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Abstract

This paper describes the design and implementation of
our high speed simulator for out-of-order microprocessors
named BurstScalar. The simulator is based on the well-
known SimpleScalar simulator but its execution speed is ac-
celerated by computation reuse technique. Each time a loop
is iterated, BurstScalar consults its state transition table to
examine whether the iteration turns the microarchitectural
state into what has already occurred. If the behavior of
the iteration matches a state transition table entry, we reuse
the complicated computation for out-of-order microarchi-
tectural simulation by simply following the transition arc
registered in the table. Moreover, in order to minimize the
overhead of the reuse, we apply the reuse technique only
to loops with enough number of iterations. This loop se-
lection is performed by an instruction level pre-execution
which only costs 1/10 to 1/100 of out-of-order cycle accu-
rate simulation. The evaluation of BurstScalar with SPEC
CPU95 benchmarks proves its efficiency showing up to 5.1
and 2.3-fold speedups over SimpleScalar for SPECfp and
SPECint respectively, and 2.6 and 1.5-fold in average.

1. Introduction

Steady progress of VLSI technology allows architects
to make their microprocessors have complicated execution
mechanisms. For example, out-of-order superscalars are
the mainstream of desktop and laptop computers and will
be as well of handhelds and embedded systems in near fu-
ture. At the same time, many researchers are trying to in-
troduce more sophisticated mechanisms such as aggressive
speculation, simultaneous multi-threading, clustered super-
scalars and so on, to achieve higher performance and/or
lower power.

For these research and development of microprocessors
and systems embedding them, microprocessor simulators
are indispensable to evaluate and/or to verify their function-
ality and performance. However, most of existing cycle ac-

curate simulators, which give reliable performance data to
architects, are 1,000 to 10,000 times as slow as real ma-
chines. Thus architects have to wait for more than two
weeks until their simulator of slowdown 5,000 completes
its work with a workload that takes only five minutes on a
real computer

This inefficiency of the cycle accurate simulators is due
to the complicated out-of-order instruction scheduling to
be simulated in clock by clock manner. In fact, the slow-
down of instruction level simulators to reproduce architec-
tural (i.e. not micro-architectural) behavior is in the range
of 10 to 100. Thus we may conclude that 90 to 99% of
the work of cycle accurate simulators are for instruction
scheduling simulation.

On the other hand, the execution of a program shows lo-
cality especially in loops. In a loop, a processor repeatedly
executes a few (or one, often) sequences of instructions and
accesses its memory and other resources in a steady manner.
Thus, why cannot we expect that an instruction scheduling
pattern is also repeated in a loop? If we may expect that,
we can reuse the computation result for the scheduling that
we once produced and skip the most time consuming part
of the simulation.

Our out-of-order microprocessor simulator named Burst-
Scalar is designed lead by this observation. Our contribu-
tions to microprocessor simulation technology given in this
paper are as follows:

1. We apply computation reuse technique to the instruc-
tion scheduling of the most widely used cycle accu-
rate simulator SimpleScalar[1] by dynamically build-
ing and consulting a microarchitectural state transition
table.

2. To minimize the number of states in the transition ta-
ble, we register only the microarchitectural states at
the beginning of loop iterations, which are the most
promising sources of locality and acceleration, exclud-
ing other possible execution points such as memory
references and conditional branches.
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3. To minimize the overhead of the reuse operations, we
apply the reuse technique only to loops with enough
number of iterations which are picked by a instruction
level pre-execution.

2. Related Works

Microprocessor simulators are fallen into two categories;
trace driven and execution driven. As discussed in many pa-
pers, for example in [10], trace driven simulators are faster,
much faster often, than execution driven ones but are less
accurate because they capture only a part of processor be-
havior such as memory data accesses. Another source of the
inaccuracy is that a trace is obtained from logical execution
paths of a workload and thus physical execution paths such
as speculative ones are omitted. Since our objective is to
build a cycle accurate simulator, our BurstScalar is execu-
tion driven of course, but has some trace driven flavor in
it. Our observation is the trace of an execution is useful to
accelerate the simulation driven by the execution because
we can grasp the behavior of the execution in advance. As
discussed later, BurstScalar produces a kind of instruction
trace in advance to pick loops and to count their iterations.

