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Abstract 

In  order to tackle the growing complexity and inter- 
connects problem in modern microprocessor architectures, 
computer architects have come up with new architectural 
paradigms. A $xed-length block structured architecture 
(BSA) is one of these paradigms. The basic idea of a BSA 
is to generate blocks of instructions, called BSA-blocks, 
statically (by the compiler) and executing these blocks on 
a decentralized microarchitecture. In this paper, we fo- 
cus on possible application domains ,for this architectural 
paradigm. To investigate this issue, we have set up sev- 
eral experiments with 43 benchmarks coming from the 
SPECint9.5, the SPECfp9.5, the MediaBench suite, plus a 
set of MPEG-4 like algorithms. The main conclusion of this 
paper is twofold. First, multiniedia applications are less 
control-intensive than SPECint95 benchmarks and more 
control-intensive than SPECfp95 benchmarks. As a result, a 
compiler for a BSA will find more opportunities to fill BSA- 
blocks with instructions from the actually executed control 
$ow paths,for SPEC’9.5 than for multimedia applications; 
and more for multimedia applications than for SPECint95. 
Second, 16 instructions per BSA-block is appropriate for all 
application domains. Larger BSA-blocks on the other hand, 
result in higher branch misprediction rates for most appli- 
cations and lead to a less effective use of the virtual window 
size. 

1. Introduction 

Scaling out-of-order architectures to higher levels of par- 
allelism is possible by increasing the dimensions of the var- 
ious structures in the architecture. However, this rapidly be- 
comes infeasible due to the increasing complexity and the 
ever growing impact of interconnects on performance under 
technology scaling. Therefore, computer architects have 
come up with new architectural paradigms that are based 
on decentralization or partitioning. The basic concept of 
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decentralization is quite simple: instead of providing one 
big and thus slow processor core, partitioned microarchi- 
tectures are built up with various small and thus very fast 
engines that communicate through long and thus relatively 
slow interconnects. The problem computer engineers then 
have to solve, is to find a partitioning that makes an opti- 
mal tradeoff between fast engines and slow interconnects. 
Several decentralized paradigms have been proposed in the 
literature, such as multiscalar architectures [I], trace pro- 
cessors [ 2 ] ,  the clustered Alpha 21264 [3] and fixed-length 
block structured architectures [4]. The basic idea of the 
fixed-length block structured architectural paradigm is to 
generate blocks containing a maximum number of instruc- 
tions statically (by the compiler) and to execute these blocks 
as atomic units on a decentralized microarchitecture. In pre- 
vious work [4,5], we have focused on and we have exten- 
sively discussed the advantages and the feasibility of fixed- 
length block structured architectures: its decentralized mi- 
croarchitecture, its easier fetching mechanism, its possibil- 
ity to eliminate hard-to-predict branches through the use of 
predication and its reduced register file pressure. 

In this paper, we will focus on the application domains 
for fixed-length block structured architectures. What types 
of applications will get most profit from running on a 
fixed-length block structured processor architecture? And 
how should the microarchitectural parameters be fine-tuned 
per application domain in order to obtain optimal perfor- 
mance? To answer these questions we have set up several 
experiments with 43 benchmarks coming from the control- 
intensive integer SPECint95 suite, the compute-intensive 
floating-point SPECfp95 suite, the multimedia and sig- 
nal processing MediaBench suite, plus a set of MPEG- 
4 like algorithms. The main conclusion of this paper is 
twofold. First, multimedia applications are less control- 
intensive than SPECint95 benchmarks, but more control- 
intensive than SPECfp95 benchmarks. This is due to their 
larger basic block sizes compared to SPECint95 bench- 
marks (under comparable branch misprediction rates), and 
their smaller basic block sizes and their higher branch mis- 
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prediction rates compared to SPECfp95. As a result, a com- 
piler will find more opportunities to form BSA-blocks con- 
taining useful instructions (from the actually executed con- 
trol flow path) for SPECfp95 benchmarks, than for multi- 
media applications; and more for multimedia applications 
than for SPECint95 benchmarks. Second, blocks contain- 
ing more than 32 instructions are inappropriate due to their 
reduced branch predictability and their less effective use of 
the virtual window size, which is reflected in reduced per- 
formance in some cases and marginal performance increase 
(compared to smaller blocks, e.g. 16-instruction blocks) in 
most cases. 

