
Accelerating Lattice Boltzmann Fluid Flow

Simulations Using Graphics Processors

Peter Bailey1, Joe Myre2, Stuart D. C. Walsh3, David J. Lilja4, Martin O. Saar5

{bail0253, myrex013, sdcwalsh, lilja, saar}@umn.edu

1,4 Department of Electrical and Computer Engineering
2 Department of Computer Science

3,5 Department of Geology & Geophysics

University of Minnesota, Twin Cities

Abstract—Lattice Boltzmann Methods (LBM) are used
for the computational simulation of Newtonian fluid dy-
namics. LBM-based simulations are readily parallelizable;
they have been implemented on general-purpose processors
[1][2][3], field-programmable gate arrays (FPGAs) [4], and
graphics processing units (GPUs) [5][6][7]. Of the three
methods, the GPU implementations achieved the highest
simulation performance per chip. With memory bandwidth
of up to 141 GB/s and a theoretical maximum floating point
performance of over 600 GFLOPS [8], CUDA-ready GPUs
from NVIDIA provide an attractive platform for a wide
range of scientific simulations, including LBM. This paper
improves upon prior single-precision GPU LBM results
for the D3Q19 model [7] by increasing GPU multipro-
cessor occupancy, resulting in an increase in maximum
performance by 20%, and by introducing a space-efficient
storage method which reduces GPU RAM requirements
by 50% at a slight detriment to performance. Both GPU
implementations are over 28 times faster than a single-
precision quad-core CPU version utilizing OpenMP.

I. INTRODUCTION

The Lattice-Boltzmann Method (LBM) is a technique

for performing computational fluid dynamics simula-

tions. LBM-based computations are particularly well-

suited for simulations of fluid flow through detailed

(micro-scale) descriptions of pore-spaces, and are ca-

pable of simulating many complex fluid flow problems

including turbulent flows [9], multicomponent miscible

and immiscible fluids [10][11], and free surface prob-

lems [12]. Examples of the diverse applications of LBM

include modeling flow in complex pore space geometries

[13] and in a static mixer [14]. LBM codes have also

been used in problems such as geofluidic flows, e.g.,

gas, water, oil, or magma flow through porous media

[15], macro-scale solute transport [16], the dispersion

of airborne contaminants in an urban environment [17],

impact effects of tsunamis on near-shore infrastructure

[18], melting of solids and resultant fluid flow in ambient

air [19], and to determine permeability of materials

[20][15].

LBM simulations are modeled within a one, two,

or three dimensional lattice, where each node in the

lattice represents a quantized region of space containing

either fluid or solid. The fluid is simulated by fluid

packets that propagate through the lattice in discrete

time steps, and collide with each other at lattice points.

As collisions are restricted to the local lattice nodes,

the collision computation only depends on data from

neighboring nodes. This spatial locality of data access

makes LBM an excellent candidate for parallelization.

While easily parallelizable, LBM simulations are not

“embarrassingly” parallel in nature since communication

between neighbors is required at each timestep.

LBM simulations are particularly suited for paral-

lelization on special-purpose accelerators such as graph-

ics processing units (GPUs) [5][7][6] or the Cell Broad-

band Engine [21]. As special-purpose accelerators, GPUs

are designed to process large graphics data sets quickly,

providing real-time interactive visual feedback. Use of

NVIDIA’s CUDA (Compute Unified Device Architec-

ture) extension of the C language [22] to employ GPUs

in LBM simulations has been shown to provide speedups

of one to two orders of magnitude over general-purpose

CPU versions [6]. This paper improves upon exist-

ing GPU LBM implementations by two non-orthogonal

methods: 1) providing an increase in performance pri-

marily by increasing GPU multiprocessor occupancy,

and 2) introducing a memory access technique to reduce

memory space requirements by 50%, allowing efficient

simulation of much larger lattices on the GPU.

The remainder of this paper provides an overview of

how LBM simulations are computed and our improve-

ments (Sec. II), the results of our improvements (Sec.

III), and a comparison of related GPU implementations

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.38

550

(Sec. IV).

II. LBM COMPUTATION

This lattice Boltzmann implementation uses the

D3Q19 layout (shown in Fig. 2), a regular three-

dimensional lattice (D3) with 19 distinct fluid packet ve-

locities (Q19). Time is advanced in the lattice-Boltzmann

simulation in discrete timesteps composed of two parts:

a collision step, in which momentum is exchanged

between the fluid packets at each node; and a streaming

step, in which the fluid packets are shifted to the next

node along their path.

Fig. 1: D3Q19 lattice interconnection pattern

The collision step accepts 19 incoming fluid packets

arriving at the node as input, and produces 19 outgoing

fluid packets, the densities of which are redistributed

according to a local collision rule. The manner in which

the fluid packets are redistributed depends on the behav-

ior of the fluid at the node. Three collision rules were

implemented in our simulations: 1) the standard single-

relaxation D3Q19 collision rule for simulating fluid

dynamics; 2) a bounce-back collision rule for simulating

solid-fluid boundaries [23]; and 3) a collision rule for

simulating pressure-controlled boundary conditions.

