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ABSTRACT 
Dynamic voltage and frequency scaling of the CPU has been 
identified as one of the most effective ways to reduce energy 
consumption of a program. This paper discusses a com- 
pilation strategy that identifies scaling opportunities with- 
out significant overall performance penalty. Simulation re- 
sults show CPU energy savings of 3.97%-23.75% for the 
SPECfp95 benchmark suite with a performance penalty of 
at most 2.53%. 

1. INTRODUCTION 
Modern architectures have a large gap between the speeds 

of the memory and the processor. Techniques exist to bridge 
this gap, including memory pipelines, cache hierarchies, and 
large register sets. Most of these architectural features ex- 
ploit the fact that computations have temporal and/or spa- 
tial locality. However, many computations have limited lo- 
cality, or even no locality at all. In addition, the degree of 
locality may be different for different program regions. Such 
computations may lead to a significant mismatch between 
the actual machine balance and computation balance, typi- 
cally resulting in long stalls of the processor waiting for the 
memory subsystem to provide the data. 

Minimizing the power/energy dissipation of scientific com- 
putations leads to  a reduction in heat dissipation and cooling 
requirements, which in turn reduces design, packaging, and 
operation costs of advanced architectures, including power 
bills for air conditioning of computing and data centers. 

We will discuss the benefits of compile-time voltage and 
frequency scaling where the compiler identifies promising 
program regions for CPU voltage and CPU frequency scal- 
ing, and assigns clock frequencies and voltage levels for their 
execution. The goal is to provide similar overall performance 
while significantly reducing the powerlenergy dissipation of 
the processor. Opportunities for such an optimization are 
program regions where the CPU is mostly idle. 
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1.1 Background 
The total execution time ( T )  and energy consumption ( E )  

of a program can be estimated by 

1 T Z W . -  and E Z C . W . V ’  

where W is the total number of execution cycles, f is the 
clock frequency, C is the effective switching capacitance, 
and V is the supply voltage. C and W are assumed to  be 
independent of frequency f .  Since in dynamically voltage 
scaled (DVS) systems V varies approximately linearly with 
f (V IX f ) ,  the performance-energy trade-off of frequency 
scaling can be expressed as T IX 1 and E rx f 2 .  

Recent related work has been ffcused on determining ap- 
propriate  clock frequencies with respect to  a predefined dead- 
l ine,  using on-line and off-line algorithms [23,  6, 5, 10, 161. 
The basic idea is to  recognize and eliminate CPU slacks. 

f 

1.2 Why at the Compiler Level? 
Our model is based on quantifying the imbalance and ouer- 

lap between CPU and memory activities. In many cases, 
compile-time analysis is able to determine these two fac- 
tors and identify program regions where dynamic voltage 
and frequency scaling will be profitable. Since the runtime 
overhead of dynamic voltage/frequency adjustment can be 
significant, global program analyses are needed to  detect 
program regions of sufficiently large granularity. Typically, 
hardware and operating system techniques are restricted to  
observe and evaluate program behavior within a restricted 
window of past program activity. In addition, compilers can 
reshape program behavior through local and global transfor- 
mations, enabling additional program optimizations. The 
discussion of such “reshape” transformations is beyond the 
scope of this paper. 

In a single user environment, the compiler generated volt- 
age and frequency adjustment instructions are directly ex- 
ecuted, assuming that the program is not preempted. In a 
multiprogramming environment where swapping may occur, 
the compiler can provide an application profile to the oper- 
ating system that contains information about all requested 
frequency and voltage transitions during a program execu- 
tion, and leave it to  process scheduler to negotiate between 
the different process requirements. 

1.3 Our Contributions 
In previous work[81, we proposed a simple compile-time 

model to select the appropriate clock frequency at the cost 
of tunable performance penalty, and applied the model to  
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(1) Identify program regions R, as candidates for 

(2) Model expected performance 

dynamic voltage/frequency scaling. 

( a )  Determine W,"', W,". , and W,". , for instance by 

(6) Compute slow-down factor 6,. 
using program execution traces. 

( 3 )  Select single region with highest predicted benefit 

(4) Insert voltage/frequency setting instructions. 

Figure 1: Outline of basic compilation strategy. 

a set of kernels to show its effectiveness. This paper ex- 
tends our previous work to whole programs, and discusses 
the benefits of voltage and frequency scaling for programs 
in the SPECfp95 benchmark. 

