
1

ABSTRACT

Given a fixed CPU architecture and a fixed DRAM timing specifica-
tion, there is still a large design space for a DRAM system organiza-
tion. Parameters include the number of memory channels, the
bandwidth of each channel, burst sizes, queue sizes and organiza-
tions, turnaround overhead, memory-controller page protocol, algo-
rithms for assigning request priorities and scheduling requests
dynamically, etc. In this design space, we see a wide variation in
application execution times; for example, execution times for SPEC
CPU 2000 integer suite on a 2-way ganged Direct Rambus organi-
zation (32 data bits) with 64-byte bursts are 10–20% lower than exe-
cution times on an otherwise identical configuration that uses 32-
byte bursts. This represents two system configurations that are rela-
tively close to each other in the design space; performance differ-
ences become even more pronounced for designs further apart.

This paper characterizes the sources of overhead in high-perfor-
mance DRAM systems and investigates the most effective ways to
reduce a system’s exposure to performance loss. In particular, we
look at mechanisms to increase a system’s support for concurrent
transactions, mechanisms to reduce request latency, and mecha-
nisms to reduce the “system overhead”—the portion of the primary
memory system’s overhead that is not due to DRAM latency but
rather to things like turnaround time, request queueing, inefficien-
cies due to read/write request interleaving, etc. Our simulator mod-
els a 2GHz, highly aggressive out-of-order uniprocessor. The
interface to the memory system is fully non-blocking, supporting up
to 32 outstanding misses at both the level-1 and level-2 caches and
split-transaction busses to all DRAM banks.

1 INTRODUCTION

As many recent studies have shown, the memory system is one of
the primary bottlenecks in current systems. Further, a number of
studies show that, within the memory system, the memory bus
accounts for a substantial portion of the primary memory’s over-
head. For example, Schumann reports that, in Alpha workstations,
30–60% of primary memory latency is attributable to system over-
head rather than to latency of DRAM components [22]. Brown and
Seltzer cite memory-bus turnaround as responsible for a factor-of-
two difference between predicted execution time and actual mea-
sured execution time on a Pentium Pro system [1]. Cuppu, et al.
demonstrate the inability of a 128-bit 100MHz (1.6 GB/s) memory
bus to keep up with high-performance DRAMs [5]. Bryg, et al. esti-
mate that 20–30% of the Hewlett-Packard memory bus bandwidth is
lost to dead cycles in back-to-back read/write transactions [2].

There are a number of paths developers and researchers have
taken to reducing the overhead of the primary memory system.

These have largely been divided into approaches that are focussed
on the DRAM component and those that are focussed on the system
or bus component. For example, a simple DRAM-oriented approach
has been to increase DRAM bandwidth. This is the tack taken by the
PC industry recently, with the widespread shift from 800 MB/s
PC100 SDRAM systems to 1.1 GB/s PC133, 1.6 GB/s Direct Ram-
bus, and 2.1 GB/s DDR266 SDRAM systems. This brings the mem-
ory bandwidth of the PC up to that of traditional RISC workstations,
such as several UltraSPARC and Alpha models, and to within an
order of magnitude of many server-class machines.

Another approach is to reduce DRAM latency. DRAM vendors
have recently announced numerous core variations that improve
access time. For example, Enhanced Memory System’s ESDRAM
improves performance over regular SDRAM by adding an SRAM
cache for the full row buffer, thereby allowing precharge to begin
immediately after an access and DRAM writes to go directly to the
core without destroying read locality [5, 7, 6]. Fujitsu’s FCRAM
subdivides each internal bank by activating only a portion of each
word line, thereby reducing capacitance on the word access and
improving access time over that of standard SDRAM to roughly
30ns [9, 10]. MoSys takes this a step further and subdivides the on-
chip storage into a large number of very small banks (on the order of
32KB each), reducing the access time of the DRAM core to nearly
that of SRAM [39, 19, 10]. Several vendors have placed large
amounts of SRAM onto the DRAM die, in addition to the row buff-
ers, in an attempt to reduce latency. For example, NEC’S VCDRAM
places a set-associative SRAM buffer on the die that holds an imple-
mentation-defined number of sub-page (typically 10–100), where a
sub-page is a subset of the bits activated by a column access and is
on the order of 16–32 bytes [6, 10].

Recent studies show that these DRAM-oriented approaches do
reduce application execution time [5, 7]. However, focussing on the
DRAM alone is not enough; we note that, even with zero-latency
DRAM access, the overhead of the primary memory system would
not reduce to zero, because bus transactions still require time. To
begin with, there is the obvious time to transfer addresses and data
over the bus to and from the DRAM subsystem. In addition, factors
such as turnaround time, queueing delays, and inefficiencies due to
asymmetric read/write request shapes on an in-order bus all add
together to produce a sizable overhead. In multiprocessor systems,
the overhead is even larger, due to arbitration and cache coherency
protocols—moreover, many uniprocessor systems share the memory
bus with graphics chips in an organization that effectively makes the
uniprocessor system behave like a multiprocessor.

In addition to efforts aimed at improving DRAM devices, we
must also improve the connection between the CPU and the DRAM
devices—we must improve the overhead of the memory bus. There
are a number of approaches one can take, including changing the

Concurrency, Latency, or System Overhead: Which Has the Largest Impact
on Uniprocessor DRAM-System Performance?

Vinodh Cuppu and Bruce Jacob
Dept. of Electrical & Computer Engineering

University of Maryland, College Park
{ramvinod,blj}@eng.umd.edu

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

2

nature of the request stream, increasing the available concurrency in
the memory system, decreasing the latency of the memory system,
and attacking system overhead that is due to queueing, turnaround,
etc. An example of the first type of optimization is access reorder-
ing, which compacts sparse data into densely-packed bus transac-
tions, thus reducing both the number of bus transactions and,
potentially, the duration of each. This has been explored by many in
academia, including McKee, et al. and the Impulse group at Utah
[22, 21, 24, 4, 15].