This paper is organized as follows. Section 2 presents 
the fixed-length block structured architectural paradigm and 
briefly discusses its advantages and its disadvantages. The 
methodology used in this paper, namely statistical model- 
ing, as well as the benchmarks are discussed in section 3. 
The core issues of this paper are discussed and evaluated in 
section 4. Finally, we conclude in section 5. 

2. Block Structured Architecture 

A block structured architecture (BSA) is an architectural 
paradigm that was first presented in [6] by Melvin and Patt. 
A particular form of BSAs, namely jixed-length BSAs', 
have been further refined by Neefs [7]. In a BSA, instruc- 
tions are statically grouped into fixed-length blocks. The 
number of instructions included in a block is bounded by a 
maximum, e.g. 16 instructions, and the instructions can be 
taken from various basic blocks. Since no control flow is 
allowed within a block, predication [8] is needed to trans- 
form intra-block control flow into data flow. Once the in- 
structions to be included in a block are determined, register 
renaming is performed by the compiler to obtain a static sin- 
gle assignment form, which maximizes the attainable paral- 
lelism within a block. Besides an instrudions section, a 
BSA block also contains an in section, an out section and 
a brunches section. The in section itemizes the inter-block 
registers that are used by the instructions in the block. The 
out section specifies the inter-block registers that are de- 
fined and live on exit; i.e. the out section maps intra-block 
registers to inter-block registers. The in and out sections 
take care of the inter-block data communication, while the 
branches section specifies the inter-block control flow. 

To illustrate the principles of a block, an example is 
shown in Figure 1. The registers denoted as r and i are 
inter-block and intra-block registers, respectively. Inter- 
block registers are architecturally visible, whereas intra- 
block registers are only visible within a block. In the in- 
structions section, when i 1 equals zero, predicate register 
pl is set; otherwise it is cleared. If pl (also called the 

~~ 

'For the remainder of this paper, we only consider fixed-length BSA, 
which will be denoted as BSA. 

c = c + l ;  
if ( c = = O )  ( 

a = a + l ;  
b = b + l ;  

else { 

} 

a = a + 2 ;  

IN: rl, r2, r3 
INSTR: add r3,l -> il (==O,pl )  

( p l )  add rl,l -> i2 
( p l )  add r2,l -> i3 
( - p l )  add r1,2 -> i4 

( p l )  i2 -> rl 
( - p l )  i4 -> rl 
( p l )  i3 -> r2 

OUT: il -> r3 

BRNCH: fall-through 

Figure 1. Example: source code (on the left) 
and BSA code (on the right). 

guard) is true, one is added to r 1 and r2, otherwise 2 is 
added to r l .  In the out section, when pl is true, i2 is 
mapped to r 1, and i 3 to r 2; otherwise, i 4 is mapped to 
rl. In all cases, i 1 is mapped to r3. 

2.1. Microarchitecture 

When executing only one block at a time, performance 
will be low. Therefore, we have chosen for a microarchitec- 
ture that allows for parallel execution of multiple blocks, 
leading us to a particular implementation of the control- 
dependence based decentralized paradigm. This means that 
several units of work of a sequential program are (specula- 
tively) executed in parallel on separate processing elements. 
The atomic unit of work in a BSA is called a block, and a 
processing element is called a block engine, see Figure 2. 
In a BSA, a head and a tail pointer indicate the block en- 
gine that executes the earliest and the latest assigned block, 
respectively. At any time, there is only one block engine 
executing a block non-speculatively, which is indicated by 
the head pointer. The branch predictor predicts the follower 
block of the one currently being executed in the block en- 
gine indicated by the tail pointer. The predicted block is 
then fetched and assigned by a sequencer to the follower 
block engine indicated by the tail pointer. This head-and- 
tail mechanism is also used in multiscalar architectures [ 11 
and trace processors [ 2 ] .  

