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Abstract

This paper introduces a military application in the com-
mand and control field. The main feature of this study is
the parallelization of the simulator. The simulator is object-
oriented and written in C++. It uses the OpenMP standard
for the parallel version. To produce an efficient parallel
simulator, we have to deal with the dynamic load balancing
problem.

Keywords parallelism, simulation, command and con-
trol, dynamic load balancing, OpenMP

1. Introduction

In the literature, a large number of models of attrition for
classical warfare have been designed. In 1914, Lanchester
Equations were introduced as a set of coupled ordinary dif-
ferential equations. But this kind of model is not well suited
to represent modern battlefield. Recently, new models like
Einstein have been developed [7]. The main feature of these
new models is the representation of each soldier by a small
independent identity which acts autonomously using some
local sensors.

The RMCSim (Royal Military College Simulator) is
based on a multiagent-based simulation which is, with re-
spect to some aspects, more general than Einstein. The the-
oretical model on which RMCSim is based on is the mobile
cellular automata formalism.

Simulations are very time consuming for large battle-
fields (with numerous entities involved) and make numer-
ous independent computations to determine the position of

all these soldiers and the different combat results.
This is the main reason why we proposed to paral-

lelize RMCSim. Two main approaches can be chosen to
achieve this goal : developing a message-passing based
simulator (with MPI or PVM [9, 5]) or designing a Par-
allel Shared Memory Implementation of RMCSim (using
OpenMP [10]). Amessage passing based parallel version of
ModSaf (Modular Semi-Automated Forces is an entity level
simulation) has already been proposed [1]. In this paper, we
will explain why we are actually developing the second so-
lution using OpenMP and how to address the load balancing
challenge.

In the next section, we will first introduce the RMCSim
Project. In section 3, we will discuss how to parallelize
the simulator and compare the message-passing and shared
memory approaches. Section 4 is dedicated to the current
development of the shared memory version of RMCSim us-
ing OpenMP. Finally, we will conclude by giving some per-
spectives for future work.

2. The design of RMCSim

RMCSim is a combat simulation project which can be
compared in some aspect to the Einstein project [7]. RM-
CSim goes further by adding some new features (for exam-
ple, the number of teams is only bounded by the computer
capacity, the behavior vector is fully adjustable,...).

The key feature is the RMCSim’s ability to conduct par-
allel simulations.

This project has been designed using UML and devel-
oped in C++, in order to be easily extensible to more com-
plex models of agents, including terrain, weapon systems,
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etc.. The simulation is based on mobile cellular automata.
RMCSim realizes a discreet simulation compare to contin-
uous simulations which are generally based on the Lanch-
ester Equations. In 1999, the authors had explored the ben-
efits of a parallel Lanchester equations based simulator [4].
Each soldier (assimilated to an agent) is considered as a mo-
bile cell, i.e. the neighborhood of each cell can be different
at each simulation iteration.

2.1. Mobile cellular automata

Cellular automata involves the interactions of an ensem-
ble of cells, each subject to specific rules of behavior (which
usually depend on other cells in the immediate neighbor-
hood) and whose behavior from an ensemble point of view
leads to a global evolution of the cellular ensemble. Cells
live on a grid, will possess various states of information
such as its location on the grid, its neighbors location, etc...
and, based on a set of evolutionary rules will move to a next
state. This is done either simultaneously or one at a time in
a stochastic fashion.

The classic example of a cellular automaton is the game
of Life invented by John Horton Conway in the early
1970’s. This cellular automaton, which has been the sub-
ject of considerable research, describes the behavior of an
ensemble of cells where cells may be born, die and reborn,
depending on the status of the eight nearest neighbors. This
simple game demonstrated clearly that complex global be-
havior can result from simple rules governing the individual
cell’s behavior.