Another approach is to increase available concurrency on the
memory channel. This can be done by supporting concurrent access
to different, independent DRAM banks via the same channel or by
replicating resources and providing multiple, independent channels
to different DRAM banks—or by a combination of the two. Concur-
rent access on the same channel is usually through pipelined
requests or split-transaction requests [23, 21, 2], the primary differ-
ence being that split-transaction busses allow requests to be handled
and responses delivered to the requestor/s out-of-order. Note that
concurrency on the same channel can be provided at either the bus-
organization level or the DRAM-interface level, or both. For exam-
ple, the Direct Rambus device interface is fully pipelined, support-
ing up to four concurrent requests [21]. Concurrency over multiple
DRAM channels has been common in high-end server-class
machines for some time, but the advent of narrow, high-speed
DRAM interfaces has made it economically feasible to provide mul-
tiple DRAM channels in even the value-end of the market. For
example, the Sony Playstation 2 has two Direct Rambus channels on
board [8], and the Compaq Alpha 21364 will support four or more
Direct Rambus channels [12].

The third approach is to decrease the latency on the channel. This
is not the latency due to the access time of the DRAM core; it is the
latency that is due to stalling for memory-bus resources. For exam-
ple, if two read requests arrive at the memory system back-to-back,
the second must stall until the first one gives up the data bus,
increasing its latency by the duration of the first. Another example:
if a read request to a particular DRAM bank arrives while the bank is
precharging its bit-lines, the request must stall. Holding all else con-
stant, narrow channels tend to have a higher number of databus-
related stalls than wide channels, because the end-to-end request
time is longer than on a wide channel. Data bursts of long duration
tend to result in a higher number of stalls, but the burst length also
affects how well the precharge time is hidden, and longer bursts
expose less of the precharge overhead to later requests.

The last of the bus-oriented approaches is that of addressing sys-
tem overhead, including bus turnaround time, dead cycles on in-
order busses due to asymmetric read/write shapes, queueing over-
head, coalescing requests that are queued (when possible), and
dynamic re-prioritization of requests. Parameters that affect this
overhead include the shapes of read and write requests (delaying the
data packet for a write makes the two symmetric and therefore easier
for a memory controller to schedule) and the queue size (larger
queues offer more opportunity for delaying write requests until read
traffic has subsided, and requests that sit in the queue for a longer
time have an increased probability of being coalesced or cancelled).

The obvious question is which of these factors is the most impor-
tant? Which contributes the most to the overhead of the primary
memory system, and which can be best exploited to reduce applica-
tion execution time? In this paper, we quantify these overheads,
investigate methods to address the overheads, and measure the effec-
tiveness of each method by varying the degree to which it is used
(e.g. by varying the bandwidth of a DRAM channel, number of
banks, etc.). We find that it is essential to support concurrency in the
DRAM system, but not to the extent that it adversely affects transac-
tion latency. Methods that improve concurrency at the expense of
latency include using multiple channels and small burst lengths.

Methods that increase available concurrency without affecting
latency include using multiple independent banks per channel. All in
all, we find that, by appropriately sizing the system parameters, one
can improve execution time by 30% over the average case and by
50% over poorly performing organizations such as a 32-bit, 800
MHz memory channel, four independent DRAM banks, and a burst
size of 32 bytes (which would at first glance seem to be a perfectly
capable high-performance configuration).

Our simulator is based on SimpleScalar 3.0a and models a fast
(simulated as 2GHz), highly aggressive out-of-order uniprocessor
[15]. The interface to the memory system is non-blocking, support-
ing up to 32 outstanding misses at both the level-1 and level-2
caches. The memory-system bus supports pipelined and split trans-
actions. We model 1, 2, and 4 independent 800MHz channels with
data widths of 8 bits, 16 bits, 32 bits and 64 bits each, representing
memory bandwidths from 800 MB/s to 25.6 GB/s. We focus on the
more memory-intensive applications in the SPEC CPU 2000 integer
suite. As one would expect, our results are dependent on our choices
of system parameters and benchmarks studied.

2 BACKGROUND

A Random Access Memory (RAM) that uses a single transistor-
capacitor pair for each binary value (bit) is referred to as a Dynamic
Random Access Memory or DRAM. The operation of the traditional
DRAM was defined several decades ago, and as this has become a
performance bottleneck, a number of evolutionary and revolutionary
changes have been made [26]. The performance of many of these
DRAMs in the context of a fixed bus architecture has been studied
recently [5, 7, 6], and more detail on the nature of DRAM operation
can be found there and elsewhere [26, 18].

2.1 Access Timing at the DRAM Device Level

Most DRAM in use today are synchronous: they run off an external
clock derived from the bus. A timing diagram for a typical Synchro-
nous DRAM is shown in Figure 1. SDRAM devices typically have a
programmable register that holds a bytes-per-request value.
SDRAM may therefore return the bytes for a large request over sev-
eral cycles. Note that there is only one burst width: all reads and
writes use the same transaction granularity.

The timing diagrams of all modern DRAMs look similar, with the
most noticeable differences being the clock frequencies and the
number of cycles for each phase of the transaction. For example, the
read-transaction timing diagram for Direct Rambus, which is con-
sidered a radical departure from traditional DRAMs, is shown in
Figure 2. The soonest that the bank can be precharged and reacti-

Figure 1: SDRAM Read Operation Clock Diagram. SDRAM contains a
writable register for the request length, allowing high-speed column access.

CAS

Address

DQ Valid
Dataout

Valid
Dataout

Valid
Dataout

Column
Address

Row
Address

RAS

Clock

Valid
Dataout

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

3

vated is also shown, though other banks can be activated sooner.
ACT1 and ACT2 are row activate commands, PRE is the precharge
command, RD0 to RD3 are read commands and DO0 to DO3 are
the corresponding dataouts. Direct Rambus uses a 400 Mhz 3-byte
channel (2 for data, 1 for addresses/commands). Direct Rambus
parts transfer on both clock edges, implying a maximum bandwidth
of 1.6 Gbytes/s. Because DRDRAM partitions the bus into different
components, four transactions can simultaneously utilize the differ-
ent portions of the DRDRAM interface (the overlap is four and not
three because control information can be embedded in column
address packets) [21].

2.2 Access Timing at the DRAM System Level

At the system level, the request timing is slightly different. In PC
architectures and most workstation architectures, an external mem-
ory controller is responsible for sending the row and column
requests directly to the DRAM, pictured in the top half of Figure 3.
This is a relatively simple example, in which the output pins of the
DRAM are connected directly to the data pins of the CPU (e.g., the
Alpha server described by Schumann [22]). This modularity makes
more of the CPU’s pins available for data (as opposed to putting the
memory controller on the CPU), thereby increasing the CPU’s
potential pin bandwidth; it allows simpler implementation of multi-
processor systems (including uniprocessor systems with external
graphics processors), as it provides a single point of contact for the
DRAM system; it provides upward compatibility to the system by
allowing it to use future DRAMs without significant redesign (only
the lowest-level memory controller needs to be redesigned) [14];
and it is essential in server configurations with large amounts of
memory on large numbers of DIMMS, as the capacitance of such a

system usually requires that the DIMMs be placed on separate, mul-
tiplexed, busses [22, 14].