Execution driven simulators are further classified from
two viewpoints; model preciseness and instruction execu-
tion mechanism. Instruction level simulators are at one end
of the model preciseness spectrum where ISA-defined re-
sources, memory and registers, are simulated in instruction
by instruction manner. The other end is for cycle accurate
simulators in which microarchitectural resources and mech-
anisms such as out-of-order pipelines, physical registers and
speculation logics are simulated in clock by clock manner

Another viewpoint, instruction execution mechanism,
classifies simulators into two categories; instruction emu-
lation (IE) to interpret target machine code by software, and
binary translation (BT) to execute augmented host machine
code (dynamically) translated from target machine code.
Roughly speaking, BT method is faster than IE method
especially for instruction level simulators. For example,
Shade[2] and SimOS (BT mode)[7] are well-known works
in which small slowdown around 10 is achieved. Research
of this category is still active in the context of retargetability
and high performance techniques including IS-CS[6] pro-
posed to achieve 3 to 4-fold speedup over sim-fast of Sim-
pleScalar.

Although IE simulators are slower than BT ones, they
are still useful especially with models more precise than in-
struction level. For example, detailed CPU mode of SimOS
and Shaman[4] have fairly precise memory models with
(coherent) caches, MMU/TLB and (shared) physical mem-
ory while their IE-type execution engines run with reason-
ably small slowdown, 50 to 200. Most of cycle accurate
simulators including dynamic scheduling mode of SimOS,

RSIM[5] and sim-outorder of SimpleScalar also employ
IE method for their architectural simulation engines. It is
worth to note that the slowdown of cycle accurate simula-
tors in the range of 1,000 to 10,000 is almost insensitive to
that of instruction execution about 100.

One exception of the instruction execution method for
cycle accurate simulators is FastSim[8] that adopts BT
method as the front-end of its instruction scheduler. An-
other remarkable feature of FastSim is computation reuse
(or memoization in their term) for the acceleration of out-of-
order instruction scheduling as we do in BurstScalar. How-
ever, BurstScalar is essentially different from FastSim in the
following two technical viewpoints.

• When does a state is saved for reuse?

FastSim tries to reuse every microarchitectural state
transition from/to a load/store or branch instruction.
Although this approach fully exploits reusability, it re-
quires a huge number of states have to be saved blindly
without any assessment of reusability. Our Burst-
Scalar, instead, aims to reuse the state transition during
iterations of loops which are most promising source
of locality and thus reusability. Moreover, BurstScalar
has pre-execution phase as its unique feature to detect
loops iterating enough times for performance gain.

• How does a state is saved for reuse?

Since FastSim saves a huge number of states for reuse,
a state has to be represented as compactly as possi-
ble to keep its state store size reasonable. Therefore
its microarchitectural state representation, which can
be packed into 16-byte plus 1.5-byte per instruction
in window, is designed for easy and efficient imple-
mentation of reuse rather than for natural and instinc-
tive implementation of architectural idea. On the other
hand, the state of BurstScalar is simply a set of data
structures of SimpleScalar which are familiar to ar-
chitects who use it and thus easily modified by them
with their own purpose. This makes a state of Burst-
Scalar significantly large, a few thousand bytes, but its
memory consumption is reasonable because the num-
ber of states to be saved is minimized. This feature, to-
gether with IE-type execution engine based on sim-fast
of SimpleScalar instead of FastSim’s BT-type, makes
BurstScalar much more retargetable and portable than
FastSim.

Another approach of fast out-of-order detailed simula-
tion is tradeoff of performance and accuracy. This approach
is found in DirectRSIM [3] and FastILP[9]. Although these
tradeoff approaches are attractive, architects might hesitate
to use them because no theoretical bound of timing error is
given to their own microarchitectures.
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3. Overview of BurstScalar

3.1. Conceptual Mechanism of Computation Reuse

As stated in previous sections, BurstScalar aims to ac-
celerate the simulation of out-of-order instruction schedul-
ing by computation reuse technique. Basic concept to apply
computation reuse to instruction scheduling is fairly simple.
Let M be a huge finite state automaton representing an in-
struction scheduling mechanism to be simulated, Q be the
set of M ’s state, and Σ and ∆ be the sets of its input and
output symbols. If we knew M ’s state transition function
δ : Q×Σ∗ → Q and output function λ : Q×Σ∗ → ∆∗, we
could easily calculate the next state of a given state q ∈ Q
with a given input sequence a ∈ Σ∗ by δ(q, a), and the out-
put sequence by λ(q, a) by simply looking up q/a pair in
the state transition table of M .

