
Compiler-Directed Dynamic Voltage/Frequency Scheduling
for Energy Reduction in Microprocessors*

Chung-Hsing Hsu Ulrich Kremer Michael Hsiao
CS Dept., Rutgers University

New Jersey, USA New Jersey, USA New Jersey, USA
CS Dept., Rutgers University ECE Dept., Rutgers University

ABSTRACT
Dynamic voltage and frequency scaling of the CPU has been
identified as one of the most effective ways to reduce energy
consumption of a program. This paper discusses a com-
pilation strategy that identifies scaling opportunities with-
out significant overall performance penalty. Simulation re-
sults show CPU energy savings of 3.97%-23.75% for the
SPECfp95 benchmark suite with a performance penalty of
at most 2.53%.

1. INTRODUCTION
Modern architectures have a large gap between the speeds

of the memory and the processor. Techniques exist to bridge
this gap, including memory pipelines, cache hierarchies, and
large register sets. Most of these architectural features ex-
ploit the fact that computations have temporal and/or spa-
tial locality. However, many computations have limited lo-
cality, or even no locality at all. In addition, the degree of
locality may be different for different program regions. Such
computations may lead to a significant mismatch between
the actual machine balance and computation balance, typi-
cally resulting in long stalls of the processor waiting for the
memory subsystem to provide the data.

Minimizing the power/energy dissipation of scientific com-
putations leads to a reduction in heat dissipation and cooling
requirements, which in turn reduces design, packaging, and
operation costs of advanced architectures, including power
bills for air conditioning of computing and data centers.

We will discuss the benefits of compile-time voltage and
frequency scaling where the compiler identifies promising
program regions for CPU voltage and CPU frequency scal-
ing, and assigns clock frequencies and voltage levels for their
execution. The goal is to provide similar overall performance
while significantly reducing the powerlenergy dissipation of
the processor. Opportunities for such an optimization are
program regions where the CPU is mostly idle.

*Authors’ email: {chunghsu,uli}@cs.rutgers.edu and mh-
siao@ece.rutgers.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED ’01, August 6-7, 2001, Huntington Beach, Califomia, USA.
Copyright 2001 ACM 1-581 13-371-5/01/0008 ... $5.00.

1.1 Background
The total execution time (T) and energy consumption (E)

of a program can be estimated by

1 T Z W . - and E Z C . W . V ’

where W is the total number of execution cycles, f is the
clock frequency, C is the effective switching capacitance,
and V is the supply voltage. C and W are assumed to be
independent of frequency f . Since in dynamically voltage
scaled (DVS) systems V varies approximately linearly with
f (V IX f) , the performance-energy trade-off of frequency
scaling can be expressed as T IX 1 and E rx f 2 .

Recent related work has been ffcused on determining ap-
propriate clock frequencies with respect to a predefined dead-
l ine, using on-line and off-line algorithms [23, 6, 5, 10, 161.
The basic idea is to recognize and eliminate CPU slacks.

f

1.2 Why at the Compiler Level?
Our model is based on quantifying the imbalance and ouer-

lap between CPU and memory activities. In many cases,
compile-time analysis is able to determine these two fac-
tors and identify program regions where dynamic voltage
and frequency scaling will be profitable. Since the runtime
overhead of dynamic voltage/frequency adjustment can be
significant, global program analyses are needed to detect
program regions of sufficiently large granularity. Typically,
hardware and operating system techniques are restricted to
observe and evaluate program behavior within a restricted
window of past program activity. In addition, compilers can
reshape program behavior through local and global transfor-
mations, enabling additional program optimizations. The
discussion of such “reshape” transformations is beyond the
scope of this paper.

In a single user environment, the compiler generated volt-
age and frequency adjustment instructions are directly ex-
ecuted, assuming that the program is not preempted. In a
multiprogramming environment where swapping may occur,
the compiler can provide an application profile to the oper-
ating system that contains information about all requested
frequency and voltage transitions during a program execu-
tion, and leave it to process scheduler to negotiate between
the different process requirements.

1.3 Our Contributions
In previous work[81, we proposed a simple compile-time

model to select the appropriate clock frequency at the cost
of tunable performance penalty, and applied the model to

275

mailto:chunghsu,uli}@cs.rutgers.edu
mailto:siao@ece.rutgers.edu

(1) Identify program regions R, as candidates for

(2) Model expected performance

dynamic voltage/frequency scaling.

(a) Determine W,"', W,". , and W,". , for instance by

(6) Compute slow-down factor 6,.
using program execution traces.

(3) Select single region with highest predicted benefit

(4) Insert voltage/frequency setting instructions.

Figure 1: Outline of basic compilation strategy.

a set of kernels to show its effectiveness. This paper ex-
tends our previous work to whole programs, and discusses
the benefits of voltage and frequency scaling for programs
in the SPECfp95 benchmark.

