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Abstract
Breakpoints, watchpoints, and conditional variants of both
are essential debugging primitives, but their natural imple-
mentations often degrade performance significantly. Slow-
down arises because the debugger—the tool implementing
the breakpoint/watchpoint interface—is implemented in a pro-
cess separate from the debugged application. Since the de-
bugger evaluates the watchpoint expressions and conditional
predicates to determine whether to invoke the user, a debug-
ging session typically requires many expensive application-
debugger context switches, resulting in slowdowns of 40,000
times or more in current commercial and open-source debug-
gers!

In this paper, we present an effective and efficient imple-
mentation of (conditional) breakpoints and watchpoints that
uses DISE to dynamically embed debugger logic into the run-
ning application. DISE (dynamic instruction stream edit-
ing) is a previously-proposed, programmable hardware facil-
ity for dynamically customizing applications by transforming
the instruction stream as it is decoded. DISE embedding pre-
serves the logical separation of application and debugger—
instructions are added dynamically and transparently, exist-
ing application code and data are not statically modified—
and has little startup cost. Cycle-level simulation on the SPEC
2000 integer benchmarks shows that the DISE approach elim-
inates all unnecessary context switching, typically limits de-
bugging overhead to 25% or less for a wide range of watch-
points, and outperforms alternative implementations.

1 Introduction
Bugs (programming errors) are an unfortunate but inevitable
part of the application development cycle, and debugging, the
identification and repair of these errors, is a major enterprise.
Although tools exist to automatically pinpoint the sources of
certain classes of errors (e.g., memory leaks), in general there
is no substitute for interactive debugging. A user employs a
debugger to observe a bug as it develops in order to trace it to
its origin; a debugger allows a user to control the execution of
an application and inspect/manipulate its state.

Since only a small subset of an application’s instructions
and data may be pertinent to a particular bug, debuggers
typically present users with two abstractions. A control
breakpoint (often called simply a breakpoint) specifies that
debugging-session control should transfer to the user when the
application executes a specified instruction. Similarly, a data
breakpoint (often called a watchpoint) transfers control to the
user when the value of a user-specified expression changes.
Most debuggers allow a breakpoint or watchpoint to be made
conditional so that control is only transferred to the user if
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the breakpoint/watchpoint criterion is met and a user-specified
predicate is true. Breakpoints, watchpoints, and conditionals
reduce the frequency of user-application interaction, easing
the intellectual burden on users and accelerating the debug-
ging process.

Unfortunately, the natural implementation of breakpoints
and watchpoints can be unacceptably inefficient. For safety
and simplicity, the debugger and the application it controls
typically reside in different processes [18]. The breakpoint
and watchpoint logic resides in the debugger, necessitating
an application-debugger context switch to determine whether
session control should be transferred to the user. If con-
trol does ultimately transfer to the user, the overhead of the
switch becomes irrelevant. Most application-debugger con-
text switches, however, are not masked by user interaction,
and their cost is perceived as additional application latency,
resulting in substantial overhead (e.g., as high as 40,000 times
slowdown in current commercial and open-source debuggers).

The natural solution to this problem is to inject a subset
of debugger logic into the application itself [2, 14, 22, 24],
obviating all (or most) unmasked application-debugger con-
text switches. Unfortunately, this approach has major defi-
ciencies. It is cumbersome for the debugger implementor be-
cause it requires the debugger to perform static code transfor-
mation (including register scavenging, register re-allocation,
and branch retargeting). It is inefficient because the trans-
formation process contributes to the perceived latency of the
debugging session; and the transformed code is bloated, de-
grading instruction cache performance (although this over-
head is certainly lower than that arising from unmasked con-
text switches). Most importantly, injecting debugger code and
data into an application violates the separation of application
and debugger, allowing a buggy application to corrupt debug-
ger structures or the debugger to perturb application behavior
(e.g., by changing the stack-frame layout), potentially result-
ing in dreaded “heisenbugs.” Alternatively, the hardware itself
may be augmented to perform some subset of the debugger’s
duties. The challenge here is in defining support that is both
efficient and sufficiently flexible to allow arbitrarily complex
and many watchpoints and conditions.

In this paper, we show that DISE (dynamic instruction
stream editing) [7] may be used to implement interactive
breakpoints and watchpoints, conditional and otherwise, with-
out the above shortcomings. DISE is a proposed general-
purpose hardware mechanism for dynamically customizing
applications (e.g., for profiling, security checking, buffer over-
flow detection, and code decompression [6, 7, 8, 9]). Tradi-
tionally, these customizations have been implemented either
statically via expensive but flexible binary rewriting or dy-
namically via cheap but rigid custom hardware widgets. DISE
is a hybrid that marries the flexibility of software with the low
overhead of hardware. It is a hardware widget that dynami-
cally rewrites the fetched instruction stream, feeding the ex-
ecution engine an instruction stream with modified or added
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functionality.
A DISE-based debugger implements breakpoints and

watchpoints as productions (simple rewriting rules) that add
instructions to the application as it executes. Watchpoint
productions insert instructions that check whether the val-
ues of watched expressions change. Conditional break-
point/watchpoint productions insert instructions that check
whether a certain predicate is true. The inserted instruction
sequences trap and initiate a context switch to the debugger
only when the user is to be invoked, avoiding all unmasked
context switches that are perceived as latency. The cost of
DISE breakpoints and watchpoints is the bandwidth cost of
the added instructions. To be sure, this cost increases with the
density of breakpoints and the complexity of conditionals, but
it remains comfortably lower (by many orders of magnitude)
than the cost of any implementation that involves even a min-
imal amount of unmasked context switching. DISE also pro-
vides features (e.g., a private register space) that enforce the
separation of application and debugger despite the fact that it
dynamically intermingles code from each.

The focus of this paper is on interactive debugging and on
the breakpoint/watchpoint interface presented to the user by
existing interactive debuggers. However, DISE is not spe-
cific to debugging—certainly not to interactive debugging—
and the same techniques we describe can also efficiently im-
plement other debugging interfaces: non-interactive ones like
Purify [13] and Valgrind [19] and programmatic ones like
iWatcher [25]. In this context, we make three main contri-
butions: (i) We show that debugging primitives can be imple-
mented non-intrusively and efficiently using general-purpose
(i.e., not debugging-specific) hardware support. (ii) We dis-
cuss and evaluate performance tradeoffs of different yet se-
mantically equivalent uses of DISE; this is important in under-
standing how to best exploit the features of DISE. And (iii) we
demonstrate the generality of DISE by applying it to a domain
dissimilar to that of prior studies.

The next section reviews existing approaches to implement-
ing breakpoints and watchpoints. Section 3 summarizes the
DISE facility, and Section 4 describes its use in implementing
efficient breakpoints and watchpoints. Section 5 compares the
performance of a DISE-based approach to existing implemen-
tations.

2 Debugger Implementations
A debugging session consists of three principals: the appli-
cation to be debugged, the user, and the debugger which
serves as a mediator between the two. The user is the slowest
party. Breakpoints, watchpoints, and conditionals reduce the
frequency of user transitions—transitions from the debugger
to the user and back—and can dramatically accelerate the de-
bugging process. Conversely, they increase the frequency of
debugger transitions—transitions from the application to the
debugger and back. Debugger transitions that are not masked
by corresponding user transitions are perceived as additional
application latency.

When user-transition frequency is low (typically a user’s
goal), the aggregate latency of debugger transitions can
dominate execution time. As a consequence, break-
point/watchpoint implementations can be evaluated by the
number of spurious (unmasked) debugger transitions they
generate. The more spurious transitions, the greater the per-
ceived overhead. There are three types of spurious transi-
tions. Spurious address transitions are transitions to the de-
bugger that occur even though watched data is not written, or

equivalently no instruction tagged as a breakpoint is executed.
Spurious value transitions apply to watchpoints only and oc-
cur when a variable in a watched expression is updated but
the value of the expression is unchanged. The most common
cause for this is a silent store, which is a store that overwrites
a value with the same value [16]. Spurious predicate tran-
sitions apply to conditional breakpoints and watchpoints and
occur when the associated predicate evaluates to false.

