
Boolean Formula-based Branch Prediction for Future Technologies

Daniel A. Jimknezt Heather L. Hansont Calvin Lint

t Dept. of Computer Sciences
The University of Texas ut Austin

Austin, TX 78712

Dept. of Electrical & Computer Engineering
The University of Texas ut Austin

Austin, Tx 78712
{djimenez,hhanson,lin}@cs.utexas.edu

Abstract

We present a new method for branch prediction that en-
codes in the branch instruction a forriiula, chosen by projil-
ing, that i s used to pe$orni histor?-basedprediction. By LIS-

ing a special class of Boolean forniulas, our encoding is ex-
tremely concise. By replacing the large tables found in cur-
retit predictors with a small, fast circuit, our scheme is ide-
ally suited to filture technologies that will have large wire
delays. In a projected 70 nni technology and an aggressive
clock rate of about 5 GHz, an iniplenieritation of oiir niethocl
thnt uses an 8-bit forniiila encoding has a niispredrctioti rate
of 6.0%, 42% lower than that of the best gshare predictor
iniplenientable in that suine tecfinologj. In today ’s technol-
ogj, U 16-bit version of our predictor can replace bius bits
in an 8K-eritr~* agree predictor to achieve a 2.86% niispre-
diction rate, which is slightly lower than the 2.93% niis-
predictioii rate of the Alpha 21264 hybrid predictor; even
though the Alpha predictor has alinost twice the hardware
budget. Our predictor also consumes much less power than
table-based predictors. This paper describes our predictor;
explains oiir projiling algorithm, arid presents experinierital
reJirlts using the SPEC 2000 iiiteger benchniarks.

1 Introduction

As pipelines become deeper and issue widths become
wider, the penalty for a mispredicted branch increases.
Thus, in the future, accurate branch prediction will be-
come more important to the performance of microproces-
sors. However, recent studies show that as clock rates in-
crease and feature sizes decrease, wire delay will have an
increasingly significant impact on the time to access large
structures such as branch prediction tables [I , 121. For in-
stance, at current 180 nm technology and a moderate clock
rate of I GHz, an 8K-entry gshare predictor with an aver-
age accuracy of about 95% can be built. In the future, with
35 nm technology and an aggressive projected clock rate
of 9.92 GHz, the largest gshare predictor accessible in one

ii

Figure 1. Tree representation of the formula ((zl v 2 2) v
(2 3 A 2 4)) A ((25 V 2 6) A (27 V 28)). Only seven bits,
representing the types of the gates, are needed to encode
this formula.

cycle will have only 512 entries and an accuracy of about
86%. Thus, predictors must become more accurate to sup-
port deeper pipelines, but they must also become smaller
because of wire delay and aggressive clocking.

We have seen this problem even in current micropro-
cessors. The AMD K6 line of microprocessors featured a
highly accurate 8K-entry GAS branch predictor; however,
the newer AMD Athlon microprocessor has a scaled-back
2K-entry branch predictor [9]. This change reduces the de-
lay and real-estate costs of the branch predictor, and might
be one reason why the Athlon has been able to achieve ag-
gressive clock rates. In exchange for the higher clock rates,
AMD has sacrificed branch prediction accuracy in a pro-
cessor whose longer pipeline increases the misprediction
penalty.

One solution to this problem is to allow the compiler to
assist with branch prediction. Existing architectures such
as IA-64 allow hint bits in a branch instruction to specify
whether to use the dynamic branch predictor or a static pre-
diction, thus filtering the accesses to the dynamic predictor
and reducing aliasing (i.e., contention for branch prediction

97
0-7695-1363-8/01 $10.00 0 2001 IEEE

mailto:djimenez,hhanson,lin}@cs.utexas.edu

resources). If the static predictions are chosen well, bet- 2.1 Dynamic Branch Prediction
ter branch prediction accuracy can be obtained, even with a
smaller dynamic branch predictor.

We extend this idea to consider history-based predictors
encoded in the branch instruction. In our scheme, a branch
instruction encodes a Boolean function, learned through
profiling, whose input is the branch history and whose out-
put is a prediction. The key to our solution is a concise
encoding of Boolean functions-based on monotone read-
once Boolean formulas-that is well-suited for branch pre-
diction. Whereas an arbitrary Boolean function in N vari-
ables requires 0 (2 N) bits to encode, monotone read-once
Boolean formulas only require N bits. Figure 1 shows such
a formula as a logic diagram.

We show that the use of this encoding yields almost
the same branch prediction accuracy as the use of arbi-
trary Boolean formulas, with exponentially fewer bits re-
quired for the representation. Decoding and evaluating the
Boolean formulas is done quickly using a small circuit. For
instance, with eight bits of history, the formula evaluation
circuit is equivalent to 34 NAND gates, at a depth of 9 gates.

At small technologies with aggressive clock speeds, our
predictor outperforms purely dynamic schemes. For in-
stance, in a projected 70 nm technology and an aggressive
clock rate of about 5 GHz, a modest implementation of our
method has a misprediction rate of 6.0%, which is 42%
lower than that of the best gshare predictor implementable
in that technology. Our predictor also uses much less power
than table-based methods. For example, in 70 nm tech-
nology, an %bit Boolean formula predictor consumes 0.06
mW, while a gshare predictor with comparable accuracy
consumes 12.9 mW. As another example, a 16-bit Boolean
formula predictor has a 33% lower misprediction rate lower
than a 4K-entry gshare, while consuming less than 1 % of’
the power of gshare.