While there is no opportunity of slowing down entire pro-
grams in the SPECfp95 benchmark without incurring a sig-
nificant performance penalty, we discuss new techniques that
identify certain profitable regions in the benchmarks and se-
lect appropriate slow-down factors using our model. Simu-
lation results show that the CPU energy savings of 3.97%-
23.75% are achieved with an overall performance penalty of
at most 2.53%. A simple system energy model consisting
of a CPU and memory has similar results. (3.93%-23.25%
energy savings across the benchmark).

The rest of the paper is organized as follows: Section 2
reviews the simple model proposed in [8], and how it, is modi-
fied to be region-based. Section 3 discusses our experimental
results, followed by a brief summary of related work and a
conclusion in Sections 4 and 5, respectively.

2. COMPILER DIRECTED FREQUENCY
SCALING

In [8], we proposed a way to determine the CPU slow-
down factor 6 with respect to performance penalty d, as
follows:

1 5 6 5 1 + min(d/Wc, wm/wb)
memory latency 1 is divisible by 6

(1)
(2)

where Wb, W,, W, represent the duration in which CPU
activity (including L1 and L2 activity) is overlapped with
memory access, is not overlapped with memory access, and
is stalled due to memory access. Equation (2) takes into
account the clock skews due to mismatch of memory and
CPU speed.

marks with the 1% performance penalty showed that slowing
down the entire program is not profitable for any benchmark
[9]. Thus, the compiler will apply the algorithm to program
regions instead. For example, in benchmark swim there is a
region Rq such that our algorithm selects 6 = 2. And simu-
lation result show that this slow-down saves 23.2% of total
CPU energy and only degrades the performance by 1.7%.

Typically, a program consists of multiple program regions.
The selection algorithm needs to be able to select a subset of
them to slow down without introducing too much overhead
due to switches between different voltages/frequencies. In
addition, it needs to assign different slow-down factors to dif-
ferent selected regions so as to maximize the overall energy
savings without violating the global performance penalty

Applying this 6-selection algorithm to the SPECfp95 bench-

RI

R2

R3

9 0

R4

CALL INITAL
NCYCLE=NCYCLE+l
CALL CALCl
CALL CALC2
IF (NCYCLE >= ITMAX) STOP
IF (NCYCLE <= 1) THEN

ELSE

ENDIF
GO TO 90

CALL CALC3Z

CALL CAW3

Figure 2: The outermost program structure of
benchmark swim with marked candidate regions.

constraint. The first part will be sketched in the following
section while the second section is beyond the scope of this
paper and we refer the readers to [9] for further information.

Finally, we want to point out that various strategies can be
used to determine We, W,, and wb, such as static compile-
time analysis, on- and off-line performance monitoring, or
a combination of both. We are currently evaluating differ-
ent mechanisms to determine these values in terms of their
cost/precision tradeoffs. For this paper, we assume a trace
based approach with a trace generated by a characteristic
program execution.

2.1 Basic Compilation Strategy
The basic compilation strategy is shown in Figure 1. Pro-

gram regions are evaluated in a top-down fashion based on
the program structure, starting with the entire program as
the single, outermost region. Regions are evaluated based
on their expected benefits in terms of power/energy savings.
For simplicity, our current approach selects only a single re-
gion.

The selected program region will be assigned a single volt-
age and frequency. Dynamic changes of voltage and fre-
quency will occur only between the region and other por-
tions of the program. The granularity of the region needs
to be large enough to compensate for the overhead of volt-
age and frequency adjustments. Initially, we consider single
or sequences of procedure calls, loop nests, and if-then-else
constructs as candidate regions.

We illustrate our compilation strategy using benchmark
swim, as shown in Figure 2.1. Four regions RI - Rq are
considered. Based on the W,"., W,". , W,". values of each
region as shown in Table 2.1, we compute slow-down factor
6, and potential energy savings (E), and select region Rq to
be slowed down. The next step is to insert voltage/frequency
setting instructions at the entry and exit of the region. In
our example, an instruction setting CPU speed by half is
inserted right before the I F and an instruction resuming the
full speed is inserted right after the ENDIF.

3. EXPERIMENTS
Experiments were done through simulation, using the Sim-

pleScalar tool set [4]. The simulator models an out-of-order
superscalar processor and a memory subsystem that cap-
tures the impact of memory bandwidth and memory latency.
Specifically, the memory system contains a 32KB L1 I-cache

276

Table 1: The decomposition of total execution CJ

for regions of benchmark swim.
rcles

and D-cache and a 512KB L2 cache. All caches are direct-
mapped, write-back, and can hold up to eight outstanding
misses. The main memory is blocking, with 100-cycle access
latency, and runs at 1/4 of the processor speed. Details can
be found in [9].