Below we summarize well-established implementation
techniques employed by widely-used debuggers. Techniques
still under active researched are discussed in Section 6.

Single-stepping vs. trap-handling. The naı̈ve breakpoint
and watchpoint implementation relies on single-stepping. The
application transfers control to the debugger after every in-
struction (or source-level statement), and checks whether any
of the currently active breakpoints or watchpoint criteria are
satisfied before single-stepping to the next instruction. Single-
stepping is terribly inefficient, causing many spurious address
transitions. Unfortunately, even debuggers that support supe-
rior implementations (see below) often resort to it. For ex-
ample, Microsoft’s Visual Studio 6.0 debugger uses single-
stepping when watching global variables.

Trap handling is an attractive alternative that avoids many
spurious address transitions. The debugger registers a trap
handler with the operating system and configures either the
application or the processor to generate a trap when an in-
struction (datum) at a particular address is executed (written).
The fast breakpoint and watchpoint techniques that are im-
plemented in modern debuggers all use this approach. Note,
while there are straightforward mechanisms for trapping on
address-based events, there are no such mechanisms for trap-
ping on events related to values. As a result, trap handling
solutions only reduce spurious address transitions. There are
no currently used debugger techniques that eliminate spurious
value and predicate transitions.

Breakpoint techniques. The standard trap handling solution
for breakpoints uses static binary transformation to temporar-
ily replace intended breakpoint instructions with explicit trap-
ping instructions [18]. This implementation has excellent per-
formance characteristics. It induces no spurious address tran-
sitions and it degrades application performance only when
the breakpoint is encountered. Alternatively, some architec-
tures (e.g., x86, IA-64, PowerPC) provide breakpoint regis-
ters. The debugger loads these registers with the addresses of
intended breakpoints; the processor traps when an instruction
whose PC matches one of these addresses is about to com-
mit. Breakpoint registers are convenient, but typically there
are only a few of them. If the number of breakpoints required
is larger than the number of hardware registers, the previous
techniques are used for the remainder.

Watchpoint techniques. Hardware registers can also be used
to implement watchpoints. The debugger loads these with the
addresses of the variables in the watched expression, and the
processor traps on a store to any of these addresses. For exam-
ple, GNU’s gdb 5.3.90 supports hardware watchpoint regis-
ters on Linux/x86 (notice that when setting some watchpoints,
gdb prints the message “Hardware watchpoint 1”). Again,
the drawback of hardware watchpoint registers is their lim-
ited number. IA-32 has four and these also serve as break-
point registers, IA-64 also has four, PowerPC has one, and
some architectures like SPARC and Alpha have none. While
four watchpoint registers may sometimes suffice, the user may
wish to watch multiple expressions, multiple distinct pieces of
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data appearing (e.g., in a complex expression or representing
a linked data structure), or a single large piece of data like
a structure or an array. IA-64 addresses the latter shortcom-
ing by allowing low-order bits to be ignored during matching,
letting a single register watch a larger memory segment. How-
ever, this is not a general solution.

If the number of watched addresses exceeds the number
of hardware watchpoint registers, the virtual memory sys-
tem can be harnessed to generate traps on writes to certain
addresses [1]. Here, the debugger uses an interface like
mprotect() to remove the write permissions from the page
on which the watched address resides. The virtual memory
implementation can be used to watch an unlimited number of
addresses, but at the cost spurious address transitions. Spa-
tial data locality makes it likely that frequently written non-
watched data resides on the same page as watched data.

Virtual memory and hardware registers can easily imple-
ment watchpoints provided that all addresses referenced by
the watched expression can be statically calculated by the
debugger. Addresses generated by indirection (e.g., pointer
dereferences or dynamically indexed array elements) cannot
be statically determined. To watch an indirect expression *p,
the debugger could watch the base address p then update the
*p watch condition whenever the value of p changes. How-
ever, we know of no commercial debuggers that actually im-
plement this. Instead, they resort to (highly inefficient) single
stepping. In gdb, for example, a request to watch a pointer
variable p elicits the message “Hardware watchpoint.” A sim-
ilar request to watch *p yields the message “Watchpoint.”

3 DISE
Dynamic instruction stream editing (DISE) is a recently-
proposed facility for implementing application customization
functions (ACFs) like profiling, security checking, and dy-
namic code decompression. Complete descriptions of DISE
are available elsewhere [7]. Here we give an overview, with
an emphasis on those features most useful for debugging.

Overview. Traditional ACF implementations either embed
code into the application’s static executable via binary rewrit-
ing, or provide ACF functionality on custom (potentially pro-
grammable) hardware. The two approaches have complemen-
tary sets of advantages and drawbacks. Software ACFs are
flexible but inconvenient, may have unintended interactions
with the application, and degrade application performance by
“stealing” both pipeline bandwidth and instruction cache ca-
pacity from it. Hardware ACFs have little or no performance
overhead, but are rigid.

DISE is a hybrid: a hardware widget that performs binary
rewriting. In contrast with static rewriting, DISE rewrites the
dynamic instruction stream rather than the static executable.
A DISE user specifies an ACF as a set of productions (rewrit-
ing rules). At runtime, the DISE engine takes an unmodified
application instruction stream produced by the fetch unit, in-
spects and potentially rewrites each instruction, and feeds the
execution engine a new instruction stream enhanced with ACF
functionality. DISE’s position between fetch and execution
means that its ACFs have no “static” cost—they do not oc-
cupy instruction cache space, and there is no startup latency
involved with actually rewriting the executable—yet can mod-
ify application behavior, not just observe it.

Mechanically, the DISE engine is similar to facilities in IA-
32 processors for expanding CISC instructions to RISC mi-
croinstruction sequences [11, 12]. However, while the latter
replaces coarse-grain instructions with fine-grain instructions

T.OPCLASS==load & T.RS==sp
⇒ addq T.RS1, 8, dr0

T.OP T.RD, T.IMM(dr0)

(a)

ldq r4, 32(sp)
. . .becomes. . .
addq sp, 8, dr0
ldq r4, 32(dr0)

(b)

Figure 1. Production example (a) and its use (b).

that provide the same functionality, DISE logically replaces
instructions with instructions of the same granularity that pro-
vide different functionality. System-wise, the DISE engine is
wrapped in two layers of abstraction. A physical DISE con-
troller virtualizes the engine’s internal format and capacity.
The operating system restricts access to the controller to en-
force a simple safety policy: applications can create produc-
tions to apply to their own code streams without restriction,
but only “trusted” entities may create/modify productions that
act on other applications.

Basic feature set. DISE’s basic functionality is instruction
pattern matching and parameterized instruction sequence re-
placement. A pattern may specify any aspect of a single
instruction: PC, opcode, register, etc. An instruction that
matches a pattern (called a trigger) is replaced by the corre-
sponding replacement sequence. Replacement sequences are
parameterized, i.e., they are templates in which some instruc-
tion fields are literal and others are instantiated using fields
from the replaced trigger.

Figure 1 shows a contrived DISE production that adds eight
bytes to the address of every load that uses the stack pointer as
its base address (all our examples use an Alpha-like assembly
language; the right-most operand names the target). In part
(a), the production specifies the pattern to include all loads
whose base address is the stack pointer. The replacement
sequence consists of two parameterized instructions. Here,
T.OP, T.RD, T.RS1, and T.IMM are template directives to replace
the corresponding holes with the opcode, first source register,
destination register, and immediate field, respectively, from
the trigger. Part (b) of the figure shows how a particular load
is expanded by this production.

A pattern specification considers only one instruction, so
DISE can only perform “peephole” transformations. How-
ever, many ACFs have efficient peephole formulations, and
DISE has several features that facilitate the orchestration of
global behavior from peephole expansions. One such feature
is evident in Figure 1: dr0 is a DISE register accessible only to
replacement instructions. The DISE registers can store tem-
porary values within a replacement sequence or communicate
values from one dynamic replacement sequence to a future
one. They give ACFs fast local and global storage without
forcing them to save/restore or reserve application registers.

