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Abstract 

We present a new method for  branch prediction that en- 
codes in the branch instruction a forriiula, chosen by projil- 
ing, that i s  used to pe$orni histor?-basedprediction. By LIS-  

ing a special class of Boolean forniulas, our encoding is ex- 
tremely concise. By replacing the large tables found in cur- 
retit predictors with a small, fast circuit, our scheme is ide- 
ally suited to filture technologies that will have large wire 
delays. In a projected 70 nni technology and an aggressive 
clock rate of about 5 GHz, an iniplenieritation of oiir niethocl 
thnt uses an 8-bit forniiila encoding has a niispredrctioti rate 
of 6.0%, 42% lower than that of the best gshare predictor 
iniplenientable in that suine tecfinologj. In today ’s technol- 
ogj, U 16-bit version of our predictor can replace bius bits 
in an 8K-eritr~* agree predictor to achieve a 2.86% niispre- 
diction rate, which is slightly lower than the 2.93% niis- 
predictioii rate of the Alpha 21264 hybrid predictor; even 
though the Alpha predictor has alinost twice the hardware 
budget. Our predictor also consumes much less power than 
table-based predictors. This paper describes our predictor; 
explains oiir projiling algorithm, arid presents experinierital 
reJirlts using the SPEC 2000 iiiteger benchniarks. 

1 Introduction 

As pipelines become deeper and issue widths become 
wider, the penalty for a mispredicted branch increases. 
Thus, in the future, accurate branch prediction will be- 
come more important to the performance of microproces- 
sors. However, recent studies show that as clock rates in- 
crease and feature sizes decrease, wire delay will have an 
increasingly significant impact on the time to access large 
structures such as branch prediction tables [ I ,  121. For in- 
stance, at current 180 nm technology and a moderate clock 
rate of I GHz, an 8K-entry gshare predictor with an aver- 
age accuracy of about 95% can be built. In the future, with 
35 nm technology and an aggressive projected clock rate 
of 9.92 GHz, the largest gshare predictor accessible in one 

ii 

Figure 1. Tree representation of the formula ((zl v 2 2 )  v 
( 2 3  A 2 4 ) )  A ((25 V 2 6 )  A (27 V 28)). Only seven bits, 
representing the types of the gates, are needed to encode 
this formula. 

cycle will have only 512 entries and an accuracy of about 
86%. Thus, predictors must become more accurate to sup- 
port deeper pipelines, but they must also become smaller 
because of wire delay and aggressive clocking. 

We have seen this problem even in current micropro- 
cessors. The AMD K6 line of microprocessors featured a 
highly accurate 8K-entry GAS branch predictor; however, 
the newer AMD Athlon microprocessor has a scaled-back 
2K-entry branch predictor [9]. This change reduces the de- 
lay and real-estate costs of the branch predictor, and might 
be one reason why the Athlon has been able to achieve ag- 
gressive clock rates. In exchange for the higher clock rates, 
AMD has sacrificed branch prediction accuracy in a pro- 
cessor whose longer pipeline increases the misprediction 
penalty. 

One solution to this problem is to allow the compiler to 
assist with branch prediction. Existing architectures such 
as IA-64 allow hint bits in  a branch instruction to specify 
whether to use the dynamic branch predictor or a static pre- 
diction, thus filtering the accesses to the dynamic predictor 
and reducing aliasing (i.e., contention for branch prediction 
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resources). If the static predictions are chosen well, bet- 2.1 Dynamic Branch Prediction 
ter branch prediction accuracy can be obtained, even with a 
smaller dynamic branch predictor. 

We extend this idea to consider history-based predictors 
encoded in the branch instruction. In our scheme, a branch 
instruction encodes a Boolean function, learned through 
profiling, whose input is the branch history and whose out- 
put is a prediction. The key to our solution is a concise 
encoding of Boolean functions-based on monotone read- 
once Boolean formulas-that is well-suited for branch pre- 
diction. Whereas an arbitrary Boolean function in N vari- 
ables requires 0 ( 2 N )  bits to encode, monotone read-once 
Boolean formulas only require N bits. Figure 1 shows such 
a formula as a logic diagram. 

We show that the use of this encoding yields almost 
the same branch prediction accuracy as the use of arbi- 
trary Boolean formulas, with exponentially fewer bits re- 
quired for the representation. Decoding and evaluating the 
Boolean formulas is done quickly using a small circuit. For 
instance, with eight bits of history, the formula evaluation 
circuit is equivalent to 34 NAND gates, at a depth of 9 gates. 