Unfortunately, we do not have the transition table in ad-
vance and thus have to evaluate δ(q, a) and λ(q, a) by simu-
lation. However, if we fill the transition table entry when we
evaluate the functions and we find q and a again, we may
reuse the evaluation results by looking up the filled entry for
q/a pair.

To minimize the overhead the table building and consult-
ing, we may restrict the application of reuse to frequently
occurred input sequences. If an input sequence ai does not
occur enough times, we simply simulate the behavior of M
with its state qi and ai. Otherwise, the state transition table
is consulted for qi/ai. If the entry for the pair is found, we
simply set qi+1 to δ(qi, ai) and output λ(qi, ai) using the
record in the entry. If not found, we simulate M to have
δ(qi, ai) and λ(qi, ai) and fill the transition table entry for
qi/ai with the evaluation results.

3.2. Definition of States, Inputs and Outputs

Now we have to map the conceptual mechanism dis-
cussed above onto a real simulator with a given machine
model defining the states, inputs and outputs. A straight-
forward definition of a state is what the machine has in
its registers/memories in the scheduling mechanism. This
definition, however, takes away the chance of reuse almost
completely because the registers/memories have instruction
operands and results which are hardly repeated as a whole.
Thus we need to remove data portion from a state to obtain
certain reusability.

Fortunately, most of out-of-order simulators, including
SimpleScalar which our BurstScalar is based on, separate
instruction emulation and scheduling so that data structures
in the scheduler have almost no data values on which in-
structions operate. Therefore if we transform a small excep-
tional data portion such as memory addresses in load/store

qa qb

qd

qc

lw t=2, l=8
add
addi
subi
bgtz t=3, h=0, m=7

lw t=2, l=8
add
addi
subi
bgtz t=3, h=1, m=7

lw t=2, l=1
add
addi
subi
bgtz t=3, h=1, m=7

lw t=2, l=1
add
addi
subi
bgtz t=3, h=1, m=7

lw t=2, l=1
add
addi
subi
bgtz t=3, h=1, m=7

Figure 1. State Transition.

queues into a data independent form such as access laten-
cies, the state of scheduler is free from data values and thus
much more reusable.

The first level approximation of the input symbol def-
inition is to use an executed instruction as a symbol. A
frequently occurred input sequence is naturally translated
into an instruction sequence in a loop which iterates enough
times.

However, this assumption does not hold of course be-
cause an instruction may have variable execution latency
depending on its operand value or may dramatically affects
the scheduling through its result. A good example of the for-
mer case is a memory access instruction whose latency de-
pends on the cache access result and its timing. An example
of the latter is a conditional branch because the scheduling
of the following instructions deeply depends on the correct-
ness of its prediction.

Thus we have to define an input symbol as an instruction
optionally coupled with its data dependent behavior. In or-
der to keep enough reusability, the coupled information can-
not be the data itself on which the behavior depends but has
an abstracted form representing its effect on the schedul-
ing sufficiently. Therefore we decouple microarchitectural
units which determine the data dependent behavior of in-
structions from the scheduler and record the interaction be-
tween the scheduler and units. The record is attached to
the instruction which causes the interaction to form a input
symbol.

For example, the load instruction lw in Figure 1 has a
record indicating its access timing t relative to the base time
of the instruction sequence and the access latency l. The
conditional branch bgtz also has a record for the timing
of the reference and modification of the branch prediction
table (t and m) and the prediction result h. As shown in
the figure, each set of recorded values for an instruction se-
quence may cause its own transition from a state. Therefore
when we find a pair of state and instruction sequence regis-
tered in the transition table, the interaction with the units is
simulated using the timing in the record and operand data
value given by the instruction emulation. If the interaction
results are consistent with those recorded, we successfully
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#define N 100
void foo(){

for(i=0;i<N;i++){
for(j=0;j<N:j++){
body

}
}

}

a: i=0
b: j=0
c: body
d: j++
e: j<N
f: i++
g: i<N
h: ret

(a) (b)

Figure 2. Iterations.

reuse the transition in the table.
As for the output symbols, their definition depends on

what we want to know from the simulation. If we just want
to measure the total execution cycles, the output function
λ(qi, ai) may be enough to give the number of cycles spent
from qi to δ(qi, ai).

3.3. Iterations

As discussed above, we need input symbol sequences
that frequently occur for efficient reuse. The source of such
sequences should be found in loop iterations. Thus Burst-
Scalar at first performs an instruction level simulation to
produce an instruction trace and to form it in a series of it-
erations.