DISE control flow. A second feature that simplifies ACF
implementation is subtle and useful enough to merit a
more detailed discussion. DISE replacement sequences sup-
port a replacement-internal program counter, DISEPC. In
a DISE-enabled pipeline, instructions are associated with a
〈PC:DISEPC〉 pair, where PC is the PC of the trigger and
DISEPC is the index of the replacement instruction within its
sequence (0 for unexpanded instructions). The DISEPC ex-
ists in the microarchitecture only and serves two functions:
(i) it makes replacement sequences precise from an interrupt
standpoint and (ii) it enables control flow within replacement
sequences. DISE replacement sequences can be full-fledged
miniature programs, complete with function calls.

Replacement sequences contain two kinds of control trans-
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fers. Conventional control transfers change the PC to some
〈newPC:0〉. DISE control transfers change the DISEPC only,
i.e., to 〈samePC:newDISEPC〉. DISE does not support jumps
to 〈newPC:nonzeroDISEPC〉, preserving the abstraction that
expansions are self-contained within individual instructions.

DISE control transfers (i.e., those that change DISEPC) are
implemented differently than conventional control transfers.
Because replacement sequences are not fetched, DISE con-
trol transfers are not predicted. Similarly, the DISE engine
expands replacement sequences in full, with no knowledge
of DISE control flow. Since DISE control transfers are all
effectively “predicted not-taken,” they are implemented us-
ing the mis-prediction recovery mechanism: the pipeline is
flushed after the mis-predicting instruction and fetch resumes
at 〈samePC:newDISEPC〉. The fetch engine does not rec-
ognize the DISEPC annotation and fetches the instruction at
samePC. However, the DISE engine does and begins expand-
ing the instruction at newDISEPC. The bottom line is that
DISE control transfers offer the functionality of control flow,
but they incur performance penalties in the form of pipeline
flushes per taken branch. This is an important consideration
when designing replacement sequences, as we will see in the
next section.

DISE also allows replacement sequences to call functions.
The semantics of a DISE function call appear strange at first,
but they are consistent with DISE’s overall relationship with
the application and have a simple implementation. A DISE
function call at 〈PC:DISEPC〉 to 〈newPC:0〉 saves the re-
turn address 〈PC:DISEPC+1〉, triggers a pipeline flush, and
restarts fetch at 〈newPC:0〉. The called function is composed
of conventional instructions which are fetched from instruc-
tion memory and whose branches are predicted. The func-
tion returns to 〈PC:DISEPC+1〉, triggering a second flush
and returning to the replacement sequence from which it was
called. DISE itself is disabled within the body of a func-
tion called from within replacement sequences. This again
preserves the notion that replacement sequences are self-
contained within application instructions and prevents bot-
tomless recursion. DISE calls are useful for implementing
replacement sequences with complex control flow. By em-
bedding complex control flow within a call, a pipeline flush
is incurred only on call and return rather than on every taken
branch. Three new instructions are available to DISE-called
functions: d mfr (DISE move from register), d mtr (DISE
move to register), and d ret (DISE return). The first two allow
the called function to access DISE registers (analogously to
mfc0 and mtc0 in MIPS), and d ret returns from a DISE-called
function and re-enables DISE expansion. These instructions
may only be executed by instructions called from a DISE pro-
duction, so non-DISE code is unable to access DISE regis-
ters.

4 Debugging with DISE
The high cost of watchpoints and conditional breakpoints in
conventional debuggers is primarily due to the fact that the
application and debugger reside in separate processes. Reduc-
ing the overhead of these vital primitives in a significant way
requires embedding pieces of the debugger—address match-
ing and condition-testing logic—into the application itself. As
obviously beneficial as this approach is, existing debuggers do
not use it because it is cumbersome (requiring register scav-
enging, register re-allocation, and branch retargeting), ineffi-
cient (due to code bloat), dangerous (because a buggy appli-
cation may corrupt debugger state), and intrusive (because the

extra debugger code may perturb application behavior, e.g.,
by changing stack-frame layout). DISE-based implementa-
tions realize the benefits of injecting debugger logic into the
application, without these problems.

In this discussion, it is important to remember that the DISE
productions are automatically generated by the debugger (us-
ing templates) in response to the user’s setting of breakpoints
and watchpoints. We are not relying on the user to manually
program the correct productions, so the debugging session is
vulnerable to production errors to the same extent that it is
vulnerable to errors in any other part of the debugger.

4.1 Breakpoints
There is little need to use DISE to implement unconditional
breakpoints, because the static binary-transformation imple-
mentation is straightforward enough and performs well [18].
Nevertheless, there are two ways of doing so.

The first way parallels the binary transformation approach.
The breakpoint instruction is replaced with a DISE codeword,
an instruction with a reserved opcode whose only purpose is to
match a DISE pattern and trigger an expansion. The replace-
ment sequence consists of a trapping instruction followed by
the original instruction. This implementation is actually more
efficient than the conventional rewriting one, because it does
not require a three step procedure—restore original instruc-
tion, single-step, re-install trapping instruction—to restart the
application. The second way parallels the hardware break-
point register mechanism. Here, the replacement sequence
is the same, but it is triggered by a PC pattern specification
rather than by a DISE codeword. As with breakpoint regis-
ters, the latter approach only supports a small, fixed number
of breakpoint addresses.

4.2 Watchpoints
The DISE watchpoint implementation parallels single-
stepping. In DISE, watchpoint productions match and replace
stores. The replacement sequence varies in length depending
on the number and complexity of the watched expressions. A
naı̈ve production for watching a single static (at least within
the current scope) variable consists of the five instructions ap-
pearing in Figure 2a: (i) the original store (T.INST), (ii) a load
of the watched variable from a statically-calculated address
stored in DISE register dar, (iii) a comparison of the previous
value stored in DISE register dpv and the current value dr1, (iv)
a DISE branch (distinguished by the d prefix) that skips one
instruction if the values match, and (v) a trap. The sequence
branches over the trap if the expression does not change in
value.

Optimization I: Conditional trap. The preceding produc-
tion works correctly but often performs poorly. Recall, DISE
branches by flushing, refetching the original program instruc-
tion and re-expanding starting at a new DISEPC. This implies
a pipeline flush on every store that does not change the value
of the watched expression. As stores typically make up about
10-15% of the dynamic instruction stream, this is a costly
proposition.

This cost can be overcome using simple ISA support: a
conditional trap (ctrap) instruction. With this extension, the
new production (Figure 2b) has one fewer instruction because
the branch and trap are fused, but its primary advantage is that
it avoids frequent flushing. Note, the conditional trap instruc-
tion is not necessarily an extension to the processor’s “con-
ventional” ISA—it doesn’t provide any significant advantages
to conventionally fetched code—but rather only to the DISE
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T.OPCLASS==store
⇒ T.INST

ldq dr1, 0(dar)
cmpeq dr1, dpv, dr1
d bne dr1, +1
trap

(a)

T.OPCLASS==store
⇒ T.INST

lda dr1, T.IMM(T.RS1)
bic dr1, 7, dr1
cmpeq dr1, dar, dr1
d beq dr1, +1
d call dhdlr

(c)

T.OPCLASS==store
⇒ T.INST

ldq dr1, 0(dar)
cmpeq dr1, dpv, dr1
ctrap dr1

(b)

T.OPCLASS==store
⇒ T.INST

lda dr1, T.IMM(T.RS1)
bic dr1, 7, dr1
cmpeq dr1, dar, dr1
d ccall dr1, dhdlr

(d)

# prolog / save regs t0-t3
. . .
lda t0, glob ptr
ldq t1, 0(t0) # get watch addr
ldq t2, 8(t0) # get old val
ldq t1, 0(t1) # get current val
cmpeq t2, t1, t2 # change?
bne t2, skip # no, continue
stq t1, 8(t0) # yes, update cur val
trap # and trap to debugger
skip:
# epilog / restore regs
. . .
d ret

(e)

T.OPCLASS==store
⇒ lda dr1, T.IMM(T.RS1)

srl dr1,11,dr2
subq dr2, dseq, dr2
beq dr2, error
T.INST
bic dr1, 7, dr1
cmpeq dr1, dar, dr1
d ccall dr1, dhdlr

(f)

Figure 2. Example implementations of single watchpoint in DISE. (a) Naı̈ve, (b) optimized (I), (c) optimized (II),
(d) optimized (III), (e) Sample expression evaluation function, and (f) memory-protecting production.