In the context of war gaming, a cell is generalized to
a software agent, which can model different elements of
the battlefield such as soldiers and tanks. Agents are also
assigned a color side to reflect the competing armies (like
”red” or ”blue” for two teams but not limited to). The rules
of evolution are also more complex and are designed to
model the behavior of real entities on the battlefield. A war
game simulation using this approach involves establishing
the initial configuration of the agent entities, their capabil-
ities, rules of engagement and then cycling through all the
agents. A cycle where all of the agents have been processed
is called a generation or iteration and the game continue un-
til one side wins or after a finite number of generations have
occurred. Clearly this type of model is ideal for parallel
processing since we could look at each agent as a separate
process on a separate processor.

2.2. Modeling an agent

Agents possess different characteristics, which enable
them to make decisions concerning their movement, and
generally the way they will carry themselves on the bat-
tlefield. In particular, agents are described by the following

parameters.

� Zones of action, centered on the agent. This includes
a displacement zone, a firing zone, a communication
zone, etc.

� A state of health from alive and well to wounded, to
dead.

� A personality vector which for the moment is modeled
after the EINSTEIN model and include six compo-
nents. It governs an agent attraction to move towards
friends or foes, alive and wounded as well as the ten-
dency to move towards its own flag or the enemy flag.
Taking the enemy flag is often the criteria for a victory
and the end of the simulation.

� Agents can have the same or distinct personality vec-
tors.

� Agents can belong to distinct squadrons with different
weapon systems.

� Agents can be made to move towards way points,
thereby allowing for tactical planning.

� Agents have a hit probability, a radius of fire and a
fratricide probability.

� The movement of agents can be overridden by meta
rules such as if the best move appears to be at (x,y) but
at (x,y) there are more than z enemy soldiers, you will
not go there.

� Agents are affected by terrain conditions ranging from
difficult terrain on which an agent can manoeuvre to
outright obstacle such as buildings which must be con-
toured.

� The state of health of an agent goes from alive to
wounded to dead. The above represents a brief de-
scription of an agents characteristics and part of our
research interest is in defining meaningful evolution of
an agent’s personality (learning) to render the simula-
tion more realistic.

2.3. Simulation

The combats are supposed to be done simultaneously
and the health state of each agent is update on the comple-
tion of each iteration. If the health state of a particular agent
is equal to null, then this agent is reputed to be dead and is
no more taken into account until the end of the simulation
process.

At each iteration, each agent updates the attraction vec-
tor of his zone of actions (using his behavior vector and his
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sensor range). Then he chooses to move to the most attrac-
tive (and accessible) position on the battlefield. The reader
may notice the agent has to make sure that the targeted po-
sition is not already occupied by an other agent.

To ensure fairness, at each iteration the order of process-
ing the agents is determined using a nearly random distri-
bution.

3. The different parallelization approaches

Thanks to the agent autonomy during the simulation, we
can exhibit a large set of independent calculations. More-
over, this application is very time consuming because : in
fact, the evaluation of the attractiveness of the action zone
(to be repeated at each iteration for each agent) is expensive
and does not need to be executed in a dedicated order. For
all these reasons, RMCSim is a good candidate for paral-
lelization.

We can plan to parallelize both parts of an iteration : the
combat step and the movement step.

We can choose to parallelize the application by distribut-
ing the agents or the battlefield. Here, we discuss about
the definition of the load unit used to evaluate and share
the work to realize and not about the choice between the
message-passing and the shared memory model. This sec-
ond point will be discuss later in the paper.

In this work, we will only focus on the parallelization
of the movement step because of preponderant part in the
execution time. The combat component will be added sub-
sequently, since these are less costly in time.

3.1. Battlefield based repartition

In its present form, the battlefield is viewed as a planar
grid (a 2D-mesh terain surface). A more complex GIS (Ge-
ographic Information System) is actually under considera-
tion and should be available before the end of 2002.

Parallelizing RMCSim by sharing the battlefield consists
in splitting the grid into different geographical areas.

By splitting the grid, we are designing the load unit :
each processor will be responsible for all the computations
attached to one or more areas. Each area is considered with
the agents actually moving on.