The overheads of switching between voltages/frequencies
are also modeled. A voltage/frequency setting instruction
first stops fetching new instructions and drains the pipeline,
followed by waiting until the desired frequency is generated,
and then resume the execution. In our experiments, the
period of scaling up/down to the new frequency is set to be
a constant of 10,000 cycles (10 ps for a lGHz processor) '.

3.1 Analytical Energy Models
Due to the long simulation time, we use three simple ana-

lytical energy models to access the benefits gained from our
compilation strategy. They model active CPU energy, total
CPU energy, and total system energy. All these models are
based on associating with each cycle an energy cost. Specif-
ically, given a program in which region R is slowed down by
6 , we introduce four "component" models:

where E1 and E2 model the CPU energy usage when it is
active and idle, respectively; E3 and E4 model the memory
energy usage when it is active and idle, respectively. Pa-
rameter r is the refresh cycles, l is the memory latency, and
p:'", p p , pm/c are particular ratios with respect to the en-
ergy cost of an active CPU cycle. In our evaluation, we set

memory consuming 2/3 of total energy.
pPuc = 30%, pmlc = 2, p y = 2, and r = 10,000, considering

3.2 Experimental Results
SPECfp95 are used for the experiments. To reduce simu-

lation time while retain the behavior of the reference data in-
put, we used Burger's standard data sets (std) [3]. And our
compilation strategy was applied by hand to all the bench-
marks. The implementation of the proposed strategy is cur-
rently underway. Since we slowed down at most one region
in each benchmark, the experimental results are most likely
suboptimal. The simulation results are shown in Table 3.2.

All benchmarks, except f pppp, can be slowed down to save
2.44%-16.09% of active CPU energy (E l) , 3.97%-23.75% of
total CPU energy (E1+E2), and 3.93%-23.25% of the overall
system energy (El + E2 + E3 + E4), at the performance

'The scaling period for DVS-capable processors can take as
long as 520ps ([a]) or 140ps ([HI)

penalty of 0.77%-2.53%. Benchmark fpppp cannot benefit
from our compiler strategy since it is extremely CPU-bound.

The cost of scaling up/down the voltage and frequency
is linearly proportional to the number of repetitions in std
data sets. Given that benchmarks execute 0.73-15.62 billions
of cycles and the repetitions is in the range of 2-62, this
dynamic scaling cost turns out to be insignificant. Most
of performance degradation comes from the impact of CPU
slow-down to the program execution.

4. RELATED WORK
On the hardware side, there have been efforts in build-

ing up microprocessors capable of dynamic voltage and fre-
quency scaling (DVS), such as Transmeta's Crusoe, Intel's
Xscale, and [2, 181. On the software side, new scheduling al-
gorithms at the operating system level have been proposed,
either task-based (for example, [24, 10, 7, 15, 13, 20, 221)
or interval-based (for example, [23, 6, 17, 211). Early task-
based scheduling algorithms focus on the CPU slackness be-
tween tasks. Recently, intra-task scheduling algorithms [ll,
14, 12, 191 are advocated.

5. CONCLUSION AND FUTURE WORK
Dynamic frequency and voltage scaling is an effective way

to reduce power dissipation and energy consumption of memory-
bound program regions. This paper discussed a simple per-
formance model that allows the selection of efficient slow-
down factors. Experiments based on the full SPECfp95
benchmark set and a simulator for an advanced superscalar
architecture indicate the effectiveness of our approach. The
resulting CPU energy savings of our compilation strategy
are in the range of 3.97%-23.75% with a performance slow-
down of 0.77%-2.53%. The energy savings of the whole sys-
tem case are similar.

We are currently investigating the impact of aggressive
compiler optimizations on the slow-down opportunities, pos-
sible program reshaping transformations to enable or en-
hance slow-down opportunities, and extensions of our ap-
proach to deal with CPU bound computations with the op-
portunity of slowing down the memory subsystem. An im-
plementation of the proposed strategy as part of the SUIF
compiler infrastructure [11 is currently underway.

6. ACKNOWLEDGEMENTS
This research was partially supported by NSF CAREER

award CCR-9985050 and a Rutgers University ISC Pilot
Project grant. The authors would like to thank Doug Burger
from UT Austin for providing the Simplescalar tool set with
his memory extensions.

7. REFERENCES
[l] National Compiler Infrastructure (NCI) project.

www-suif.stanford.edu/suif/nci, 1998.
[2] T. Burd and R. Brodersen. Design issues for dynamic

voltage scaling. In Proceedings of 2000 International
Symposium on Low Power Electronics and Design
(ISLPED 'OO), July 2000.

Performance of the Processor/Memory Interface. PhD
thesis, Computer Sciences Department, University of
Wisconsin-Madison, 1998.

