithms are different. Clustal 

W [9] is a widely used multiple sequence alignment program 
for nucleotides or amino acids. It first finds a phylogenetic 
tree for the underlying sequences. It then progressively aligns 
them one by one based on their ancestral relationship. Hmmer

[10] employs hidden Markov models (profile HMMs) for 
aligning multiple sequences. Profile HMMs are statistical 
models of multiple sequence alignments. Glimmer (Gene 
Locator and Interpolated Markov Modeler) [11] finds genes 
in microbial DNA. It uses interpolated Markov models 
(IMMs) to identify coding and noncoding regions in the DNA. 
Emboss (European Molecular Biology Open Software Suite) 
[12] is a software package which contains a wide variety of 
programs ranging from sequence alignment, protein motif 
identification to domain analysis, and codon usage analysis. 

3.2 Phylogeny Analysis Benchmarks

Phylip (PHYLogeny Inference Package) [13] is a widely 
used package of programs for inferring phylogenies 
(evolutionary trees). Methods that are available in the package 
include parsimony, distance matrix, maximum likelihood, 
bootstrapping, and consensus trees. Data types that can be 
handled include molecular sequences, gene frequencies, 
restriction sites and fragments, distance matrices, and discrete 
characters. 

3.3 Protein Structure Analysis Benchmarks 

Dali [14] finds the structural neighbors of a protein by 
comparing it against the proteins in the PDB [15]. CE

(Combinatorial Extension) [16] finds structural similarities 
between the primary structures of pairs of proteins. CE first 
aligns small fragments from two proteins. Later, these 
fragments are combined and extended to find larger similar 
substructures. Predator [17] predicts the secondary structure 
of a protein sequence or a set of sequences based on their 
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amino acid sequences. Threader [18] predicts protein fold. It 
uses a database of unique protein folds. The new protein is 
then threaded to existing proteins in the database.

3.4 Molecular Dynamics Simulation Benchmarks 

Gamess (General Atomic and Molecular Electronic 
Structure System) [19] is a general ab initio quantum 
chemistry package. Gamess can compute SCF wave functions 
and a variety of molecular properties. Amber (Assisted Model 
Building with Energy Refinement) [20] is a package of 

programs that has been widely used for molecular dynamics 
simulations of proteins and nucleic acids. 

Table 1 summarizes the selected bioinformatics workloads 
and their inputs we used in our experiments. The inputs were 
chosen from the realistic and highly popular biological 
datasets, such as the NCBI nr [21] and bacteria genomes

databases, EMBL [22], PDB [15], and SWISS-PROT [23] 
databases. Overall, these input datasets contain several GB 
biological data. 

Table 1. Benchmark Description

Software 

Package 
Program Description Input Dataset 

# Retired 

Instructions

(Billions)

Blast blastpgp search the query protein in a protein database 
homo sapiens hereditary haemochromatosis 
protein, nr (primary databases from NCBI)

78

Fasta fasta34 
compare a protein/DNA sequence to a protein/DNA 
database 

human LDL receptor precursor protein, 
NCBI nr database 610

Clustal W clustalw progressively align multiple sequences 
317 Ureaplasma’s gene sequences  from 
the NCBI Bacteria genomes database 

852

Hmmer hmmsearch align multiple proteins using profile HMMs 
a profile HMM built from the alignment of 
50 globin sequences, uniprot_sprot.dat from
SWISS-PROT 

681

Glimmer glimmer2 
find genes in microbial DNA, especially the 
genomes of bacteria and archaea 

18 bacteria complete genomes from the 
NCBI genomes database 

371

diffseq find differences between nearly identical sequences nucleic acid database EMBL 35

megamerger merge two large overlapping nucleic acid sequences nucleic acid database EMBL 35Emboss 

shuffleseq shuffle a set of sequences maintaining composition nucleic acid database EMBL 315

dnapenny 
find all most parsimonious phylogenies for nucleic 
acid sequences  

ribosomal RNAs from bacteria and 
mitochondria 

264

Phylip 

promlk 
estimate phylogenies from amino acid sequences 
using maximum likelihood 

protein amino acid sequences of 17 species 
ranging from a deep branching bacterium to 
humans 

936

Dali dalilite find structurally similar proteins to a query protein 
5 representatives from 5 superfamilies in 
Protein Data Bank 