At small technologies with aggressive clock speeds, our 
predictor outperforms purely dynamic schemes. For in- 
stance, in a projected 70 nm technology and an aggressive 
clock rate of about 5 GHz, a modest implementation of our 
method has a misprediction rate of 6.0%, which is 42% 
lower than that of the best gshare predictor implementable 
in that technology. Our predictor also uses much less power 
than table-based methods. For example, in 70 nm tech- 
nology, an %bit Boolean formula predictor consumes 0.06 
mW, while a gshare predictor with comparable accuracy 
consumes 12.9 mW. As another example, a 16-bit Boolean 
formula predictor has a 33% lower misprediction rate lower 
than a 4K-entry gshare, while consuming less than 1 % of’ 
the power of gshare. 

The primary contribution of this paper is a new branch 
prediction scheme that encodes into branch instructions a 
predictor in the form of a Boolean formula. Our method is 
particularly attractive in light of trends in technology scal- 
ing and wire delays. Secondary contributions include the 
following: (1) We describe the hardware implementation of 
our predictor and analyze it in terms of delay and power; 
( 2 )  we describe a profiling algorithm for training our pre- 
dictor; (3) we describe hybrid versions of our predictor that 
combine our technique with dynamic predictors; and (4) we 
evaluate the accuracy of our method using the SPEC 2000 
integer benchmarks. 

2 Background and Related Work 

Recent research on dynamic branch prediction focuses 
on refining the two-level scheme of Yeh and Patt [26], i n  
which a pattern history table (PHT) of two-bit saturating 
counters is indexed by a combination of branch address and 
global or per-branch history. The most significant bit of the 
counter is taken as the prediction. Once the branch outcome 
is known, the counter is incremented if the branch is taken, 
and decremented otherwise. 

An important problem in two-level predictors is alias- 
ing [21], and many of the recently proposed branch pre- 
dictors seek to reduce aliasing [19, 16, 23, IO] but do not 
change the basic prediction mechanism. Jirninez and Lin 
recently introduced the perceptron predictor [ 131, which 
uses a different prediction mechanism. Instead of indexing 
a table of saturating counters, this predictor uses a predic- 
tion mechanism that is based on perceptron learning. As 
in the research presented here, this technique allows only 
a limited number of branch prediction functions to be ex- 
pressed but still provides good accuracy. 

2.2 Static Branch Prediction 

A purely static branch predictor always predicts the same 
outcome for a particular static branch. The prediction can 
be derived from the structure of the branch, e.g., the “back- 
wards takedforwards not takcn” approach of the Alpha 
AXP-21064, or it  can be encoded into the branch instruc- 
tion as a bias bit, as in the IA-64 and HP-PA/RISC instruc- 
tion sets. The compiler, through profiling or static heuris- 
tics [5, 71, can provide hints to the microarchitecture about 
the likely direction of the branch. Static branch predictors 
are usually less accurate than dynamic branch predictors be- 
cause they cannot respond to dynamic changes in program 
behavior. 

Lindsay explores the use of decision trees to encode 
statically-learned Boolean functions [ 171. The decision 
trees are learned by profiling and are encoded in pro- 
grammable logic arrays (PLAs). By contrast, our encoding 
is represented only in the branch instruction, requiring lit- 
tle hardware in the CPU itself. Although Lindsay’s thesis 
addresses latency issues, PLAs representing the behavior of 
large sets of branch instructions will have the same technol- 
ogy scaling issues in future technologies as large banks of 
SRAM. Similarly, Fern et al. [ 1 I ]  study the use of decision 
trees, grown dynamically, for branch prediction. The trees 
are kept in a large structure in the CPU and would have the 
same problems with delay as other predictors. Thus, our 
technique is distinctly well-suited to the issues of technol- 
ogy scaling. 

To provide context for our research, we now review some 
of the recent work in branch prediction. 
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2.3 Compiler-Guided Branch Prediction Minimum 
Feature 

Several schemes enlist the compiler to assist in branch 
prediction. Mahlke and Natarajan I 1  81 and August et al. [4] 
propose placing in each branch instruction hint bits that tell 
a dynamic predictor what kind of state to examine to make 
a prediction. The variable length path branch predictor [24] 
encodes profiling information in branch instructions. This 
information guides a dynamic predictor, telling it what his- 
tory length to use and what hash function of past branch 
addresses to use to form an index into a table of counters. 

Other techniques use the compiler to help with branch 
prediction without changing the prediction mechanism. 
For instance, branch alignment [8, 271 increases instruc- 
tion fetch bandwidth by minimizing the number of taken 
branches in a program. Static correlated branch predic- 
tion [28] increases the accuracy of static prediction by in- 
troducing duplicate basic blocks and encoding in the pro- 
gram counter information about the path taken to reach a 
particular static branch. 