One of the side-effects of the modular design is that the timing of
operations changes slightly. The most obvious change is that the
address is sent to the memory controller all at once, and it is not until
the following cycle that the DRAM bank is activated with the row-
address command. The bottom half of Figure 3 shows how a Direct
Rambus-like access timing fits within the framework of a full
DRAM system.

We model the data bus at 800 MHz with different widths. The
address bus is modeled as a 1-byte 800 MHz channel that requires
10ns to transmit a 64-bit read-address packet. Figure 4 shows exam-
ples of the timings used in this study, which are similar to those
reported in the literature [2, 14, 22]. The figure presents numbers for
burst widths equal to 32, 64, and 128 bytes on a 32-bit 800 MHz
channel. As mentioned previously, a burst is the smallest atomic
transaction size—all read and write requests are processed as an
integral number of bursts, and the bursts of different requests may be
multiplexed in time over the same channel. We model the bus turn-
around time as a constant number of bus cycles; for this study, we
simulated both 1 cycle and 0 cycles.

Figure 5 illustrates how back-to-back requests can be overlapped
in time on a split-transaction bus, similar to the behavior of existing
busses [2]. Back-to-back reads can be pipelined, provided they
require different banks. Back-to-back read/write pairs can be simi-
larly pipelined, but it is also possible to nestle writes “inside of”
reads, as shown in Figures 5(b), provided the conditions support it.
This last feature is only possible because the asymmetric nature of

Figure 2: Direct Rambus Read Clock Diagram. Direct Rambus DRAMs
transfer on both edges of a fast clock and can handle multiple simultaneous
requests to different banks.

DATA[17:0]

COL[4:0]

ROW[2:0]

RD1

DO0 DO1 DO2

RD2 RD3

PRE

Four 2.5ns cycles

DO3

RD0

ACT1 ACT2

Figure 3: Typical System Organization for Uniprocessor. Figure
adapted from [22]. This is the system modeled in this paper; note the lack of
AGP, which would tend to overestimate system performance.

t0

<DB0><DB1><DB2><DB3>DATA BUS

ADDRESS BUS

DRAM BANK

READ REQUEST TIMING:

<ROW> <COL> <PRE>

CPUCache

MC

DRAMDRAM DRAM DRAM

Backside bus Frontside bus

Data bus (800MHz)

Row/Column Addresses & Control

Address

Control

Address

Data bus

(800MHz)

Figure 4: Bus and bank occupancies for 800MHz channel. Each DRAM request requires the address bus, the data bus, and whatever bank it is destined
for. The shape of these request blocks is dependent on the burst widths. Figures are shown for burst-widths equal to (a) 8 times the bus width (e.g. 8 bytes over
a 1-byte channel), (b) 16 times the bus width, and (c) 32 times the bus width. One of the interesting points is that, though reads and writes are asymmetric, they
become less so as the burst width increases.

t0

10ns

10ns

90ns

DATA BUS

ADDRESS BUS

DRAM BANK

70ns

READ REQUESTS:

DATA BUS

ADDRESS BUS

DRAM BANK

20ns

10ns

90ns

70ns

DATA BUS

ADDRESS BUS

DRAM BANK

40ns

10ns

100ns

70ns

t0

10ns

10ns

90ns

DATA BUS

ADDRESS BUS

DRAM BANK

40ns

WRITE REQUESTS:

DATA BUS

ADDRESS BUS

DRAM BANK

20ns

10ns

90ns

40ns

DATA BUS

ADDRESS BUS

DRAM BANK

40ns

10ns

90ns

40ns

(a)

(b)

(c)

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

4

read/write requests, and it is only possible on a split-transaction bus.
Note that, though reads and writes are asymmetric, they look less so
as the burst width increases and the time that the data bus is held
grows large.

2.3 Burst Ordering and Coalescing, Bit Addressing,
and Page Policy

Our burst ordering is critical-burst first, non-critical bursts second,
and writes last. Queued bursts can be coalesced if later requests tar-
get the same memory region. The bit assignments are chosen to
exploit page mode and maximize the degree of memory concurrency
achieved by the application. The page policy is close-page auto-pre-
charge [7], and we assume SRAM buffering of one DRAM page in
the style of ESDRAM [10]. These are not new concepts; they are
characteristics of many high-performance memory busses, and they
are described in more detail in the following paragraphs.

If a burst is smaller than the level-2 cache line size, there are a
number of options for the ordering of the burst-sized blocks that
make up the request. In this study, the block containing the critical
word is always fetched first and takes priority over any other block
in the queue, unless that block also contains a critical word. Write
requests are always given lowest priority and tend to stack up in the
queue until all the reads drain from the queue. If a low-priority read
request is still in the queue when the CPU executes a data load to the
same address as its data block, that low-priority read request is
dynamically promoted to a high-priority read request over all other
low-priority requests in the queue. Queued requests are coalesced or
cancelled if later requests are to the same address. For example, if a
queued write is followed by a read to the same address, the read
returns the data from the write block rather than generate another
request. If a queued read is followed by another read to the same
address, they are coalesced into one request.

To maximize the effectiveness of page mode, memory is divided
into DRAM page-sized chunks. To maximize request concurrency,
the lowest-order bits after the DRAM page offset choose the DRAM
channel, the next bits choose the bank, and the highest-order bits

choose the row. Address bits are assigned so that the most significant
bits identify the smallest-scale component in the system, and the
least significant bits, which should change most often from request
to request, identify the largest-scale component in the system.
Simultaneous requests to adjacent DRAM-page-sized blocks in the
memory system will go out on two different DRAM channels if
available, and the requests that make up a cache-block fill will go to
the same DRAM page. Both exploit concurrency to the greatest
degree possible because sequential addresses are striped across
entire DRAM channels, and the requests that make up a cache-block
fill can exploit a DRAM’s page mode.