As suggested by the use of intra-block and inter-block 
registers in a BSA, a distinction is made between intra- 
block and inter-block communication. Inter-block com- 
munication is concemed with the propagation of data val- 
ues between different block engines. Between adjacent 
block engines, data values are propagated through associa- 
tive logic; between non-adjacent block engines, values are 
propagated through the register file, see Figure 2. Intra- 
block communication, on the other hand, is related to the 
communication flow within a single block engine, and fol- 
lows the data flow execution policy, which is made possible 
thanks to the static single assignment form. An instruction 
that resides in the instruction window, is selected to be ex- 
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Figure 2. Possible microarchitecture of a BSA. 

ecuted on a functional unit when all its operands are avail- 
able (data-flow). An important feature conceming the intra- 
block communication is the speculative execution of pred- 
icated instructions. This means that predicated instructions 
can be executed before the value of their guard is known *, 
eliminating the true data dependency introduced by pred- 
ication [8]. Correct program semantics are guaranteed by 
mapping the correct data values in the out section, see Fig- 
ure 1. 

2.2. Advantages 

A block structured architecture has several advantages 
over traditional superscalar processors [4,5]: 

0 Decentralization. First of all, a BSA is an answer to 
the scalability problem of traditional out-of-order ar- 
chitectures. In future chip technologies wiring delay 
will become a major obstacle in boosting clock fre- 
quencies in traditional superscalar architectures due to 
large window sizes and wide issue widths [9]. The cen- 
tral idea is to have small (and thus very fast) block en- 
gines interconnected by relatively long (and thus slow) 
interconnections. 

0 Easier fetching. Since the length of a BSA block is 
fixed, fetching instructions will be easier. We do not 
need to predict multiple branches in a single clock cy- 
cle. Moreover, we do not need to fetch from differ- 
ent parts in the instruction cache within a single cycle. 
Easier fetching was the major motivation for Melvin 
and Patt [6] to come up with a block structured ISA. 

%.e. instructions are only selected for execution when the guard is true 
or is still unknown. 

Predication. Predication was proven to be an inter- 
esting technique to eliminate unbiased branches and to 
expose multiple execution paths to the processor [8]. 
Indeed, predicated instructions from multiple paths are 
speculatively executed regardless of the guard’s value: 
the correct register values are then committed if the 
corresponding guards are true in the out section. 

0 Fewer register file ports. Franklin and Sohi [lo] 
showed that the lifetime of register instances is re- 
stricted; i.e. the temporal distance measured in the 
number of instructions between the use of a register 
instance and its creation is restricted. Thus, group- 
ing nearby instructions into blocks, will keep most 
inter-operation communication within block bound- 
aries. And since in a BSA only inter-block commu- 
nication passes to the register file, see Figure 2, the 
register file will need fewer access ports, resulting in a 
smaller register file access time. 

2.3. Disadvantages 

A block structured architecture also has some disadvan- 

0 Lower IPC for a given virtual window size. Since 
instructions are committed per block-instead of indi- 
vidually as is the case in an out-of-order architecture- 
the virtual window will be less efficiently utilized, re- 
sulting in lower IPC for a given virtual window size. 
The smaller the maximum number of instructions in 
a block, the smaller the IPC (number of instructions 
retired per cycle) degradation will be. 

Slower inter-block communication. The inter-block 
communication in a multi-block BSA will be slower- 
measured in number of cycles-than the intra-window 

tages: 
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communication in traditional architectures. This will 
decrease IPC, especially for small blocks due to a 
larger amount of inter-block communication. 

Higher memory bandwidths and larger instruction 
cache required. Predication, register renaming by 
the compiler, and the inclusion of various sections in 
a block require more encoding bits per instruction. 
As a consequence, instruction caches of larger sizes 
with higher access times are required as well as higher 
memory hmdwidths. One possible solution to over- 
come this disadvantage is into organizing the instruc- 
tion cache in several cache banks. Each cache bank 
contains a part of a BSA block. Fetching a block then 
involves accessing the various cache banks (with the 
same address) to fetch the various parts of the block 
from the appropriate cache banks and coalescing them 
to form the BSA block wanted. Another possibility 
would be to use compressed BSA-blocks. 