ISA which is much more easily extended because its interface
is virtual.

Optimization II: Address match gating. Another source of
inefficiency in the naı̈ve production is the load of the watched
variable. Loads are expensive because data cache access is
high latency and low bandwidth. Replacing every store with a
replacement sequence that includes a load—or multiple loads
if multiple expressions or complex expressions are watched—
increases load port contention and may degrade performance.

The solution to this problem mirrors the virtual-memory
and hardware-register techniques. Rather than always re-
evaluating the watched expression, the replacement sequence
first examines the store address. The expression is only re-
evaluated if the store address matches a watched address. The
expression re-evaluation is performed in a separate handler
routine rather than inlined into the production. The new pro-
duction (Figure 2c) uses a DISE call to jump to the handler
routine. Load contention is reduced and performance im-
proved because an expensive load is replaced by a cheaper
address comparison.

Unless care is taken, address matching can miss “partial”
read/write overlaps, e.g., a long (4-byte) store to the lower
half of a watched quad (8-byte) variable. Therefore, when the
sizes of the watched and stored data differ, the address of the
smaller must be aligned with that of the larger (via logical-
bit-clear bic in Figure 2c). For instance, when watching a byte
and storing a quad, the watched address is quad aligned. Con-
versely, when watching a quad and storing a byte, the store
address is quad aligned.

Optimization III: Conditional call. The observant reader
will notice a familiar problem with the production in Fig-
ure 2c. Like the first production, this production contains
intra-sequence control flow, which will result in a pipeline
flush! Similar problems call for similar solutions. Here we
replace the load-bypassing branch with a DISE conditional
call (d ccall) to a debugger-generated function which evalu-
ates the watched expression. With this formulation, the re-
placement sequence for a store (Figure 2d) is: (i) the original
store, (ii) an ALU operation that re-constructs the store ad-
dress from the base address register and immediate, (iii) po-
tentially a logical-bit-clear operation to align either the store
address or the watched address, (iv) a comparison of this ad-
dress to the watched address which is stored in DISE register
dar, and (v) a conditional call to a debugger-generated func-
tion (the address of which is in DISE register dhndlr) which is
rarely taken.

Debugger-generated function. The final watchpoint imple-
mentation (above) requires the debugger to dynamically gen-
erate a function and add it into the application’s text segment.
Full-blown linking is not necessary, since the function is only
called from within replacement sequences and does not call
any application functions. The debugger encodes the address
of this function into a dedicated DISE register.

The particulars of this function are somewhat unusual.
First, since calls to it are not set up by the application’s com-
piler, the function cannot use the normal calling convention;
instead it treats all registers as callee-saved. Second, recall
that DISE itself is disabled inside the function. A benefit of
this restriction is that it allows us to be certain that the DISE
registers will persist across function calls. In addition to the
debugger-generated function, the debugger appends a number
of values to the application’s static data segment. This new
memory region contains address(es) referenced by watched
expressions and the expressions’ current values. When evalu-
ating expressions, the debugger-generated function statically
indexes this region to access base addresses. Figure 2e shows
the function that accompanies the DISE productions of Fig-
ures 2c or 2d.

Protecting the debugger’s embedded data. By adding a
temporary copy of some of its own data to the debugged ap-
plication’s virtual address space, the debugger makes this data
vulnerable to corruption by a buggy application. Often this is
not a problem, as the debugger’s data region is small and the
application itself naturally contains no pointers into it. How-
ever, the DISE mechanism can be used to provide an extra
layer of protection. Specifically, the same productions that test
store addresses against watched addresses can also test them
against the debugger’s own data region (similar to software-
based fault isolation [23]). The production in Figure 2f aug-
ments that in Figure 2d to branch to an error handler if the
store refers to an address in the debugger’s 2KB data segment
(the 21 high order bits of which are specified by the DISE
register dseg). DISE-based protection has the virtue that all
executed code (even that which is unavailable to the debug-
ger, e.g., dynamically generated code or shared libraries) is
monitored. In general, the watchpoint productions may be
combined with any other DISE productions, allowing, e.g.,
compressed [8] or profiled [6] code to be debugged.

Multithreading DISE function calls. A taken DISE func-
tion call requires two pipeline flushes, one on the call itself
and one on the return. The conditional call instruction means
this cost is incurred only when a watched address is writ-
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ten, but the aggregate cost can be high for frequently written
watchpoints. We can eliminate this cost by adapting a tech-
nique that was previously proposed to reduce the cost of short
exception-handling routines like TLB miss handlers, avoid-
ing the pipeline flushes that implement program/exception-
handler/program serialization by executing the exception han-
dler on another thread context in a multithreaded proces-
sor [26]. We simply execute the body of a DISE-called func-
tion on a separate thread. The mechanics of the technique
are quite similar to, and actually simpler than, those of the
previously proposed mechanism. Modified retirement logic
provides global in-order retirement for the now-segmented
main application thread and exception-handler/function-body
thread. Unlike the previously proposed scheme, which must
support precise application-handler communication via the
exception registers, a DISE function body only communicates
with the application thread via memory. This means that cor-
rect data dependences can be established by a simple exten-
sion to the function thread’s store queue pointer; register re-
naming is not modified. iWatcher uses a similar technique to
reduce the cost of its function calls [25].

Watching multiple addresses. Our optimized replacement
sequence matches the current store’s address to the watched
variable’s address as a preliminary test that avoids the poten-
tially more expensive expression value test. For scalar, single-
address expressions, the watched address is stored in a DISE
register. In general, a user will set watchpoints on multiple or
complex expressions that require comparisons of the current
store’s address to multiple watched addresses.

There are efficient ways of implementing multiple matches.
If there are fewer watched addresses than available DISE reg-
isters, serial comparison is used. Otherwise, if the watched
addresses are in a small range—for instance, the user may
be watching a structure, all the elements in a small array, or
several nearby variables—the replacement sequence checks
the store’s address against the upper and lower bounds of the
region rather than individual addresses in it. Finally, if the
number of watched addresses is both large and sparse, the de-
bugger sets up a watched address bitmap similar to a Bloom
filter [3]—in which zeros indicate definite negatives, and ones
indicate only probable positives—in its static data region and
hashes each store address into this bitmap. The last technique
may trigger some spurious calls to the debugger-generated
function, but these should be compensated for by the sim-
plified address checking sequence. In general, because the
replacement sequence is a piece of software, it may use any
address comparison strategy whatsoever.

Pattern matching optimizations. In addition to replacement
sequence optimizations, the debugger may also modify the
watchpoint pattern specification to trigger on only a subset
of the stores. For example, if all of the watched variables are
either in the static data segment or the heap, the debugger can
choose not to expand stores to the stack by specifying two
patterns: a pattern for stores to the stack which expands to the
original store, and a pattern for stores in general which ex-
pands to the watchpoint replacement sequence. DISE seman-
tics dictate that the most specific pattern overrides all other
applicable patterns.

The same technique cannot be used if only stack vari-
ables are watched because the stack can be accessed indirectly
through registers other than the stack pointer. However, the
debugger may choose to activate and deactivate the watch-
point expansion when the program enters or leaves the corre-

sponding function’s scope. The debugger can set an efficient
hook to the scope entry and exit points by setting breakpoints
on the function’s first and last instructions.