While there is no opportunity of slowing down entire pro- 
grams in the SPECfp95 benchmark without incurring a sig- 
nificant performance penalty, we discuss new techniques that 
identify certain profitable regions in the benchmarks and se- 
lect appropriate slow-down factors using our model. Simu- 
lation results show that the CPU energy savings of 3.97%- 
23.75% are achieved with an overall performance penalty of 
at  most 2.53%. A simple system energy model consisting 
of a CPU and memory has similar results. (3.93%-23.25% 
energy savings across the benchmark). 

The rest of the paper is organized as follows: Section 2 
reviews the simple model proposed in [8],  and how it, is modi- 
fied to be region-based. Section 3 discusses our experimental 
results, followed by a brief summary of related work and a 
conclusion in Sections 4 and 5, respectively. 

2. COMPILER DIRECTED FREQUENCY 
SCALING 

In [8],  we proposed a way to determine the CPU slow- 
down factor 6 with respect to performance penalty d,  as 
follows: 

1 5 6 5 1 + min(d/Wc, wm/wb) 
memory latency 1 is divisible by 6 

(1) 
(2) 

where Wb, W,, W,  represent the duration in which CPU 
activity (including L1 and L2 activity) is overlapped with 
memory access, is not overlapped with memory access, and 
is stalled due to memory access. Equation (2) takes into 
account the clock skews due to mismatch of memory and 
CPU speed. 

marks with the 1% performance penalty showed that slowing 
down the entire program is not profitable for any benchmark 
[9]. Thus, the compiler will apply the algorithm to program 
regions instead. For example, in benchmark swim there is a 
region Rq such that our algorithm selects 6 = 2. And simu- 
lation result show that this slow-down saves 23.2% of total 
CPU energy and only degrades the performance by 1.7%. 

Typically, a program consists of multiple program regions. 
The selection algorithm needs to be able to select a subset of 
them to slow down without introducing too much overhead 
due to switches between different voltages/frequencies. In 
addition, it needs to assign different slow-down factors to dif- 
ferent selected regions so as to maximize the overall energy 
savings without violating the global performance penalty 

Applying this 6-selection algorithm to the SPECfp95 bench- 

RI 

R2 

R3 

9 0  

R4 

CALL INITAL 
NCYCLE=NCYCLE+l 
CALL CALCl 
CALL CALC2 
IF (NCYCLE >= ITMAX) STOP 
IF (NCYCLE <= 1) THEN 

ELSE 

ENDIF 
GO TO 90 

CALL CALC3Z 

CALL CAW3 

Figure 2:  The outermost program structure of 
benchmark swim with marked candidate regions. 

constraint. The first part will be sketched in the following 
section while the second section is beyond the scope of this 
paper and we refer the readers to [9] for further information. 

Finally, we want to point out that various strategies can be 
used to determine We, W,, and wb, such as static compile- 
time analysis, on- and off-line performance monitoring, or 
a combination of both. We are currently evaluating differ- 
ent mechanisms to determine these values in terms of their 
cost/precision tradeoffs. For this paper, we assume a trace 
based approach with a trace generated by a characteristic 
program execution. 

2.1 Basic Compilation Strategy 
The basic compilation strategy is shown in Figure 1. Pro- 

gram regions are evaluated in a top-down fashion based on 
the program structure, starting with the entire program as 
the single, outermost region. Regions are evaluated based 
on their expected benefits in terms of power/energy savings. 
For simplicity, our current approach selects only a single re- 
gion. 

The selected program region will be assigned a single volt- 
age and frequency. Dynamic changes of voltage and fre- 
quency will occur only between the region and other por- 
tions of the program. The granularity of the region needs 
to be large enough to compensate for the overhead of volt- 
age and frequency adjustments. Initially, we consider single 
or sequences of procedure calls, loop nests, and if-then-else 
constructs as candidate regions. 

We illustrate our compilation strategy using benchmark 
swim, as shown in Figure 2.1. Four regions RI - Rq are 
considered. Based on the W,"., W,". , W,". values of each 
region as shown in Table 2.1, we compute slow-down factor 
6, and potential energy savings (E), and select region Rq to 
be slowed down. The next step is to insert voltage/frequency 
setting instructions at  the entry and exit of the region. In 
our example, an instruction setting CPU speed by half is 
inserted right before the I F  and an instruction resuming the 
full speed is inserted right after the ENDIF. 

3. EXPERIMENTS 
Experiments were done through simulation, using the Sim- 

pleScalar tool set [4]. The simulator models an out-of-order 
superscalar processor and a memory subsystem that cap- 
tures the impact of memory bandwidth and memory latency. 
Specifically, the memory system contains a 32KB L1 I-cache 
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Table 1: The decomposition of total execution CJ 

for regions of benchmark swim. 
rcles 

and D-cache and a 512KB L2 cache. All caches are direct- 
mapped, write-back, and can hold up to  eight outstanding 
misses. The main memory is blocking, with 100-cycle access 
latency, and runs at 1/4 of the processor speed. Details can 
be found in [9]. 