Compilation is hard. To obtain good performance re- 
sults, blocks should be filled with useful instructions 
as much as possible. This is certainly a challenge for 
the compiler. A preliminary study of the compiler re- 
quirements is described in [ 111. 

3. Methodology 

Section 3.1 details the technique that will be used in the 
evaluation section of this paper, namely statistical model- 
ing. Section 3.2 discusses the 43 benchmarks that will be 
used; section 3.3 itemizes the microarchitectural assump- 
tions being made in the experiments. 

3.1. Statistical modeling 

To determine IPC in a reliable way, detailed simulations 
are required on a cycle-accurate functional simulator exe- 
cuting optimal BSA code. There are two problems with 
this technique: first, a highly optimizing compiler as well as 
a detailed simulator need to be developed which are time- 
consuming tasks. Second, once we have set up this exper- 
imental environment, a huge amount of simulations need 
to be done that are time consuming as well, since several 
hundreds of millions or even billions of instructions need to 
be simulated for various processor configurations for vari- 
ous workloads. Therefore, we decided to perform an early 
design stage evaluation using a novel technique, namely sta- 
tistical simulation [12, 13, 14, 151, which allows fast s h -  
dation (a steady state solution is reached after simulating 
only a few million instructions) and quite accurate IPC es- 
timates. 

Basically, statistical simulation [ 161 consists of three 
phases, see Figure 3. First, programs are analyzed to extract 

r. 
I '  

-1 Lr- statistical -- profile> - 

' - -L ,.2 
ISA-specific parameters I 

I microarchitectural parameters 

4 
performance characteristics: IPC 

Figure 3. Statistical modeling and simulation. 
The various ISA-specific and microarchitec- 
tural parameters will be varied in the experi- 
ments of section 4. 

a statistical profile. In a second phase, a synthetic instruc- 
tion trace is produced B la Monte Carlo using that statisti- 
cal profile. Subsequently, this instruction trace is fed into 
a trace-driven simulator modeling the architecture, which 
yields performance characteristics, such as IF'C (number of 
useful instructions executed per clock cycle). 

During statistical profiling (phase l), several program 
execution statistics are extracted from a benchmark trace: 
the instruction mix, the distribution of the dependency dis- 
tance between instructions (i.e. the distance counted in the 
number of instructions in the trace between the producer 
and the consumer of a register instance), the probability that 
a memory operation is dependent on the 2-th memory op- 
eration before it in the trace through a memory data value, 
the distribution of the basic block size, the probability that 
a branch instruction is biased to the same branch outcome. 

A synthetic BSA-trace is generated in phase 2. This is 
done in two steps. In the first step, the synthetic BSA-block 
construction step, basic blocks are added to the BSA-block 
until the maximum BSA-blocksize is reached; basic blocks 
are added to the most likely control flow path. The synthetic 
BSA-block formation is illustrated in Figure 4 through an 
example. First basic block a (path probability p = 1.0) 
is included in the BSA-block, then b (p = 0.65), then e 
(p = 0.40), then c (p = 0.35), and finally d (p = 0.25). 
Notice that an actual compiler would add predicates to the 
instructions of the basic blocks to guarantee correct pro- 
gram semantics, i.e. pl to b, -pl to c, pl&p2 to d, and 
pl &-p2 to e. The path probabilities used by the synthetic 
BSA-block generator were derived from profile informa- 
tion. Once a synthetic BSA-block has been created, the 
actually executed path is pointed B la Monte Carlo using 
the path probabilities that were calculated in the first step. 
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BSA. -block 

0.25 / 

block d block e 
0.20 0.05 0.20 

Figure 4. Building up a synthetic BSA-block 
as a collection of basic blocks. The prob- 
abilities determine the probability that the 
arrow is part of the actually executed path. 
The numbers in the circles show the order in 
which the corresponding basic blocks are in- 
cluded. The basic blocks shown in dark gray 
are marked to be part of the correct control 
flow path. 

For example, in Figure 4, basic blocks 1 and 4 were pointed 
to be part of the correct control flow path. As a result, the 
instructions from basic blocks 1 and 4 are the only useful 
instructions in the BSA-block. 