In our definition, an iteration is a sequence of executed
instructions bounded by backward branches, subroutine
calls (branch-and-link) or an indirect branches. For exam-
ple, suppose we execute a C function shown in Figure 2(a),
whose control flow graph is shown in (b). The sequence
of executed instructions is represented as a(b(cde)Nfg)Nh,
where a to h are the labels in the graph and xn is the n-times
concatenation of x. Since e and g are backward conditional
branches and h is an indirect branch, the sequence is trans-
formed into the following form in which innermost parened
subsequences are iterations.

(abcde)((cde)N−2(cdefg)(bcde))N−1(cde)N−2(cdefgh)

Thus if we name the iterations as A = abcde,
B = cde, C = cdefg, D = bcde and E =
cdefgh, the sequence is represented as an iteration trace
A(BN−2CD)N−1BN−2E. If N = 100, B occurs 9,800
times, C and D 99 times, and A and E only once in this
trace.

4. Implementation of BurstScalar

Figure 3 shows the configuration of BurstScalar. As
shown in the figure, BurstScalar has the following four ma-
jor components.

Pre-Executor

iteration trace

prediction check

Branch
Predictor

Memory
Simulator

Statistics
Collector

Reuse
Engine

Instruction
Scheduler

Instruction
Emulator

inst/addr trace

look-up/register

interaction records

State
Transition

Table

workload

binary

Figure 3. Configuration of BurstScalar.

• Pre-Executor produces the iteration trace by perform-
ing instruction level simulation on the workload.

• Instruction Emulator emulates workload instructions
again to produce a short instruction and address traces
for out-of-order scheduling simulation. It also simu-
lates branch prediction.

• Instruction Scheduler simulates out-of-order
scheduling. When it fetches the first instruction of
a reuse candidate iteration, it looks up its state in
the state transition table. If the state is found, Reuse
Engine takes its place. Otherwise, it registers the state
in the table and attaches the records of the interaction
with Memory Simulator and Branch Predictor.

• Reuse Engine checks if the interaction with Memory
Simulator and Branch Predictor is consistent with that
recorded in the transition table. If consistent, it contin-
ues the work for the next iteration setting the scheduler
state following the transition table entry. Otherwise,
Instruction Scheduler takes its place.

The other component is Statics Collector which receives
statistical data from Instruction Scheduler and Reuse En-
gine and performs collective operations on them to make
statistical output of the simulation.

4.1. Pre-Executor

At first, BurstScalar invokes its Pre-Executor to execute
a workload binary and to produce the iteration trace. The
execution is a simple instruction level simulation based on
sim-fast of SimpleScalar.

Each time Pre-Executor finds a backward branch, a sub-
routine call or an indirect branch, it looks up the target ad-
dress in a hash table shown in Figure 4 that corresponds to
the iterations in Figure 2. For example, during the inner
loop of foo iterates, we repeatedly encounter the backward
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A 1

# of occer.ID

B 9800

C 99

E 1

D 99

a

c

b

e

e

g

h

e

hash

(target-addr.)

Figure 4. Identification of Iterations.

conditional branch e and find its target address c in the ta-
ble. Thus we follow the link from c to find the branch e. If e
is taken to iterate the loop, we put B into the iteration trace
and increment its occurrence. Otherwise, the inner loop is
terminated and we follow the downward link from the node
for e to find the branch g for the outer loop. If branch is
taken, we put C to the trace and start new iteration from its
target address b.

Pre-Executor performs the operations above until the
workload terminates or its on memory trace buffer of 4M
entries is exhausted. In the latter case, BurstScalar’s con-
text is switched to Instruction Emulator until it consumes a
half of the trace. To minimize the context switch frequency
and to provide iteration counts to other components as up to
date as possible, we pack the trace by a run-length encod-
ing.

4.2. Instruction Emulator

Instruction Emulator executes the workload binary again
to produce a short instruction and memory address traces
given to its backend, Instruction Scheduler or Reuse En-
gine. Each trace is implemented as a cyclic buffer large
enough with respect to the size of instruction window, and
traced instruction and address are removed when the cor-
responding instruction retires. The fundamental job of this
component is a simple instruction level simulation based on
sim-fast again, but an additional job for branch prediction is
assigned to it.