To determine the agent movements, the processors use
the neighborhood and realize all the associated calculations.

3.1.1 Comparison between message passing and
shared memory parallelization

By exploiting a message passing approach, the different ge-
ographical areas will be stored in the local memories asso-
ciated to the processors managing each of these areas.

If the preferred solution exploits a shared memory
model, the grid (and all the geographical areas) will be
placed in the global memory to assure an access from all
the processors.

When a processor evaluates an agent on the boundary of
the area, it starts by determining the attraction of the vari-
ous positions in an autonomous way. When the memory is
shared, there is no problem since the processors need only
read access to the information.

If the information is distributed, some messages will be
essential to obtain the required information, but this opera-
tion is not really difficult to achieve.

The key obstacle to overcome is to ensure that the posi-
tion is free before moving an agent on it. In this case, we
can meet a concurrent write access problem in the particu-
lar case where the movement elected for the agent is placed
under the responsibility of a different processor.

Therefore in a distributed approach, when Agent A

leaves a geographical area placed under the responsibility of
processor Pi and moves to a new area managed by proces-
sor Pj (i 6= j), an exchanged between the two processors is
required : Pi will address a request to Pj and if agreed, will
send A to it.

If the grid is stored in a shared memory, the write access
(to update agent positions) is a critical section which needs
the use of locks to guarantee the exclusive write.

For both cases, the move of an agent leaving from one
processor to another one induces an overhead which is vis-
ible as a message exchange or a critical section access.

3.1.2 Dynamic load balancing

The geographical areas assigned to the processors are not
all equivalent with respect to the load because this one is
mainly related to the number of agents to analyze.

This is the main reason to provide a dynamic load bal-
ancing scheme to balance, not only the geographical area,
but the number of agents between the processors. So, pro-
cessor Pi can manage a large number of nearly empty area
(containing a very little number of agents) and, at the op-
posite P2 can be responsible for only a crowded area. The
reader may refer to [8] to have a more complete presentation
of the dynamic load balancing problem.

Furthermore, when the memory is distributed, another
kind of imbalance can arise related to the network conges-
tion and depending on the density of communication which
requires the processing of the various areas (the external ar-
eas of the grid have less neighboring areas and should re-
quire less communication exchanges).

This imbalance factor can also affect the behavior of the
simulator if the memory is virtually shared (CC-NUMA
system : Cache-Coherent Non Uniform Memory Access)
by disturbing the cache manager.
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3.2. Agent based repartition

Each agent is tagged with a unique identifier which is
also independent of its team.

To parallelize the application while choosing to dis-
tribute the agents consists in splitting the whole agent set
into various groups, disjoined and independent of the in-
volved teams.

This operation amounts considering the various groups
of agents as being independent, and carrying out calcula-
tions for each one of their elements in any order. Each pro-
cessor is responsible for one or more groups of agents.

A processor analyzes the behavior of an agent who falls
on it. It must evaluate the attractions of the various positions
of the geographical agent neighborhood, then carry out its
possible move by respecting the concurrent write access.

3.2.1 Comparison between message passing and
shared memory parallelization

By using a shared memory, the grid storage is shared by
all the processors even if the agents can only be managed
by their associated processor. The evaluation of the neigh-
borhood attractiveness is an easy task regardless of the re-
search of informations; it is also the case for the movement
of an agent if the concurrent write problem is well solved.
For these two particular aspects, there is no difference (for
the solutions using a shared memory) between the strategy
of distribution of the battlefield and the one based on the
agents.

The key advantage provided by this approach is the eas-
ier management of the load balancing problems. This point
will be discussed in the next section.