1465 

CE ce align C∝ atoms of pairs of proteins 
10 representatives from 31 superfamilies in 
Protein Data Bank 

326

Predator predator  
predict protein secondary structure from a single 
sequence or a set of sequences 

100 Eukaryote protein sequences from 
NCBI genomes database 

711

Threader threader  predict protein fold 
a yeast (Candida albicans) POL protein 
fragment, threader database 

208

Gamess gamess program for ab initio molecular quantum chemistry 37 test examples with Gamess distribution 158 

sander simulate and minimize molecular dynamics 
in vacuo model of a standard decamer 
poly(A)–poly(T) duplex DNA structure 

1963 
Amber 

ptraj  analyze trajectories  
7mer peptide in a box of periodic water 
(1577 Waters) 

17

4. Experimental Setup 

This section describes our experimental infrastructure, 
including the configuration of our machine, the 
microarchitecture features of the Pentium 4 processor and the 
methodology for collecting and analyzing hardware counter 
data. 

4.1 Machine Configuration 

All experiments were run on a 2.4GHz Pentium 4 
processor [24] with 1GB main memory running Red Hat 
Linux 9.0 kernel version 2.4.26. The Pentium 4 architecture 
was chosen due to its advanced features and high popularity 
in today’s bioinformatics computing market. Table 2 
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summarizes the Pentium 4 processor microarchitectural 
characteristics.  

Table 2. Microarchitectural Characteristics of 
Pentium 4 Processor  

In Order Front-End 
ITLB  128 entries, fully associative 

Front-End BTB  4K entries 

Instruction Decoder  1 x IA-32 inst. / cycle 

Trace Cache 12K µops1, 8-way, 6 µops / line 

Trace Cache BTB 2K entries  

µop Queue Bandwidth 3 µops / cycle 

Pipeline Length 31 

Branch Prediction 

hybrid predictor chooses between 
bimodal, local history, and global 
history 

Return Address Stack 16 entries 

Out-of-order Execution Engine
ROB 126 entries 

Load Buffer 48 entries 

Store Buffer 24 entries 

Write Combining Buffer 8 entries 

Dispatch Bandwidth 6 µops / cycle 

Retirement Bandwidth 3 µops / cycle 

Execution Units 
Integer Register Files 128 

FP Register File 128 

AGU 1 Load + 1 store 

Integer ALU 2 Fast + 1 Complex 

FP ALU 1 Move + 1 MMX-SSE 

L1 Data Cache 

16KB, 8-way, 64 Byte/line, write-
through, dual-ported, non-blocking 
(4), 2/6 cycles (Int./FP) 

DTLB 64 entries, fully associative 

Memory Subsystem 

L2 Cache 

1MB, 8-way, 128 Byte/line, write-
back, non-blocking, 7/7 cycles 
(Int./FP) , 108GB/s 

System Bus quad pumped 6.4GB/s 

4.2 Performance Counters 

We used hardware performance counters to measure 
architectural events [25]. The Pentium 4 performance 
counting hardware includes 18 hardware counters that can 
count 18 different events simultaneously in parallel with 
pipeline execution. The 18 Counter Configuration Control 
Registers (CCCRs), each associated with a unique counter, 
configure the counters for specific counting schemes such as 
event filtering and interrupt generation. The 45 Event 
Selection Control Registers (ESCRs) specify the hardware 
events to be counted and some additional Model Specific 
Registers (MSRs) for special mechanisms like replay tagging. 
These counters collect various statistics including the number 

                                                          
1

In order to improve the efficiency of the superscalar execution and the 

parallelism of the program, each x86 instruction is translated into one or 
more µops inside the Pentium 4 processor.

and type of retired instructions, mispredicted branches, cache 
misses etc. We used a total of 59 event types for the data 
presented in this paper.  

The benchmarks have been compiled using the Intel C/C++ 
and FORTRAN compilers for Linux, using generic Pentium 4 
optimization options [26].All bioinformatics benchmarks are 
executed to completion. To contrast the execution 
characteristics of bioinformatics workloads and the well 
known benchmark suite, we run all SPEC 2000 integer 
benchmarks [27] with their reference input datasets. Due to 
the space limitation, we only present the average statistics of 
the SPEC benchmarks. For some architecture characteristics, 
we also show the best and the worst scenarios in the SPEC 
integer suite. 

