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Abstract
The presence of multiple active threads on the same

processor can mask latency by rapid context switching,

but it can adversely affect performance due to competition

for shared datapath resources. In this paper we present
Macro Software Pipelining (MSWP), a loop scheduling

technique for multithreaded processors, which is based on

the loop distribution transformation for loop pipelining.
MSWP constructs loop schedules by partitioning the loop

body into tasks and assigning each task to a thread that

executes all iterations for that particular task. MSWP is
applied top-down on a hierarchical program

representation, and utilizes thread-level speculation for

maximal exploitation of parallelism. We tested MSWP on
a multithreaded architectural model, Coral 2000, using

synthetic and SPEC benchmarks. We obtained speedups

of up to 30% with respect to highly optimized superblock-
based schedules on loops with unpredictable branches,

and a speedup of up to 25% on perl, a highly sequential
SPEC95 integer benchmark.

1. Introduction

Modern processor archictures with multiple or wide

issue pipelines provide the opportunity of exploiting loop

parallelism at both the interation and the instruction level.

However, loop scheduling techniques developed for such

architectures may prove unsuitable for multithreaded

processors, having adverse affect on their performance.

For instance, the sharing of an L1 data cache does no

longer readily justify a partitioning of the loop iteration

space into disjoint sets of iterations; such a partitioning

potentially increases cache misses. Similarly, since a

thread context switch preserves the instruction schedule

and the private register contents of the thread that is

switched off the pipeline, a function call can be included

in a software pipelined schedule; the function body can be

assigned to a separate hardware thread.

In this paper we present a loop scheduling mechanism

for multithreaded processors called Macro Software

Pipelining (MSWP). MSWP utilizes the loop distribution

transformation for loop pipelining [1]. An MSWP

schedule of a loop is constructed by partitioning the loop

body into well-balanced tasks in a way that minimizes

data communication across tasks, and by assigning each

task to a processor thread that executes all loop iterations

for that task. For tasks of similar sizes and no backward

dependencies in the loop body, an MSWP schedule

appears like a software pipeline schedule with tasks

replacing instructions. It also resembles a transposed

doacross schedule, where each column contains

consecutive instances of the same task, instead of

different tasks from the same iteration. A backward

dependence in the loop body can be handled by MSWP in

one of two ways: (a) through thread synchronization that

results in a delayed schedule, or (b) through thread-level

speculation that defers the dependence enforcement until

after the dependence sink starts a speculative execution.

The rest of this paper is organized as follows. In

section 2 we will discuss loop scheduling at both the

iteration and the instruction level, and its application on

multithreaded architectures. We will focus our discussion

on MSWP in section 3, where we will give details on the

implementation of MSWP-based loop scheduling. In the

following section we will briefly present our

multithreaded architectural model. Section 5 will discuss

the results of applying MSWP on a number of benchmark

programs, obtained from a simulator of our model. We

will close the paper with conclusions.

2. Loop scheduling and multithreading

2.1. Exploitation of parallelism in loops

Traditional loop scheduling for the exploitation of

parallelism at the iteration level, is mostly performed by

scheduling different loop iterations on separate processors

[2]. If no loop-carried dependencies are detected on the

target loop [3], a completely parallel schedule (namely, a

doall loop) is produced. Otherwise, if there is adequate

iteration overlap, synchronization operations are inserted

in the loop body, resulting in a doacross loop.

Alternatively, the loop can be partitioned across tasks of

the loop body, instead of iterations, resulting in a dopipe
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loop. Loop distribution is used in this case for pipelining

the execution of tasks and exploits functional in addition

to iteration-level parallelism.

At the instruction level, the prevailing loop scheduling

technique is Software Pipelining (SWP) [4]. Circular

instruction reordering across multiple loop iterations is

the key element in that mechanism. The Minimum
Initiation Interval (MII) is the minimum number of cycles

between consecutive iteration schedules in SWP, under

certain code and architectural constraints. Instruction

placement in the loop schedule through the modulo

constraint allows the loop to be scheduled with the MII.

In recent work on SWP, scheduling of control-intensive

loops [5] is performed on superblocks, i.e. on paths with

the highest execution likelihood [6]. Any branch out of

the pipelined loop must lead into compensation code.

2.2. Multithreaded architectures

Multithreaded processors can support in hardware

more than one active thread at the same time. Depending

on the way of handling context switches among threads,

the blocked multithreaded architectures switch context on

demand only, whereas the interleaved multithreaded

architectures switch context at each cycle.

Early interleaved multithreaded processors were

relying on the presence of threads to successfully hide

memory access latencies [7], and were thus suffering

from poor single thread performance. The use of a

superscalar processor as an underlying architecture

boosted the performance of interleaved multithreading [8]

and led to Simultaneous Multithreading (SMT) [9]. SMT

further extends interleaved multithreading, so as to allow

multiple threads to fetch instructions from the instruction

cache at the same time.