When it encounters a conditional or indirect branch, it
suspends its execution until its backend allows to consult
prediction tables. This is necessary because the Instruction
Emulator cannot know when the tables are up to date for
a branch by itself but the backend controls when they are
modified in an out-of-order and possibly speculative man-
ner. Then it examines the correctness of the prediction.
If correct, it resumes the execution getting a new iteration
from the trace if the branch is backward, indirect or for a
subroutine call.

If the branch is mispredicted, it turns to false path execu-
tion mode, or speculation mode in SimpleScalar’s term, for

X    n   m

bp

t=1, h=1

ld

t=4, l=1

bp

t=1, h=1

ld

t=4, l=1

bu

t=7

bp

t=1, h=1

st

t=5, l=1

bu

t=7

rc

t=7

bu

t=7

ld

t=8, l=1

bp

t=1, h=1

bu

t=7

bu

t=7

ld

t=4, l=1

ld

t=4, l=8

qa

qb

qc

qd

# of occer.

# of exec.

Figure 5. State Transition Table.

preserving and speculatively modifying architectural states
by SimpleScalar’s mechanism. Then the backend notifies
the end of the false path when the branch instruction of its
root reaches a pipeline stage (write-back) for the examina-
tion, Instruction Emulator recovers architectural states and
resumes the correct path execution.

4.3. Instruction Scheduler

The main job of the Instruction Scheduler is what sim-
outorder of SimpleScalar does. Thus the out-of-order in-
struction scheduling mechanism is implemented using Sim-
pleScalar’s related modules. The additional job is to build
the state transition table for computation reuse.

Figure 5 shows the state transition table structure corre-
sponds to the diagram shown in Figure 1. The root of the
structure is an entry of iteration table which contains the
number of occurrence n of the iteration X counted by Pre-
Executor. It also has a counter m to count the execution of
the iteration by Instruction Scheduler and Reuse Engine for
memory management discussed later.

Each time Instruction Scheduler fetches the first instruc-
tion of an iteration, it looks up the entry of the iteration to
find a state identical to its current state. If the state is found,
control is transferred to Reuse Engine to skip the computa-
tion for the scheduling.

Otherwise, it checks whether the number of iteration oc-
currence n is greater than a threshold, set to 300 in the cur-
rent implementation based on our experience. If n is less
than the threshold, it simply performs instruction schedul-
ing as SimpleScalar does because reusing will not be ef-
fective. Otherwise, the transition table entry for the current
state is filled as follows.

First, SimpleScalar’s data structures including Regis-
ter Update Unit (RUU) and queues for instruction fetch,
load/store and ALU/FPU operations are saved as the cur-
rent state. A check sum is attached to the saved image
so that state identity is quickly checked by eliminating
hopeless candidates. Then out-of-order scheduling is per-
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formed recording the interaction with Memory Simulator
and Branch Predictor. For example, after we save the state
qa in Figure 5, the first interaction ‘bp’ (branch prediction
table lookup) at the timing t = 3 relative to the first fetch
of the iteration is recorded together with its result h = 0
(misprediction). The record is linked from the state qa and
following interactions are added to the tail. In this exam-
ple, a load (ld) at t = 4 of 8 clock latency (l), a store (st)
executed because of misprediction, a branch prediction ta-
ble update (bu) and the recovery of the misprediction (rc) at
t = 7.

Then the iteration head is fetched again and thus the tail
of the record list is linked to the new state qb. After sim-
ilar operations continue from qb to qc and qc to qb, Reuse
Engine takes its place because qb is found in the transition
table structure. Note that at this point the dashed part of the
structure for qb to qd and qd to qb is not build.

Also note that the figure is simplified omitting the fol-
lowings.

• Each interaction record except for ‘rc’ has an offset
pointer to the instruction or address trace given from
Instruction Emulator so that Reuse Engine performs
the same interaction with different data value.

• Interactions between Memory Simulator for instruc-
tion fetch are also recorded.

4.4. Reuse Engine

When Instruction Scheduler finds a matching state and
iteration pair in the transition table, Reuse Engine starts its
job. It follows the link of the interaction records from the
current state and performs each recorded interaction with
Memory Simulator and Branch Predictor at the recorded
timing. The data value for the interaction is obtained from
the instruction or address trace using the offset pointer in
the record. As long as the results of interactions are identi-
cal to those recorded, Reuse Engine stays in the transition
table walking along the links of states and records.