The last phase in the statistical modeling methodology 
is trace-driven simulation: synthetic BSA-traces are simu- 
lated on a trace-driven simulator which yields performance 
results, namely IPC. 

3.2. Benchmarks 

The benchmarks used to collect statistical profiles are 
listed in Table 1. A total number of 43 benchmarks were 
used in our analysis, coming from the SPECint95 suite 
(control-intensive integer applications), the SPECfp95 suite 
(compute-intensive floating-point applications) ’, the signal 
and multimedia processing MediaBench suite [ 191, plus a 
set of five algorithms from different MPEG-4 subdomains: 
an advanced audio decoder aac dec (the audio standard in 
MPEG-4), a BIFS (Binary Interchange Format for Scenes 
in MPEG-4) parser t2b and generator b2t, a video decoder 
h263 aimed at real-time video conferencing, a simple im- 

3see http: //www . spec. org 

benchmrk source description dyn. cnt 
li SPECint95 Xlisp interpreter 1 .O(K)M 
go SPECint95 go-playing game 593M 
compress SPECint95 text compressing 1 .O(XIM 
gcc SPECint95 GNU C compiler 2.5.3 1,103M 
mXXksim SPECint95 MXX I 0 0  simulator 1,000M 
ijpeg SPECint95 image (de)compression I ,O(K)M 
per1 SPECint95 Per1 interpreter 2,945M 
vortex SPECint95 object oriented database 1 ,OOOM 
aPPlu SPECfp95 partial differential equations 261M 
aps1 SPECfp95 wheather prediction 1,446M 
fpppp SPECfp95 quantum chemistry 237M 
hydro2d SPECfp95 Navier Stokes equations 4,5 14M 
mgrid SPECfp95 3-D potential field 9,259M 
su2cor SPECfp95 Monte-Carlo method 1,000M 
swim SPECfp95 Shallow water equations 432M 
tomcatv SPECfp95 Vectorized mesh generation 1 ,ooOM 
turb3d SPECfp95 Turbulence modeling 1,000M 
wave5 SPECfp95 Maxwell’s equations 1,000M 
adpcm-c MediaBench speech compression 14M 
adpcm-d MediaBench speech decompression 11M 
g72 1 -e MediaSench voice compression 641M 
g721-d MediaBench voice decompression 590M 
epic MediaBench image compression 235M 
unepic MediaBench image decompression 17M 
gsmx MediaBench GSM encoding 432M 
gsmd MediaBench GSM decoding 131M 
mpeg2-e MediaBench MF’EG-2 video encoding 1.553M 
mpeg2-d MediaBench MPEG-2 video decoding 190M 
gs MediaBench ghostscript 126M 
pgp-e MediaBench cryptography encoding 130M 
pgp-d MediaBench cryptography decoding 1 IOM 
mesa MediaBench 3-D graphics library 128M 
cjpeg MediaBench image compression 110M 
djpeg MediaSench image decompression 41M 
rasta MediaBench speech recognition 25M 
aac-dec Advanced Audio Codec 164M 
b2t BIFS generator 23M 
12 b BIFS parser 27M 
h263 real-time video decoder 267M 
cav-det image cavity detection 97M 
snake [17, 181 3-D image reconstruction 126M 

Table 1. The benchmarks used with their dy- 
namic instruction count (in millions). 

age rendering-like program cav det and a highly optimized 
3-D image reconstruction algorithm snake [17, 181. All 
these benchmarks were instrumented with ATOM [20], a 
binary instrumentation tool, on a DEC 500au station with 
an Alpha 21164 processor. The Alpha architecture is a 
load/store architecture with 32 integer and 32 floating-point 
registers, each of which is 64 bits wide. All the bench- 
marks were built with the DEC C compiler version 6.1 
with optimization level -04 and linked statically with the 
-nonshared flag. 

3.3. Microarchitecture 

Several assumptions were made conceming the microar- 
chitecture: 
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0 An integer operation has an execution latency of 1 cy- mpeg2-d (42.3%), snake (52%) and rasta (39.6%). The 
cle, a load 3 cycles (this includes address calculation 
and data cache access), a multiplication 8 cycles, a FP 
operation 4 cycles, a single and double precision FP 
division 18 and 3 1 cycles, respectively. All operations 
are fully pipelined, except for the division. 