The primary contribution of this paper is a new branch
prediction scheme that encodes into branch instructions a
predictor in the form of a Boolean formula. Our method is
particularly attractive in light of trends in technology scal-
ing and wire delays. Secondary contributions include the
following: (1) We describe the hardware implementation of
our predictor and analyze it in terms of delay and power;
(2) we describe a profiling algorithm for training our pre-
dictor; (3) we describe hybrid versions of our predictor that
combine our technique with dynamic predictors; and (4) we
evaluate the accuracy of our method using the SPEC 2000
integer benchmarks.

2 Background and Related Work

Recent research on dynamic branch prediction focuses
on refining the two-level scheme of Yeh and Patt [26], i n
which a pattern history table (PHT) of two-bit saturating
counters is indexed by a combination of branch address and
global or per-branch history. The most significant bit of the
counter is taken as the prediction. Once the branch outcome
is known, the counter is incremented if the branch is taken,
and decremented otherwise.

An important problem in two-level predictors is alias-
ing [21], and many of the recently proposed branch pre-
dictors seek to reduce aliasing [19, 16, 23, IO] but do not
change the basic prediction mechanism. Jirninez and Lin
recently introduced the perceptron predictor [131, which
uses a different prediction mechanism. Instead of indexing
a table of saturating counters, this predictor uses a predic-
tion mechanism that is based on perceptron learning. As
in the research presented here, this technique allows only
a limited number of branch prediction functions to be ex-
pressed but still provides good accuracy.

2.2 Static Branch Prediction

A purely static branch predictor always predicts the same
outcome for a particular static branch. The prediction can
be derived from the structure of the branch, e.g., the “back-
wards takedforwards not takcn” approach of the Alpha
AXP-21064, or it can be encoded into the branch instruc-
tion as a bias bit, as in the IA-64 and HP-PA/RISC instruc-
tion sets. The compiler, through profiling or static heuris-
tics [5, 71, can provide hints to the microarchitecture about
the likely direction of the branch. Static branch predictors
are usually less accurate than dynamic branch predictors be-
cause they cannot respond to dynamic changes in program
behavior.

Lindsay explores the use of decision trees to encode
statically-learned Boolean functions [171. The decision
trees are learned by profiling and are encoded in pro-
grammable logic arrays (PLAs). By contrast, our encoding
is represented only in the branch instruction, requiring lit-
tle hardware in the CPU itself. Although Lindsay’s thesis
addresses latency issues, PLAs representing the behavior of
large sets of branch instructions will have the same technol-
ogy scaling issues in future technologies as large banks of
SRAM. Similarly, Fern et al. [1 I] study the use of decision
trees, grown dynamically, for branch prediction. The trees
are kept in a large structure in the CPU and would have the
same problems with delay as other predictors. Thus, our
technique is distinctly well-suited to the issues of technol-
ogy scaling.

To provide context for our research, we now review some
of the recent work in branch prediction.

98

2.3 Compiler-Guided Branch Prediction Minimum
Feature

Several schemes enlist the compiler to assist in branch
prediction. Mahlke and Natarajan I 1 81 and August et al. [4]
propose placing in each branch instruction hint bits that tell
a dynamic predictor what kind of state to examine to make
a prediction. The variable length path branch predictor [24]
encodes profiling information in branch instructions. This
information guides a dynamic predictor, telling it what his-
tory length to use and what hash function of past branch
addresses to use to form an index into a table of counters.

Other techniques use the compiler to help with branch
prediction without changing the prediction mechanism.
For instance, branch alignment [8, 271 increases instruc-
tion fetch bandwidth by minimizing the number of taken
branches in a program. Static correlated branch predic-
tion [28] increases the accuracy of static prediction by in-
troducing duplicate basic blocks and encoding in the pro-
gram counter information about the path taken to reach a
particular static branch.

Predicted Largest gshare
Clock Table Accessible in

2.4 Delay and Branch Predictors

Size (nm)
180
130

As clock rates increase and feature sizes shrink, wire de-
lay increases significantly relative to gate delay [l]. As this
trend continues, the chip area reachable in a single cycle
will decrease. This means that large banks of SRAM, such
as caches and branch prediction tables, will have to either
decrease in size or increase in delay. Table 1 shows the max-
imum size of a gshare-like predictor as technology moves
forward (see Section 3.6 for methodological details).

JimCnez et al. [121 show that a branch predictor must re-
turn a prediction in a single cycle, because a highly accurate
two-cycle branch predictor yields much lower instruction
throughput than a relatively inaccurate single-cycle predic-
tor. The same study shows that with aggressive clocking,
the number of two-bit counters reachable in a single cycle
will drop to 1K in 180 nm technology, and down to 512
in the 35 nm technology that is projected to be available in
2012. The study also suggests several mechanisms to miti-
gate the delay by adding extra hardware. For instance, read
access to the branch predictor can be pipelined. Here, our
focus is different, as we propose to use much less hardware
in exchange for some extra profiling effort and changes to
the instruction set architecture (ISA).