For example, when Instruction Scheduler finds its state
qb in the transition table shown in Figure 5, Reuse Engine
takes its place and traverses the records of ‘bp’, ‘ld’ and
‘bu’ to the state qc, then those from qc to return to qb, and
repeats this walk until it encounters another iteration to ter-
minate the loop. It may also stops the walk when it finds
a mismatch of an interaction result and that recorded. For
example, the ‘ld’ interaction in the path from qb to qc may
results in cache miss with 8 clock latency.

When a mismatch is found, Reuse Engine rolls the ex-
ecution back to the fetch of the current iteration head by
restoring the state from what it last visited. Then Instruction
Scheduler takes its place omitting interactions which Reuse
Engine have already performed. In the example of the cache

miss of ‘ld’, after the state qb is restored, Instruction Sched-
uler restarts scheduling omitting ‘bp’ and ‘ld’. Then a new
record for the ‘ld’ of l = 8 is added and linked from that of
l = 1.

After that, the interaction ‘bu’, the state qd and other
three records following it is created by Instruction Sched-
uler as explained in the previous section. Then it finds qb

and switches to Reuse Engine again. In this second invoca-
tion, Reuse Engine does not stop at the ‘ld’ after qb even if
the latency is not 1 but 8. Instead it follows the downward
link of ‘ld’ of l = 1 and finds that of l = 8 and continues
the walk to qd.

4.5. Memory Management of State Transition Ta-
ble

Although we try to minimize the size of the state tran-
sition table by limiting the reuse application to frequently
occurring iterations, the memory area for the table may be
exhausted. When exhausted, we reclaim memory space pre-
dicting the usefulness of the table contents rather than rely-
ing a simple flush or LRU scheme proposed in [8].

The prediction is based on the occurrence and execution
counters n and m shown in Figure 5. If they are identical,
it is worthless to keep states and records for the iteration
and thus they are simply discarded. If this reclamation is
not enough, we remove paths of interaction records con-
taining cache misses or branch mispredictions for iterations
of a small future usage n − m expecting hitting paths are
more useful than them. Further reclamation discarding all
the states and the records for iterations whose n−m is less
than the threshold are performed if the missing path removal
is still insufficient.

In order to avoid that a discarded state or path is regen-
erated, each iteration table entry has flags to suppress the
creation until Pre-Executor is resumed and increments n to
make n − m enough large. The threshold of n − m is dou-
bled after a reclamation process to avoid it is invoked too
frequently.

5. Performance Evaluation

5.1. Evaluation Environment

The performance of BurstScalar was measured using a
2.8 GHz Xeon based PC with 3 GB memory and Linux
2.4.20. We also measured the performance of SimpleScalar
version 3.0c, which is the base of BurstScalar, for compari-
son. Both systems are compiled by gcc version 2.95.3 with
-O2 option.

Workloads are benchmarks in SPEC CPU 95 with “train”
datasets. Simulated microarchitectures are SimpleScalar’s
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Table 1. Simulated Microarchitecture

model-1 model-2
I-Fetch & ILP degree

I-fetch width 4 8
issue/commit width 4 8
RUU depth 16 256
load/store queue depth 8 128

Function Units
integer ALU 4 8
integer mult/div 1 3
floating point ALU 4 8
floating point mult/div 1 3

Branch Prediction
cond. branch prediction 2 K entry, 2-bit counter
branch target buffer 2 K entry

Caches
L1 instruction cache 16KB, 32B block,

direct map
L1 data cache 16KB, 32B block,

4-way set assoc.
L2 unified cache 256KB, 64B block,

4-way set assoc., 6 cycle
memory access 16 + 2× xferred-bytes/8

default (model-1) and extended (model-2). Those major pa-
rameters are shown in Table 1.

5.2. Iteration Occurrence

Before measuring simulation speed, we measured the
number of occurrence of each iteration. Then we estimated
the significance si of an iteration by ni × ei/eT , where ei

is the number of instructions in the iteration that occurs ni-
times and eT is the total number of executed instructions.
Thus si = 0.1 means 10% of total execution is spent in the
iteration i.

Table 2 and 3 show the results obtained by summing
up the significance of iterations whose occurrence are in
the range of 1 to 100, 100 to 10,000, and so on. The ta-
ble clearly shows that a large portion of the execution of
SPECfp benchmarks is spent by frequently occurring iter-
ations, except for ‘fpppp’. It also suggests our reuse tech-
nique will be effective for them, especially for ‘tomcatv’,
‘hydro2d’ and ‘mgrid’, because the instruction scheduling
of a frequently occurring iteration is likely reusable.