Predicted Largest gshare 
Clock Table Accessible in 

2.4 Delay and Branch Predictors 

Size (nm) 
180 
130 

As clock rates increase and feature sizes shrink, wire de- 
lay increases significantly relative to gate delay [ l].  As this 
trend continues, the chip area reachable in a single cycle 
will decrease. This means that large banks of SRAM, such 
as caches and branch prediction tables, will have to either 
decrease in size or increase in delay. Table 1 shows the max- 
imum size of a gshare-like predictor as technology moves 
forward (see Section 3.6 for methodological details). 

JimCnez et al. [ 121 show that a branch predictor must re- 
turn a prediction in a single cycle, because a highly accurate 
two-cycle branch predictor yields much lower instruction 
throughput than a relatively inaccurate single-cycle predic- 
tor. The same study shows that with aggressive clocking, 
the number of two-bit counters reachable in a single cycle 
will drop to 1K in 180 nm technology, and down to 512 
in the 35 nm technology that is projected to be available in 
2012. The study also suggests several mechanisms to miti- 
gate the delay by adding extra hardware. For instance, read 
access to the branch predictor can be pipelined. Here, our 
focus is different, as we propose to use much less hardware 
in exchange for some extra profiling effort and changes to 
the instruction set architecture (ISA). 

Rate (GHz) One Cycle (# entries) 
1.92 1024 
2.67 1024 

100 
70 

3.47 1024 
4.96 1024 

50 6.94 
35 9.92 

1024 
512 

Table 1. Effects of technology scaling on branch predictor 
size. With an aggressive clock rate, the size of a single- 
cycle gshare must decrease as technology moves forward. 

vector containing the outcomes of the last N branches exe- 
cuted. For now, we can think of this branch history as being 
either global or per-branch. For a static branch B ,  there 
exists a Boolean function f~ (h) that best predicts whether 
B will be taken given the history h. The goal of dynamic 
branch predictors is to learn this function as quickly as pos- 
sible to provide accurate prediction [ 131. 

One approach to branch prediction is to learn f B ( h )  for 
each branch in a profiling run, then somehow encode each 
f ~ ( h )  in the branch instruction and have the hardware use 
the dynamic history to compute the function and provide 
a branch prediction. Statically chosen bias bits, such as 
those available on HP-PNRISC and IA-64, encode constant 
Boolean functions, which require no history information. 

If the behavior of branches is stable across different pro- 
gram inputs, then we would expect branch prediction using 
these functions to perform very well, even better than dy- 
namic branch predictors, which have the disadvantages of 
destructive aliasing and training time. In practice, input- 
dependent behavior, such as loop trip counts that vary from 
run to run, limits the accuracy of a Boolean formula predic- 
tor. But as we will see. these functions still provide highly 
accurate predictions. 

One problem with this approach is that of representing a 
Boolean function within a branch instruction. For instance, 
with a moderate history length of 10, there are 2’1° differ- 
ent Boolean functions. Branch instructions would need to 
have over 1000 bits to allow all of these functions to be en- 
coded. Therefore, we consider an extremely compact, but 
sufficiently expressive, encoding of Boolean formulas. 

3 Branch Prediction with Boolean Formulas 3.2 Read-Once Monotone Boolean Formulas 

3.1 Boolean Formulas as Branch Predictors We now describe a subset of Boolean formulas that can 
be compactly represented. The basic idea is to restrict the 
Boolean formulas such that each variable appears in the for- 
mula only once, and the only operations allowed are AND 
and OR. 

History-based branch prediction can be viewed as the 
problem of learning the Boolean function of the branch his- 
tory that gives the best prediction. Let h be a Boolean N -  
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Let x, y E (0, l}N, i.e., x and y are N-bit vectors of 
Boolean values. We say that x 5 y if, for all z, xi 5 yi.  
Consider a Boolean function f ( 0 ,  l}N I+ (0, l}, i.e., a 
function f mapping a vector of N bits to a single bit. We say 
that f is monotone if x 5 y implies f(x) 5 f(y) [15]. A 
monotone Boolean formula is a Boolean formula that uses 
only AND (A) and OR (V), without NOT, as connectives. 
The functions induced by these formulas are monotone [ 151, 
hence the name. 

In a read-once formula each variable appears exactly 
once in the formula. Read-once formulas are also known 
as p-formulas or Boolean trees [3]. Read-once monotone 
Boolean formulas have a concise description as a tree whose 
internal nodes are ANDs and ORs and whose leaves are 
the Boolean variables. As an example, Figure 1 from the 
introduction shows the tree representation of the formula 
((q V x2) V (z3 A 24)) A ((x5 V z6) A (2 ,  V Q)) as a logic 
diagram. 