5. Experimental Results 

This section presents a detailed characterization of the 
Pentium 4 processor running the collected bioinformatics 
applications. We examine basic workload characteristics, 
trace cache, TLBs and memory system behavior, and 
superscalar execution. 

5.1 Basic Characteristics 

Table 1 shows that the total number of instructions 
executed on the studied bioinformatics programs ranges from 
tens of billions to thousands of billions. This indicates that the 
computational requirement to process the realistic biological 
data is non-trivial. The using of performance counters 
(instead of simulation) in this study allows us to examine the 
characteristics of entire program execution.  
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Figure 1. Dynamic Instruction Profile 

Figure 1 illustrates the dynamic instruction profile. As can 
be seen, sequence alignment and molecular phylogeny 
analysis programs contain high percentage loads in their 
instruction streams. Sequence alignment programs (e.g., 
blastpgp, fasta34 and hmmsearch) walk through large-scale 
databases and query sequences many times to find similar 
sequences. For example, for a given query, blastpgp

sequentially slides a window on the database sequences. This 
results in many load instructions. Phylogeny analysis tools 
(i.e., dnapenny and promlk) iteratively read sequences from 
multiple species to build phylogenetic trees. The percentage 
of loads is significantly more than that of stores in all 
programs. Sequence analysis programs, which typically 
employ dynamic programming (DP) algorithms, have to read 
multiple entries from the DP matrix to update a single entry. 
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Sequence management programs (e.g., diffseq, meagmerger

and shffleseq) modify biological sequences more frequently 
than other programs, resulting in high percentage stores in 
their instruction mix.  

Compared with SPEC benchmarks, bioinformatics 
workloads contain higher percentage of loads (45% vs. 37%). 
The store instruction mixes (15% vs. 16%) of both benchmark 
suites are very similar. Bioinformatics applications show 
large variation in branch instruction mix. For example, on 
benchmark sander, branches which are used to form coarse-
grained loops to perform iterative molecular dynamics 
simulation, account for less than 4% of total dynamic 
instructions. On the other hand, the gene prediction program 
glimmer2 heavily uses branches to distinguish and interpret 
the gene code segments from a large amount of possible 
nucleotides combinations, resulting in 26% branches in its 
instruction stream. On the average, compared with SPEC 
benchmarks, bioinformatics applications show a slightly 
lower branch frequency (15% vs. 19%).  

Bioinformatics workloads use floating point operations 
non-uniformly: molecular dynamic simulation programs, such 
as sander, ptraj and gamess perform many floating point 
operations, while sequence comparison tools, such as 
blastpgp, fasta34, clustalw and hmmsearch perform none. 
Protein structure comparison tools ce and dalilite perform 
floating point operations since they involve comparison of 
sequences of three dimensional coordinates represented with 
real numbers. Promlk uses floating point operations since it 
computes the substitution rates between sequences.

5.2 IPC and µPC 

Using the events that count the number of cycles, number 
of instructions retired and number of µops retired, we 
computed the IPC and µops per cycle (µPC) of bioinformatics 
workloads. As shown in Figure 2, the highest IPC values 
come from multiple sequence alignment program clustalw

and phylogeny analysis application dnapenny. The lowest 
IPCs values are programs that manage biological sequences 
(i.e. diffseq, megamerger and shuffleseq). The IPCs range 
from 0.15 to 0.93, with an average around 0.55. The µPCs 
range from 0.25 to 1.5, with an average around 0.82. Only 
four benchmarks (clustalw, dnapenny, ce, and threader)
achieve more than one µops per cycle.  

A lower IPC can be caused by an increase in cache misses, 
branch mispredictions, or stalls due to the long latency 
instructions in the pipeline. For example, blastpgp, fasta34

and hmmsearch all perform sequence similarity search in 
databases. Hmmsearch yields the highest IPC due to the best 
branch prediction and cache performance. Benchmark 
blastpgp yields lower IPC than fasta34 due to its higher L1 
data cache miss rate, although blastpgp has better branch 
prediction accuracy. This can be explained as follows. Both 
blastpgp and fasta34 first find exact matches (seeds) of a 
certain length. They later stitch and extend these matches to 
find longer matches. Blastpgp uses the entire seed set whereas 
fasta34 only uses the most promising set of seeds. As a result 
of this blastpgp usually maintains and inspects a larger set of 
candidates than fasta34 which results in larger amount of 