4.3 Conditionals
With support for DISE calls to debugger-generated functions,
implementing conditional watchpoints is trivial. The condi-
tion itself is compiled into the debugger-generated function
and guards the trap. The conditional breakpoint implementa-
tion is somewhat trickier than the conditional watchpoint case.
For conditional breakpoints—which do not require cheap ad-
dress tests to bypass the more expensive condition test—it of-
ten makes sense to compile the condition into the replacement
sequence directly. In this case, one or two dedicated DISE
registers are used as temporaries to evaluate the conditional
expression from auxiliary information in the debugger’s static
data area.

4.4 Discussion
DISE is a less cumbersome, less intrusive, safer, and better
performing form of binary transformation. With the help of
DISE, the debugger does not need to modify the application
binary, except in two well-defined and simple ways, i.e., ap-
pending a dynamically-generated function and small data re-
gion to the application’s text and data segments, respectively.
All would-be modifications to existing code are performed via
DISE productions, transparent to the application itself, leav-
ing the application statically unchanged and unbloated. DISE
is also far less intrusive than any approaches that transform the
static image of the program. It does not change the placement
of any code or data, and it does not impact many hardware
performance counters. Finally, the DISE mechanism itself can
also be used to ensure that debugger structures embedded in
the application are protected from buggy applications.

On the other hand, hardware-assisted debugging (e.g., via
watchpoint registers) can have nil overhead if there are no spu-
rious value or predicate transitions, that is if all breakpoints
and watchpoints are unconditional and if all writes to watched
addresses also change values of the corresponding expres-
sions. While DISE’s overhead is not zero in this scenario, it is
low as we will see in the next section. DISE’s advantage over
hardware-assisted debugging manifests if writes to watched
addresses do not always change values of watched expres-
sions or if conditional breakpoints and watchpoints are used,
in which case DISE’s small, constant overhead will be smaller
than that resulting from expensive spurious transitions.

5 Experimental Evaluation
We use cycle-level simulation to measure the overhead of the
DISE implementation of watchpoints and compare it to the
overhead of four existing watchpoint implementations: source
statement single-stepping, trap handling based on the virtual
memory system, trap handling based on hardware watchpoint
registers, and static code transformation via binary rewrit-
ing. Our experiments focus on conditional and uncondi-
tional watchpoints. Unconditional breakpoints have a widely-
used “ideal” implementation via static binary transformation.
Conditional breakpoints exhibit cross-implementation perfor-
mance trends relative to unconditional breakpoints that are
similar to the trends exhibited by conditional watchpoints
relative to unconditional ones. We experiment with several
different kinds of watchpoints—scalar, array, and complex
expression—and also compare the mechanisms based on their
effectiveness at supporting multiple watchpoints. Finally, we
perform a sensitivity analysis on the DISE implementation,
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Table 1. Benchmark summary.
function instructions IPC store density

bzip2 generateMTFValues 1828109152 2.45 19.8%
crafty InitializeAttackBoards 18546482 2.39 10.8%
gcc regclass 18016384 1.90 9.68%
mcf write circs 1847332 0.33 16.2%
twolf uloop 2336334 1.87 13.7%
vortex BMT TraverseSets 205690692 2.25 17.6%

Table 2. Watchpoint write frequency (per 100K
stores).

HOT WARM1 WARM2 COLD INDIRECT RANGE
bzip2 24805.7 193.4 ∼0 0 24805.7 193.4
crafty 6531.4 3308.4 6.7 .4 6531.4 72.8
gcc 454.8 223.7 .2 .1 454.8 8197.9
mcf 11229.8 1168.4 215.4 0 11229.8 0
twolf 1467.4 227.5 101.4 80.8 1467.4 250.6
vortex 7290.3 27.6 27.6 ∼0 7290.3 .4

evaluate the benefit using multithreading to lower the DISE
overhead, and measure the cost of using DISE to protect de-
bugger structures embedded in the application.

Simulator. Our performance simulator is built using Sim-
pleScalar’s Alpha AXP ISA and system call definition mod-
ules [5]. We model a dynamically-scheduled 4-way super-
scalar processor with a 12-stage pipeline, 128-entry re-order
buffer, and 80 reservation stations. The simulated proces-
sor has an 8K entry hybrid branch predictor, 2K-entry BTB,
and uses intelligent load speculation. The on-chip memory
system is composed of 32KB 2-way set-associative instruc-
tion and data caches, 64-entry 4-way set-associative instruc-
tion and data TLBs, and a 1MB, 4-way set associative L2.
Main memory has 100 cycle access latency and is sufficiently
large that paging is never necessary. The memory bus is 32
bytes wide and operates at 1

4 processor frequency. The DISE
engine is modestly configured (32-entry pattern table and a
512-instruction 2-way set-associative replacement table [7]).
The simulator extracts all nops from the dynamic instruction
stream at no simulated cost.

Benchmarks and watchpoints. We perform our experiments
on the SPEC2000 integer benchmarks, which we compiled
for the Alpha EV6 using GNU gcc 3.2 with the debugging-
appropriate optimization flags -O0 -g (although the topic of
debugging optimized code is an interesting one, it is beyond
the scope of the present work). For each benchmark, we use
the GNU gprof profiler to identify a statically large and long
running function, which we simulate in its entirety. For each
benchmark, Table 1 gives properties of the functions we use.

We use a combination of source-code inspection and pro-
filing to select six watchpoints for each benchmark. The
first four watchpoints are scalar variables (two heap and two
locals) whose written-to frequency ranges from frequently
(HOT) to occasionally (WARM1/WARM2) to rarely (COLD).
The fifth is a dereference (INDIRECT), and the sixth is a non-
scalar, like a structure or an array (RANGE). INDIRECT ac-
tually refers to the same storage as HOT, but through a pointer.
The use of multiple watchpoints allows us to measure debug-
ging overhead under a range of conditions, but they consume
presentation space. To compensate, we show only a represen-
tative subset of the SPEC2000 benchmarks. Table 2 shows
the written-to frequency of each watchpoint, normalized by
the total number of stores.

Experimental methodology. Presenting results that can be
meaningfully interpreted and easily compared requires that

we: (i) simulate the same number of instructions for each ex-
periment, (ii) factor “user latency” out of our measurements,
and (iii) realistically model the cost of debugger transitions
and the debugger itself even though our simulator executes
only user-level code.

We satisfy these requirements by modeling user transi-
tions and their accompanying debugger transitions (i.e., non-
spurious debugger transitions) as having zero cost. We model
the cost of spurious debugger transitions by flushing the
pipeline and stalling for 100,000 cycles. This figure is a
conservative estimate of the actual cost as measured in ex-
isting debugger implementations. Using the IA-32 cycle-level
timer—via the rdtsc instruction—we measure the round-trip
debugger transition latency for two debuggers: GNU’s gdb
5.3.90 under Linux and Microsoft’s Visual Studio 6.0 under
Windows XP. On a 3 GHz Pentium 4, this latency is 290,000
cycles for gdb and 513,000 cycles for Visual Studio.

5.1 Unconditional Watchpoints
Figure 3 measures debugging overhead—execution time rela-
tive to an undebugged application—for a single unconditional
watchpoint.

DISE. The DISE implementation dynamically inserts three or
four instructions (depending on the data sizes of the watch-
point and store instruction) after every store, regardless of its
address. While these increase the dynamic instruction count
by as much as a factor of three, performance overhead rarely
exceeds 25%. The added instructions are all ALU instructions
and they do not add to the application’s critical path. Never-
theless, overhead can be high for frequently written watch-
points (e.g., HOT/bzip2 and HOT/vortex), requiring frequent
flushing when the expression-evaluation function is called.
HOT/mcf is also frequently updated, but its cost is masked
by the memory latency which dominates this benchmark.

Single stepping. Single-stepping is clearly the worst perform-
ing implementation, producing slowdown factors of 6,000 to
40,000 times in many cases. These figures are consistent with
the observed performance behavior of real debuggers.

