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Abstract

Memory system is one of the main performance-
limiting factors in contemporary processors. This is
due to the gap between the memory system speed and
the processor speed. This results in moving as much
memory as possible from off-chip to on-chip. Further-
more, we are on a sustained effort into integrating a
larger number of devices per chip. This renders in-
tegrating a large on-chip memory feasible. However,
cache memories are starting to give diminishing re-
turns. One of the main reasons for that is the de-
lay in writing back the data of the replaced block to
memory or to the next level cache. This makes block
replacement time consuming, and therefore affects
the overall performance. In this paper, we present a
compiler-microarchitecture hybrid technique for solv-
ing the cache traffic problem. The microarchitecture
part deals with bandwidth management. This is done
by predicting the time at which a dirty cache block will
no longer be written before replacement, and writ-
ing it back to the memory, at the time of low traf-
fic. Thus, when the block is replaced, it is clean and
the replacement is done much faster. The compiler
technique deals with bandwidth saving. The compiler
detects values that are dead, and hence do not need
to be written to the memory altogether. Therefore,
reducing the traffic to the memory and making the
replacement faster. We show that the proposed tech-
niques reduce the writebacks from L1 cache by 24%
for SpecINT and 18% for SpecFP. Moreover, around

half of the dirty blocks are cleared during low traffic
time, and before their actual replacement time.

1 Introduction

Memory system is presenting the Von-Neumann bot-
tleneck, and is limiting the performance due to the
consistent increase in the gap between memory speed
and processor speed. Cache memories have received
great attention as a simple and efficient way of reduc-
ing this gap.

The advances in process technology have resulted
in having several levels of cache memory on-chip. For
example, the Intel Itanium processor has three levels
of on-chip caches, for a total of 3 MB [21] and L3
cache is taking about 43% of the die area.

As Moore’s law is expected to be valid for at least a
decade to come, the semiconductor industry associa-
tion (SIA) predicts that process technology advance-
ment will continue until we hit a physical limit [2].
This means having either more cache levels or bigger
cache size.

However, the cache memory performance starts to
give diminishing return. One important reason which
prohibits the increase in cache performance, is the
traffic between the cache in a certain level and the
cache in the next level, or the main memory. With
the increasing use of prefetching [10], the traffic opti-
mization between cache memories and main memory
becomes crucial. The cache memory traffic depends
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mainly on the cache write policies, the write through
policy, and the write back policy, each of which has
its own merits and demerits.

The write back policy, the one widely used, tries
to minimize the bandwidth requirement, by writing
back the dirty blocks only at replacement and hence
multiple cache writes may result in a single mem-
ory write. Moreover, the write instruction is exe-
cuted at cache speed, thus it is fast. However, the
write back policy results in slow context switching,
in case of multiprogramming environment. Further-
more, the memory is not always consistent with the
cache, which is important, not only in multiproces-
sor systems, but also in single-processor systems as
well. For example, when some DMA devices make
checks on the memory. Finally, a read miss to the
cache may cause a write to the main memory, or to
the next level cache.

On the other hand, the write through policy makes
the cache always consistent with the memory. The
read miss never results in write operation. Further-
more, the write through policy is easy to implement.
However, the bandwidth requirement is huge, which
can lead to high power consumption as well as more
severe bus contention. Another important drawback
of the write through policy, is that the write opera-
tion itself is slow. This is mainly due to write buffer
overflow.

In the writeback scheme, if the system bus is con-
gested, the buffer gets filled quickly, leading to loss
in performance. The system bus is not only used
by the processor, but it is also used by some DMA
devices, and some devices, like the graphics accelera-
tors, thus leading to congestion. Hence, it is apparent
that we need a new policy that can make better use
of the bandwidth, while maintaining the advantages
of both the schemes.

In this paper, we present a technique that combines
both the compiler technology with its capability to
analyze the full program, and the microarchitectural
technique, which can see the runtime behavior. We
try to optimize the cache-to-memory traffic in two
ways:

• Making use of the idle bus cycles to send back the
dirty blocks to memory. Hence optimizing the

traffic by better bandwidth management. This
depends on the dynamic behavior of the pro-
gram, therefore, will be done by the microarchi-
tecture.