3.3 Using Monotone Read-Once Formulas for 
Branch Prediction 

A read-once monotone Boolean formula of N variables 
can be encoded as a bit vector of size N - 1, each bit rep- 
resenting a connective in the Boolean tree, with 0 for AND 
and 1 for OR. Thus, each branch instruction encodes a read- 
once monotone Boolean formula using N - 1 bits. We also 
store another bit that, if set to 1, causes the value of the 
function to be inverted, so that we can also represent the 
complements of monotone read-once formulas. No two dif- 
ferent bit patterns represent the same Boolean function, so 
this encoding is quite efficient. For a history length of N ,  
the formula encoding in the branch instruction takes N bits. 
Monotone Boolean formulas are incapable of representing 
Boolean constants, so we allow the formula whose connec- 
tives are all ANDs to compute 0 (i.e. false). By choosing 
to invert the output, this formula can also produce 1 (i.e. 
true). These two values are necessary, since they allow us 
to represent “always predict taken” and “always predict not 
taken,” which are the most common Boolean functions for 
branch prediction. 

For branch prediction, we keep a branch history shift reg- 
ister into which the Boolean outcomes (i.e., 1 for taken and 
0 for not taken) of branches are shifted. We keep a global 
history, using the same shift register for all branches. When 
a branch instruction is fetched, the Boolean formula is sent, 
along with the contents of the history register, to a circuit 
that decodes the formula and computes the prediction. 

We use a profiling phase to decide which formulas to 
encode in each branch instruction. The profiling algo- 
rithm uses statistics about the behavior of each static branch 
to choose the best monotone read-once formula for that 
branch. 

The following formula is an example of a monotone 
read-once Boolean formula used for branch prediction with 
a history length of 8: 

This formula corresponds to a branch prediction policy 
of “predict taken if either of the last two branches were 
taken and the third and fourth most recent branches were 
both taken, and any of the other branches in the history were 
taken.” 

3.4 Profiling Algorithm 

We now describe our algorithm for determining which 
formulas best predict each static branch. Using a trace of 
each branch address and outcome, we simulate the dynamic 
contents of the history register. For each static branch, we 
keep a list of the different histories that lead up to that 
branch, along with the number of times each history leads 
to the branch being taken or not taken. After every dynamic 
branch has been examined, we check the list for each static 
branch B and exhaustively test every monotone Boolean 
formula and its complement to see which one would have 
yielded the fewest mispredictions given all the histories that 
led up to B. This best formula is then encoded into the 
branch instruction. 

For branches that are executed fewer than 500 times in 
the profiled program, we simply use the constant formula (0 
or 1 )  that best predicts that branch, rather than considering 
all 2N formulas. We are investigating ways to speed up the 
algorithm with a more intelligent search. Section 4.5 gives 
timing results for the profiling algorithm and argues that the 
cost is reasonable for history lengths up to 16. 

3.5 Hardware Implementation 

A hardware implementation of a Boolean formula 
branch predictor is simple. Each Boolean connective (i.e., 
AND or OR) in the formula is represented by a circuit with 
three inputs: two data inputs, corresponding to the variables 
or outputs of other gates, and one control input that specifies 
whether the Boolean connective should compute AND or 
OR. Coincidentally, this function is equivalent to the carry- 
out computed by a full adder. Figure 2 shows a logic dia- 
gram for this four-NAND circuit. With a history length of 
N ,  our predictor is built from N - 1 connectives and a sin- 
gle XOR gate at the output that acts as an inverter when its 
input is 1. Figure 3 shows a circuit implementation of the 
predictor for N = 8. For clarity, the extra logic to produce 0 
when all the connectives are ANDs is not shown, since this 
logic requires relatively few gates and is not on the critical 
timing path. 
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We simulate a straightforward static CMOS implemen- 
tation of the Boolean formula predictor with the HSPICE 
circuit simulator. First, we create a sub-circuit composed of 
four NAND gates as shown in Figure 2. Then, we instan- 
tiate 2 log, N of these subcircuits and add an XOR, which 
is a sub-circuit consisting of two inverters and two NAND 
gates. The connections between the subcircuits are shown 
in Figure 3. Finally, we add capacitance between the gates 
to model local interconnect. 

Note that although the concept of a read-once monotone 
Boolean formula is somewhat similar to the actual imple- 
mentation as a circuit, to avoid confusion, the two should 
be thought of separately as function vs. implementation. In 
particular, the circuit is optimized for static CMOS technol- 
ogy with NAND gates and is not a read-once circuit. 

output 
I 

;c: 

control data data 
input  input input 

Figure 2. Boolean connective subcircuit. I f  the control 
input is 0, then the output is the AND of the two data inputs. 
Otherwise, the output is the OR of the two data inputs. 

prediction 

i 

i 

Figure 3. Boolean formula branch predictor circuit. This 
circuit makes a branch prediction based on a history length 
of 8 and an %bit encoding of a read-once Boolean formula. 