At the opposite, when using a message passing model,
and because of the agent based distribution, the grid man-
agement is more difficult. We have to develop a mechanism
to manage the grid ; in other words, a scheme responsible
for the distribution of the grid in the different local memo-
ries. Indeed, nothing indicates which processor must deal
with this or that part of the grid. So the grid may be not dis-
tributed using the geographical information, thus any pro-
cessor may try to access any part of it and exchanges data
with any other processor. This point may be critical because
it forbids to take into account the local character of a mes-
sage according to the network of communication.

Even if this solution seems to be more difficult to address
with a message passing system, it allows the distinction be-
tween the load balancing problem and the data location.

3.2.2 Dynamic load balancing

To achieve an efficient parallel simulation, it is necessary to
provide a dynamic load balancing scheme since it is very
difficult to predict the load evolution.

Initially, each processor is responsible for a group of
equal size and it seems to be fair. The imbalance appear-
ing during the simulation is mainly due to the neutralization
of agents which are not going to be taken into account for
the rest of the simulation.

It is thus our responsibility to correct this imbalance dur-
ing the execution time. The frequency of this correction is a
factor to be addressed since it can influence the global per-
formance of the parallel execution.

At each iteration, we can choose to only evaluate the
number of active agents. During a load balancing step, it
is possible to try to globally correct the imbalance (which
can be very cost effective) or to make a local correction if
the underlying communication network is known.

It is well established that dynamic load balancing in-
duces an overhead for both architectures (message passing
or CC-NUMA) in message exchange or in cache manage-
ment. It is thus difficult to answer the whole set of questions
in general (local or global load balancing, frequency,...).

In this part of the paper, we have clearly showed that an
agent based parallelization is preferable, especially when
the splitting between the data management and the calcula-
tions is desired.

This is the reason why, in the last part, we will focus on
an implementation in shared memory using an agent based
approach for a CC-NUMA architecture.

4. Developing an efficient shared memory solu-
tion

Good experience in the use of OpenMP has already been
gained by some members of the research team in the area of
irregular applications [6, 3].

In order to accomplish this goal, we will use the OpenMP
library which offers many advantages, including relative
simplicity in its use, good support at both the industrial and
research levels [2].

4.1. OpenMP overview

OpenMP gives the opportunity to write a parallel pro-
gram in two ways:

� Parallel loops: this solution is the easiest. In fact, this
approach is very popular when the programmer wishes
to extend an existing sequential code to a parallel code.
If a parallel section is defined, OpenMP will create a
group of threads to execute the associated iterations in
parallel.

� Parallel sections: this solution requires from the pro-
grammer a good expertise in parallel programming.
The underlying model applied is near to the MIMD
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one (Multiple Instruction Multiple Data). When the
programmer defines a parallel section, OpenMP create
a thread to execute the associated code. So a parallel
program is a collection of explicit parallel sections.

OpenMP also provides some mechanisms to manage
critical section stored in its library. Mainly, a new type
(omp lock t) is defined and two functions are provided
: omp set lock to set the lock, and omp unset lock
to free the lock. Before threads can use it, lock must be ini-
tialized by a call to the specific function omp init lock.

At this point, the features of OpenMP which have been
described are sufficient to parallelize RMCSim.

4.2. Parallel RMCSim

Actually, the parallel RMCSim is developed using the
parallel loop approach. The main reason of this choice is
the benefit of the reuse of existing sequential C++ code.

As already mentioned, the combat component will be
added subsequently, since these are less costly in time.

The battlefield (represented by a grid) will be placed in
shared memory and the agent’s displacement will be com-
puted independently and in parallel.

The reader may remember we have to deal with two diffi-
culties concerning the management of the concurrent access
write on the grid and the management of the load.

To solve the first difficulty, we can use the OpenMP
locks. The programmer has to choose how many locks he
wants to define for the parallel application. If only one lock
is defined, it will be easy for OpenMP to manage it but the
performance will be very poor because of a nearly sequen-
tial execution of the loop. At the opposite, if we define
as many locks as the number of cells making up the grid,
OpenMP may have some difficulties to manage all of them
in an efficient manner. The solution can be found between
this two extreme propositions : for example, we can define
a lock for each row of the grid. It should be a good compro-
mise between the lock cost overhead and the parallel gain.