• Using the compiler to find the dead values.
These values are not written back to memory, be-
cause they will not be referenced again. There-
fore, we optimize the traffic using bandwidth sav-
ing. This requires a global view of the program,
thus, is done by the static analysis and is con-
veyed to the hardware by the compiler.

For bandwidth management, the hardware predicts
the last store to a block before replacement. Us-
ing this information, the block is written back to
the memory or the next level cache, when the bus
is not heavily used. This does not happen in the
critical path and therefore does not affect the overall
performance. The bandwidth saving is accomplished
through static analysis, by determining that a specific
value will be dead after a certain instruction, hence
will not need to be written back in case of replace-
ment.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the related work. The
bandwidth management technique is presented in
Section 3, while the bandwidth saving techniques
are discussed in Section 4. Experimental results are
shown in Section 5, followed by discussion. Finally,
Section 6 concludes and summarizes the paper.

2 Related Work

Increasing hit rate and reducing miss penalty have
been the main paths taken by the researchers to im-
prove the cache performance. Victim cache [13] is
one of the earliest attempts to do that, followed by
many improvements [1][7]. The technique presented
in [18] showed a way of using the holes in the direct-
mapped cache to decrease conflict misses. In [17],
a technique for predicting a miss and aborting the
operation is proposed. [19] proposed partitioning the
first level data cache for clustered microarchitectures,
to be able to provide the timely bandwidth required
with the increased frequency. The effects of long
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memory latencies and increased memory bandwidth
requirements on the design of modern microproces-
sors and their memory systems have been discussed
in [5].

Many studies have focused on compiler analysis
and optimization to improve the cache performance
[8][12][11][9]. All these proposed techniques try to
reduce cache misses by improving data locality. The
compiler does so by either placing the data efficiently
in memory [8][12][11], or change the memory access
order to improve the temporal and spatial locality.

Some work has been done in dead value detection
for register values [6] [16]. [6] proposed a hardware
technique for detecting dynamic instruction instances
that generate unused results in registers. [16] per-
forms static analysis to determine the dead register
information, and uses this information at runtime
to perform various optimization, such as decreasing
the physical register file size, and eliminating regis-
ter save and restore, at procedure calls and context
switches. Using dead block prediction to enhance
prefetching is proposed in [14].

Improving bandwidth utilization has been pro-
posed in [15], where the cache lines that have been
marked dirty and become the least recently used state
are written back to the memory or the next cache
level earlier than in a conventional writeback policy.
However, this technique cannot be directly applied to
a direct mapped cache for example, or with a cache
that used another replacement policy. The hybrid
technique we propose in this paper, can be applied
to any cache configuration.

3 Bandwidth Management

The main idea of bandwidth management is to pre-
dict the number of writes to a cache block before a
replacement. When this number is reached, the block
is written back to the main memory or the next level
cache, if it is dirty, without waiting for the block to be
replaced. Hence, when the time comes for replacing
the block, it will be clean and the replacement will be
done fast. The whole operation is done outside the
critical path, hence the overall system performance is
not affected. Besides, a misprediction of the number

of writes, will result only in a small increase in the
number of writes to the memory or the cache. We
found that this small increase is much smaller than a
write through.

The method consists of augmenting each cache slot
with two saturating counters and one bit. The first
counter, called current, counts the number of writes
to that block. The other counter, called predictor
contains the number of writes expected to that block.
The written bit is set if the block is written back to
the memory of next level cache before it is replaced.
If the predictor counter contains zero, then the con-
ventional write back policy is used. Whenever a store
is done to that block, the current counter associated
with that block is incremented. When the current
counter reaches the predicted number, that is, the
value in the predictor counter, the block is written
back to the memory, or next level cache, the current
counter is reset, and the written bit is set.

When a block is to be replaced, the written bit is
checked. If it is set and the current counter is non-
zero, the predictor counter is incremented, and the
block is written back to memory. If the written bit
is not set and the current counter is non-zero, the
predictor counter is decremented. After the update
of the predictor counter, both the written bit and the
current counter are reset.