3.6 Delay 

The depth of the formula evaluation circuit with N in- 
puts is 2 log, N plus the final XOR gate. For instance, for 
N = 16, the critical delay path passes through eight NAND 
gates and one XOR gate. In contrast, the gshare predictor 
looks up values from a table by reading from an SRAM ar- 
ray. 

To estimate predictor access times for a range of current 
and future integrated circuit generations, we use circuit sim- 
ulations and a modified version of the CACTI 2.0 tool for 
simulating cache delay. This modified version of CACTI is 
more accurate in several ways [2]. First, while the origi- 
nal version of CACTI 2.0 [20] uses a simplistic linear scal- 
ing for delay estimates, the modified simulator uses separate 
wire models to account for the physical layout of wire in- 
terconnects: thin local interconnect, taller and wider wires 
for longer distances, and the widest and tallest metal traces 
for global interconnect. Second, wire resistance is based 
on copper rather than aluminum material properties. Third, 
all capacitance values are derived from three-dimensional 
electric field equations. Fourth, bit-lines are placed in the 
middle layer metal, where resistance is lower. Finally, bit- 
addressing is allowed instead of byte-addressing. 

Our results for projected technologies, including those 
given in Table 1, use an aggressive clock rate equivalent to 
eight times the gate delay of propagating a value from a 
single inverter to four copies of itself. This “eight fan-outs- 
of-four” measure was used as the aggressive clock speed 
for the study by Agarwal et al. [ I ] ,  giving a technology- 
independent projection of future clock rates. Note that these 
capacities only consider the time to read the branch predic- 
tion table. The gate delay involved in acting upon a branch 
prediction is not included and further exacerbates the prob- 
lem. 

We estimate the access time of the Boolean formula pre- 
dictor by simulating the combinational circuit and measur- 
ing the delay from the branch instruction and history regis- 
ter inputs to the output of the XOR gate. The delay mea- 
surements are the time from the midpoint of the input sig- 
nal switching to the midpoint of the output signal switch- 
ing. We calculated the lookup time for a gshare predictor 
using our modified CACTI tool. Table 2 shows the access 
times for a 4K-entry gshare predictor and two sizes of the 
Boolean formula predictor, N = 8 and N = 16, for a range 
of fabrication technologies. We chose the 4K-entry predic- 
tor because, as we will see in Section 4, the N = 8 version 
of the Boolean formula predictor only slightly exceeds the 
accuracy of a 4K-entry gshare. Thus, our delay compar- 
isons show that we can achieve higher accuracy with lower 
latency. 

As fabrication technology improves, transistors can be 
made smaller and faster, resulting in higher clock frequen- 
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Minimum 
Feature 

Size(nm) I gshare I N = 8 I N = 16 
180 1 551 I 211 I 260 

Power (milliwatts) 
4K-entry 1 Formula, 1 Formula, 

Minimum 
Feature 

Access Time (picoseconds) 
4K-entry I Formula, I Formula, 

cies and faster combinational circuits. As Table 2 shows, 
access times for each structure improve as the minimum 
feature size decreases. 

The Boolean formula predictor is consistently faster than 
the 4K-entry gshare predictor, allowing more time for com- 
munication and computation within a clock cycle. At the 
projected clock rate of 6.94 Ghz for 50 nm technology 
from Table 1 ,  the clock period would be 144 picosec- 
onds. A traditional table-lookup predictor such as gshare 
would require more than a single cycle-I 67 picoseconds 
in this case-for the prediction. In the same technology, the 
Boolean formula predictor would provide a prediction in 59 
picoseconds, leaving over half of the cycle to prepare for 
and act upon the prediction. 

One concern with our predictor is that the contents of 
the branch opcode are on the critical path to making a pre- 
diction; the Boolean formula must be read before it  can be 
evaluated. However, this delay is common to any branch 
predictor that uses bias bits or any other type of information 
from the branch instruction, such as the agree predictor used 
on the HP-PARISC or the statiddynamic and bias bits pro- 
vided by IA-64. One solution is to provide pre-decode bits 
in the instruction cache that provide the opcode information 
quickly. 

130 
1 00 

3.7 Power 

, 
402 168 I 208 
32 1 112 I 138 

Power consumption has recently become a primary con- 
cern in microprocessor design. In this section, we contrast 
the power consumption of traditional branch predictors with 
that of the Boolean formula predictor. 

The Boolean formula predictor is a combinational circuit 
that uses less dynamic power than an SRAM-based predic- 
tor. This small predictor has smaller gate and interconnect 
capacitance than an SRAM structure, which has decoding 
logic, a memory array, sensing logic, and output logic. 