[3] D. Burger. Hardware Techniques to Improve the

271

Table 2: Exper imen ta l results for SPECfp95 . The values of slow-down fac tor 6 are for the single selected
region R. The f o u r r igh tmost columns report the impac t of the slowed d o w n region R on the overall program
performance in terms of relative execut ion t i m e T and relative ene rnv savings (original 100%).

benchmark W R / W W 2 / W R W 2 / W R W,"/WR S T I E1 I E l + E z I B 1 + E 2 + 1 Ex + E4

D. Burger and T. Austin. The Simplescalar tool set
version 2.0. Technical Report 1342, Computer Science
Department, University of Wisconsin, June 1997.
J . Chang and M. Pedram. Energy minimization using
multiple supply voltages. In International Symposium
on Low Power Electronics and Design (ISLPED-96),
pages 157-162, Aug. 1996. published in IEEE
Transaction on VLIS Systems 5(4): Dec 1997.
K. Govil, E. Chan, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power
CPU. In the 1st ACM International Conference on
Mobile Computing and Networking (M0,BICOM-95),
pages 13-25, Nov. 1995.
I. Hong, D. Kirovski, G. &U, M. Potkonjak, and
M. Srivastava. Power optimization of variable voltage
core-based systems. In Proceedings of the 35th
ACM/IEEE Design Automation Conference(DAC'98),
pages 176-181, June 1998.
C.-H. Hsu, U. Kremer, and M. Hsiao.
Compiler-directed dynamic frequency and voltage
scheduling. In Workshop on Power-Aware Computer
Systems (PACS), Nov. 2000.
C.-H. Hsu, U. Kremer, and M. Hsiao.
Compiler-directed dynamic voltage/frequency
scheduling for energy reduction in microprocessors.
Technical Report DCS-TR-431, Department of
Computer Science, Rutgers University, Feb. 2001.
T . Ishihara and H. Yasuura. Voltage scheduling
problem for dynamically variable voltage processors.
In International Symposium on Low Power Electronics
and Design .(ISLPED-98), pages 197-202, Aug. 1998.
C. Krishna and Y.-H. Lee. Voltage-clock-scaling
adaptive scheduling techniques for low power in hard
real-time systems. In Proceedings of the 6th Real Time
Technology and Applications Symposium (RTAS'OO),
May 2000.
S. Lee and T . Sakurai. Run-time voltage hopping for
low-power real-time systems. In Proceedings of the
37th Conference on Design Automation (DAC'OO),
pages 806-809, June 2000.
A. Manzak and C. Chakrabarti. Variable voltage task
scheduling for minimizing energy or minimking power.
In Proceeding of the International Conference on
Acoustics, Speech and Signal Processing, June 2000.
D. MOSS&, H. Aydin, B. Childers, and R. Melhem.
Compiler-assisted dynamic power-aware scheduling for
real-time applications. In Workshop on Compiler and

Operating Systems for Low Power (COLP'OO), Oct.
2000.
T. Okuma, T. Ishihara, and H. Yasuura. Real-time
task scheduling for a variable voltage processor. In
Proceedings of the 12th International Symposium on
System Synthesis (ISSS'99), 1999.
T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms.
In Proceedings of 1998 International Sympo:iium on
Low Power Electronics and Design (ISLPED'98),
pages 76-81, Aug. 1998.
T. Pering, T. Burd, and R. Brodersen. Voltage
scheduling in the lpARM microprocessor system. In
Proceedings of 2000 International Symposium on Low
Power Electronics and Design (ISLPED'OO),, pages

J . Pouwelse, K. Langendoen, and H. Sips. Voltage
scaling on a low-power microprocessor. In
International Symposium on Mobile Multimedia
Systems €9 Applications (MMSA '2000), Nov. 2000.
D. Shin, J . Kim, and S. Lee. Intra-task voltage
scheduling for low-energy hard real-time applications.
In To appear in IEEE Design and Test of Computers,
Mar. 2001.
Y . Shin, K. Choi, and T. Sakurai. Power optimization
of real-time embedded systems on variable speed
processors. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD'OO),
pages 365-368, Nov. 2000.
A. Sinha and A. Chandrakasan. Dynamic voltage
scheduling using adaptive filtering of workload traces.
In Proceedings of the 14th International Conference on
VLSI Design, Jan. 2001.
V. Swaminathan and K. Chakrabarty. Investigating
the effect of voltage switching on low-energy task
scheduling in hard real-time systems. In Asia South
Pacific Design Automation Conference
(ASP-DA C'Ol), JanuaryIFebruary 2001.
M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In the Zst
Symposium on Operating Systems Design and
Implementation (OSDI-94), pages 13-23, Nov. 1994.
F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In IEEE Annual
Symposium on Foundations of Computer Science,
pages 374-382, Oct. 1995.

96-101, July 2000.

278