Clearing a block from a block engine and starting the 
execution of a new block takes three clock cycles: (i) 
dispatching the new block to the block engine, (ii) 
reading the register values from the register file and 
(iii) selecting instructions to be executed. 

A branch misprediction incurs a five cycle penalty: 
(i) calculating the new block address, (ii) fetching the 
correct block from the I-cache, (iii) conducting the 
fetched block to the appropriate block engine, (iv) 
reading data values from the register file and (v) se- 
lecting the instructions to be executed. 

Dynamic memory disambiguation is assumed with re- 
execution which means that loads and stores are is- 
sued out-of-order. However, when a memory depen- 
dency violation is detected, the violating load need to 
be re-executed as well as all its dependent instructions. 
In [5] ,  it is shown that this strategy is required in a BSA 
to avoid a huge performance drop due to memory de- 
pendencies. A similar technique is implemented in the 
Alpha 21264 [3]. 

4. Evaluation 

First, the various benchmarks are characterized and eval- 
uated in section 4.1. Subsequently, in section 4.2, we will 
verify how well the compiler is capable of filling the BSA- 
blocks with instructions from the actually executed control 
flow paths. Finally, we will quantify how this affects per- 
formance in section 4.3. 

4.1. Benchmarks 

To characterize the benchmarks and to clarify the results 
that will be presented in the following sections, we will dis- 
cuss two important characteristics, the instruction mix and 
the control-intensitivity. 

Instruction mix The instruction mix for the various 
benchmarks is shown in Figure 5. From this graph we 
can conclude that the SPEC benchmarks are more memory- 
intensive (an arithmetic average of 40.6% and 37.7% 
load/stores for SPECint95 and SPECfp95, respectively) 
than the multimedia applications (29.2% load/stores). How- 
ever, some multimedia applications have load/store rates 
that are comparable to the SPEC95 loadhtore rates, e.g. 

SPECint95 suite also has significantly more control instruc- 
tions (14%) than the multimedia applications (8.5%) and 
the SPECfp95 suite (3.6%). However, some multimedia ap- 
plications have scores that are comparable to the SPECint95 
benchmarks, e.g. 9721 (12%), epic (16%), gs (1 1.5%) and 
b2t2b (15.5%). Note also that some multimedia applica- 
tions, e.g. epic, mpeg2, mesa, b2t2b and snake, contain 
floating-point operations. 

Control-intensitivity A good measure for the control- 
intensitivity is the number of instructions between two mis- 
predicted control instructions. This characteristic is an im- 
portant characteristic since it gives an idea of how well 
a dynamically scheduled processor or an optimizing com- 
piler will be able to build an instruction window in order to 
schedule independent instructions. And this characteristic 
is dependent on two other characteristics: 

0 the number of instructions between two control in- 
structions (conditional and unconditional branches, in- 
direct jumps, subroutine calls and retums), which we 
will call the dynamic basic block size. The SPECint95 
benchmarks have a dynamic basic block size of 7.3 
on (geometric) average. The number of instructions 
between control instructions is significantly larger for 
multimedia applications, namely 14.3. The SPECfp95 
benchmarks have the highest dynamic basic block size, 
namely 25. 

0 the control misprediction rate which is the probability 
that a prediction based on the most likely behavior of a 
control instruction is incorrect [21]. The control mis- 
prediction rate R is measured as follows: 

N c  

R = 1 - P(Ci) . Pa(Ci) 
i=l 

with Nc the static number of control instructions, 
P(Ci) the probability that control instruction Ci is ex- 
ecuted. Pa (Ci) is defined as the prediction accuracy of 
control instruction Ci: 

P,(Ci) = maz{P [ Tj 1 C i ]  1 Tj E 7ci} 

with 7fi the set of possible targets of control instruc- 
tion Ci. In other words, Pa (Ci) is the maximum prob- 
ability of the targets of control instruction Ci. The 
SPECint95 benchmarks and the multimedia applica- 
tions have the same control misprediction rate of 9.1% 
(geometric average). The control misprediction rate 
for the SPECfp95 is significantly lower, namely 6%. 