Rate (GHz) One Cycle (# entries)
1.92 1024
2.67 1024

100
70

3.47 1024
4.96 1024

50 6.94
35 9.92

1024
512

Table 1. Effects of technology scaling on branch predictor
size. With an aggressive clock rate, the size of a single-
cycle gshare must decrease as technology moves forward.

vector containing the outcomes of the last N branches exe-
cuted. For now, we can think of this branch history as being
either global or per-branch. For a static branch B , there
exists a Boolean function f~ (h) that best predicts whether
B will be taken given the history h. The goal of dynamic
branch predictors is to learn this function as quickly as pos-
sible to provide accurate prediction [131.

One approach to branch prediction is to learn f B (h) for
each branch in a profiling run, then somehow encode each
f ~ (h) in the branch instruction and have the hardware use
the dynamic history to compute the function and provide
a branch prediction. Statically chosen bias bits, such as
those available on HP-PNRISC and IA-64, encode constant
Boolean functions, which require no history information.

If the behavior of branches is stable across different pro-
gram inputs, then we would expect branch prediction using
these functions to perform very well, even better than dy-
namic branch predictors, which have the disadvantages of
destructive aliasing and training time. In practice, input-
dependent behavior, such as loop trip counts that vary from
run to run, limits the accuracy of a Boolean formula predic-
tor. But as we will see. these functions still provide highly
accurate predictions.

One problem with this approach is that of representing a
Boolean function within a branch instruction. For instance,
with a moderate history length of 10, there are 2’1° differ-
ent Boolean functions. Branch instructions would need to
have over 1000 bits to allow all of these functions to be en-
coded. Therefore, we consider an extremely compact, but
sufficiently expressive, encoding of Boolean formulas.

3 Branch Prediction with Boolean Formulas 3.2 Read-Once Monotone Boolean Formulas

3.1 Boolean Formulas as Branch Predictors We now describe a subset of Boolean formulas that can
be compactly represented. The basic idea is to restrict the
Boolean formulas such that each variable appears in the for-
mula only once, and the only operations allowed are AND
and OR.

History-based branch prediction can be viewed as the
problem of learning the Boolean function of the branch his-
tory that gives the best prediction. Let h be a Boolean N -

99

Let x, y E (0, l}N, i.e., x and y are N-bit vectors of
Boolean values. We say that x 5 y if, for all z, xi 5 yi.
Consider a Boolean function f (0 , l}N I+ (0, l}, i.e., a
function f mapping a vector of N bits to a single bit. We say
that f is monotone if x 5 y implies f(x) 5 f(y) [15]. A
monotone Boolean formula is a Boolean formula that uses
only AND (A) and OR (V), without NOT, as connectives.
The functions induced by these formulas are monotone [151,
hence the name.

In a read-once formula each variable appears exactly
once in the formula. Read-once formulas are also known
as p-formulas or Boolean trees [3]. Read-once monotone
Boolean formulas have a concise description as a tree whose
internal nodes are ANDs and ORs and whose leaves are
the Boolean variables. As an example, Figure 1 from the
introduction shows the tree representation of the formula
((q V x2) V (z3 A 24)) A ((x5 V z6) A (2 , V Q)) as a logic
diagram.

3.3 Using Monotone Read-Once Formulas for
Branch Prediction

A read-once monotone Boolean formula of N variables
can be encoded as a bit vector of size N - 1, each bit rep-
resenting a connective in the Boolean tree, with 0 for AND
and 1 for OR. Thus, each branch instruction encodes a read-
once monotone Boolean formula using N - 1 bits. We also
store another bit that, if set to 1, causes the value of the
function to be inverted, so that we can also represent the
complements of monotone read-once formulas. No two dif-
ferent bit patterns represent the same Boolean function, so
this encoding is quite efficient. For a history length of N ,
the formula encoding in the branch instruction takes N bits.
Monotone Boolean formulas are incapable of representing
Boolean constants, so we allow the formula whose connec-
tives are all ANDs to compute 0 (i.e. false). By choosing
to invert the output, this formula can also produce 1 (i.e.
true). These two values are necessary, since they allow us
to represent “always predict taken” and “always predict not
taken,” which are the most common Boolean functions for
branch prediction.

For branch prediction, we keep a branch history shift reg-
ister into which the Boolean outcomes (i.e., 1 for taken and
0 for not taken) of branches are shifted. We keep a global
history, using the same shift register for all branches. When
a branch instruction is fetched, the Boolean formula is sent,
along with the contents of the history register, to a circuit
that decodes the formula and computes the prediction.

We use a profiling phase to decide which formulas to
encode in each branch instruction. The profiling algo-
rithm uses statistics about the behavior of each static branch
to choose the best monotone read-once formula for that
branch.

The following formula is an example of a monotone
read-once Boolean formula used for branch prediction with
a history length of 8:

This formula corresponds to a branch prediction policy
of “predict taken if either of the last two branches were
taken and the third and fourth most recent branches were
both taken, and any of the other branches in the history were
taken.”