 Other designs combine multithreading with on-chip

multiprocessors. The Multiscalar processor [10], for

instance, connects a number of CPUs through a ring,

allowing them to schedule communicating threads. CPUs

that are assigned different iterations of the same loop can

be executing speculatively. Similar approaches that utilize

thread speculation are considered in [11,12,13,14].

Thread-level speculation has been the focus of

multithreading research in the last decade. Such coarse-

grained speculation is more complicated than instruction-

level speculation and needs extensive compiler and

hardware support [15,16,17].

2.3. Loop scheduling and multithreading

Although the above loop scheduling techniques deliver

good performance on the processor architectures they

were designed for, they are often unsuccessful in

exploiting the capabilities of multithreaded processor

architectures.

2.3.1. Parallel loop scheduling and multithreading.

Extracting parallelism of inner loop nests provides a

multithreaded processor with only bursts of threads,

separated by possibly long intervals of single-threaded

code. Unfortunately, loop parallelism is difficult to extract

at the outer-loop level.

Doall schedules provide the processor with identical

SIMD-style threads that will execute in a loose

synchronized mode. That mode will in fact be close to

lock-step mode in interleaved architectures. If a thread

executes a long latency operation, e.g. a non-pipelined

integer division, all other threads will soon run into the

same operation, and will all have to compete and wait for

the corresponding functional unit. In the case of longer

latencies, as in a load with a secondary cache miss, even

blocked multithreaded architectures could be affected.

Cache locality can be heavily affected by resource

sharing in multithreaded processors. By partitioning the

iteration space of a loop into disjoint sets of iterations and

assigning each set on a separate thread, we force threads

to have separate data sets. This could easily result in a

large number of conflict and capacity misses.

2.3.2. Instruction scheduling and multithreading.

Recent research on instruction scheduling through SWP

can produce code that utilizes processor resources at a

maximal level. Unfortunately, such techniques still suffer

from failures at function calls and unpredictable branches.

After any jump out of the SWP code, returning into it is

extremely difficult, if at all possible. With multiple

branches that are difficult to predict, the rate of jumps out

of the SWP schedule can grow exponentially.

The occurrence of function calls and unpredictable

branches is more frequent at higher levels of the program.

Thus, application of SWP-based instruction scheduling is

limited to inner – usually small – loops, not exploiting

ILP at a scope that would result in an optimal

performance for longer parts of a program.

Another common problem in SWP is register pressure.

In order to obtain the necessary iteration overlap, SWP

compilers apply loop unrolling before compacting the

code. This, however, increases the requirements for

register live ranges, since the code becomes longer, in

effect limiting the unrolling factor.

3. MSWP overview

The characteristics of multithreaded processors suggest

the use of loop distribution and the dopipe loop as the

basis for MSWP. In this way, the dissimilarity of code in

different threads results in a better exploitation of

parallelism. Furthermore, any communication across

threads forces them to work on the same or adjacent data

sets, thus better exploiting spatial locality.

With dopipe loop scheduling, ILP can be further – and
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independently – explored through the application of SWP

within each thread. By splitting the original loop into

multiple loops, we reduce the size and the complexity of

the loop body in each resulting loop. If the original loop

could not be pipelined at the instruction level, it is now

possible that several of the new loops will.

Additional exploitation of parallelism can be achieved

through thread-level speculation, which allows iteration

overlap to extend beyond the limits set by dependence

cycles.

3.1. An illustrative example

An example for the application of MSWP on a loop is

shown in Figure 1a. The loop body at a high-level

language description is shown, together with the

corresponding dependence graph, where both control and

data dependence arcs are included. Instructions have been

grouped into segments A through E, depicted on the five

tasks TA through TE that are shown on the graph.

Each task is assigned into one of five threads tA

through tE, respectively, and the resulting schedule is

shown in Figure 1b. Each thread, except tB, executes all

iterations for the corresponding task, communicating with

other threads as necessary, in order to satisfy all

dependencies. Thread tB executes only those loop

iterations for TB that satisfy the control dependence

between TA and TB. That dependence is implicitly

satisfied, whenever threads tA and tB communicate to

satisfy the data dependence between the two tasks. Cyclic

dependencies due to recurrences are automatically

satisfied within each thread.

Iteration overlap, as a result of MSWP application, is

clearly seen in the figure. Iterations across threads are

scheduled asynchronously, e.g. A4 can execute after A3 is

finished, even if thread tC is still working on C2 or even

C1. Such an asynchronous scheduling of the loop tasks

will be feasible, only if the underlying communication

means can store intermediate values that are passed

among the threads and produced in consecutive iterations.