These two Characteristics can now be combined to one 
single characteristic, the average number of instructions be- 
tween two mispredicted control instructions, by dividing 
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multimedia I SPECinf95 1 SPECfp95 

Figure 5. The instruction mix. 
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Figure 6. The number of instructions between two mispredicted branches. 

the dynamic basic block size with the control misprediction 
rate. This characteristic is presented in Figure 6 for the var- 
ious benchmarks. The (geometric) average number of in- 
structions between two mispredicted control instructions is 
80.1, 156.9 and 415.3 for the SPECint95 suite, the multime- 
dia applications and the SPECfp95 suite, respectively. From 
this graph we can conclude that SPECfp95 and SPECint95 
have the greatest and the lowest opportunity to build large 
instruction windows, respectively. 

Several interesting observations can be made from Fig- 
ure 6: the number of instructions between two mispredicted 
control instructions is quite small (35.3 instructions) for 
adpcm-c since its control misprediction rate 30.6% is ex- 
tremely high (the highest score over all the benchmarks), 
with a near average dynamic basic block size of 10.8 in- 
structions. pgp-d has a high score in Figure 6 due to its 
low misprediction rate 6.2% and its large 22.2 dynamic ba- 
sic block size. For the SPECint95 suite, go and vortex have 
the lowest and highest score due to their misprediction rates 
20.7% and 3.4%, respectively; however, their dynamic ba- 
sic block size is near the SPECint95 average, 8.0 and 6.9, re- 

spectively. For the SPECfp95 suite, applu has an extremely 
low score compared to the average SPECfp95 score due to 
its high misprediction rate 24.3% and its small dynamic 
basic block size 16.6; mgrid and swim on the other hand 
have high scores in Figure 6 due to their large dynamic ba- 
sic block size, 56.8 and 45.2, and their misprediction rates, 
6.5% (near the SPECfp95 average) and 0.9%, respectively. 

4.2. BSA-block formation 

An interesting aspect to measure is how many useful in- 
structions will be included in a BSA-block, i.e. what frac- 
tion of the instructions in a BSA-block belong to the actu- 
ally executed control flow path. In other words, we want to 
measure how well the compiler is capable of filling BSA- 
blocks with useful instructions. Obviously, this will be 
application-dependent and will be determined by the ba- 
sic block size and the branch predictability. The fraction 
of useful instructions in a BSA-block is shown in Figure 7 
as a function of the BSA-block size. Applications with 
larger dynamic basic block sizes and lower control mispre- 
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Figure 7. The fraction of instructions that be- 
long to the actually executed control flow 
path. 

diction rates will have a larger fraction of useful instruc- 
tions than applications with smaller dynamic basic block 
sizes or lower control misprediction rates. Consequently, 
SPECfp95 applications have larger fractions of useful in- 
structions in a BSA-block than multimedia applications 
and SPECint95 benchmarks; multimedia applications have 
larger fractions of useful instructions per BSA-block than 
SPECint95 benchmarks. 

Another important aspect is the predictability of the 
multi-way branch at the end of a BSA-block. The pre- 
dictability of a BSA-block is defined as the maximum prob- 
ability of the exit edges. For example, in Figure 4, there are 
six exit edges of which the maximum probability is 20%. 
As a consequence, the predictability of that BSA-block is 
defined to be 20%. We have measured the predictability of 
the BSA-blocks as a function of the BSA-block size; the 
results are shown in Figure 8. The predictability for 16- 
instruction blocks is quite high for most benchmarks. For 
32-instruction blocks on the other hand, the predictability 
is significantly lower for several SPECint95 benchmarks 
(l i ,  gcc, compress and go) and some multimedia appli- 
cations (adpcm-c, b2t and t2b). The predictability for 64- 
instruction blocks is low for nearly all benchmarks, except 
for most SPECfp95 benchmarks. 