3.4 Profiling Algorithm

We now describe our algorithm for determining which
formulas best predict each static branch. Using a trace of
each branch address and outcome, we simulate the dynamic
contents of the history register. For each static branch, we
keep a list of the different histories that lead up to that
branch, along with the number of times each history leads
to the branch being taken or not taken. After every dynamic
branch has been examined, we check the list for each static
branch B and exhaustively test every monotone Boolean
formula and its complement to see which one would have
yielded the fewest mispredictions given all the histories that
led up to B. This best formula is then encoded into the
branch instruction.

For branches that are executed fewer than 500 times in
the profiled program, we simply use the constant formula (0
or 1) that best predicts that branch, rather than considering
all 2N formulas. We are investigating ways to speed up the
algorithm with a more intelligent search. Section 4.5 gives
timing results for the profiling algorithm and argues that the
cost is reasonable for history lengths up to 16.

3.5 Hardware Implementation

A hardware implementation of a Boolean formula
branch predictor is simple. Each Boolean connective (i.e.,
AND or OR) in the formula is represented by a circuit with
three inputs: two data inputs, corresponding to the variables
or outputs of other gates, and one control input that specifies
whether the Boolean connective should compute AND or
OR. Coincidentally, this function is equivalent to the carry-
out computed by a full adder. Figure 2 shows a logic dia-
gram for this four-NAND circuit. With a history length of
N , our predictor is built from N - 1 connectives and a sin-
gle XOR gate at the output that acts as an inverter when its
input is 1. Figure 3 shows a circuit implementation of the
predictor for N = 8. For clarity, the extra logic to produce 0
when all the connectives are ANDs is not shown, since this
logic requires relatively few gates and is not on the critical
timing path.

100

We simulate a straightforward static CMOS implemen-
tation of the Boolean formula predictor with the HSPICE
circuit simulator. First, we create a sub-circuit composed of
four NAND gates as shown in Figure 2. Then, we instan-
tiate 2 log, N of these subcircuits and add an XOR, which
is a sub-circuit consisting of two inverters and two NAND
gates. The connections between the subcircuits are shown
in Figure 3. Finally, we add capacitance between the gates
to model local interconnect.

Note that although the concept of a read-once monotone
Boolean formula is somewhat similar to the actual imple-
mentation as a circuit, to avoid confusion, the two should
be thought of separately as function vs. implementation. In
particular, the circuit is optimized for static CMOS technol-
ogy with NAND gates and is not a read-once circuit.

output
I

;c:

control data data
input input input

Figure 2. Boolean connective subcircuit. I f the control
input is 0, then the output is the AND of the two data inputs.
Otherwise, the output is the OR of the two data inputs.

prediction

i

i

Figure 3. Boolean formula branch predictor circuit. This
circuit makes a branch prediction based on a history length
of 8 and an %bit encoding of a read-once Boolean formula.

3.6 Delay

The depth of the formula evaluation circuit with N in-
puts is 2 log, N plus the final XOR gate. For instance, for
N = 16, the critical delay path passes through eight NAND
gates and one XOR gate. In contrast, the gshare predictor
looks up values from a table by reading from an SRAM ar-
ray.

To estimate predictor access times for a range of current
and future integrated circuit generations, we use circuit sim-
ulations and a modified version of the CACTI 2.0 tool for
simulating cache delay. This modified version of CACTI is
more accurate in several ways [2]. First, while the origi-
nal version of CACTI 2.0 [20] uses a simplistic linear scal-
ing for delay estimates, the modified simulator uses separate
wire models to account for the physical layout of wire in-
terconnects: thin local interconnect, taller and wider wires
for longer distances, and the widest and tallest metal traces
for global interconnect. Second, wire resistance is based
on copper rather than aluminum material properties. Third,
all capacitance values are derived from three-dimensional
electric field equations. Fourth, bit-lines are placed in the
middle layer metal, where resistance is lower. Finally, bit-
addressing is allowed instead of byte-addressing.

Our results for projected technologies, including those
given in Table 1, use an aggressive clock rate equivalent to
eight times the gate delay of propagating a value from a
single inverter to four copies of itself. This “eight fan-outs-
of-four” measure was used as the aggressive clock speed
for the study by Agarwal et al. [I] , giving a technology-
independent projection of future clock rates. Note that these
capacities only consider the time to read the branch predic-
tion table. The gate delay involved in acting upon a branch
prediction is not included and further exacerbates the prob-
lem.

We estimate the access time of the Boolean formula pre-
dictor by simulating the combinational circuit and measur-
ing the delay from the branch instruction and history regis-
ter inputs to the output of the XOR gate. The delay mea-
surements are the time from the midpoint of the input sig-
nal switching to the midpoint of the output signal switch-
ing. We calculated the lookup time for a gshare predictor
using our modified CACTI tool. Table 2 shows the access
times for a 4K-entry gshare predictor and two sizes of the
Boolean formula predictor, N = 8 and N = 16, for a range
of fabrication technologies. We chose the 4K-entry predic-
tor because, as we will see in Section 4, the N = 8 version
of the Boolean formula predictor only slightly exceeds the
accuracy of a 4K-entry gshare. Thus, our delay compar-
isons show that we can achieve higher accuracy with lower
latency.