The overheads of switching between voltages/frequencies 
are also modeled. A voltage/frequency setting instruction 
first stops fetching new instructions and drains the pipeline, 
followed by waiting until the desired frequency is generated, 
and then resume the execution. In our experiments, the 
period of scaling up/down to the new frequency is set to be 
a constant of 10,000 cycles (10 ps for a lGHz processor) '. 

3.1 Analytical Energy Models 
Due to the long simulation time, we use three simple ana- 

lytical energy models to  access the benefits gained from our 
compilation strategy. They model active CPU energy, total 
CPU energy, and total system energy. All these models are 
based on associating with each cycle an energy cost. Specif- 
ically, given a program in which region R is slowed down by 
6 ,  we introduce four "component" models: 

where E1 and E2 model the CPU energy usage when it is 
active and idle, respectively; E3 and E4 model the memory 
energy usage when it is active and idle, respectively. Pa- 
rameter r is the refresh cycles, l is the memory latency, and 
p:'", p p ,  pm/c are particular ratios with respect to the en- 
ergy cost of an active CPU cycle. In our evaluation, we set 

memory consuming 2/3 of total energy. 
pPuc = 30%, pmlc = 2, p y  = 2, and r = 10,000, considering 

3.2 Experimental Results 
SPECfp95 are used for the experiments. To reduce simu- 

lation time while retain the behavior of the reference data in- 
put, we used Burger's standard data sets (std) [3]. And our 
compilation strategy was applied by hand to all the bench- 
marks. The implementation of the proposed strategy is cur- 
rently underway. Since we slowed down at most one region 
in each benchmark, the experimental results are most likely 
suboptimal. The simulation results are shown in Table 3.2. 

All benchmarks, except f pppp, can be slowed down to save 
2.44%-16.09% of active CPU energy ( E l ) ,  3.97%-23.75% of 
total CPU energy (E1+E2), and 3.93%-23.25% of the overall 
system energy (El  + E2 + E3 + E4), at the performance 

'The scaling period for DVS-capable processors can take as 
long as 520ps ([a]) or 140ps ([HI) 

penalty of 0.77%-2.53%. Benchmark fpppp cannot benefit 
from our compiler strategy since it is extremely CPU-bound. 

The cost of scaling up/down the voltage and frequency 
is linearly proportional to the number of repetitions in std 
data sets. Given that benchmarks execute 0.73-15.62 billions 
of cycles and the repetitions is in the range of 2-62, this 
dynamic scaling cost turns out to  be insignificant. Most 
of performance degradation comes from the impact of CPU 
slow-down to the program execution. 

4. RELATED WORK 
On the hardware side, there have been efforts in build- 

ing up microprocessors capable of dynamic voltage and fre- 
quency scaling (DVS), such as Transmeta's Crusoe, Intel's 
Xscale, and [2, 181. On the software side, new scheduling al- 
gorithms at the operating system level have been proposed, 
either task-based (for example, [24, 10, 7, 15, 13, 20, 221) 
or interval-based (for example, [23, 6, 17, 211). Early task- 
based scheduling algorithms focus on the CPU slackness be- 
tween tasks. Recently, intra-task scheduling algorithms [ll, 
14, 12, 191 are advocated. 

5. CONCLUSION AND FUTURE WORK 
Dynamic frequency and voltage scaling is an effective way 

to reduce power dissipation and energy consumption of memory- 
bound program regions. This paper discussed a simple per- 
formance model that allows the selection of efficient slow- 
down factors. Experiments based on the full SPECfp95 
benchmark set and a simulator for an advanced superscalar 
architecture indicate the effectiveness of our approach. The 
resulting CPU energy savings of our compilation strategy 
are in the range of 3.97%-23.75% with a performance slow- 
down of 0.77%-2.53%. The energy savings of the whole sys- 
tem case are similar. 

We are currently investigating the impact of aggressive 
compiler optimizations on the slow-down opportunities, pos- 
sible program reshaping transformations to enable or en- 
hance slow-down opportunities, and extensions of our ap- 
proach to  deal with CPU bound computations with the op- 
portunity of slowing down the memory subsystem. An im- 
plementation of the proposed strategy as part of the SUIF 
compiler infrastructure [ 11 is currently underway. 
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