tual window size, see section 2.3. The branch prediction 
accuracy of the statistical branch predictor, which predicts 
BSA-block exit edges, can be imposed in our simulator and 
was set to the predictability of a BSA-block (see previous 
section) for each particular benchmark. The results of these 
experiments are presented in Figure 9. The upper row of 
Figure 9 shows some typical examples, namely gs, t2b and 
g721 -d. Due to the high predictability of the 32-instruction 
blocks for gs (92%), the performance for 32-instruction 
blocks is higher than for the 16-instruction blocks with a 
branch predictability of 94%. For t2b on the contrary, per- 
formance is significantly lower for 32-instruction blocks 
than for 16-instruction blocks due to the low predictabil- 
ity of 32-instruction blocks (6 1% compared to 91% for 16- 
instruction blocks) and the lower fraction of useful instruc- 
tions per block, see Figure 7. Another typical case that we 
have encountered is shown in the graph for 9721 d. Perfor- 
mance for 32-instruction blocks increases slower as a func- 
tion of the number of block engines than for 16-instruction 
blocks; as a result, performance is lower for 32-instruction 
blocks than for 16-instruction blocks for the configuration 
with 16 block engines. The bottom row of Figure 9 presents 
the (geometric) average IPC obtained for the three appli- 
cation domains investigated, i.e. multimedia, SPECint95 
and SPECfp95. For the multimedia applications, perfor- 
mance is a little higher on average for 32-instruction blocks 
than for 16-instruction blocks. This is due to the average 
branch predictability for 32-instruction blocks (87%) which 
is quite high compared to the 90% branch predictability for 
16-instruction blocks. However, the performance increase 
is marginal compared to the increased hardware resources 
needed (32-instruction windows with 4 functional units in- 
stead of 16-instruction windows with 2 functional units). 
For the SPECint95 benchmarks, performance is lower for 
the 32-instruction blocks due to the low branch predictabil- 
ity for 5 of the 8 benchmarks; the average branch pre- 
dictability for 32-instruction blocks 81% is quite low com- 
pared to 91% for 16-instruction blocks. For the SPECfp95 
benchmarks, 32-instruction blocks are inappropriate as well 
(taking the additional hardware cost into account). 

5. Conclusions 
4.3. Performance 

How are these characteristics reflected in performance? 
To quantify this, we have done several simulations for var- 
ious microarchitectures by varying the BSA-block size (16 
and 32 instructions) and the number of block engines '. The 
BSA-block size affects performance in two ways. First, the 
branch predictability is lower for larger BSA-blocks. Sec- 
ond, larger BSA-blocks make less effective use of the vir- 

42 and 4 functional units are provided per block engine for the 16- and 
the 32-instruction blocks, respectively. 

In order to tackle the growing complexity and inter- 
connection problem in modem microprocessor architec- 
tures, computer architects have come up with decentral- 
ized architectural paradigms. In previous work, we have 
shown the feasibility of fixed-length block structured ar- 
chitectures in this respect. In this paper, we have focused 
on the application domains for this architectural paradigm. 
We have done this by setting up several experiments and 
measurements on 43 benchmarks coming from the control- 
intensive integer SPECint95 suite, the compute-intensive 
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Figure 8. Multi-way branch predictability as a function of BSA-block size. 

floating-point SPECfp95 suite, the multimedia and sig- 
nal processing MediaBench suite, plus a set of MPEG- 
4 like algorithms. The main conclusion of these experi- 
ments is twofold. First, multimedia applications are less 
control-intensive than SPECint95 benchmarks, but more 
control-intensive than compute-intensive floating-point ap- 
plications. This is due to their larger dynamic basic block 
sizes compared to SPECint95 benchmarks (under compa- 
rable control misprediction rates), and their smaller dy- 
namic basic block sizes and their higher control mispre- 
diction rates compared to SPECfp95. This is reflected in 
the fraction of useful instructions that can be included in a 
BSA-block. Second, the fraction of useful instructions per 
BSA-block is quite high for BSA-blocks containing up to 
32 instructions for any application domain (more than 95% 
for most benchmarks). The branch predictability for 32- 
instruction blocks on the other hand, is significantly lower 
for several applications (especially for SPECint95) than the 
branch predictability for 16-instruction blocks. Thus, in 
spite of the high fraction of useful instructions per block, 
32-instruction blocks are inappropriate due to their lower 
branch predictability and due to the less effective use of the 
virtual window size. 
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