cache misses. Blastpgp uses longer seeds than fasta34.
Therefore, seeds of blastpgp are more likely to yield high 
quality matches. This improves the branch prediction 
accuracy of blastpgp over fasta34. The IPCs are remarkably 
low on benchmarks diffseq, megamerger and shuffleseq due to 
their excessive L2 data cache misses. Benchmark gamess

shows lower IPC due to instruction cache misses and the long 
latency floating point operations. Figure 2 shows that the 
greatest IPC (clustalw) that the processor can yield on 
bioinformatics applications is higher than that on the SPEC 
benchmarks (gap). The observed lowest IPC (diffseq) is still 
better than the worst case (mcf) of SPEC benchmarks. 
Overall, compared to SPEC benchmarks, bioinformatics 
applications show slightly better IPC and µPC. 
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5.3 Trace Cache 

As the front end, the trace cache sends up to 3 µops per 
cycle directly to the out-of-order execution engine, without 
the need for them to pass through the decoding logic. Only if 
there is a trace cache miss, the front end fetches x86 
instructions from the L2 cache. Additionally, for the long x86 
instructions, the processor fetches µops from a special µops 
ROM that stores the canned µops sequence. 
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Figure 3. Source of the µops

Figure 3 shows the proportion of µops fetched from the L2 
cache, the trace cache, and the µops ROM respectively. As 
can be seen, a dominant fraction (97%) of µops is supplied by 
the trace cache. Overall, the µops ROM only contributes 3% 
of µops and the L2 cache contributes less than 1% of the total 
µops. On SPEC benchmarks, the L2 cache can supply up to 
11% µops (eon). Overall, the L2 cache contributes 4% of 
µops on the SPEC benchmarks. This implies that compared to 
SPEC programs, bioinformatics applications exhibit better 
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trace cache performance. On both benchmark suites, the µops 
ROM contributes 3% of executed µops. 

5.4 Cache Misses 

Figure 4 presents the counts of cache misses per 1000 
instructions retired. We see that instruction cache misses are 
nearly fully satisfied by the trace cache. As can be seen, the 
average trace cache miss rate of SPEC benchmarks is higher 
than that of bioinformatics applications.  

Data cache miss rates are higher because of two main 
reasons. First, they process large-scale biological data, 
resulting in data footprints which are much larger than the 
instruction footprints. Second, they need to maintain very 
large data structures to analyze bioinformatics data. On the 
average, bioinformatics applications generate 14 L1 cache 
misses per thousand retired instructions.  

The L1-D cache miss rates on diffseq, megamerger and 
shufflesque are significantly higher than other programs. One 
reason for excessive amount of data cache misses is that these 
programs work on very large sequences. In our experiments, 
both diffseq and megamerger work on two large input 
sequences: the Homo sapiens chromosome 6p21.3, which 
contains 100,000 base pairs and the Homo sapiens MSH55 
gene, which contains 184,666 base pairs. Diffseq and 
megamerger are based on similar principles. They find short 
matches between two sequences. They then use these matches 
to find differences between the sequences or to merge the 
sequences into a single sequence. Since the input sequences to 
these benchmarks are nearly identical, they produce many 
short matches resulting in large internal data structures. 
Shuffleseq uses the Mus musculus chromosomes with 366 
base pairs as its input. It takes an input sequence and produces 
multiple shuffled versions of that sequence. It maintains and 
traverses multiple linked lists at run-time to store the input 
sequences and the shuffled sequences. Due to the poor 
locality, the generated memory access patterns can not fit into 
the L1 data cache. The L1 D-cache miss rates on diffseq and 
megamerger are higher than that on shuffleseq due to the 
larger input datasets used by these two programs.  

Figure 4 shows that in the worst case (mcf), SPEC 
benchmarks yield a cache miss rate four times higher than the 
worst case of bioinformatics workloads. On the average, the 
L1 D-cache miss rate on SPEC benchmarks is 3 times higher 
than that on bioinformatics workloads.  

We found that the L1 data cache misses on 14 out of the 17 
bioinformatics applications can be nearly fully satisfied by the 
L2 cache. The Pentium 4 processors use automatic hardware 
prefetch to bring cache lines into the unified L2 cache based 
on prior reference patterns. Prefetching is beneficial because 
many accesses to the biological sequence databases are 
sequential, and thus, predictable. For example, both bastpgp

and fasta34 build a hash table on one sequence and 
sequentially scan the other sequence once to find initial 
matches. Clusalw sequentially scans one sequence once and 
scans the other sequence multiple times to find pairwise 
alignments. With prefetching, the L2 cache can handle the 
working sets of most of the studied benchmarks. This 
indicates that although these bioinformatics tools search 

databases containing Giga bytes of biological sequences, their 
active working sets are usually small. 