On the other hand, SPECint benchmarks tend to stay in
random code sequences especially in ‘go’ and ‘gcc’. This
suggests that a large gain from reuse is hardly expected but
there will still be a chance to have significant acceleration
for other benchmarks.

Table 2. Distribution of Iteration Significance
(SPECfp).

# of occur. 100-102 102-104 104-106 106-
101.tomcatv 0.0 0.3 16.0 83.7
102.swim 0.0 0.2 56.1 43.7
103.su2cor 0.0 0.1 8.9 91.0
104.hydro2d 0.0 0.5 8.4 91.1
107.mgrid 0.0 2.1 6.6 91.3
110.applu 0.2 2.6 97.2 0.0
125.turb3d 0.0 0.1 9.0 90.9
141.apsi 0.1 2.8 59.5 37.3
145.fpppp 3.0 58.7 38.3 0.0
146.wave5 0.0 0.2 28.2 71.6

(%)

Table 3. Distribution of Iteration Significance
(SPECint).

# of occur. 100-102 102-104 104-106 106-
099.go 3.1 45.4 51.5 0.0
124.m88ksim 0.5 1.7 97.8 0.0
126.gcc 1.4 40.7 55.4 2.6
129.compress 0.2 4.7 95.1 0.0
130.li 0.1 4.0 95.9 0.0
132.ijpeg 0.1 4.0 32.3 63.6
134.perl 0.0 1.9 30.5 67.6
147.vortex 0.1 5.0 52.8 42.1

(%)

5.3. Simulation Speed

Table 4 and 5 show the simulation time of each bench-
mark running on BurstScalar (BS) and SimpleScalar (SS).
The table also shows the speedup of BurstScalar relative to
SimpleScalar (SS/BS).

As we expected from the analysis of iteration occur-
rence, BurstScalar greatly outperforms SimpleScalar for
SPECfp benchmarks achieving up to 5.1-fold speedup for
‘mgrid’ (model-2) and 2.6-fold in average. Comparing the
results of model-1 and model-2 gives an insight that the
benchmarks are categorized in two groups by the SS/BS
ratio of each model. The model-2 ratio of one group, in-
cluding ‘tomcatv’, ‘swim’, ‘mgrid’, ‘applu’ and ‘fpppp’, is
larger than that of model-1 because the model complicated-
ness directly affects the simulation speed of SimpleScalar
while BurstScalar is less sensitive to it. That is, the more
complicated the model is, the harder Instruction Scheduler
have to work, but the BurstScalar skips the harder job by
reuse.

As for the other group, however, the observation above is
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Table 4. Simulation Time of BurstScalar and
SimpleScalar (SPECfp).

model-1 model-2
BS SS SS/BS BS SS SS/BS

tomcatv 8016 19022 2.37 10627 26087 2.45
swim 305 1025 3.36 396 1787 4.51
su2cor 8055 24653 3.06 42428 39717 0.94
hydro2d 2524 9127 3.62 10268 12622 1.23
mgrid 4978 17074 3.43 5729 29117 5.08
applu 229 611 2.67 295 877 2.97
turb3d 6806 17791 2.61 8659 20532 2.37
apsi 1063 2824 2.66 1989 4637 2.33
fpppp 378 481 1.27 458 619 1.35
wave5 1246 3867 3.10 4016 5539 1.38
average 2.82 2.46

(sec) (sec) (sec) (sec)

Table 5. Simulation Time of BurstScalar and
SimpleScalar (SPECint).

model-1 model-2
BS SS SS/BS BS SS SS/BS

go 1150 769 0.67 1583 974 0.62
m88ksim 27 54 1.97 34 65 1.92
gcc 2613 1878 0.72 2952 3297 1.12
compress 24 46 1.92 38 61 1.62
li 138 265 1.92 243 333 1.37
ijpeg 631 1460 2.31 841 1809 2.15
perl 1857 3420 1.84 2547 3769 1.48
vortex 1771 3449 1.95 3118 3608 1.16
average 1.66 1.43

(sec) (sec) (sec) (sec)

reversed especially for ‘su2cor’ which shows about 3-fold
speedup with model-1 but small slowdown with model-2.
The reason of the reversal is memory pressure of the state
transition table. Since model-2 has a state much larger than
model-1, we have to reclaim the memory space for states
more frequently. Furthermore, a larger state means that an
iteration has a larger number of different states and tran-
sition paths, and thus causes a significant number of state
transitions cannot be reused because they were reclaimed.
This observation strongly suggests that there will be a room
of the improvement of the reclamation algorithm.