For shortness, we will assume already defined C++
classes related to the management of the grid (referred in
the following as Grids), of the agents (Agents) and of the
agent position on the grid (Positions).

Here is a C++ pseudo code using OpenMP to give an
idea how the work is being done.

The member function computeAttractiveness from the
Agents class is the computation expensive one : it has to
compute the attractiveness of each neighboring cells for the
agent under consideration and to order them after that. The
result of the member function bestPosition is the best move
for the current agent according to the attractiveness of his
neighborhood. The result of an other call to it will be the
following best cell according to this criteria. In this way the

parallelMoveSimulation(Grids grid, Agents agentTab,
int nbAgent ) f
int iteration, a;
Positions position ;
bool endOfMove ;
for(iteration = 0; iteration < n; iteration++) f
randomOrder(agentTab) ;
#pragma omp for private(position) shared(grid, agentTab)
for(a = 0;a < nbAgent;a++) f /* parallel loop */
AgentTab[a].computeAttractiveness();
endOfMove = false ;
while(!endOfMove) f
position = agentTab[a].bestPosition() ;
omp set lock(position:lock()) ; /* critical section */
if(grid.free(position)) f
agentTab[a].move(position) ;
endOfMove=true ;
g /* end if */
omp unset lock(position:lock()) ; /* end of critical sec-

tion */
g /* end while */
g /* end parallel for */
g /* end for */
g

processor will try to move the agent on the best free cell
using locks to assure the correctness of the writing process.

The load balancewill be done automatically by OpenMP.
The programmer can help it by providing a schedule clause
on the parallel loop. The acceptable values for this clause
are : static or dynamic (there exist two other derived values
which are not giving to be discussed here).

If the value used is static, the iterations are divided into
chunks and assigned at the compilation time to the threads.
This solution is not suitable for RMCSim since we have
already shown how an irregular application it is.

If the schedule clause is set to dynamic, the iterations
are assigned at the execution time and it seems to be more
accurate for our application because OpenMP will in this
way correct the imbalance factor. But, we should be careful
about the overhead being introduced this way.

Unfortunately at this time, we cannot provide any exper-
imental results since parallel RMCSim is actually under de-
velopment. The target parallel machines are Sun Fire 68001

(24 processors) and SGI Origin’38002 (256 processors) us-
ing the KAI3 and SGI OpenMP compilers. The first results
should be available within the next six months. Interesting
readers should contact directly the authors.

1http://www.sun.com/servers/midrange/
sunfire6800/

2http://www.sgi.com/origin/3000/3800.html
3http://developer.intel.com/software/products/

trans/kai/

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02) 
0-7695-1626-2/02 $17.00 © 2002 IEEE 



Concerning the parallel section approach, it will be in-
vestigated when the parallel loop experiments will be com-
pleted. This solution seems to be very interesting since the
programmer can explicitly manage the load: therefore it is
possible to develop application specific dynamic load bal-
ancing scheme. The authors plan to take advantage of the
schemes they have already develop in an other context [8].

5. Concluding remarks and perspectives

To conclude this paper, we would like to outline the ben-
efits of the shared memory solution for RMCSim:

� the shared memory paradigm is easier to program than
the message passing one;

� the computation power of parallel machine allows us
to analyze more complex and larger battlefield.

Even a simple model for the agent’s personality vector
and simple meta-rules yields interesting results. However
given the need for a more realistic behavior of the agents
evolving in complex battlefield conditions will require a
more sophisticated model. Thanks to the parallel RMCSim,
we plan to investigate the applicability of various domains
to the creation of more interesting and powerful agent even
if they are much more time consumer.

Amongst these we will look at fuzzy logic in computing
the next state of agents as well as for the Meta-rules, and :

� the use of Constraint Logic Programming;

� optimization algorithms for personality evolution.
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