As fabrication technology improves, transistors can be
made smaller and faster, resulting in higher clock frequen-

101

Minimum
Feature

Size(nm) I gshare I N = 8 I N = 16
180 1 551 I 211 I 260

Power (milliwatts)
4K-entry 1 Formula, 1 Formula,

Minimum
Feature

Access Time (picoseconds)
4K-entry I Formula, I Formula,

cies and faster combinational circuits. As Table 2 shows,
access times for each structure improve as the minimum
feature size decreases.

The Boolean formula predictor is consistently faster than
the 4K-entry gshare predictor, allowing more time for com-
munication and computation within a clock cycle. At the
projected clock rate of 6.94 Ghz for 50 nm technology
from Table 1 , the clock period would be 144 picosec-
onds. A traditional table-lookup predictor such as gshare
would require more than a single cycle-I 67 picoseconds
in this case-for the prediction. In the same technology, the
Boolean formula predictor would provide a prediction in 59
picoseconds, leaving over half of the cycle to prepare for
and act upon the prediction.

One concern with our predictor is that the contents of
the branch opcode are on the critical path to making a pre-
diction; the Boolean formula must be read before it can be
evaluated. However, this delay is common to any branch
predictor that uses bias bits or any other type of information
from the branch instruction, such as the agree predictor used
on the HP-PARISC or the statiddynamic and bias bits pro-
vided by IA-64. One solution is to provide pre-decode bits
in the instruction cache that provide the opcode information
quickly.

130
1 00

3.7 Power

,
402 168 I 208
32 1 112 I 138

Power consumption has recently become a primary con-
cern in microprocessor design. In this section, we contrast
the power consumption of traditional branch predictors with
that of the Boolean formula predictor.

The Boolean formula predictor is a combinational circuit
that uses less dynamic power than an SRAM-based predic-
tor. This small predictor has smaller gate and interconnect
capacitance than an SRAM structure, which has decoding
logic, a memory array, sensing logic, and output logic.

Table 3 shows the Boolean formula predictor’s dynamic

130
100
70
50

31.0 0.28 0.58
27.4 0.11 0.24
12.9 0.06 0.12
8.40 0.06 0.13

Size (nm) I gshare I N = 8 I N = 16
180 I 51.4 I 0.61 I 1.28

70
50

228 85 I 103
167 50 I 59

power consumption for N = 8 and N = 16, as mea-
sured with the HSPICE simulator. This table also shows
the power of a 4K-entry gshare predictor, measure using
the modified CACTI 2.0. The N = 8 results show that
the Boolean formula predictor consumes between 0.4% to
2.9% of the power of a gshare predictor with comparable
accuracy.

With lower transistor threshold voltages in emerging
technologies, static p o w e r d u e to leakage current through
transistors-is becoming a sizable percentage of the total
power consumed [25]. With fewer transistors in the circuit
to leak current, the Boolean predictor circuit will also have
less static power than an SRAM structure. Furthermore, the
Boolean circuit implementation is amenable to a low static
power design technique that takes advantage of the stacked
transistors within gates to bias transistors into a low-leakage
mode [25].

3.8 Impact of Encoding

Since each branch instruction encodes a Boolean for-
mula, we must find an efficient way to encode the formula in
the instruction without having a negative impact on perfor-
mance. Some instructions sets already provide extra bits for
communicating hints to the microarchitecture. For instance,
the Alpha AXP ISA provides 14 bits in each indirect branch
instruction for profiling information [22]. In their work on
variable length path branch prediction, Stark et al. [24] use
extra bits such as these to communicate to the microarchi-
tecture information on hash functions for a branch predictor.

We propose changing the ISA so that branch instructions
encode the formulas. For example, each branch instruction
on the Alpha is 32 bits long: six bits indicate the op code
of the instruction, five more bits indicate the register to test,
and 2 1 bits are for the branch offset. For a Boolean-formula
based branch predictor requiring N bits in a branch instruc-
tion, we propose to reallocate N of the offset bits to the for-
mula. Some long branches will need to be split into a branch
followed by a jump to the target, increasing the number of

102

instructions executed.
We measure the harmonic mean over the SPEC 2000

integer benchmarks of the percentage of extra instructions
executed on the Alpha when offset bits are reallocated to
Boolean formula predictors. With formulas of up to 9 bits,
the number of extra instructions is negligible. With 12-bit
formulas, only 0.2% more instructions are executed. With
14-bit formulas, 1.0% more instructions are executed. As
history length increases beyond 16 bits, this encoding tech-
nique becomes less feasible. For longer histories, we have
developed a more sophisticated technique that exploits the
fact that most of the functions are constant.

4 Experimental Results

In this section, we give the results of simulating our
branch predictor on the SPEC 2000 integer benchmarks,
and we compare our results against both static (i.e. bias
bits) and dynamic branch prediction. We also give results
for a predictor that combines Boolean formulas with dy-
namic prediction, and we compare this to similar work that
combines static and dynamic prediction.

4.1 Methodology

We use the 12 SPEC 2000 integer benchmarks running
under SimpleScalar/Alpha [6] to collect traces. For each
benchmark, we gather traces giving the branch address and
outcome for up to 300 million branches. We use the t r a i n
inputs for the profiling runs, and we use the ref inputs to
evaluate the accuracy of the various predictors. To better
capture the steady-state performance of the branch predic-
tors, our evaluation runs skip the first 50 million branches,
as several of the benchmarks have an initialization pe-
riod (lasting fewer than 50 million branches), during which
branch prediction accuracy is unusually high. Each bench-
mark executes at least 300 million branches and over one
billion instructions on the test inputs before the simula-
tion ends.