Another source of the necessity of the improved reclama-
tion is found in the results of ‘go’ and ‘gcc’ in SPECint, al-
though the performance degradation of them is in the range
of our anticipation gotten from the iteration analysis. The
performance of the other benchmarks in SPECint, however,
is satisfactory especially that for model-1 with which Burst-

0 1000 2000 3000 4000 5000 6000(sec)

BS(model-2)

SS(model-2)

BS(model-1)

SS(model-1)

BS(model-2)

SS(model-2)

BS(model-1)

SS(model-1)

PE IE IS RE MS

swim

wave5

Figure 6. Simulation Time Breakdown.

Scalar achieves significant speedup of 1.8 to 2.3-fold.
Figure 6 shows the breakdown of the simulation time of

‘swim’ and ‘wave5’ run on BurstScalar (BS) and Simple-
Scalar(SS). The figure shows how much portion of simula-
tion time is spent in each simulator component, which is one
of Pre-Executor (PE), Instruction Emulator (IE), Instruction
Scheduler (IS), Reuse Engine (RE) and Memory Simulator
(ME). Note that IS of SimpleScalar includes instruction em-
ulation because its own execution time is hardly profiled.

The graph of ‘swim’ clearly shows our reuse technique is
quite effective and makes the execution time of Instruction
Scheduler negligibly small. The portion of Pre-Executor is
also small but larger than we expected. Our expectation was
the instruction level simulation is as 50 to 100 times as fast
as out-of-order scheduling simulation, but the result is only
about 20 times. Since we confirmed that our iteration trac-
ing consumes a really negligible execution time, this is due
to a large slowdown of sim-fast which is about 100. This
slowdown is much larger than those of other simulators, and
thus we expect a small coding effort will improve the perfor-
mance significantly. This inefficiency also makes the time
spent by Instruction Emulator longer than our expectation
but more essential reason should be hidden because it is al-
most three times as slow as Pre-Executor. Our preliminary
analysis prevails inefficiency of branch prediction and false
path execution which will be a good target for improvement.

As for ‘wave5’, it is also clear that the reuse is effective
when the machine is model-1. On the other hand, the exe-
cution time of IS for model-2 is much larger than model-1.
As stated before, the reason is that a significant number of
states and transition paths are discarded by memory recla-
mation resulting much less opportunity of reuse.

5.4. Effectiveness of Pre-Execution

One important feature of BurstScalar is the Pre-Executor
that finds iterations and their usefulness for reuse in ad-
vance. In order to evaluate its effectiveness, we measured
the performance removing the component. Since we can-
not recognize iterations, we apply reuse technique blindly
at all the branches and jumps as FastSim does. Also we can-
not assess the usefulness of saved states, we only perform
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Figure 7. Speedup of BurstScalar with and
without Pre-Execution.

reclamation of interaction records for cache misses and mis-
predictions.

Figure 7 shows the results in the form of speedup over
SimpleScalar. As the graph shows, go, gcc and vortex can-
not run (N/A) because they make a huge memory space for
states larger than 2GB exhausted. As for other benchmarks,
we see a significantly large performance degradation in the
range from 8% (fpppp) to 38% (tomcatv). These results
clearly show the importance of Pre-Executor not only for
efficiency but also for the applicability of reuse with a rea-
sonable size of memory space.

6. Conclusion

This paper describes our high speed simulator of out-
of-order microprocessors named BurstScalar. Its most im-
portant feature is computation reuse applied to the sim-
ulation of instruction scheduling. Since the reuse tech-
nique has to be applied to the computations repeatedly per-
formed enough times, we pick iterations that occur fre-
quently enough in advance. Restricting the application of
reuse to iterations also reduces the size of memory space for
the state transition table dynamically build in simulation.

The performance evaluation results with SPEC CPU95
benchmarks prove the efficiency of BurstScalar showing a
large degree of speedup over SimpleScalar, up to 5.1- and
2.3-fold for SPECfp and SPECint respectively, and 2.6- and
1.5-fold in average. The evaluation also shows the effec-
tiveness of Pre-Executor which picks hopeful iterations for
both the efficiency and applicability of the reuse technique.

Our emergent future work is to solve the performance
problems revealed from the evaluation such as to improve
the algorithm of memory reclamation. Other important is-
sues including API design for easy use of our reuse tech-
nique and the extension to multiprocessor simulation are
also left for future works.
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