Virtual memory. The virtual memory implementation
has virtually no overhead for some watchpoints (e.g.,
COLD/bzip2), but for many others (e.g., COLD/twolf and
COLD/vortex) its overhead can be quite high, some-
times equaling the slowdown of single stepping (e.g.,
WARM1/bzip2). This erratic behavior is due to the coarse
(page) granularity of the address-matching mechanism and
the frequency with which unwatched addresses that reside on
the same page as a watched address are written. If most writes
to the page are to the watched address, perceived overhead
is low. Conversely, if a watched address shares a page with
unwatched, frequently-written addresses, many spurious ad-
dress transitions will result and overhead will be high. Cer-
tainly, page size can impact the number of spurious transi-
tions, with smaller pages producing fewer. Our page size is
4KB, on the small end for real systems. Our experiments (not
shown) indicate that reasonable overhead is achieved for these
watchpoints only for impractically small page sizes (e.g., 128
bytes).

Finally, notice that there is no virtual memory experiment
for the INDIRECT watchpoint. The debugger cannot stati-
cally determine what pages to write-protect for a watchpoint
expression containing pointer dereferences because the value
of the pointer may change during execution. It is possible
to watch the pointer itself and dynamically update the page
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Figure 3. Comparison of four unconditional watchpoint implementations.

protection for the datum to which it points (in which case the
overhead would be similar to the HOT case), but we are aware
of no debugger that does this.

Hardware watchpoints. Unlike virtual memory watchpoints,
hardware register watchpoints are quad-granularity and only
result in spurious address transitions when a partial quad is
watched and a different part of the same quad is written. Un-
fortunately, hardware watchpoints are still susceptible to spu-
rious value transitions caused by silent stores. If these oc-
cur with any frequency, performance can be significantly im-
pacted. For example, in all HOT benchmarks—save bzip2—
50% or more of all stores to the watched address do not
change the data value, resulting in significant perceived slow-
downs. This is a realistic scenario, because silent stores are
common [16] and watchpoints are appropriate for determin-
ing exactly where such data are actually changed.

Like virtual memory, there is no hardware register exper-
iment for the INDIRECT watchpoint, because a debugger
cannot statically determine the address to monitor. In con-
trast with virtual memory, there is also no experiment for
the large watchpoint RANGE. Hardware registers are prin-
cipally used to watch scalars. For non-scalars like structures
and arrays, real debuggers resort to using virtual memory or
single-stepping. Some hardware watchpoint register imple-
mentations (e.g., IA-64) allow larger segments of memory to
be monitored by masking low-order bits during address com-
parison, but this may result in spurious address transitions.

Static transformation. Watchpoints may also be imple-
mented via binary rewriting [22, 24]. In Section 4 we argued
that this approach is cumbersome, intrusive, and dangerous;
but it is also inefficient, both in terms of the startup cost to per-
form the transformation and the instruction cache cost, which
we illustrate here. Figure 5 gives the COLD watchpoint over-
head of a binary-rewriting-based watchpoint implementation
in which the code of Figure 2c is statically inlined at every
store (i.e., no static optimization is performed). Note that this
graph does not include the additional overhead of performing
the static transformation. We examine COLD watchpoints be-
cause they represent a common usage scenario and highlight
the difference between DISE and binary rewriting. Both pre-
sented implementations have comparable performance (ignor-
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Figure 5. Comparison to binary rewriting.

ing static transformation cost) for benchmarks with small in-
struction memory footprints (e.g., bzip2, crafty, and mcf ). For
larger programs (e.g., gcc, twolf, and vortex) the additional in-
structions in the static image degrade instruction cache perfor-
mance considerably. We exclude figures for binary-rewriting-
based implementations from our other graphs because these
results are governed by code size and instruction cache per-
formance, not watchpoint characteristics.

Summary. For single, unconditional watchpoints, DISE has
low overhead, generally 0–25%. It also significantly out-
performs virtual memory on all indirect watchpoints and
direct ones that share pages with unwatched, frequently-
written data. It outperforms hardware debugging registers for
large and indirect watchpoints and watchpoints with a non-
negligible number of silent stores. It is comparable to a bi-
nary rewriting implementation for codes with small instruc-
tion working sets and superior otherwise.

5.2 Conditional Watchpoints
The performance benefits of DISE are even more pronounced
for conditional watchpoints. Of the four implementations, it
is the only one that can avoid spurious predicate transitions
by evaluating conditions in the application itself. Figure 4
compares the overheads of the four implementations on sin-
gle, conditional watchpoints. Aside from the condition, these
are the same watchpoints used in the previous experiment.
To model a realistic condition which significantly reduces the
number of user transitions, our predicate compares the value
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Figure 4. Comparison of four conditional watchpoint implementations.

of the watched expression to a constant it never matches.
The use of conditionals does not change DISE’s relative

advantage over single-stepping. Conditional or not, single-
stepping incurs a debugger transition on (approximately) ev-
ery store while DISE incurs transitions only when they lead to
user transitions.

DISE’s overhead as compared to that of the virtual-memory
and hardware-register implementations depends on the fre-
quency with which the watchpoint address is written. DISE
adds a small fixed amount of overhead per store, regardless of
its address. Virtual memory (modulo false address positives)
and hardware registers add a much higher cost, but one that is
proportional to the number of writes to the watched address.
For infrequently-written watchpoints (e.g., COLD/bzip2 and
COLD/gcc), they trigger few spurious predicate transitions
and slightly outperform DISE. HOT watchpoints and many
WARM watchpoints trigger many spurious predicate transi-
tions, making DISE’s constant low overhead seem insignifi-
cant by comparison.

We can compute the rough store frequency crossover point
from the ratio of the cycle cost of DISE replacement sequence
to the cycle cost of a debugger transition. Let us assume that
DISE watchpoints add one cycle per store and that a debugger
transition costs 100,000 cycles. Hardware registers and vir-
tual memory will have lower overheads on conditional watch-
points whose addresses are written to by fewer than one of ev-
ery 100,000 stores (less than 1 in Table 2). Otherwise, DISE
will have the advantage. From Figure 4 it is clear that DISE is
always competitive with and usually superior to the alternative
implementations of conditional watchpoints.

5.3 Number of Watchpoints
With respect to performance, DISE faces strong competition
in only limited scenarios. For unconditional scalar watch-
points (admittedly the most common kind) it may be out-
performed, albeit not significantly so, by a hardware register
mechanism. However, even here DISE has an advantage in
that it can easily support multiple watchpoints with constant
low overhead, while the hardware mechanism is limited by
the number of watchpoint registers.

In Figure 6, we vary the number of watchpoints for both
DISE and a hardware register mechanism. The hardware

mechanism uses virtual memory for every watchpoint after
the fourth. For DISE, we examine three replacement se-
quence implementations. Serial-Address-Match matches each
address serially. Bytewise-Bloom hashes store addresses to
bytes in a 2KB array, similar to a Bloom filter [3]; a byte value
of 1 indicates a probable match and triggers a DISE function
call; false positives impact performance but not correctness.
Bitwise-Bloom hashes quad addresses to bits, increasing ef-
fective array size by a factor of eight. This results in fewer
false positives, but requires two extra bit-manipulation opera-
tions to access the array.

As long as it can use hardware registers and not fall back to
virtual memory—i.e., there are four or fewer watchpoints—a
hardware mechanism will often slightly outperform any DISE
implementation. Again, a large number of silent stores on
any of the watchpoints can change this dynamic, as is seen
for vortex at four watchpoints. Once virtual memory must
be used, however, a single watchpoint that occupies the same
page as unwatched, frequently-written data will cause spuri-
ous address transitions to spike along with overhead. With
multiple watchpoints, the probability that such a watchpoint
is included in the set is high. For 5, 8 and 16 watchpoints, all
three DISE implementations outperform the hardware mech-
anism by at least three orders of magnitude.