4.2 Predictors Simulated

We simulate monotone read-once Boolean formula pre-
dictors for 2 5 N 5 18. We use only global history in-
formation, i.e., we do not use path or per-branch informa-
tion. We also simulate the gshare [191, bi-mode [161 and
agree [23] branch predictors, three well-known global dy-
namic branch predictors from the literature. The gshare and
bi-mode predictors use only dynamic history information.
The agree predictor combines static and dynamic informa-
tion by predicting whether a branch will agree with a bias
bit.

History length has been observed to have a significant
impact on predictor accuracy [191, so for each predictor and
each hardware budget, we try all possible history lengths on
the train inputs and keep the one with the lowest average
misprediction accuracy.

To give a lower-bound on misprediction rates for any
Boolean-formula based predictor, we also measure the re-
sults of using arbitrary Boolean formulas. To find the best
arbitrary Boolean formula for a particular static branch, we
measure the number of taken versus not-taken branches for
each history leading up to that branch in the training set,
then assign to each history the prediction yielding the most
correctly predicted dynamic branches. Out of all the possi-
ble histories leading to a branch, only a small fraction will
actually be observed; all other histories are assigned the bias
bit for that branch. The arbitrary predictor is represented by
the profiling algorithm as a set of rows in a truth table where
the inputs are the histories and the output is the prediction.

Note that although it is not the focus of our research,
this arbitrary formula predictor is actually implementable
for history lengths of up to four, since the truth table for a
Boolean function in four variables can be encoded in only
16 bits.

Figure 4. Accuracy of dynamic branch predictors vs.
static prediction and the Boolean formula predictor. The
numbers above the z-axis show the technologies in which
the corresponding hardware budgets are reachable in one
cycle with aggressive clocking. Misprediction rates are the
harmonic means over the SPEC 2000 integer benchmarks.

4.3 Misprediction Rates

Figure 4 shows misprediction rates for the monotone
read-once Boolean formula predictor at history lengths of
4, 8 and 16, compared with gshare, agree and bi-mode pre-
dictors at hardware budgets from 5 12 to 256K entries. La-
bels above the 5 12 and 1 K-entry hardware budgets show the
process technologies for which the corresponding budget is

103

reachable in one cycle at the aggressive clock rates listed in
Table 1.

At today's 180 nm and 130 nm technologies, for which
branch predictors with only about IK to 2K table entries
state are available at more aggressive clock speeds, a 4-
bit Boolean formula predictor with a misprediction rate of
6.6% roughly matches the accuracy of the bi-mode predic-
tor. With a history length of 16, the Boolean formula pre-
dictor has a misprediction rate of 5.02%, an improvement
of 24% over the 1 SK-entry bi-mode predictor.

To put these figures another way, a 4-bit Boolean for-
mula predictor achieves roughly the same predictive power
as a 4K-entry gshare predictor. A 16-bit Boolean formula
predictor is about as accurate as an 8K-entry gshare pre-
dictor, a 3K-entry bi-mode predictor, or a 2K-entry agree
predictor.

Figure 5 shows, for history lengths ranging from 2 to
18, misprediction rates for the monotone read-once Boolean
formula predictor, as well as for the predictor that uses arbi-
trary formulas. For reference, it also shows the mispredic-
tion rates for pure static prediction with bias bits, as well as
for dynamic prediction with a 1 K entry gshare, a 1 K entry
agree predictor, and a 1 S K entry bi-mode predictor; these
table sizes represent the predictors accessible in a single cy-
cle in 50 through 130 nm technology with aggressive clock
rates. As history length increases, the misprediction rate of
the Boolean formula predictor decreases and remains close
to the performance of the arbitrary formula predictor.

For the same five predictors, Figure 6 shows mispredic-
tion rates on each benchmark. The Boolean formula pre-
dictor usually has a misprediction rate lower than that of
the dynamic predictors. However, in a few cases, such as
2 56 . bzip2 , the formula predictor's misprediction rate is
high, most likely due to input-dependent program behavior
that cannot be learned by profiling.

T!

-.*-- IO?J-cntry Gshare
-t. 1536-entry B i m d
-+. 1024-entry Agree
-?,vatic Prediction (bias bits)

0 1 , , . . . , . . I

0 5 IO I5
History Length

Figure 5. Misprediction rate for the Boolean formula pre-
dictor as a function of history length.

1024-cnuy Gsharc
153Cenuy Bi-mode

o Formula 8
 formula 16 n I

Benchmark

Figure 6. Accuracy of the predictors on each benchmark.
This graph compares the Boolean formula predictor at his-
tory lengths of 8 and 16 against aggressively clocked imple-
mentations of gshare and bi-mode.