The DDR2 working group is leaning toward a close-page auto-
precharge policy. This makes sense as systems go to larger amounts
of DRAM; to fully exploit an open-page mode, a memory controller
needs to retain information on every open page in the DRAM sys-
tem, which can get expensive. Therefore, we assume a close-page
auto-precharge policy in our simulations. Our address-bit assign-
ments will direct adjacent cache-fill requests to the same DRAM
page, which in a normal close-page policy would encounter an inter-
vening precharge cycle. Nonetheless, we do not stall in this situa-
tion; the use of a DRAM’s page mode is possible (and only possible)
because we expect that the DRAM device will have ESDRAM-style
page buffering [10]: one full page of SRAM storage per internal
bank. The benefit of such buffering is that it allows a memory con-
troller to implement a close-page auto-precharge policy without
destroying any read locality for future requests to the same DRAM
page. This does, however, incur the penalty of keeping track of all
the open pages.

2.4 CPU Model

To obtain accurate timing of memory requests in a dynamically reor-
dered instruction stream, we integrated our code into SimpleScalar
3.0a, an execution-driven simulator of an aggressive out-of-order
processor [4]. Our simulated processor is eight-way superscalar; its
simulated cycle time is 0.5ns (2GHz clock). Its L1 caches are split
64KB/64KB; both are 2-way set associative; both have 64-byte line-

Legal if turnaround ≤ 10ns and R/W to different banks:

Legal if R/R to different banks:

Figure 5: Concurrency within a single channel. If two concurrent reads require different banks, they can be pipelined across the address and data bus as
shown in (a). Writes can be nestled inside of reads, provided the bus turnaround time is low and the burst width is small (b). However, for some burst sizes, reads
and writes cannot be nestled (c).

(a)

(b)

(c) Back-to-back R/W pair that cannot be nestled:

(note: write can start up to 8.75ns later if turnaround = 1.25ns)

20ns

10ns
90ns

70ns

20ns

10ns
90ns

40ns

20ns

10ns
90ns

70ns

Legal if no turnaround and R/W to different banks:

Read:

Write:
10ns

10ns
90ns

40ns

10ns

10ns
90ns

70ns

Read:

Write:

20ns

10ns
90ns

70ns

Read:

Read:
20ns

1010

40ns

10ns
90ns

40ns

40ns

10ns
100ns

70ns

Read:

Write:
10

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

5

sizes and 1-cycle access time. Its L2 cache is unified 1MB, 4-way
set associative, writeback, has a 128-byte linesize and a 10-cycle
access time. The L1 and L2 caches are both lockup-free, and both
allow up to 32 outstanding requests at a time. For our lockup-free
cache model, a load instruction that misses the L2 cache is blocked
until it obtains a miss status holding register (MSHR) [15], and it
holds the MSHR only until the critical burst of data returns (remem-
ber that the atomic unit of transfer between the CPU and DRAM
system is a burst). This scheme frees up the MSHR relatively
quickly, allowing subsequent load instructions that miss the L2
cache to commence as soon as possible and assumes that the cache
tags can be checked for the subsequently arriving blocks without
disturbing cache traffic. We model this optimization to put the high-
est possible pressure on the physical memory system—it represents
the highest rate at which the processor can generate concurrent
memory accesses given the number of available MSHRs.

2.5 Timing Calculations

Much of the DRAM access time is overlapped with instruction exe-
cution. To determine the degree of overlap, we run a second simula-
tion with perfect primary memory (no overhead). Similar to the
methodology in [5], we partition the total application execution time
into three components: TP TM and TO which correspond to time
spent processing, time spent stalling for memory, and the portion of

time spent in the memory system that is successfully overlapped
with processor execution. In addition, we divide the memory-system
overhead into TS which indicates the system overhead that is irre-
spective of the latency of DRAM devices. In this paper, time spent
“processing” includes all activity above the primary memory sys-
tem, i.e. it contains all processor execution time and L1 and L2
cache activity. Let TREAL be the total execution time for the realistic
simulation and let TDRAM be the portion of the total execution time
that is spent in the DRAM system; let TPROC be the execution time
with a perfect DRAM device and bus organization (modeled by a 1-
cycle L2 cache miss); let TSYS be the execution time with a perfect
DRAM device but normal bus organization. Then we have the fol-
lowing:

• TM = TREAL – TSYS

• TS = TSYS – TPROC

• TO = TPROC + TDRAM – TREAL

• TP = TREAL – TDRAM

The relationships between the different time parameters are illus-
trated in Figure 6.

3 EXPERIMENTAL RESULTS

This paper focusses on the relationships between concurrency,
latency, and system overheads on the memory bus. We characterize
these overheads, and we investigate methods that reduce the sys-
tem’s exposure to bus- and system-related performance loss. The
simulations cover the following range of parameters:

Bus speed: 800 MHz

Bus width: {1, 2, 4, 8 bytes}

Channels: {1, 2, 4}

Banks/channel: {1, 2, 4, 8}

Queue size: {infinite, 0, 1, 2, 8, 16, 32 requests per channel}

Turnaround: {0, 1 cycle}

R/W shapes: {symmetric, asymmetric}

In addition, Table 1 lists the SPEC CPU 2000 integer benchmarks
that we simulated. Note that these are all reasonable values that are
found in physical high-performance systems; none of the configura-
tions simulated could be considered straw-men or intentionally ham-

Table 1: SPEC CPU 2000 Integer Benchmarks

Benchmark Description

164.gzip gzip uses Lempel-Ziv coding (LZ77) to compress input files. It is a popular data compression program. The
benchmark run compresses and decompresses a large, already-compressed input file in memory at different
blocking factors.

175.vpr VPR is a FPGA placement and routing program that implements a technology-mapped circuit.

176.gcc 176.gcc is based on gcc version 2.7.2.2 that generates code for the Motorola 88100 processor. It runs with many
optimization flags enabled.

181.mcf MCF is a single-depot vehicle scheduling program for public mass transportation.

197.parser Parser chops the input sentences into words and performs certain parsing functions.

253.perlbmk Perlbmk is a cut-down version of Perl v5.005_03. The benchmark run generates email messages from a set of
random components and converts them to HTML.

255.vortex Vortex is an object-oriented database transaction benchmark. The benchmark builds and manipulates three
separate, but interrelated, databases.