Note that our experimental methodology, which discounts
user transitions and their accompanying debugger transi-
tions, results in some anomalous-looking—but not actually
anomalous—virtual memory results. When going from five
watchpoints to eight on gcc, the slowdown drops from 4127
to 4088. One of the three new watchpoints resides on the
same page as the fifth watchpoint. With only five watch-
points, writes to this address trigger spurious address transi-
tions. When this address is watched, the transitions triggered
by its writes are no longer considered spurious, and they are
assigned no cost in our experiment.

Across the DISE implementations, the dominant effect is
the efficiency of the replacement sequence. For one or two
watchpoints, Serial-Address-Matching—which avoids costly
loads—is the best approach. However, the length of this
replacement sequence increases linearly with the number of
watchpoints. Despite the fact that it contains a load, the con-
stant length Bloom filter replacement sequences are more effi-
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Figure 6. Impact of number of watchpoints.

cient for three or more watchpoints. The bytewise Bloom fil-
ter performs better then the bitwise version in almost all cases,
as the shorter replacement sequence compensates for the cost
of a few additional false positives (each of which incurs two
pipeline flushes and the execution of a short function). The
exception is gcc where the bitwise filter outperforms the byte-
wise one for three or more watchpoints. Here false posi-
tives dominate. For 16 watchpoints, the bytewise filter in-
curs 30,000 false positives (with 40,000 true hits) as com-
pared to 100 false positives for the bitwise filter. The impor-
tant point is that for a (relatively) large number of watchpoints
any DISE approach is superior to a hardware-register/virtual-
memory combination. Furthermore, the DISE implementa-
tions are much less data dependent (i.e., they have good and
predictable performance).

5.4 Implementation Effects
Below we evaluate the performance impact of several varia-
tions of the DISE watchpoint implementation.

Varying ISA support. Our DISE experiments to this point
use a replacement sequence that contains a cheap address
check and a conditional DISE call (see Section 4). Here we
investigate the impact of the conditional call instruction and
the call itself.

0.0

0.5

1.0

1.5

ex
ec

ut
io

n 
tim

e 
(n

or
m

. t
o 

ba
se

lin
e)

DISE with Conditional Call/Trap

4.
62

HOT WARM1 WARM2 COLD

bzip2 bzip2 bzip2 bzip2mcf mcf mcf mcftwolf twolf twolf twolf

0

2

4

6

8

10

ex
ec

ut
io

n 
tim

e 
(n

or
m

. t
o 

ba
se

lin
e)

DISE without Conditional Call/Trap

Match-Address/Evaluate-Expression Evaluate-Expression/-- Match-Address-Value/--

HOT WARM1 WARM2 COLD

bzip2 bzip2 bzip2 bzip2mcf mcf mcf mcftwolf twolf twolf twolf

Figure 7. Alternate DISE implementations.

Figure 7 shows the unconditional watchpoint overheads

of six different versions of the DISE replacement se-
quence/function combination. The six versions are divided
into two groups. In the top group, conditional calls and traps
are used to avoid common-case pipeline flushes. In the bot-
tom group, these instructions are not available and the same
functionality is instead implemented using a combination of
conditional branch and unconditional call/trap, which elicits
flushes in the common case. Within each group, three alterna-
tive implementations are presented. Match-Address/Evaluate-
Expression matches addresses in the replacement sequence
and calls a function to re-evaluate the expression on a match
(Figures 2c and d). This has been our default. Evaluate-
Expression/– evaluates the expression in the replacement se-
quence directly (Figures 2a and b), forgoing the address match
and obviating the need for a function call. Match-Address-
Value/– matches the store’s address to the watched address
and its value to the previous value of the expression. This is
tantamount to evaluating the expression without the cost of a
load if (i) the watched expression is a scalar, and (ii) the data
size of the watched scalar and the store are the same (e.g., both
quads or both bytes).

Not surprisingly, the unavailability of conditional calls and
traps (bottom graph) results in considerably higher overhead,
regardless of the replacement sequence/function organization.
The lesson is clear: intra-replacement-sequence control trans-
fers should be avoided even at the expense of executing more
instructions.

When conditional calls and traps are available (bottom
graph) and the number of pipeline flushes is kept to a min-
imum, second order effects can be observed. For instance,
with frequent flushing, the Evaluate-Expression/– implemen-
tation often has the highest overhead even though it executes
the fewest additional instructions. The key is that one of
the added instructions is a load, and load bandwidth is often
highly contended. Match-Address-Value/– often has the low-
est overhead, requiring neither pipeline flushes nor replace-
ment sequence loads. Unfortunately, this implementation can
only be used in select cases.

There are exceptions, however, arising from the trade-off
between the cost of a load and the cost of an address-match-
induced function call. For instance, for frequently-written
watchpoints, Evaluate-Expression/– (despite its load) can
be more efficient than Match-Address/Evaluate-Expression.
This is the case for HOT/bzip2, which under Match-
Address/Evaluate-Expression triggers a function call on 25%
of all stores, resulting in a slowdown factor of 4.62. For
watchpoints written this frequently, direct expression evalu-
ation in the replacement sequence is a better alternative.

Except in extreme cases like the one described above, DISE
implementations are not particularly sensitive to the frequency
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Figure 8. DISE overhead with multithreading.
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Figure 9. Cost of protecting debugger structures.

with which a variable in a watched expression is updated.
Again, DISE is a form of ultra-lightweight single-stepping.
Like single-stepping, it has roughly constant overhead. The
difference is that this overhead is quite low. It is important
to note that the overhead of all of these alternatives (even the
worst among them) is orders of magnitude lower than worst-
case overhead for each of the other non-DISE implementa-
tions.

Exploiting multithreading. A major component of the over-
head of DISE comes from the pipeline flushes necessary to
call and return from a function from within a replacement
sequence. Figure 8 shows the benefit to DISE of the multi-
threading optimization described in Section 4. Watchpoints
with relatively little overhead (e.g., most of the WARM and
COLD ones) benefit very little, because the flushing cost is
already a minor performance factor. The HOT watchpoints
that have many address matches (resulting in many function
calls) naturally exhibit a significant reduction in the overall
overhead (by nearly a factor of two for bzip2).

Protecting debugger structures. A virtue of a DISE-based
implementation of watchpoints is that debugger logic is dy-
namically embedded into the running program, preserving the
logical separation of the application and debugger. Unfortu-
nately, an errant program can corrupt the debugger data struc-
tures (e.g., the Bloom filter). Using DISE, we can naturally
solve this problem by checking the legality of addresses refer-
enced by all store instructions (as described in Section 4). Fig-
ure 9 plots the overheads of watching a COLD expression with
and without protecting debugger data structures. We evaluate
COLD expressions in order to illustrate the maximum addi-
tional cost, for the overhead of hotter watchpoints would mask
the additional address-checking overhead. Nevertheless, the
protection contributes only a modest additional overhead.

6 Related Work
Several lines of research relate to ours.

Embedding debugging logic into the application. The high
cost of context switching that results from keeping the debug-
ger and debugged application in separate processes has been
observed numerous times. Several systems (propose to) move
some debugging logic into the debugged application’s process
to reduce the number of context-switches. In Parasight [2], the
debugger shares an address space with a shared-memory par-
allel application. Kessler moves debugger logic into a serial
application to reduce the cost of conditional breakpoints [14].
An intended conditional breakpoint is replaced with a jump
to a custom code snippet that evaluates the condition before
trapping to the debugger or jumping back to the application’s
original control path. Wahbe et al. extend this work to in-
clude watchpoints [22, 24] by replacing stores with calls to
an address matching routine. Unlike Kessler’s system, which
uses simple in-place rewriting, Wahbe’s requires—and ben-
efits from—wholesale re-compilation in order to prune un-
necessary calls. Re-compilation cost is high for large ap-
plications, but individual functions may be re-compiled on
demand using just-in-time infrastructures like DELI [10] or
Dyninst [4].