Table 3 shows the Boolean formula predictor’s dynamic 

130 
100 
70 
50 

31.0 0.28 0.58 
27.4 0.11 0.24 
12.9 0.06 0.12 
8.40 0.06 0.13 

Size (nm) I gshare I N = 8 I N = 16 
180 I 51.4 I 0.61 I 1.28 

70 
50 

228 85 I 103 
167 50 I 59 

power consumption for N = 8 and N = 16, as mea- 
sured with the HSPICE simulator. This table also shows 
the power of a 4K-entry gshare predictor, measure using 
the modified CACTI 2.0. The N = 8 results show that 
the Boolean formula predictor consumes between 0.4% to 
2.9% of the power of a gshare predictor with comparable 
accuracy. 

With lower transistor threshold voltages in emerging 
technologies, static p o w e r d u e  to leakage current through 
transistors-is becoming a sizable percentage of the total 
power consumed [25].  With fewer transistors in the circuit 
to leak current, the Boolean predictor circuit will also have 
less static power than an SRAM structure. Furthermore, the 
Boolean circuit implementation is amenable to a low static 
power design technique that takes advantage of the stacked 
transistors within gates to bias transistors into a low-leakage 
mode [25].  

3.8 Impact of Encoding 

Since each branch instruction encodes a Boolean for- 
mula, we must find an efficient way to encode the formula in  
the instruction without having a negative impact on perfor- 
mance. Some instructions sets already provide extra bits for 
communicating hints to the microarchitecture. For instance, 
the Alpha AXP ISA provides 14 bits in each indirect branch 
instruction for profiling information [22]. In their work on 
variable length path branch prediction, Stark et al. [24] use 
extra bits such as these to communicate to the microarchi- 
tecture information on hash functions for a branch predictor. 

We propose changing the ISA so that branch instructions 
encode the formulas. For example, each branch instruction 
on the Alpha is 32 bits long: six bits indicate the op code 
of the instruction, five more bits indicate the register to test, 
and 2 1 bits are for the branch offset. For a Boolean-formula 
based branch predictor requiring N bits in a branch instruc- 
tion, we propose to reallocate N of the offset bits to the for- 
mula. Some long branches will need to be split into a branch 
followed by a jump to the target, increasing the number of 
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instructions executed. 
We measure the harmonic mean over the SPEC 2000 

integer benchmarks of the percentage of extra instructions 
executed on the Alpha when offset bits are reallocated to 
Boolean formula predictors. With formulas of up to 9 bits, 
the number of extra instructions is negligible. With 12-bit 
formulas, only 0.2% more instructions are executed. With 
14-bit formulas, 1.0% more instructions are executed. As 
history length increases beyond 16 bits, this encoding tech- 
nique becomes less feasible. For longer histories, we have 
developed a more sophisticated technique that exploits the 
fact that most of the functions are constant. 

4 Experimental Results 

In this section, we give the results of simulating our 
branch predictor on the SPEC 2000 integer benchmarks, 
and we compare our results against both static (i.e. bias 
bits) and dynamic branch prediction. We also give results 
for a predictor that combines Boolean formulas with dy- 
namic prediction, and we compare this to similar work that 
combines static and dynamic prediction. 

4.1 Methodology 

We use the 12 SPEC 2000 integer benchmarks running 
under SimpleScalar/Alpha [6] to collect traces. For each 
benchmark, we gather traces giving the branch address and 
outcome for up to 300 million branches. We use the t r a i n  
inputs for the profiling runs, and we use the ref inputs to 
evaluate the accuracy of the various predictors. To better 
capture the steady-state performance of the branch predic- 
tors, our evaluation runs skip the first 50 million branches, 
as several of the benchmarks have an initialization pe- 
riod (lasting fewer than 50 million branches), during which 
branch prediction accuracy is unusually high. Each bench- 
mark executes at least 300 million branches and over one 
billion instructions on the test inputs before the simula- 
tion ends. 

4.2 Predictors Simulated 

We simulate monotone read-once Boolean formula pre- 
dictors for 2 5 N 5 18. We use only global history in- 
formation, i.e., we do not use path or per-branch informa- 
tion. We also simulate the gshare [ 191, bi-mode [ 161 and 
agree [23] branch predictors, three well-known global dy- 
namic branch predictors from the literature. The gshare and 
bi-mode predictors use only dynamic history information. 
The agree predictor combines static and dynamic informa- 
tion by predicting whether a branch will agree with a bias 
bit. 

History length has been observed to have a significant 
impact on predictor accuracy [ 191, so for each predictor and 
each hardware budget, we try all possible history lengths on 
the train inputs and keep the one with the lowest average 
misprediction accuracy. 