4 Bandwidth Saving

In this section we discuss two compiler mechanisms
that save the memory bandwidth by detecting redun-
dant writes during cache block replacement. In the
dead value detection (DVD) mechanism, the compiler
detects the memory locations whose values are dead
and therefore, there is no need for writing those val-
ues to the higher level when replacing the correspond-
ing cache lines. The dead stack detection (DSD)
mechanism detects the dead stack locations in the
cache and cleans those lines on procedure return.

4.1 Dead Value Detection

Cache block replacement can be optimized by using
the dead value information provided by the com-
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/* Assume variable X is in location 20(SP),
and Y is is 40(GP) and all the accesses of X and Y are shown */

... ...
I10 : sw r1, 20(SP ) /* X is live after I10 */ I10 : sw r1, 20(SP )
... ...
I20 : lw r3, 20(SP ) /* X is live */ I20 : lw r3, 20(SP )
... ...
I30 : lw r4, 20(SP ) /* X is dead after I30 */ I30 : lw.last r4, 20(SP )
... ...
I100 : sw r5, 20(SP ) /* X is live after I100*/ I100 : sw r5, 20(SP )
... ...
I120 : sw r0, 40(GP ) /* Y is dead after I120 */ I120 : sw.last r0, 40(GP )
... ...
I140 : sw r5, 40(GP ) I140 : sw r5, 40(GP )
... ...

(a) (b)

Figure 1: Example code to show the cache optimization using dead value information

piler. The existing write back cache replacement
policy writes the contents of a cache block into the
next memory level if the block being replaced is dirty.
However, it is possible that the value stored in that
cache block is no longer needed, i.e. its last use has al-
ready taken place. In such a situation we can just re-
place that dirty block without writing back the dirty
block.

Consider the example shown in Figure 1(a). A
value is stored into location X by instruction I1. In-
structions I20 and I30 read the value from location X
and use it. Afterward, instruction I100 stores a new
value in X and then instruction I120 reads it again.
During program execution, the cache line holding the
location X will be marked dirty after I1. If this line
is replaced before I30 then the line has to be written
back to memory. However, if the replacement occurs
after I30 and before I100, then although the line is
dirty, there is no need to write the data back into the
memory, i.e.location X has become dead after I30. X
becomes live again with the write by instruction I100.

This is a very common scenario in a program, be-
cause most variables (memory locations) go through
a cycle of write, one or more reads, followed by an-
other write, and so on. Sometimes there are multiple
writes to a memory location without any intervening

reads 1. Furthermore, lots of memory locations be-
come dead because of register spilling, where a value
is temporarily stored in memory from a register and
then loaded again from memory to the register just
once.

Compiler can easily detect the scenarios mentioned
above in a program by using standard data flow tech-
niques. We have developed a compiler algorithm[3]
to detect the dead value information. This is used by
the cache to optimize the replacement policy. The
compiler detects the program points where a certain
value becomes dead and passes that information to
the processor. A cache line becomes dead when all
the bytes in the cache line are either clean or dead.
We have also developed the mechanism and hardware
support needed to pass the dead value information
from the compiler to the processor.

4.1.1 Overview of Compiler Algorithm for
Dead Value Detection (DVD)

In this sub-section we give a brief overview of our
compiler algorithm for the dead value detection. The
details of the algorithm can be found in [3]. Our DVD
compiler works as a post-link optimizing compiler.

1Ideally these useless stores should be determined and elim-
inated by the compiler using dead code elimination
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To make the analysis safe, the compiler algorithm
assumes all variables to be live unless known for sure
that the variable is dead.

In our compiler algorithm, we have assumed that
all memory locations are accessed using base address-
ing mode, i.e. a memory location is specified by
adding an offset to the base pointer. In our com-
piler, we have only identified the dead values for
memory locations accessed by three base pointers -
global pointer, stack pointer, and frame pointer, i.e.,
through base registers $r28, $r29, $r30 respectively
following MIPS register usage convention.