During the streaming step, eighteen of the outgoing

fluid packets from each node are distributed to the

corresponding incoming fluid packet locations for the

neighboring nodes. In the following timestep, the nodes

use these incoming fluid packets and the one stationary

fluid packet in the next collision step. As shown by Pohl

et al. [24], the collision and streaming steps can be com-

bined to reduce memory traffic within the system. This

technique enhances the utilization of on-chip memory by

improving the temporal locality of access to fluid packet

data.

A. Memory Access Patterns

Two distinct fluid packet access patterns are tested in

this implementation. The first, subsequently referred to

as the “A-B” pattern (Sec. II-A1), requires two sets of

fluid packets to reside in memory at all times, while the

second, subsequently referred to as the “A-A” pattern

(Sec. II-A2), requires only one set of fluid packets in

RAM.

1) “A-B” Pattern: The A-B memory access pattern,

commonly referred to as “ping-pong buffering,” requires

two sets of fluid packets to reside in memory throughout

the course of the simulation. The source and destination

sets are alternated at each timestep (Fig. 2). In Fig. 3,

a D2Q9 version of the A-B pattern is shown. Black

arrows represent fluid packets involved in the collision

and streaming steps of the center node. Note how, from

Fig. 3a to Fig. 3b, the arrows travel in the direction

of their orientation. This method is used by Tölke and

Krafczyk [6] and Habich [7] on the GPU, and Wilke

et al. [24], Walsh et al. [16], and others on the CPU.

We use this method for our CPU version of the LBM

simulation.

Fig. 2: Execution of the A-B memory pattern (ping-pong)

2) “A-A” Pattern: The A-A pattern needs only one

set of fluid packets in memory (Fig. 4), reducing the

memory requirement for a given lattice size by a factor

of two. This pattern alternates execution of two routines.

The routine for even-iterations (A-A:1) executes a single

collision (Fig. 5), and the routine for odd-iterations (A-

A:2) executes a combined streaming-collision-streaming

step (Fig. 6). Fig. 5a shows fluid packets following the

second streaming step in Fig. 6b.

Routines for both even and odd iterations write outgo-

ing fluid packet data to the same locations from which

551551551551551551

(a) A-B pattern incoming fluid packet
reads

(b) A-B pattern outgoing fluid packet
writes (to separate array)

Fig. 3: Simplified D2Q9 version of A-B pattern fluid packet
reads (a) and streaming writes after collision (b). The center
fluid packet is stationary.

incoming data was read, a characteristic which allows

maintenance of only one set of fluid packets in memory,

greatly increasing lattice sizes that can be stored and

computed entirely on the GPU. This allows the lattice

nodes to be computed in any order, which is necessary

for the GPU architecture for reasons explained in Sec.

II-B. The ability to compute nodes in any order is a key

improvement over the “compressed grid” layout [24],

which uses roughly the same amount of storage as the

A-A pattern, but requires a specific ordering of node

computations, thus ruling out efficient implementation

on the GPU.

B. Thread Execution

In this implementation, each GPU thread computes

one timestep, consisting of the collision and streaming

steps, for a single lattice node. A group of threads

executed simultaneously on a single processing element

is called a “warp.” Each GPU program, or “kernel,” in

this implementation is capable of calculating all three

collision rules, resulting in warp divergence if a warp

contains nodes of multiple collision rules. If a warp is

divergent, parallel thread execution paths within the warp

are serialized, leading to decreased performance.

Fig. 4: Execution of the A-A memory pattern

(a) A-A:1 pattern incoming fluid packet
reads

(b) A-A:1 pattern outgoing fluid packet
writes (to same array)

Fig. 5: D2Q9 version of A-A:1 pattern fluid packet reads (a)
and streaming writes after collision (b).

Due to data dependencies between threads in distinct

blocks, only one LBM timestep per GPU kernel exe-

cution is achieved. However, threads within a block can

synchronize using a single instruction, and can share data

through 16 KB of shared memory per multiprocessor.

Multiprocessor occupancy is defined as the ratio of

the number of active warps per multiprocessor to the

maximum number of active warps [22]. Occupancy is

specific to a single GPU kernel because a multiprocessor

can only run one kernel at a time. Running multiple

warps allows a multiprocessor to hide global memory

access latency (around 400 cycles) by switching out

552552552552552552

(a) A-A:2 pattern incoming fluid packet
reads

(b) A-A:2 pattern outgoing fluid packet
writes (to same array)

Fig. 6: D2Q9 version of A-A:2 pattern fluid packet reads (a)
and streaming writes after collision (b).

stalled warps for warps ready to execute instructions.

Similarly, running multiple blocks per multiprocessor

can hide block synchronization latency. In order to

maximize the memory latency that may be hidden, the

number of warps able to be run simultaneously must be

maximized. The number of concurrently runnable warps

is limited by the number of registers per multiprocessor,

the amount of shared memory per multiprocessor, the

number of threads per block, and a hardware-based limit.

Each multiprocessor has a limited number of registers.