3.2. The MSWP scheduling algorithm

The MSWP scheduling algorithm consists of the

following four steps:

1. Partition the code into threads.

2. Eliminate backward dependencies.

3. Insert code for communication across threads.

4. Apply instruction-level SWP.

3.2.1. Code partitioning. Thread extraction is based on

interprocedural dependence analysis and is performed at a

top level of the code representation, i.e., by applying loop

distribution on large outer loops. It moves recursively into

inner loops, depending on relative task sizes, as calculated

by a profiler. Code partitioning assumes a hierarchical

representation of the input code through the Hierarchical

Task Graph (HTG) [18], augmented with any necessary

dependence and profile information. Major goal of code

partitioning for MSWP is to extract the maximum

potential iteration overlap in the execution of threads.

3.2.2. Backward dependence elimination through

thread-level speculation. Speculation in the context of

loop scheduling refers to speculatively scheduling an

iteration, when it is dependent on one or more previous

iterations. For data dependencies, each backward

dependence is examined, to determine whether an early

calculation of the value carried across the dependence is

possible. The code for that calculation is then placed

within the thread considered for speculation. Control

dependencies that indicate control flow abnormalities,

like early loop exits, are also checked for speculative

elimination. Any compensation code necessary to handle

mis-speculation is inserted at this step.

Figure 1. MSWP scheduling example

data dependence

control dependence

(a) (b)

TA

TB TC

TD

TE

A: x0 = f0 (x0, x1);

x1 = f1 (x0);

x2 = f2 (x0, x1, x2);

if (x1)

B: y0 = g0 (x1, y0);

C: z0 = h0 (x2, z0);

z1 = h1 (z0, z1);

D: w0 = r0 (y0, z1, w0);

E: v0 = s0 (w0, v0);

A1

A2

A3

A4

A5

B1

B4

B5

C1

C2

C3

C4

C5

D1

D2

D3

D4

D5

E1

E2

E3

E4

E5

tA

tB

tD

tE

tC

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04) 
0-7695-2080-4/04 $ 20.00 IEEE 



3.2.3. Communication code insertion. Instructions are

inserted, if existing code cannot satisfy communication

requirements from data and control dependencies. This

step is highly dependent on the particular communication

means supported by the underlying architecture. In any

case, instructions must be carefully inserted, in order to

avoid communication deadlocks.

3.2.4. Application of instruction-level SWP within

threads. SWP within a thread is meaningful, only if that

thread executes all loop iterations. Otherwise, pipelining

of consecutive iterations is likely to result in the execution

of useless – and possibly harmful – code.

3.3. Parallelism exploitation in MSWP

A major advantage of MSWP over traditional loop

scheduling techniques is that it can potentially exploit

more parallelism. By distributing the body of a loop

across threads, MSWP exploits functional-level

parallelism first, leaving iteration-level parallelism to be

exploited through asynchronous execution of loop

iterations. Since doacross and doall loops do not exploit

functional-level parallelism within the loop body, MSWP

allows deeper parallelism exploitation. Instruction-level

SWP, on the other hand, achieves such a goal through

loop unrolling and code compaction, but at a smaller scale

and with many limitations.

4. Coral 2000

Our processor model, namely Coral 2000, is a hybrid

between blocked and interleaved multithreaded

architectures, with a context switch mechanism based on

the -Coral concept [19]. A block diagram of Coral 2000
is given in Figure 2.

In the development of Coral 2000, we have considered

support towards a successful implementation of MSWP.

Its design goals include thus the following:

A zero-overhead thread context switch mechanism that

allows active threads to be switched without stalling the

processor pipeline.

A communication means for passing data across

threads that allows threads to execute asynchronously,

when they are working on a common loop, doing useful

work instead of waiting for each other.

The ability to switch threads at the fetch stage of the

front-end of the processor, when conditional branches are

encountered.

A buffering mechanism that allows the front-end to

mix instructions from more than one thread within the

same stage, though instructions are still fetched from the

same thread at each clock cycle.

Support for thread-level speculation, in order to handle

backward dependencies and control flow abnormalities.

Further details on Coral 2000 can be found in [20].

5. Experimental results

We tested and evaluated MSWP on a cycle-level

simulator that was based on the SuperDLX simulator, a

general-purpose simulator of a MIPS-like superscalar

microprocessor [21]. We extended SuperDLX, to support

most of the MIPS IV instruction set. We also added

additional features, such as an L1 instruction cache with

predecoding, a simple L1/L2 data cache hierarchy,

register mapping tables, a multilatency integer multiply/

divide functional unit, and full store-to-load forwarding.

Most importantly, we implemented all multithreading

support, in accord with the design goals of Coral 2000.