The algorithm starts by building the control flow
graph (CFG) of the current procedure. During the
CFG building phase, the compiler also creates the
local and global symbol tables by tracking the local
and the global variables, identified by the offset and
the base pointer through which they are accessed.
The offsets of local variables are constant throughout
the procedure since the value of the base pointers do
not change inside the procedure. Similarly, the off-
sets of the global variables are constant throughout
the program. Our compiler algorithm takes care of
the situation where a memory location is accessed
through a base register other than the stack or the
global pointer. After creating the local and global
symbol tables, the read and write sets 2 are gener-
ated for every instruction and then the dead value
information are computed. A variable x is dead af-
ter an instruction inst reading (or writing into) x in
block B, if inst is the last instruction reading(or writ-
ing) x in B and x is not live at the exit of B. Also x is
dead after instruction inst, if there is an instruction
writing to x in B before any other instruction reading
x.

The dead value information is passed from the com-
piler to the processor by modifying the load and store
instructions. Note that a value in a memory location
can be dead only after a load or a store instruction
that accesses that particular memory location. If a
load instructions loads from a memory location af-
ter which that value in that location becomes dead
then the compiler changes that load instruction to

2read and write sets contain the set of variables read and
written by an instruction respectively.

load.last. Similarly after storing a value in a loca-
tion, if there is no use of that value then the compiler
changes that store instruction to store.last. Figure
1(b) shows the code after compiler transforms lw and
sw instructions (after which the corresponding mem-
ory locations are dead), to lw.last and sw.last.

4.1.2 The Hardware Interface for Dead
Value Detection

In this subsection we briefly describe the hardware
required to process the dead value information ob-
tained from the compiler. The details are in [3].
The compiler passes the dead value information at
the word and double-word level because most of the
memory accesses are done at that granularity. To
maintain the dirty/clean information of the cache
lines at the word level granularity. we use a sep-
arate small table called dead entry table (DET),
otherwise the overhead would be too high. Each
entry in the table contains the block address and
an n (n = cache line size/word size) bit flag for
dirty/clean information and one valid bit.

Initially DET is empty with all the valid bits reset.
On a cache write an entry is allocated in DET (if
not already present). When a new entry is allocated,
all n bits in the flag are set if the cache line is dirty.
Otherwise, all the bits in the flag are reset. With
subsequent writes the corresponding bits are set. On
lw.last or sw.last if the entry is already in DET, the
corresponding bit is cleared. Also sw.last does not set
the dirty bit in cache. When all the n bits in a DET
entry are 0, the processor resets the dirty bit of the
cache line. Hence, this cache line will not be written
back during replacement. To allocate a new entry in
the DET, we first look for an entry whose valid bit is
reset. Otherwise randomly replace an entry.

4.2 Dead Stack Detection (DSD)

In the programs written in languages like C, the stack
of the procedure holds the data local to that proce-
dure and the lifetime of the stack variables are only
limited to the lifetime of the procedures. A procedure
allocates a stack in the memory when it is instanti-
ated, by decreasing the stack pointer. Just before
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Dynamic Instruction

jsr  foo();

foo: sub SP, SP, 48

sw  r1,  −20(SP)

sw   r2,   −1024(GP)

sw r4,  −40(SP)

sw r5,  −20(r8)

incr. counter

0
1
2
3

510
511

I10:

I20:

I30:

I40:

Instr. Cache Line 

line
index

Index
I10: 1

0 0 0
1 0 1

1
1
1
1

0 0 0
0 1 0

Call−Depth Counter

0 0 0 0 0 0 0 1 0 1

1 0 1
0 1 1

Proc.
Id bit cache line 

Dirty

1
1

0 0 0 1 4

return
decr. counter

I50:  sw r2,  −60(SP)

I20:
I30:
I40:
I50:

0
510

2
4

Figure 2: An example showing the cleaning of cache lines accessed by a procedure stack
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a procedure returns, it deallocates the stack by in-
crementing the stack pointer and the local variables
in the stack becomes dead after that procedure re-
turns. Hence any update made to the cache lines cor-
responding to a procedure’s stack need not be propa-
gated to the next memory level after that procedure
returns, because the value in that stack will not be
used again. Therefore, we can safely make all the
lines in the cache clean, corresponding to a proce-
dure’s stack at the return of that procedure. This
can easily be done by the processor with the help
from the compiler.