Figure 7 shows the misprediction rates of predictors us-
ing the agree mechanism combined with our formula pre-
dictor. An agree predictor predicts whether a branch out-
come will agree with a bias bit, turning destructive alias-
ing into constructive aliasing. Our combined agree/formula
predictors use a PHT to predict whether the branch outcome
will agree with the output of a Boolean formula, rather than
a bias bit. With a IK-entry PHT, the agree predictor with
bias bits yields a misprediction rate of 5.3%. The 8-bit ver-
sion of our agree/formula predictor decreases this rate to
4.4%, an improvement of 17%. The 16-bit version of our
predictor has a misprediction rate of 3.9%, an improvement

For reference, we compare our predictor with the Al-
pha 21264 hybrid branch predictor, which is the most accu-
rate existing predictor for which implementation details are
readily available [141. This predictor uses a 4K-entry global
history predictor and a 1 K-entry per-branch history predic-
tor combined with a 4K-entry chooser, consuming roughly
4KB of state. The Alpha 21264 predictor achieves a mis-
prediction rate of 2.93% on the traces we gathered. At
the same hardware budget, the agree predictor, when en-
hanced with the 16-bit version of our Boolean formula pre-
dictor, achieves a misprediction rate of 2.55%. Even at half
the hardware budget of the Alpha 21264 predictor, an 8K-
entry version of our agreelformula hybrid achieves a mis-
prediction rate of 2.86%, narrowly better than the Alpha
hybrid. Using our aggressive clock modeling, the largest
hybrid agree/formula predictor available in a single cycle
will achieve a misprediction rate of 3.97%, which is 35%
higher than that of the Alpha predictor. However, an impor-
tant point of our research is that complex predictors such
as the Alpha's are infeasible at higher clock rates. Even
today's Alpha must employ an overriding mechanism [141,
in which branch predictions that don't agree with the less
sophisticated cache line predictor introduce a single-cycle

O f 25%.

104

0

Figure 7. Accuracies of Boolean formula predictors us-
ing the agree mechanism. Misprediction rates are harmonic
means over SPEC 2000.

-1,

4.4 Distribution of Formulas

An analysis of the distribution of Boolean formulas
chosen by the profiling algorithm shows that most of the
Boolean formulas chosen are the two constant functions, 0
and 1. This dependence on constant formulas decreases
as history length increases. For instance, with a history
length of 4, 78% of static branches in the SPEC 2000 inte-
ger benchmarks are best predicted with a constant formula,
as opposed to only 49% for a history length of 16. As his-
tory length increases, the predictive power of the Boolean
formula predictor increases, and the constant functions rep-
resenting “predict taken always” and “predict not taken al-
ways” give way to more intelligent choices.

Table 4 shows the dynamic frequencies for each formula
with a history length of four, along with the misprediction
rate for each formula using a 4-bit Boolean forrnula predic-
tor and for bias bits. For brevity, we omit similar tables for
the other history lengths.

4.5 Profiling Cost

The cost of determining the best Boolean formula for
each branch is an important component of the cost of our
branch predictor. Here, we quantify this cost.

Our current implementation takes time exponential in the
history length. However, for the small history lengths that
we consider in this study, the time is not unreasonable. For
instance, with a history length of 16, the profiling algorithm
takes about 12 minutes on a 733MHz Pentium 111. For a
history length of IO, the program takes about 2 minutes.
For history lengths less than about 12, the time for the pro-
gram is dominated by activities unrelated to finding the best

Formula
Freq. Formula Bias
40.84
37.14 10.0 10.0

(20 V 2 1) A (2 2 V 5 3) 3.15 21.8 36.3

Table 4. Distribution of Boolean formulas with a history
length of four. The variables are elements of the history
register, with 20 being the outcome of the most recently
executed branch, 2 1 being the next recent, etc.

Boolean function. For instance, much time is spent sim-
ply reading the large trace file from the disk and performing
other tasks that any typical feedback-directed optimization
would require. Our algorithm is also easy to parallelize.
The time-consuming part of the algorithm-during which
the best Boolean formula is decided for each static branch-
is embarrassingly parallel, as the various static branches can
be partitioned among many processors. Thus, we feel that
our profiling algorithm would be appropriate in a frame-
work in which other optimizations are also being explored
by simulation.

5 Conclusions

We have introduced and evaluated a new branch pre-
diction scheme that borrows from complexity theory the
concept of a read-once monotone Boolean formula. These
Boolean formulas provide a compact encoding of a class
of functions that is expressive enough to perform branch
prediction yet concise enough to be encoded in branch in-
structions. By offloading most of the prediction work to
the compiler, our Boolean formula predictor is small, fast
and consumes little power. While our scheme provides a
competitive alternative to existing dynamic branch predic-
tors, the real benefit of our scheme lies in the future, as our
scheme is significantly less sensitive to the impending tech-
nology scaling issues caused by increased wire delays. Our
predictor can also form a valuable component of an agree

105

or hybrid predictor, decreasing misprediction rates by pro-
viding better estimates of branch outcomes than bias bits.

We are currently studying ways to improve the training
algorithm so that it takes less t ime at longer history lengths.
For instance, w e are explor ing genetic algorithms as a way
t o get a near-optimal choice of formula at a fraction of the
time of our brute-force algorithm.