To give a lower-bound on misprediction rates for any 
Boolean-formula based predictor, we also measure the re- 
sults of using arbitrary Boolean formulas. To find the best 
arbitrary Boolean formula for a particular static branch, we 
measure the number of taken versus not-taken branches for 
each history leading up to that branch in the training set, 
then assign to each history the prediction yielding the most 
correctly predicted dynamic branches. Out of all the possi- 
ble histories leading to a branch, only a small fraction will 
actually be observed; all other histories are assigned the bias 
bit for that branch. The arbitrary predictor is represented by 
the profiling algorithm as a set of rows in a truth table where 
the inputs are the histories and the output is the prediction. 

Note that although it  is not the focus of our research, 
this arbitrary formula predictor is actually implementable 
for history lengths of up to four, since the truth table for a 
Boolean function in four variables can be encoded in only 
16 bits. 

Figure 4. Accuracy of dynamic branch predictors vs. 
static prediction and the Boolean formula predictor. The 
numbers above the z-axis show the technologies in which 
the corresponding hardware budgets are reachable in one 
cycle with aggressive clocking. Misprediction rates are the 
harmonic means over the SPEC 2000 integer benchmarks. 

4.3 Misprediction Rates 

Figure 4 shows misprediction rates for the monotone 
read-once Boolean formula predictor at history lengths of 
4, 8 and 16, compared with gshare, agree and bi-mode pre- 
dictors at hardware budgets from 5 12 to 256K entries. La- 
bels above the 5 12 and 1 K-entry hardware budgets show the 
process technologies for which the corresponding budget is 

103 



reachable in one cycle at the aggressive clock rates listed in 
Table 1. 

At today's 180 nm and 130 nm technologies, for which 
branch predictors with only about IK to 2K table entries 
state are available at more aggressive clock speeds, a 4- 
bit Boolean formula predictor with a misprediction rate of 
6.6% roughly matches the accuracy of the bi-mode predic- 
tor. With a history length of 16, the Boolean formula pre- 
dictor has a misprediction rate of 5.02%, an improvement 
of 24% over the 1 SK-entry bi-mode predictor. 

To put these figures another way, a 4-bit Boolean for- 
mula predictor achieves roughly the same predictive power 
as a 4K-entry gshare predictor. A 16-bit Boolean formula 
predictor is about as accurate as an 8K-entry gshare pre- 
dictor, a 3K-entry bi-mode predictor, or a 2K-entry agree 
predictor. 

Figure 5 shows, for history lengths ranging from 2 to 
18, misprediction rates for the monotone read-once Boolean 
formula predictor, as well as for the predictor that uses arbi- 
trary formulas. For reference, it also shows the mispredic- 
tion rates for pure static prediction with bias bits, as well as 
for dynamic prediction with a 1 K entry gshare, a 1 K entry 
agree predictor, and a 1 S K  entry bi-mode predictor; these 
table sizes represent the predictors accessible in a single cy- 
cle in 50 through 130 nm technology with aggressive clock 
rates. As history length increases, the misprediction rate of 
the Boolean formula predictor decreases and remains close 
to the performance of the arbitrary formula predictor. 

For the same five predictors, Figure 6 shows mispredic- 
tion rates on each benchmark. The Boolean formula pre- 
dictor usually has a misprediction rate lower than that of 
the dynamic predictors. However, in a few cases, such as 
2 56 . bzip2 ,  the formula predictor's misprediction rate is 
high, most likely due to input-dependent program behavior 
that cannot be learned by profiling. 

T! 
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-t. 1536-entry B i m d  
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Figure 5. Misprediction rate for the Boolean formula pre- 
dictor as a function of history length. 

1024-cnuy Gsharc 
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Figure 6. Accuracy of the predictors on each benchmark. 
This graph compares the Boolean formula predictor at his- 
tory lengths of 8 and 16 against aggressively clocked imple- 
mentations of gshare and bi-mode. 

Figure 7 shows the misprediction rates of predictors us- 
ing the agree mechanism combined with our formula pre- 
dictor. An agree predictor predicts whether a branch out- 
come will agree with a bias bit, turning destructive alias- 
ing into constructive aliasing. Our combined agree/formula 
predictors use a PHT to predict whether the branch outcome 
will agree with the output of a Boolean formula, rather than 
a bias bit. With a IK-entry PHT, the agree predictor with 
bias bits yields a misprediction rate of 5.3%. The 8-bit ver- 
sion of our agree/formula predictor decreases this rate to 
4.4%, an improvement of 17%. The 16-bit version of our 
predictor has a misprediction rate of 3.9%, an improvement 