We have developed compiler and hardware method
for dead stack detection [3]. By default, the processor
assumes that all the cache lines that are accessed due
to a memory access through stack pointer would be
dead after the accessing procedure returns. However,
sometimes the procedure accesses its caller’s stack
by using the stack pointer. These lines should not
be marked clean by the processor at the return of
the procedure. During compilation the compiler can
easily detect such accesses. If a stack access uses
an index value greater than the size of its local stack,
then compiler annotates that access as a global access
and the processor does not clean that line upon pro-
cedure return. In our compiler, such global accesses
are identified along with the DVD phase.

4.2.1 Overview of the Hardware Support for
Dead Stack Detection

In order to clean a line at a procedure return, the pro-
cessor needs to uniquely identify the lines accessed
during stack access. To do that we have introduced
the concept of ownership of a cache line. A cache line
is either owned by the global area or by a dynamic
instance of a procedure. We have added four bits to
each cache line to store the owner’s identifier (id).
A cache line is cleaned when its owner procedure re-
turns.

Call depth is used to identify a dynamic instance of
a procedure because at any one point of time there is
only one procedure at a certain call depth. The global
area is at depth 0 and procedure main() of a program
is at depth 1 and so on. We have used a special 4-bit
counter called call depth counter for this purpose. At

the start of a program execution, call depth counter
is initialized to 1. During execution, when a pro-
cedure call is encountered, the call depth counter is
incremented by 1. Similarly at procedure return the
call depth counter is decremented by 1.

When a load or store instruction, using stack
pointer, is executed by the processor, and the instruc-
tion is not annotated as a global access by the com-
piler, the processor sends the accessing procedures id
to the cache along with the other information. Oth-
erwise the ownership id value of 0 is sent to the cache
to denote it as an access to the global area. 3

If the access results in a cache miss, then the proce-
dure id is written in the ownership field of the cache
line. In case of a cache hit, if the ownership value
in the cache line is less than the ownership id sent
to the cache, then the existing ownership of that line
is not changed. Because the line is already owned
by the global area or by a procedure with less depth
(i.e. higher in the calling chain) and the line should
be cleaned only when that procedure returns (which
would be later than the return of the current proce-
dure). Otherwise the ownership field is updated with
the procedure id.

At procedure return, all the lines owned by the
returning procedure are marked clean. This is done
in a linear scan through the whole cache and since this
is outside the critical path of the processor, it will not
affect the cache access time or cycle time. Also in a
linear scan, the hardware cost is not much. In the
worst case, some line may get replaced or ownership
may get changed before the line is cleaned. This will
not affect the correctness of the execution.

4.2.2 Example of Dead Stack Detection
(DSD)

The key concepts of DSD is explained with the ex-
ample shown in Figure 2. In the left of Figure 2,
a segment of dynamic instruction stream in shown.
The program enters procedure foo() with the jsr in-
struction. We only show the store instructions in

3Since we have only used 4 bits in the cache line owner-
ship field and there are 16 bits in the call depth counter, if the
counter value is greater than 15, the value 15 is passed to the
cache as the ownership id.
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procedure foo(). In the right of the Figure 2 we show
the state of the cache just before returning from foo()
and the table below maps the sw instructions to the
cache lines.

Here we assume all the sw accesses were cache
misses, and lines were allocated for them. Assume
that before the call instruction, the depth-counter
value was 4. At jsr foo(), the depth-counter is incre-
mented to 5. So the identifier of the dynamic instance
of procedure foo() under consideration is 5.

When I10 accesses offset 20 in its activation stack,
it is loaded in cache line index 1. Hardware can de-
termine that the access is made to the local stack of
foo(), because stack pointer SP is used as the base
pointer and offset 20 is less than the stack size of
foo(), which is 48. So the call-depth counter value 5
is stored in Proc ID field of cache line 1. Similarly,
for I30 also 5 is stored in the Proc ID field of cache
line 510.