6 Acknowledgments

We thank Vikas Agarwal for explaining the details of
his changes t o C A C T I 2.0. We also thank Steve Keckler,
Samuel Guyer , and the anonymous referees for their help-
ful discussions and comments on this paper. Calvin Lin is
supported by NSF C A R E E R Grant ACI-9984660 and ONR
grant N00014-99- 1-0402. Heather Hanson is supported by
an Intel fellowship.

References

V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and D. Burger.
Clock rate versus ipc: The end of the road for conventional
microarchitectures. In the 27th Inr ’ I Symp. on Computer Ar-
chitecture, pp. 248-259, May 2000.

V. Agarwal, S. W. Keckler, and D. Burger. Scaling of
microarchitectural structures in future process technologies.
Technical Report TR2000-02, Dept. of Computer Sciences,
The Univ. of Texas at Austin, Feb. 2000.

D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-
once formulas with queries. J. ofthe ACM, 40(I): 185-210,
Jan. 1993.

D. 1. August, D. A. Connors, J. C. Gyllenhaal, and W.
W. Hwu. Architectural support for compiler-synthesized dy-
namic branch prediction strategies: Rationale and initial re-
sults. In the Third Inr’l Symp. on High-Performance Com-
puter Architecture, Feb. 1997.

T. Ball and J. Lams. Branch prediction for free. In Conf
on Prograrnnzing Language Design and Implementation, pp.
30&313, June 1993.

D. Burger and T. M. Austin. The SimpleScalar tool set ver-
sion 2.0. Technical Report 1342, Computer Sciences Dept.,
Univ. of Wisconsin, June 1997.

B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Evidence-based static branch predic-
tion using machine learning. ACM Trans. on Prograrntning
Languages and Systems, 19(I) , 1997.

B. Calder and D. Grunwald. Reducing branch costs via
branch alignment. In the Sixth Int’l Conf: on Architectural
Support for Programming Languages and Operating Sys-
tems, Oct. 1994.

K. Diefendorff. K7 challenges Intel. Microprocessor Report,
12(14), Oct. 1998.

[IO] A.N. Eden and T.N. Mudge. The YAGS branch prediction
scheme. In the 31st Int’I Symp. on Microarchitecture, Nov.
1998.

[1 I] A. Fern, R. Givan, B. Falsafi, and T.N. Vijaykumar. Dy-
namic feature selection for hardware prediction. Technical
Report TR-ECE 00-12, School of Electrical and Computer
Engineering, Purdue Univ., 2000.

[I21 D. A. Jimtnez, S. W. Keckler, and C. Lin. The impact of
delay on the design of branch predictors. In 33rd Int’l S y n p .
on Microarchitecture. pp. 61-16, Dec. 2000.

[I31 D. A. JimCnez and C. Lin. Dynamic branch prediction with
perceptrons. In the F h Int’I Symp. on High Perjormance
Computer Architecture, ppl. 197-206, Jan. 200 1.

[141 R.E. Kessler. The Alpha 2 1264 microprocessor. IEEEMicro,
19(2):24-36, MarcNApril 1999.

[151 E. Kushilevitz and N. Nisan. Commirnication Cotnplexif~.
Cambridge Univ. Press, 1997.

[161 C.-C. Lee, C.C. Chen, and T.N. Mudge. The bi-mode branch
predictor. In the 30th / t i t ’ / Sytnp. on Microarchitecriire. NOV.
1997.

[171 D. Lindsay. Static Merhorls in Branch Prediction. PhD the-
sis, Univ. of Colorado, Dept. of Computer Science, 1998.

[I81 S. Mahlke and B. Natarajan. Compiler synthesized dynamic
branch prediction. In the 29th Int ’ I Sytnp. on Microarchitec-
ture, Dec. 1996.

[I91 S. McFarling. Combining branch predictors. Technical Re-
port TN-36m, Digital Western Research Lab, June 1993.

[20] G. Reinman and N. Jouppi. Extensions to CACTI, 1999.
Unpublished document.

[21] S. Sechrest, C.-C. Lee, and T.N. Mudge. Correlation and
aliasing in dynamic branch predictors. In the 23rd ltzr’/.Cf~t~~p.
on Computer Architecture, May 1999.

[22] R. L. Sites. Alpha Architecture Reference Manual. Digital
Press, Burlington, MA, 1992.

[23] E. Sprangle, R.S. Chappell, M. Alsup, and Y. N. Patt. The
Agree predictor: A mechanism for reducing negative branch
history interference. In the 24rh Int’l Sytnp. on Computer
Architecture, June 1997.

[24] J. Stark, M. Evers, and Y. N. Patt. Variable length path
branch prediction. In the 8th Int’l Conf on Arcltitectirral Sup-
port for P rograrnrning Langirages and Operating Systems,
October 1998.

[25] Y. Ye, S. Borkar, and V. De. A new technique for standby
leakage reduction in high performance circuits. In Symp. on
VLSl Circuits, June 1998.

[26] T.-Y. Yeh and Y. Patt. Two-level adaptive branch prediction.
In the 24th Int’I Sytnp. on Microarchitecture, Nov. 1991.

[27] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith.
Near-optimal intraprocedural branch alignment. In the Cot$
on Program Language Design and Ititplententation, June
1997.

[28] C. Young and M. D. Smith. Static correlated branch predic-
tion. ACM Trans. on Prograntming Languages and Systems,
May 1999.

106