256.bzip2 Bzip2 is based on bzip2 version 0.1, which is a data-compression utility. Like gzip, the benchmark run
compresses and decompresses a large, already-compressed input file in memory with different blocking factors.

300.twolf TimberWolfSC is a placement and global routing package which uses simulated annealing as a heuristic to find
very good solutions for row-based standard cell designs.

Figure 6: Definitions for execution-time breakdowns. The results of
several simulations are used to show time spent in the memory system vs.
time spent processing vs. the amount of memory latency hidden by the
CPU.

DRAM Latency

System Overhead +

CPU Execution

CPU + DRAM

tDRAM

tPROC

tSYS

tREAL

tREAL - tSYS

tSYS - tPROC

tREAL - tDRAM

tPROC - (tREAL - tDRAM)

tM

tS

tO

tP

DRAM

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

6

strung. Therefore, any variations that we see in performance are very
significant.

3.1 The Bottom Line

Figure 7 shows the range of performance one sees when varying
these parameters and includes the average, best-case, and worst-case
execution times with an infinite request queue. We see that there is a
3x difference between the worst-performing configurations and the
best-performing configurations. As later graphs will show, the best-
and worst-case configurations are not outliers—there are usually
quite a few configurations at or near the top and bottom, and they
tend to be the same configurations from benchmark to benchmark.

Now that we see a significant variation in performance over what
seems a very reasonable set of system parameters, the question is
what is causing these differences? Because several studies have sug-
gested bus turnaround to be a significant source of overhead, one
might think of looking at turnaround first. Figure 8 shows the effect
of reducing turnaround time in a 32-entry request queue to 0 cycles,
which amounts to a reduction of roughly 5% of system-related over-
head. Note that these results represent a large (but finite) queue size
which allows writes to be delayed; however, turnaround only
accounts for 5–10% overhead in a queue-less system.

What is more significant is the number of banks attached to the
memory channel. This alone yields a factor of 1.2x to 2x variation in
performance within a bandwidth configuration, and it suggests that
support for concurrency is much more important than turnaround
time. We also see that the system overhead can be 10–40% of the
primary memory latency for some configurations and some bench-
marks (the primary memory latency is everything above “perfect”
CPU execution and includes the top two components of each bar).
This system overhead is reduced considerably by additional banks.
These results suggest that there is much to be gained by adding sup-
port for concurrency. The following sections look at this in more
depth. First, we will look at latency effects; then we will look at con-
currency effects; lastly, we will look at overhead related to the
request queue.

3.2 Fine-Tuning the Transaction Burst Length

The burst length is the minimum number of bytes transferred on any
given request and so represents the minimum amount of time the
data bus can be held. If two requests are interleaved, they are done
so at the burst-length granularity. As mentioned previously, the burst
length affects transaction latency in several ways: later instructions

must stall until earlier transactions have finished using the address
and data busses, which gives preference to smaller bursts, but
shorter bursts expose more of the precharge overhead to later
requests. Smaller burst lengths allow faster access to critical data
chunks when multiple requests are serviced within a short window
of time. However, if the interleaved requests go to the same bank,
each will incur the precharge penalty. Larger burst lengths reduce the
apparent asymmetry between read and write request shapes and
amortize the cost of bus turnaround over a larger number of bytes
transferred. They also reduce a cache block’s stall time due to pre-
charge delay. However, with large bursts the address and data busses
take longer to become available for queued requests, which reduces
the amount of overlap between program execution and memory
latency. We measure the performance effects of burst lengths of 32,
64, and 128 bytes; across even this small range of burst lengths,
while keeping all other parameters constant, execution time varies
by 10–30%, as shown in Figure 9.

The figure shows a number of things. To begin with, there are
some obvious trade-offs related to burst size and channel width that
can affect execution time significantly within a constant system
organization. Configurations with wider channels (32/64 data bits)
have optimal performance with larger bursts. Those with narrow
channels (8 data bits) have optimal performance with smaller bursts.
Those with medium channels (16 data bits) have optimal perfor-
mance with medium bursts.

If concurrency were all-important, we would find smaller bursts
to be better, because this would allow us to interleave the bursts of
multiple read/write requests. Instead, we see that the optimal burst
width scales with the bus width. This provides us with an indication
of the degree of concurrency seen in the memory system. This is
shown in Figure 10. The optimal burst size is not a constant; it varies
strongly with the width of the channel considered and corresponds to
a fixed number of data transfers per burst, chosen so that the ratio of
time spent in the RAS/CAS/data/precharge cycle to the time spent
transferring data across the data bus is between 4:1 and 2:1. This
means that the uniprocessor applications that we are studying are
managing to sustain a degree of concurrency on each channel that is
between two and four simultaneous requests. This conclusion is sup-
ported by Figure 11, which shows that increasing the number of
banks per channel up to eight is not a waste of time, suggesting that
these applications can exploit such degrees of concurrency. Note,
however, that as the number of channels increases (the right side of

Figure 7: The range of execution times for the benchmarks studied.

bzip gcc mcf parser perl vpr twolf average

Benchmarks

0

2

4

6

8

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

Worst Organization
Average Organization
Best Organization

Figure 8: The effect of decreasing turnaround and increasing banks,
Benchmark = BZIP, 32-byte burst, 16-bit bus, 32-entry request queue.

1.6 3.2 6.4
System Bandwidth

(GB/s = Channels * Width * Speed)

1 ba
nk/c

hanne
l

2 ba
nks/

ch
an

nel

4 ban
ks/

ch
ann

el

8 b
ank

s/c
hanne

l

1 b
ank/c

hannel

2 ba
nks/

ch
anne

l

4 bank
s/c

ha
nnel

8 b
anks/

ch
ann

el

1 ba
nk/c

han
nel

2 ban
ks/

ch
annel

4 banks/
ch

an
nel

8 ba
nks/

ch
anne

l
0

1

2

3

0-Cycle Bus Turnaround
Regular Bus Organization

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

P
I) DRAM Latency

System Overhead + DRAM
CPU + DRAM
CPU Execution

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

7

the graphs in Figure 9), the performance variations between different
burst sizes tend to decrease—as would be expected, because we
evenly distribute requests over multiple channels. The conclusion:
the optimal burst size reflects the degree of concurrency sustained
by the application. Too many transfers per burst crowds out other
requests that need to use the same data bus; too few transfers per
burst allows the bank overhead (the RAS/CAS/data/precharge cycle)
to dominate.