However, I20 is accessing a global value, since ac-
cessed through global pointer, 0 is stored in the Proc
Id of cache line 0. Similarly, 0 will be stored in the
Proc Id field of cache lines 2 and 4 for accesses made
by I40 and I50. Because we do not know the value of
r8 and therefore do not know whether local stack is
accessed or not.4

I50 is accessing beyond the local stack. Therefore,
cache line 4 also should not be made clean after the
procedure return. Now at the return instruction, the
dirty bits of lines 1 and 510 are reset. The local values
of the instance of foo() are dead after the return of
foo() and there is no need to store them to memory
for future use.

If for example, the access made by I30 shares the
cache line with its caller and the line was already
present in the cache with the Proc ID value of 4, (the
caller’s depth), then Proc Id field would not have been
overwritten by I30. This is because we do not want
to discard the changes made by the caller. So, in
general, the Proc Id field of an existing cache line
will not be overwritten by a larger depth value. But
it will be overwritten by a smaller depth value.

4It may be possible to know where r8 is pointing with better
link time compiler analysis.

Processor Params Value

Decode Width 4

Issue width 4

Branch Predictor Bimodal with 2048 table size

L1 - Icache 32KB, 4-way set assoc., LRU,
32 byte line size, 1 cycle latency

L1 - Dcache 32KB, 4-way set assoc., LRU,
32 byte line size, 1 cycle latency

L2 - Unified 256KB, 4-way set assoc., LRU
64 byte line size, 6 cycle latency

DET 1KB

Memory Latency 100 cycles for the first chunk

Table 1: Simplescalar Simulator Parameters

Integer Number of FP Number of
Benchmark References Benchmark References

bzip2 235864202 ammp 255247899

gcc 389188032 apsi 187965389

gzip 150676316 art 212728035

mcf 282954558 equake 161264237

perl 248595729 mesa 249097078

twolf 254806912 swim 136862642

vortex 275013769 wupwise 175958198

vpr 214718042

Table 2: Total Number of Loads and Stores Commit-
ted
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Figure 3: Percentage Decrease in Writebacks in L1 Data Cache

5 Experimental Evaluation

In this section we discuss some experimental results
in bandwidth management as well as bandwidth sav-
ing.

5.1 Experimental Methodology and
Setup

For microarchitectural simulations, we modified the
out-of-order processor simulator of the Simplescalar
tool set [4], with PISA (portable ISA) instruction set.
Table 1 shows the parameters of the simulator.

We used the integer and floating point bench-
marks from SpecCPU2000 suite with reference input.
The benchmarks have been compiled using the Sim-
plescalar gcc with the optimizations specified in the
makefile provided with the suite. Each benchmark
is simulated for 500M instructions after skipping the
startup phase as indicted in [20]. Table 2 shows the
total number of loads and stores committed. The
counters are saturating counters of 5 bits each. The
bandwidth saving techniques are applied to the data
cache closest to the processor. On the other hand,
the bandwidth management technique is done to the
cache farthest from the processor.

5.2 Experiments and Discussion

The first set of experiments shows the percentage de-
crease in writebacks in L1 data cache. This is an indi-
cation of the number of writes to the memory cleared
by the compiler, hence saving bandwidth. Figure 3
shows the results for both SpecINT and SpecFP. The
results are shown with respect to the writebacks in
the conventional write back policy of the cache. As
can be seen from the figure, the savings are higher in
SpecINT (average of 24.02%) than in SpecFP (aver-
age of 17.99%). This is mainly due to the complex
control flow in the integer programs that increases
dead values generated by local variables in subroutine
calls. The SpecFP benchmarks on the other hand,
have simple control flow, consisting mainly of loops in
most cases. The only exception is apsi where almost
95% of the writebacks are eliminated. On the other
extreme, swim and wupwise have not gained from the
bandwidth saving techniques. It is to be noted that
the IPC (instruction per cycle) is slightly better for
the schemes with the bandwidth reduction (around
5% improvement for specINT and 3% improvement
for SpecFP on average), this is mainly due to the fact
that we have not yet modeled the bus congestion in
our simulator, and the gain in IPC seen is due to the
decrease in the traffic which reduces write buffer full
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Figure 4: Percentage Dirty Blocks Cleared Before the Block is Replaced in L2 Unified Cache

scenario. hence we do not report them here. With
bus congestion modeled, further IPC enhancement is
expected to be seen. The writebacks from the unified
L2 to the main memory is also reduced, because the
write requests received from L1 is already reduced.
These reduced writebacks at L2 are further optimized
by the bandwidth management techniques