The benchmarks (meamerger and diffseq) with the highest 
L1 data cache misses also have the highest L2 misses. Due to 
the irregular memory access patterns and poor locality, data 
accesses on these two benchmarks are difficult to absorb, 
even for the 1MB, 8-way set associative L2 cache with 
prefetching. Figure 2 and Figure 4 show a fairly strong 
correlation between the L2 misses and IPCs, indicates that the 
L2 miss latency is more difficult to be completely overlapped 
by out-of-order execution. Overall, bioinformatics 
applications show better L2 cache performance than SPEC 
benchmarks. 
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Figure 4. Cache Misses per thousand Instructions 

5.5 TLB Misses 

The processor uses separate TLBs (Translation Lookaside 
Buffers) to handle translations from virtual addresses to 
physical addresses on instruction and data accesses. Pentium 
4 has a 128-entry, fully-associative instruction TLB (ITLB) 
and a 64-entry, fully associative data TLB (DTLB). 

0%

2%

4%

6%

8%

bla
st

pgp

fa
st

a3
4

cl
ust

alw

hm
m

se
ar

ch

glim
m

er
2

diff
se

q

m
eg

am
er

ger

sh
uffl

es
eq

dnap
en

ny

pro
m

lk

dalil
ite ce

pre
dat

or

th
re

ad
er

gam
ess

sa
nder

ptr
aj

B
io

_AVG

Spec
_A

VG

Spec
_e

on

Spec
_m

cf

T
L

B
 M

is
s

 R
a

te
s

ITLB

DTLB

50%

Figure 5. TLB Miss Rates 

Figure 5 presents the ITLB and DTLB miss rates. As can 
be seen, the ITLB miss rates are well below 1.0% on most 
benchmarks. DTLB accesses on most benchmarks can also be 
handled very well. Nevertheless, benchmarks diffseq and 
meagmerger yield high (7%) DTLB miss rates due to their 
poor data locality. We further classify the DTLB misses on 
loads and stores and find that the DTLB miss rates on loads 
are usually higher than those on store operations. Figure 5 
also present the best (eon) and the worst (mcf) cases of DTLB 
miss rates on SPEC benchmarks. As can be seen, compared 
with SPEC benchmarks, bioinformatics applications show 
better DTLB performance. 
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5.6 Branches and Branch Prediction 

Figure 6 presents the fraction of branches that belong to 
conditional branches, indirect branches, calls and returns. 
Conditional branches, ranging from 49% (glimmer2) to 99% 
(dnapenny) of the dynamic branches, dominate control flow 
transfers in bioinformatics applications. Indirect branches 
account for more than 10% of the dynamic branches on 
benchmarks glimmer2, diffseq, meagmerger and shuffleseq.
Benchmark glimmer2 heavily uses case-switch statements 
(which are translated into indirect branches by the compiler) 
to map the encoded DNA/protein sequences to known gene 
segments. 
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Figure 6. Dynamic Branch Mix 

The three applications from EMBOSS suite all contain high 
percentage of indirect branches. A closer investigation reveals 
that these indirect branches come from the shared libraries. 
The entire EMBOSS suite contains more than 150 programs. 
To facilitate modular design and code reuse, the EMBOSS

applications heavily use the utilities built in its core software 
libraries (i.e. AJAX and NUCLEUS) to handle the common 
scenarios, such as the pre-processing of sequences. The code 
reuse results in the similar control flow transfer instruction 
profile between applications. We believe that the amount of 
indirect branches is not inherent in the underlying algorithms. 
They are rather caused by the implementation.  

On the average, conditional branches, indirect branches, 
call, and return contribute to 82%, 8%, 5% and 5% of total 

dynamic branch execution. Compared with the SPEC 
benchmarks, bioinformatics tools show higher ratio of 
conditional branches (82% vs. 72%) in their control flow 
transfer instructions. This is mainly because the underlying 
bioinformatics problems involve exploring a large state space 
incrementally where each state depends on a number of other 
states. For example, sequence comparison algorithms (e.g., 
blastpgp, fasta34, hmmsearch, and dnapenny) start with an 
initial alignment and gradually grow this alignment by 
making local decisions to whether insert a new letter or delete 
or modify an existing letter. On the other hand, the SPEC 
benchmarks show higher frequencies of indirect branches, 
calls and returns in the branch instruction profile. 