For reference, we compare our predictor with the Al- 
pha 21264 hybrid branch predictor, which is the most accu- 
rate existing predictor for which implementation details are 
readily available [ 141. This predictor uses a 4K-entry global 
history predictor and a 1 K-entry per-branch history predic- 
tor combined with a 4K-entry chooser, consuming roughly 
4KB of state. The Alpha 21264 predictor achieves a mis- 
prediction rate of 2.93% on the traces we gathered. At 
the same hardware budget, the agree predictor, when en- 
hanced with the 16-bit version of our Boolean formula pre- 
dictor, achieves a misprediction rate of 2.55%. Even at half 
the hardware budget of the Alpha 21264 predictor, an 8K- 
entry version of our agreelformula hybrid achieves a mis- 
prediction rate of 2.86%, narrowly better than the Alpha 
hybrid. Using our aggressive clock modeling, the largest 
hybrid agree/formula predictor available in a single cycle 
will achieve a misprediction rate of 3.97%, which is 35% 
higher than that of the Alpha predictor. However, an impor- 
tant point of our research is that complex predictors such 
as the Alpha's are infeasible at higher clock rates. Even 
today's Alpha must employ an overriding mechanism [ 141, 
in which branch predictions that don't agree with the less 
sophisticated cache line predictor introduce a single-cycle 

O f  25%. 
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Figure 7.  Accuracies of Boolean formula predictors us- 
ing the agree mechanism. Misprediction rates are harmonic 
means over SPEC 2000. 

-1, 

4.4 Distribution of Formulas 

An analysis of the distribution of Boolean formulas 
chosen by the profiling algorithm shows that most of the 
Boolean formulas chosen are the two constant functions, 0 
and 1. This dependence on constant formulas decreases 
as history length increases. For instance, with a history 
length of 4, 78% of static branches in the SPEC 2000 inte- 
ger benchmarks are best predicted with a constant formula, 
as opposed to only 49% for a history length of 16. As his- 
tory length increases, the predictive power of the Boolean 
formula predictor increases, and the constant functions rep- 
resenting “predict taken always” and “predict not taken al- 
ways” give way to more intelligent choices. 

Table 4 shows the dynamic frequencies for each formula 
with a history length of four, along with the misprediction 
rate for each formula using a 4-bit Boolean forrnula predic- 
tor and for bias bits. For brevity, we omit similar tables for 
the other history lengths. 

4.5 Profiling Cost 

The cost of determining the best Boolean formula for 
each branch is an important component of the cost of our 
branch predictor. Here, we quantify this cost. 

Our current implementation takes time exponential in the 
history length. However, for the small history lengths that 
we consider in this study, the time is not unreasonable. For 
instance, with a history length of 16, the profiling algorithm 
takes about 12 minutes on a 733MHz Pentium 111. For a 
history length of IO,  the program takes about 2 minutes. 
For history lengths less than about 12, the time for the pro- 
gram is dominated by activities unrelated to finding the best 

Formula 
Freq. Formula Bias 
40.84 
37.14 10.0 10.0 

(20 V 2 1 )  A ( 2 2  V 5 3 )  3.15 21.8 36.3 

Table 4. Distribution of Boolean formulas with a history 
length of four. The variables are elements of the history 
register, with 20 being the outcome of the most recently 
executed branch, 2 1  being the next recent, etc. 

Boolean function. For instance, much time is spent sim- 
ply reading the large trace file from the disk and performing 
other tasks that any typical feedback-directed optimization 
would require. Our algorithm is also easy to parallelize. 
The time-consuming part of the algorithm-during which 
the best Boolean formula is decided for each static branch- 
is embarrassingly parallel, as the various static branches can 
be partitioned among many processors. Thus, we feel that 
our profiling algorithm would be appropriate in  a frame- 
work in which other optimizations are also being explored 
by simulation. 

5 Conclusions 

We have introduced and evaluated a new branch pre- 
diction scheme that borrows from complexity theory the 
concept of a read-once monotone Boolean formula. These 
Boolean formulas provide a compact encoding of a class 
of functions that is expressive enough to perform branch 
prediction yet concise enough to be encoded in branch in- 
structions. By offloading most of the prediction work to 
the compiler, our Boolean formula predictor is small, fast 
and consumes little power. While our scheme provides a 
competitive alternative to existing dynamic branch predic- 
tors, the real benefit of our scheme lies in the future, as our 
scheme is significantly less sensitive to the impending tech- 
nology scaling issues caused by increased wire delays. Our 
predictor can also form a valuable component of an agree 
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or hybrid predictor, decreasing misprediction rates by  pro- 
viding better estimates of branch outcomes  than bias bits. 

We are currently studying ways  to  improve the training 
algorithm so that it takes less t ime at  longer  history lengths. 
For instance, w e  are explor ing genetic algorithms as a way 
t o  get  a near-optimal choice of formula at  a fraction of the 
time of our brute-force algorithm. 
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