The second part of the traffic optimization is the
bandwidth management from the unified L2 to the
main memory. In this case we do not decrease the
number of writebacks, but we try to re-distribute the
writebacks over time in order to make use of the low
traffic periods on the bus. Therefore a good metric
here is the percentage of writebacks sent to memory
before the block is actually replaced. This is shown in
Figure 4. As can be seen, more than half the writes
to L2 in SpecFP and almost half of the writes to L2
in SpecINT are done during low traffic times, before
the block is replaced. perl is the only benchmark
which did not benefit from this technique. This is
because the original number of writes sent from L2 to
the main memory is very small ( there is only 0.0214
average writes to a block before being replaced).

5.3 Results of Bandwidth Savings
Techniques

In this subsection we report the results for the com-
piler based techniques alone without any bandwidth
management techniques. In Table 3, we show the
percentage of times a dirty cache line is cleaned by
using either or both of the compiler proposed meth-
ods. Column two contains total number of writes
into L1 cache during the program execution without
any of the optimization. The percentage of times a
dirty cache line has been cleaned by DVD, DSD, and
both are shown in the table. We further break down
the combined results into contribution from DVD and
DSD. The results are obtained using a 64 entry DET.

From the table 3 we see that in most benchmarks
the performance of DVD is much better than that
of DSD. Because DSD is much conservative. All
stack accesses through other registers are considered
as global area. Also if the line is shared between a
caller and callee, it is not cleaned before caller re-
turns, by that time the line may have already been
replaced. More detailed register alias analysis could
give better improvement for DSD.

DVD is showing good performance. This implies
that the compiler could identify the dead values prop-
erly and could be effectively used for reducing cache
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Suite Benchmarks # of % of Dirty lines cleaned
Writes DVD DSD DVD + DSD

bzip2 54233795 4.11 2.03 4.11 1.82
gcc 215145717 0.05 0.07 0.05 0.09
gzip 44842012 14.68 4.72 14.28 0.06
mcf 64138843 5.21 7.52 5.21 2.33

SPECINT parser 72153638 15.19 5.92 15.04 0.99
perl 73879261 14.82 12.76 14.82 3.71
twolf 56590048 6.47 3.62 6.39 1.57
vortex 116586943 6.11 0.17 6.10 0.06
vpr 45439516 5.39 3.88 5.38 0.55

ammp 50857335 77.35 1.46 77.32 1.19
applu 47762212 0.25 0.15 0.25 0.06
apsi 72486228 19.58 6.54 19.24 6.40

SPECFP art 44018039 41.36 0.41 41.36 0.41
equake 42113970 33.19 0.10 33.19 0.07
mesa 69344655 28.67 3.22 28.31 2.95
swim 40628454 22.22 11.11 22.22 11.03

wupwise 62717771 34.87 2.78 34.87 1.04

Table 3: Statistics for Cleaning Dead lines for DVD and DSD

traffic. DVD could identify the dead global variables
that DSD cannot. In case of combined scheme, DVD
cleans most of the lines before DSD could get a chance
to clean them. Therefore we see that in most of the
cases in the combined scheme DVD retains its per-
formance.

6 Conclusions

In this paper, we have discussed some techniques for
optimizing the traffic between different levels of cache
memories, as well as between the cache memory and
the main memory. We have shown that by combin-
ing both compiler techniques and dynamic method,
we can achieve both bandwidth saving as well as
better bandwidth management. Compiler techniques
have been able to remove 24% of the writes for the
SpecINT and 18% of the writes for the SpecFP. More-
over, the bandwidth management was able to write
around 50% of the writebacks during the low traffic
periods before the block is actually replaced.

The future work includes the study of the effect of
the proposed hybrid scheme on the traffic by simu-
lating the bus congestion, as well as with more cache

levels. In case of more than two level caches, the
bandwidth saving techniques need to be applied to
the cache nearest to the processor, while the band-
width management technique can be applied to all
other levels, or at least to the level nearest to the
main memory.
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