Note that the rules of thumb (wider channels want larger bursts,
narrow channels want smaller bursts) do not say anything about the
relative performance of different configurations—for example,
which performs better: a wide channel with a large burst size or a
narrow channel with a small burst size? The next section addresses
this question. A related question to answer that is suggested by the
current results is to what extent should we support concurrent trans-

actions in the memory system? Should we do so to the detriment of
transaction latency? The next section investigates this.

3.3 Increasing the Degree of Memory Concurrency

As mentioned previously, there are many ways to achieve concur-
rency in the DRAM system. The CPU must have a number of
MSHRs to support lockup-free caches [15], which then enables con-
current outstanding requests in the primary memory system. The
DRAM system must support these concurrent requests through mul-
tiple DRAM channels, or multiple independent DRAM banks per
channel, or both. To get a better idea of the shape of the design
space, we will now focus on one bandwidth configuration at a time.
Figure 11 shows configurations modeled with bandwidths of
3.2GB/s. This is equivalent to saying “I have four 800MHz 8-bit

12.8 25.6
0

1

2

3

GCC

64-Byte Burst
32-Byte Burst

128-Byte Burst

Figure 9: Burst length versus bandwidth. Configuration: 2 banks/channel

0.8 1.6 3.2 6.4

System Bandwidth

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

(GB/s = Channels * Width * 800MHz)

1 c
han x

 4 byte
s

2 ch
an x

 2 by
tes

4 c
han x

 1 by
te

1 ch
an

 x 8
 byte

s

2 ch
an

 x 4
 byte

s

4 ch
an

 x 2
 byte

s

2 ch
an x 8

 by
tes

4 ch
an x 4

 byte
s

4 ch
an x 8

 byte
s

1 ch
an

 x 2
 byte

s

2 ch
an x

 1 by
te

1 ch
an x 1

 byte

0

1

2

BZIP

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

12.8 25.60.8 1.6 3.2 6.4

System Bandwidth
(GB/s = Channels * Width * 800MHz)

1 c
han

 x 4
 byte

s

2 c
han x

 2 byte
s

4 c
han

 x 1
 byte

1 ch
an x 8

 byte
s

2 ch
an x 4

 byte
s

4 ch
an x 2

 byte
s

2 ch
an x

 8 by
tes

4 ch
an x 4

 by
tes

4 ch
an x 8

 by
tes

1 ch
an x 2

 by
tes

2 c
han x

 1 byte

1 ch
an x 1

 by
te

DRAM Latency
System Overhead + DRAM
CPU + DRAM
CPU Execution

Figure 10: The range of burst widths modeled. Benchmark = BZIP, 32-byte burst, 16-bit bus.

10ns

10ns

90ns

DATA BUS

ADDRESS BUS

DRAM BANK

70ns

DATA BUS

ADDRESS BUS

DRAM BANK

20ns

10ns

90ns

70ns

DATA BUS

ADDRESS BUS

DRAM BANK

40ns

10ns

100ns

70ns

5ns

10ns

90ns

DATA BUS

ADDRESS BUS

DRAM BANK

70ns

DATA BUS

ADDRESS BUS

DRAM BANK

80ns

10ns

140ns

70ns

DATA BUS

ADDRESS BUS

DRAM BANK

160ns

10ns

220ns

70ns

64-bit channel x 32-byte burst

32-bit channel x 32-byte burst
64-bit channel x 64-byte burst

32-bit channel x 64-byte burst
64-bit channel x 128-byte burst

16-bit channel x 32-byte burst

16-bit channel x 64-byte burst
32-bit channel x 128-byte burst

8-bit channel x 32-byte burst

16-bit channel x 128-byte burst
8-bit channel x 64-byte burst

8-bit channel x 128-byte burst

OPTIMAL
CONFIGS

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

8

Rambus-like channels... what should I do? Gang them together, use
them as independent channels, or a combination of the two?” Details
to note:

• Though increasing the number of banks typically increases
performance, it does not always do so by very much. For
instance, when dealing with large bursts, there is less
opportunity to interleave bursts, so the number of banks does
not make much of a difference. Also, when you have multi-
channel systems, this gives a degree of concurrency to the
system that—to an extent—obviates the need for multiple
banks. For 4-way systems, the effect of multiple banks is even
less pronounced than it is for large bursts. In many cases,
doubling the number of independent channels is roughly
equivalent to doubling the number of banks per channel.

• However, trying to exploit concurrency by splitting a memory
bus into multiple narrow channels is very risky. It is heavily
dependent on burst size, because using multiple channels
increases the latency of every request, compared to the
request’s latency on a single, wide channel. Therefore, an
application must generate a large number of concurrent

requests to keep those multiple channels busy, otherwise they
are wasted.

• The trends are similar in all the benchmarks surveyed. The only
differences are where the optimal configuration lies, but there
are several configurations that are always within several
percent of the globally optimal configuration (e.g. 1 channel x
4 bytes x 64-byte bursts, 2 channels x 2 bytes x 64-byte bursts,
1 channel x 4 bytes x 128-byte bursts).

• Some benchmarks are better able to take advantage of multiple
narrow channels. For example, bzip has a number of
configurations that are all within several percent of the
performance of the optimal configuration, including several
with 2-way and 4-way multiple channels. Bzip tends to have
much higher traffic than the other benchmarks, and we find that
when writes go to the memory system, they frequently go to
channels other than those being used by read requests. Bzip is
also better able to exploit multiple banks than the other
benchmarks for the same reason.

We find that, in a uniprocessor setting, concurrency is very impor-
tant, but it is not more important than latency. SPEC CPU 2000 inte-

3.2 GB/s System Bandwidth (channels x width x speed)

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

P
I)

32-Byte Burst 64-Byte Burst 128-Byte Burst

3.2 GB/s System Bandwidth (channels x width x speed)

32-Byte Burst 64-Byte Burst 128-Byte Burst

3.2 GB/s System Bandwidth (channels x width x speed)

32-Byte Burst 64-Byte Burst 128-Byte Burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

P
I)

Figure 11: All configurations modeled for individual bandwidth classes.