Our implementation follows the embedding approach, but
has several important advantages. These derive from DISE’s
advantages as compared to traditional static rewriting. First,
DISE is much less intrusive than static rewriting. The pres-
ence of DISE registers means that there is no need to scav-
enge registers from the application, and the fact that instruc-
tions are expanded after fetch means that there is no need to
retarget application branches around inserted code and that
inserted code does not reduce effective instruction cache ca-
pacity; rewriting systems that insert code out-of-line using
“trampolines” [14] eliminate the need to retarget branches but
still require register scavenging and expand the instruction
footprint. Similarly, watchpoints and breakpoints can be en-
abled and disabled quickly by activating and de-activating the
proper DISE productions, without modifying the executable.
Non-intrusiveness begets safety. Because they primarily use
different register and PC spaces, the application and debugger
are less likely to interfere with each other than they would if
combined statically. The DISE mechanism can also be used to
ensure that application stores do not corrupt debugger struc-
tures.

Reducing context-switch cost. An alternative to eliminating
context-switches is to reduce their cost. Thekkath and Levy
propose hardware modifications that allow traps to vector di-
rectly into user code [21].

Valgrind. Valgrind is a popular tool that has been applied
to profiling and debugging x86 programs [19]. Valgrind is a
basic-block interpreter/dynamic compiler with an instrumen-
tation interface similar to those supplied by static rewriting
packages like Atom [20], EEL [15], and Etch [17]. Non-
interactive (and we suppose interactive) debugging features
can be implemented in Valgrind by registering the appropri-
ate instrumentation functions. Unlike a conventional inter-
active debugger, Valgrind forces the user to write debugging
code. Unlike our DISE implementation, its performance is
quite poor [25]. Even without instrumentation it induces slow-
down factors of four; basic instrumentation—like instruction
counting—can increase this factor to 25. In addition, the Val-
grind runtime system perturbs much of the processor state,
including registers, caches, and hardware performance moni-
tors.

iWatcher. iWatcher [25] is a recently-proposed hardware-
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assisted debugger. There are two aspects to iWatcher. The first
is a programming interface for registering with the processor
pairs of “interesting” memory regions and fixed-interface call-
back functions; when a program writes to (or reads from) a
registered memory region, the processor arranges for the reg-
istered function to be called with arguments describing the
access supplied by the hardware. The second is hardware
support for efficiently executing this interface, including a
hierarchal implementation of a memory region tracking ta-
ble and an adaptation of thread-level speculation for serial-
izing the function call within the execution of the program
at low cost (our multithreading technique is a lighter-weight
version of this). Our work relates primarily to the imple-
mentation aspect. Here, while iWatcher relies primarily on
“hardware,” i.e., tables and comparators, DISE provides the
same support using what is in effect lightweight software, i.e.,
injected instructions. We could easily replace the iWatcher
implementation with DISE—(almost) anything one can do in
hardware can also be done in software—with comparable per-
formance. The iWatcher implementation would have a slight
performance advantage for infrequently-modified watched re-
gions as DISE’s instruction overhead (while low) may still be
noticeable. For more frequently-modified watched regions,
the DISE implementation would have an advantage because
DISE can prune many spurious value and predicate transi-
tions without making a function call whereas iWatcher can-
not. DISE has the additional advantage of not being debug-
ging specific.

7 Conclusions
The conventional implementation of debuggers—as processes
separate from the debugged application—makes the imple-
mentation of breakpoints and watchpoints costly. The typical
debugging session will contain many expensive application-
debugger context switches that do not ultimately transfer ses-
sion control to the user but are necessary to evaluate expres-
sions and predicates in the debugger. These can slow down
the application by factors of 40,000 or more.

In this paper, we propose to avoid expensive and unneces-
sary context-switching by embedding the debugger’s break-
point, watchpoint, and conditional logic into the application
itself. Most debuggers avoid this approach because it is prac-
tically cumbersome, has the high initial overhead of analyz-
ing and transforming the application, may introduce “heisen-
bugs,” and is potentially unsafe. The novel aspect of our pro-
posal is that we perform the embedding without these prob-
lems using DISE (dynamic instruction stream editor), an ultra-
lightweight hardware facility that transforms an application’s
dynamic instruction stream rather than its static image. We
find that for most watchpoints and all conditional breakpoints
and watchpoints, DISE’s performance advantage is signifi-
cant. Its slowdown versus undebugged code is usually less
than 25% and is always modest, while that of a conventional
debugger can be four orders of magnitude worse.

References
[1] A. W. Appel and K. Li. Virtual memory primitives for user programs. In

Proc. of 4th Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 96–107, Apr. 1991.

[2] Z. Aral, I. Gertner, and G. Schaffer. Efficient debugging primitives for
multiprocessors. In Proc. of 3rd Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 87–95, Apr.
1989.

[3] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.
CACM, 13(7):422–426, Jul. 1970.

[4] B. Buck and J. K. Hollingsworth. An API for runtime code patching. Intl.
J. of High Performance Computing Applications, 14(4):317–329, 2000.

[5] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Tech-
nical Report 1342, University of Wisconsin–Madison Computer Sciences
Department, 1997.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: Dynamic instruction
stream editing. Technical Report MS-CIS-02-24, University of Pennsyl-
vania, Jul. 2002.

[7] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable macro
engine for customizing applications. In Proc. 30th Intl. Symp. on Com-
puter Architecture, Jun. 2003.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. A DISE implementation of dy-
namic code decompression. In Proc. of Conf. on Languages, Compilers,
and Tools for Embedded Systems, pages 232–243, Jun. 2003.

[9] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE to protect return
addresses from attack. In Proceedings of the Workshop on Architectural
Support for Security and Anti-Virus (WASSA), Oct. 2004.

[10] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher.
DELI: A new run-time control point. In Proc. of 35th Intl. Symp. on
Microarchitecture, pages 257–268, Nov. 2002.

[11] K. Diefendorf. K7 challenges Intel. Microprocessor Report, 12(14),
November 1998.

[12] P. Glaskowsky. Pentium 4 (partially) previewed. Microprocessor Report,
14(8), August 2000.

[13] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors in C and C++ programs. In Proc. of Winter 1992 USENIX
Conf., pages 125–138, Jan. 1992.

[14] P. B. Kessler. Fast breakpoints: Design and implementation. In Proc.
of Conf. on Programming Language Design and Implementation, pages
78–84, Jun. 1990.

[15] J. R. Larus and E. Schnarr. EEL: Machine-independent executable edit-
ing. In Proc. of 1995 ACM SIGPLAN Conf. on Programming Languages
Design and Implementation, June 1995.

[16] K. M. Lepak and M. H. Lipasti. On the value locality of store instructions.
In Proc. 27th Intl. Symp. on Computer Architecture, pages 182–191, Jun.
2000.

[17] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad,
and B. Chen. Instrumentation and optimization of Win32/Intel executa-
bles using Etch. In Proc. of USENIX Windows NT Workshop, August
1997.

[18] J. B. Rosenberg. How Debuggers Work: Algorithms, Data Structures, and
Architectures. John Wiley and Sons, 1996.

[19] J. Seward. Valgrind – A GPL’d system for debugging and profiling x86-
linux programs. Web Page: http://valgrind.kde.org.

[20] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools. In Proc. of 1994 ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation, June 1994.

[21] C. A. Thekkath and H. M. Levy. Hardware and software support for ef-
ficient exception handling. In Proc. of 6th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages 110–
119, Oct. 1994.

[22] R. Wahbe. Efficient data breakpoints. In Proc. of 5th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 200–212, Oct. 1992.

[23] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. of 14th ACM Symp. on Operat-
ing Systems Principles, December 1993.

[24] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints: Design
and implementation. In Proc. of Conf. on Programming Language Design
and Implementation, pages 1–12, Jun. 1993.

[25] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
architectural support for software debugging. In Proc. 31st Intl. Symp. on
Computer Architecture, pages 224–235, Jun. 2004.

[26] C. Zilles, J. Emer, and G. Sohi. The use of multithreading for exception
handling. In Proc. 32nd Intl. Symp. on Microarchitecture, pages 219–229,
Nov. 1999.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005) 

1530-0897/05 $20.00 © 2005 IEEE