Figure 7 shows the branch misprediction rates. Despite the 
advanced branch prediction schemes, the overall branch 
misprediction rates exceed 10% on 4 out of the 17 
benchmarks. Benchmarks glimmer2 and dnapenny also yield 
high indirect branch misprediction rates. Indirect branches 
affect the overall branch prediction on benchmark glimmer2,
where indirect branches constitute 26% of total executed 
branches. Calls and returns can be predicted accurately by the 
16 entries return address stack. 

The overall branch prediction performance largely depends 
on the accuracy of conditional branch prediction. Sequence 
analysis workloads (e.g., blastpgp, fasta34, and hmmsearch)
yield high misprediction rates on conditional branches. These 
tools typically compare many combinations at each step to 
find a good alignment. Usually only one of these 
combinations yields the desired solution. Their algorithms use 
dynamic programming as an efficient recursive method to 
score all possible alignments according to the PAM or 
BLOSUM scoring matrices [7]. The control flow transfers on 
these programs highly depend on the contents of input 
sequences and the specified scoring matrices, making 
accurate branch prediction difficult. 

Figure 7 shows that bioinformatics tools can yield branch 
misprediction rates higher than the worst case (twolf) in SPEC 
benchmarks. Overall, bioinformatics applications show 
slightly higher misprediction rate than SPEC benchmarks.
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Figure 7. Branch Misprediction Rates 

6. Conclusions 

Although bioinformatics applications represent a rapidly 
growing computing market, workload characteristics of the 
representative applications from this application domain are 
still largely unknown. This paper proposes a bioinformatics 
benchmark suite and examines the execution characteristics 

of popular bioinformatics tools used for sequence alignments, 
phylogeny analysis, protein fold prediction, structure 
comparison and molecular dynamics.  

The major observations from our study are: (1) Memory 
reference instructions account for more than 60% of dynamic 
instructions. The frequency of memory accesses in 
bioinformatics workloads is higher than that in SPEC 2000 
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integer benchmarks. (2) Bioinformatics applications typically 
have small instruction footprints which can fit into the 
instruction cache. As a result, the trace cache spends high 
percentage of time in the trace deliver mode. (3) Compared 
with the SPEC benchmarks, bioinformatics workloads yield a 
better IPC rate. Nevertheless, tools which manage large and 
complex biological sequences show very poor IPC due to the 
excessive L2 cache misses. (4) Although bioinformatics tools 
search large-scale databases to find useful information, the 
active working sets of these workloads are small. As a result, 
prefetching and L2 cache can efficiently handle the working 
sets of the 14 out of 17 studied workloads. Compared with the 
SPEC benchmarks, bioinformatics workloads show better 
performance in terms of data cache and TLB miss rates. (5) 
Bioinformatics applications show large variation in dynamic 
branch instruction frequency and mix. Programs such as gene 
prediction tools heavily use case-switch statements to map the 
encoded DNA/protein sequences to known gene segments, 
resulting in high indirect branch mix. Despite the highly 
advanced branch prediction schemes, branch misprediction 
rates exceed 10% on the majority of sequence analysis 
workloads. 

We believe that the study in this paper will help in 
understanding the bottlenecks of bioinformatics software 
from an architectural point of view. For example, sequence 
analysis tools suffer from excessive amount of mispredicted 
conditional branches. This implies that the performance of 
these applications can be improved by avoiding such 
branches. One source of such conditional branches is the 
recursive calls of the dynamic programming computation 
commonly used in sequence analysis tools. The size of the 
problem space for dynamic programming can usually be 
reduced by precomputing relationships among data, and 
clustering and indexing of the database [28]. Indexing and 
clustering methods enable pruning of large portions of the 
database without going through complex comparison 
methods.  

In future work, we will explore integrated 
software/hardware techniques to optimize the performance of 
bioinformatics applications. We will also characterize the 
proposed bioinformatics workloads on different architectures. 
The proposed bioinformatics benchmark suite as well as the 
input datasets can be downloaded from the following website: 
http://www.ideal.ece.ufl.edu/BioInfoMark.
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