0

1

2

BZIP

1 c
han x

4 byte
s

2 ch
an x

2 byte
s

4 ch
an x 1

 byte

1 c
han

 x 4
 byte

s

2 ch
an x 2

 byte
s

4 ch
an x 1

 byte

1 ch
an x

4 byte
s

2 ch
an x

2 byte
s

4 ch
an x

 1
byte

DRAM Latency
System Overhead + DRAM
CPU + DRAM
CPU Execution

0

1

2

3

GCC

1 ch
an x 4

 byte
s

2 ch
an x 2

 byte
s

4 ch
an

 x 1
 byte

1 ch
an x 4

 byte
s

2 c
ha

n x 2
 byte

s

4 c
han

 x 1
 byte

1 ch
an x 4

 byte
s

2 ch
an

 x 2
 by

tes

4 ch
an x 1

 byte

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

P
I)

0

1

2

3

4

5

6

7

2 Banks per Channel
1 Bank per Channel

4 Banks per Channel
8 Banks per Channel

MCF

1 ch
an x 4

 byte
s

2 ch
an x 2

 byte
s

4 ch
an x 1

 byte

1 ch
an

 x 4
 byte

s

2 ch
an x 2

 byte
s

4 ch
an x 1

 byte

1 ch
an x 4

 byte
s

2 ch
an x 2

 byte
s

4 ch
an x

 1
byte

0

1

2 TWOLF

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

P
I)

3.2 GB/s System Bandwidth (channels x width x speed)

32-Byte Burst 64-Byte Burst 128-Byte Burst

1 ch
an x

4 byte
s

2 ch
an

 x
2 by

tes

4 ch
an x 1

 byte

1 ch
an x

 4 byte
s

2 ch
an x 2

 byte
s

4 ch
an x 1

 byte

1 ch
an x

4 byte
s

2 ch
an x

2 byte
s

4 ch
an x 1

 by
te

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

9

ger suite makes effective use of multiple independent banks per
DRAM channel, suggesting that the application is producing a fair
amount of concurrent transactions in the memory system. However,
we find that if, in an attempt to increase support for concurrent trans-
actions, one interleaves very small bursts or fragments the DRAM
bus into multiple channels, one does so at the expense of latency,
and this expense is too great for the levels of concurrency being pro-
duced (in the range of two to four). Performance can be gained by
these means, but increasing performance by means of increased con-
currency is best obtained through safe means such as increased
banking per channel.

3.4 Increasing the Request-Queue Size

Requests can be queued at the memory-controller level when the
required bus or DRAM bank is unavailable. Doing so provides three
important functions: (1) the sub-blocks of different read requests can
be interleaved so that the critical word of a later request can be ser-
viced ahead of the non-critical sub-blocks of an earlier request; (2)
writes can be buffered until read-burst traffic, which typically has
higher priority than writes, has died down, thereby decreasing both
read latency and turnaround overhead; and (3) read and write
requests can be coalesced if queued long enough and there is suffi-
cient locality in the access stream, thereby reducing the number of
requests to the DRAM system. Clearly, applications with significant
write activity will see more benefit from queueing. For example,
Figure 12 shows results for different queue sizes for two bench-
marks, bzip and gcc, that have very different write behavior: bzip
has a much higher fraction of writes than gcc. In applications with
high write traffic, we find that the difference in execution time

between a system with an infinite queue and a system with no queue
is typically 20–40%. The impact is less significant in applications
with less write traffic; the difference between an infinite queue and a
0-length queue in gcc is 5–10%.

We see some interesting behavior. Though finite queues generally
yield performance numbers that lie between 0-length queues and
infinite queues, this is not always the case: when the number of
banks is small, the bursts are short, and the number of channels is
small, having a 1-entry queue or a 32-entry queue actually degrades
performance over that of a system without any queueing, and in a
few cases gcc displays the same behavior for an infinite queue. This
is an indicator of the frequency that requests nearby in time go to the
same bank. Without queueing, requests go to the memory system as
soon as they arrive at the memory controller. With a small queue,
writes are delayed, but the amount of time is dependent on the queue
size, and the results show that when the traffic is heavy enough to
expel write requests from the queue, or when traffic is light enough
that the memory controller decides it is safe to dump a write request
out to the DRAMs, it is very possible for those write requests to
interfere with subsequent higher-priority read requests.

4 CONCLUSIONS

Careful tuning of the system-level parameters can buy a system
designer 40% or more over an average system design. Ignoring the
rules of the design space and building a system in an ad-hoc fashion
is extremely dangerous, as it can result in a performance loss of a
factor of two or more, even when looking at only a very high-perfor-
mance slice of the full design space, as we do in this paper.

Figure 12: The effect of queue size on different benchmarks. Bus widths = 2 bytes

0

1

2

3

BZIP: 1.6 GB/s (1 channel)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

BZIP: 3.2 GB/s (2 channels)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

0

1

2

3

32-Entry Queue
Infinite Queue

1-Entry Queue
No Queue

BZIP: 6.4 GB/s (4 channels)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

0

1

2

3
DRAM Latency
System Overhead + DRAM
CPU + DRAM
CPU Execution

0

1

2

3

GCC: 1.6 GB/s (1 channel)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

0

1

2

3

GCC: 3.2 GB/s (2 channels)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

GCC: 6.4 GB/s (4 channels)

32-byte burst 64-byte burst 128-byte burst

C
yc

le
s

pe
r I

ns
tru

ct
io

n
(C

PI
)

1 b
an

k/c
ha

nn
el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l
1 b

an
k/c

ha
nn

el

2 b
an

ks
/ch

an
ne

l

4 b
an

ks
/ch

an
ne

l

8 b
an

ks
/ch

an
ne

l

0

1

2

3

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

10

Bus turnaround accounts for 5–10% of the system’s overhead,
and it is very dependent on the queue size, as larger queues are more
likely to delay writes until read traffic subsides. System overhead in
general accounts for 10–40% of the primary memory latency, which
echoes results from industry [2, 22]. This system overhead can be
reduced in a number of ways: by increasing support for concurrency,
by increasing the queue size, and by increasing the burst size.

We find that concurrency in the primary memory system is very
important, even for a uniprocessor, and support for concurrent trans-
actions improves performance by roughly a factor of two. However,
that support for concurrent transactions must be bought with mecha-
nisms that do not adversely affect individual transaction latencies;
improving concurrency by subdividing the memory bus into multi-
ple independent channels is risky, as it relies on the ability of the
application to sustain a level of concurrency equal to the number of
channels, otherwise the extra channels lie unused. Improving con-
currency through independent banks is safe, as it supports a level of
intra-channel concurrency in the form of pipelined and split transac-
tions. Making bursts smaller to allow for interleaved transactions
(which allows the critical words of later requests to go ahead of non-
critical words of earlier requests) is not a good idea in general, as it
also limits concurrency by exposing the bank activation-precharge
cycle as a limiting factor. Large bursts amortize this cost over a
larger amount of data transferred across the bus.