5.1. Benchmarks

Goal of our testing was to prove that MSWP can

successfully address the loop scheduling issues discussed

above. To this end, we based our experiments mostly on

synthetic benchmarks. Nevertheless, we also tested

MSWP on perl, an integer SPEC95 benchmark.

All benchmarks are described through the HTGs of

Figures 3 and 4. For simplicity, some nested conditional

branches and loops are not shown. An outer loop is

implied in all synthetic benchmarks. More specifically:

do. The body of the outer loop of this program exhibits

the dependencies shown in Figure 3a. Task T2 contains

Figure 2. Coral 2000 architecture

Figure 3. HTGs of the synthetic benchmarks
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long latency integer operations.

loop. The body of the outer loop of this program

exhibits the dependencies shown in Figure 3b.

func. The body of the outer loop of this program

exhibits the dependencies shown in Figure 3c. Task T4

contains a function call, which is actually made in 50% of

the loop iterations.

perl. This program exhibits a highly sequential

behavior, due to the backward dependencies shown in the

HTG of Figure 4. The attached information is mostly a

result of gprof on the execution of perl with the ref input

data set. In particular, Q is a combined probability that the

path carrying the respective backward dependence is

followed. The code shown participates in speculation.

The partitioning of all programs into threads is also

shown in the figures. The shaded compound tasks serve as

thread interfaces.

5.2. Experiments

In order to evaluate MSWP, we compared execution of

multithreaded to execution of single-threaded code. In

each comparison, we used codes as similar as possible,

with differences that resulted only from multithreading

and the application of the MSWP algorithm. In order to

obtain the best possible single-threaded codes, we applied

superblock-based SWP on many of those codes. Thus,

evaluation of MSWP was performed in the context of

state-of-the-art instruction scheduling.

The basic simulator configuration we used, was that of

a 3-way superscalar machine, with a reorder buffer of 40

entries and a store buffer of 36 entries. We assumed

simple 32K L1 caches with one port, a hit time of 1 cycle

and a miss time of 6 cycles. We ignored instruction

misses, though. Finally, we used a single-level 2-bit

dynamic branch prediction with a BTB of 512 entries.

For each program tested, we obtained results from four

modes of simulation, depending on whether cache or

dynamic branch prediction (dbp) was used.

5.2.1. Synthetic benchmarks. Figure 5 shows the

simulation results for the three synthetic benchmarks.

More specifically:

Figure 5a depicts the execution times for do, using

compiler-produced SWP codes, single-threaded (O3), 2-

threaded with doall (2O3A), 4-threaded with doall

(4O3A) and 3-treaded with MSWP dopipe (3O3P).

Figure 5b depicts the execution times for loop, using

superblock-based SWP codes, single-threaded without

and with 2 times unrlolling (O2NU and O2U2), and 2-

threaded MSWP code without, with 2 and with 4 times

unrolling (2O2NU, 2O2U2 and 2O2U4).

Figure 5c depicts the execution times for func, using

superblock-based SWP codes, single-threaded without

and with 2 times unrolling (O2 and O2U2), and 3-

threaded MSWP code with 5 times unrolling (3O2U5C).

In the last case, t2 is conditionally executing only those

iterations that actually perform a function call.

In all the above cases, using MSWP, we obtained

speedups of up to 30% with respect to optimized single-

threaded code. The unrolling factor used in each case was

maximized, in order to obtain the optimal MII.

Figure 4. HTG of perl

Figure 5. Execution times for the synthetic benchmarks
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5.2.2. SPEC95 results. In these experiments, we varied

the machine configuration, from the basic (M1), to a 3-

way superscalar with two (M2), a 4-way superscalar with

one (M3), a 4-way superscalar with two (M4) and a 6-

way superscalar with three memory ports (M5).

Figure 6 shows the execution times for perl, using a

reduced ref input data set. We tested single-threaded (S)

and 4-threaded (M) code, based on compiler-optimized

code. In the application of MSWP we utilized thread-level

speculation, mostly along the code included in Figure 4.

The speedup we obtained was up to 25%.

6. Conclusions

In this paper we identify issues in traditional loop

scheduling techniques, at both the iteration and the

instruction level, that can be addressed quite successfully

with multithreading through MSWP. With MSWP, we

provide a loop scheduling technique that, unlike doall/

doacross scheduling, is more suitable to multithreaded

architectures. MSWP exploits loop parallelism and

additionally allows for a significant performance boost to

instruction-level SWP for multithreaded processors. We

propose an implementation of the MSWP algorithm and

test it on synthetic and spec benchmark kernels. The

results that we obtained from simulations are very

encouraging. We plan to further validate the advantages

of our approach through additional measurements.
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