These results are specific to a uniprocessor environment; with
multiple processors generating requests, there is likely to be a much
higher sustained level of concurrency in the memory system. This
would tend to favor larger numbers of channels and smaller bursts.
Our future work is therefore to model the memory bus in a multipro-
cessor setting.

ACKNOWLEDGMENTS

Vinodh Cuppu is supported in part by NSF grant EIA-9806645 and
NSF CAREER Award CCR-9983618. Bruce Jacob is supported in
part by these awards, NSF grant EIA-0000439, and by Compaq and
IBM.

REFERENCES

[1] A. Brown and M. Seltzer. “Operating system benchmarking in the
wake of lmbench: A case study of the performance of NetBSD on the
Intel x86 architecture.” In Proc. 1997 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, Seattle WA, June
1997, pp. 214–224.

[2] W. R. Bryg, K. K. Chan, and N. S. Fiduccia. “A high-performance,
low-cost multiprocessor bus for workstations and midrange servers.”
The Hewlett-Packard Journal, vol. 47, no. 1, February 1996.

[3] D. Burger and T. M. Austin. “The SimpleScalar tool set, version 2.0.”
Tech. Rep. CS-1342, University of Wisconsin-Madison, June 1997.

[4] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, and et al. “Im-
pulse: Building a smarter memory controller.” In Proc. Fifth Interna-
tional Symposium on High Performance Computer Architecture
(HPCA’99), Orlando FL, January 1999, pp. 70–79.

[5] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “A performance compar-
ison of contemporary DRAM architectures.” In Proc. 26th Annual In-
ternational Symposium on Computer Architecture (ISCA’99), Atlanta
GA, May 1999, pp. 222–233.

[6] B. Davis, T. Mudge, and B. Jacob. “The new DRAM interfaces:
SDRAM, RDRAM and variants.” In The Third International Sympo-

sium on High Performance Computing (ISHPC2K), Tokyo Japan, Oc-
tober 2000, pp. 26–31.

[7] B. Davis, T. Mudge, B. Jacob, and V. Cuppu. “DDR2 and low latency
variants.” In Proc. Memory Wall Workshop at the 26th Annual Int’l
Symposium on Computer Architecture, Vancouver, Canada, May 2000.

[8] K. Diefendorff. “Sony’s emotionally charged chip: Killer floating-
point ’Emotion Engine’ to power PlayStation 2000.” Microprocessor
Report, vol. 13, no. 5, pp. 1–11, April 1999.

[9] B. Dipert. “DRAM redesign: not just plastic surgery.” EDN, vol. 1998,
no. 14, pp. 20, July 1998.

[10] B. Dipert. “The slammin, jammin, DRAM scramble.” EDN, vol. 2000,
no. 2, pp. 68–82, January 2000.

[11] ESDRAM. Enhanced SDRAM 1M x 16. Enhanced Memory Systems,
Inc., http://www.edram.com/prod-
ucts/datasheets/16M_esdram0298a.pdf, 1998.

[12] L. Gwennap. “Alpha 21364 to ease memory bottleneck: Compaq will
add Direct RDRAM to 21264 core for late 2000 shipments.” Micropro-
cessor Report, vol. 12, no. 14, pp. 12–15, October 1998.

[13] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and
W. A. Wulf. “Access order and effective bandwidth for streams on a
Direct Rambus memory.” In Proc. Fifth International Symposium on
High Performance Computer Architecture (HPCA’99), Orlando FL,
January 1999, pp. 80–89.

[14] T. R. Hotchkiss, N. D. Marschke, and R. M. McColsky. “A new mem-
ory system design for commercial and technical computing products.”
The Hewlett-Packard Journal, vol. 47, no. 1, February 1996.

[15] D. Kroft. “Lockup-free instruction fetch/prefetch cache organization.”
In Proc. 8th Annual International Symposium on Computer Architec-
ture (ISCA’81), Minneapolis MN, May 1981.

[16] S. McKee, A. Aluwihare, B. Clark, R. Klenke, T. Landon, C. Oliver,
M. Salinas, A. Szymkowiak, K. Wright, W. Wulf, and J. Aylor. “De-
sign and evaluation of dynamic access ordering hardware.” In Proc. In-
ternational Conference on Supercomputing, Philadelphia PA, May
1996.

[17] S. A. McKee and W. A. Wulf. “Access ordering and memory-con-
scious cache utilization.” In Proc. International Symposium on High
Performance Computer Architecture (HPCA’95), Raleigh NC, January
1995, pp. 253–262.

[18] B. Prince. High Performance Memories. John Wiley and Sons, West
Sussex, England, 1999.

[19] S. Przybylski. “MoSys reveals MDRAM architecture.” Microproces-
sor Report, vol. 9, no. 17, pp. 17–20, December 1995.

[20] S. Przybylski. New DRAM Technologies: A Comprehensive Analysis of
the New Architectures. MicroDesign Resources, Sebastopol CA, 1996.

[21] Rambus. Direct RDRAM 256/288-Mbit Data Sheet. Rambus, ht-
tp://www.rambus.com/developer/downloads/rdram.256s.0060-
1.1.book.pdf, 2000.

[22] R. C. Schumann. “Design of the 21174 memory controller for DIGI-
TAL personal workstations.” Digital Technical Journal, vol. 9, no. 2,
pp. 57–70, 1997.

[23] H. S. Stone. Microcomputer Interfacing. Addison-Wesley Publishing
Co., Reading MA, 1982.

[24] M. Swanson, L. Stoller, and J. Carter. “Increasing TLB reach using su-
perpages backed by shadow memory.” In Proc. 25th Annual Interna-
tional Symposium on Computer Architecture (ISCA’98), Barcelona,
Spain, June 1998, pp. 204–213.

[25] R. Wilson. “MoSys tries synthetic SRAM.” EE Times Online, July 15,
1997, July 1997. http://www.eetimes.com/news/98/1017news/tries.ht-
ml.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