These registers are used by all concurrently running

threads. Therefore, using fewer registers per thread al-

lows more thread blocks to be run concurrently. Simi-

larly, shared memory is used by the same threads and

must be divided accordingly.

C. Memory Constraints

The design of the memory architecture on the GPU

results in maximum memory bandwidth when threads

align their memory accesses correctly. If the pattern of

memory access prevents this coalescence, then band-

width is reduced by up to an order of magnitude. For

proper alignment, consecutive threads in a warp must

access consecutive locations in memory, starting from

a globally aligned base memory location. For specific

requirements, see Sec. 5.1.2.1 in [22].

Two previous GPU LBM implementations by Habich

[7] and Tölke et al. [6] have shown that a structure-

of-arrays, or collision-optimized layout [25] of fluid

packets in memory fits the GPU hardware well. This

layout indexes fluid packets in global memory by the

following variables, in the following order: X, Y, Z, fluid

packet direction, and timestep. The layout is optimized

for simulation performance on processors with cache

memory, but it is ideal on the GPU because it allows

for easy coalescence of global memory reads and writes.

Given such a layout, consecutive threads within a thread

block compute outgoing data for consecutive nodes in

the X-dimension. This allows one block of GPU threads

to compute an nX-by-1-by-1 section of the lattice while

maintaining coalesced global memory access, where nX

is equal to the X-dimension of the lattice.

This LBM implementation utilizes shared memory to

maintain coalesced global memory access.

When two separate arrays are kept in memory for

incoming and outgoing fluid packets (A-B pattern, Sec.

II-A1, Fig. 2), all global memory reads are automatically

aligned. This is due to the collide-stream pattern of

execution (Fig. 3). Writes from each node to neighboring

nodes along only the Y- and Z- dimensions are auto-

matically aligned. However, writes along directions with

an X component are complicated in that they require

propagation in shared memory, followed by an aligned

write to global memory as described in [6].

When a single fluid packet array is present (A-A pat-

tern, Sec. II-A2, Fig. 4), global memory reads and writes

along only the Y- and Z- dimensions are aligned, but

reads and writes along directions with an X component

require an exchange in shared memory before and after

the collision step. Neither access pattern results in shared

memory bank conflicts.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Methodology

We perform test runs on three different NVIDIA

GPUs, an 8800 GTX, an 8800 Ultra, and a 9800 GX2.

It should be noted that the 9800 GX2 is composed

of two GPUs, each individually addressable by CUDA

programs. The two GPUs communicate through the PCI

Express 1.0 x16 bus, just as any other two GPUs would

do in one system. In this paper, tests on the 9800 GX2

use only one of the two GPUs. The specifications for

each of these GPUs are found in Table I.

For additional comparison we perform test runs on the

Intel quad-core CPU in the system housing the GPU, the

specifications of which can be found in Table II.

553553553553553553

We use the G++ compiler version 4.1.2 for CPU code

and NVCC release 2.0, V0.2.1221 for GPU code. We

use nvcc compiler flags “-O3” and “-maxrregcount ”,

followed by “32” or “64”, depending on the GPU kernel

being compiled. For G++, we use the compiler flags “-

funroll-loops -fno-trapping-math -O3”.

Tested lattice sizes include cubic lattices with side

lengths ranging from 32 nodes to 160 nodes in 32-

node increments. Non-cubic lattices of the following

dimensions are also tested: 256x128x128, 128x128x64,

64x250x250, 192x156x156, and 96x192x192. The sim-

ulation performed on each lattice is Poiseuille flow

through a box.

Performance of lattice Boltzmann simulations is mea-

sured in Lattice node Updates Per Second (LUPS),

which indicates the number of lattice site collision and

streaming steps performed in one second. For recent

implementations, a more convenient unit of measurement

is Million Lattice node Updates Per Second (MLUPS).

It should be noted that although the same metric is used

for different lattice layouts (e.g., D3Q13, D2Q9) and

precisions (single vs. double), one lattice node update

in one layout may require more memory transfers and

computation than a lattice node update in another layout.

For example, a single-precision D3Q19 lattice node

update reads and writes at least 19∗4 = 76 bytes, while

a single-precision D3Q13 lattice node update reads and

writes 13 ∗ 4 = 52 bytes.

B. Results

Two key improvements are presented in this paper.

First is an increase in maximum simulation speed by

20% over published results, and second is a reduction

in memory requirements by 50% over published GPU-

based lattice Boltzmann implementations. It should be

noted that these improvements are not orthogonal; when

TABLE I: GPU Specifications

Device Clock RAM Mem. Bus Processing

Clock Width Elements

8800 1.35 768 900 384 128

GTX GHz MiB MHz bits

8800 1.51 768 1080 384 128

Ultra GHz MiB MHz bits

9800 1.50 2x512 1 GHz 256 2x128

GX2 GHz MiB MHz bits

TABLE II: CPU Specifications

Clock RAM Mem. Clk Bus Width Cores

Intel 2.4 GHz 4 GiB 400 MHz 64-bit 4

Q6600

storage reduction is utilized, the performance gain is less,

and when maximum simulation speed is desired, storage

reduction is not available. Both the 20% performance

increase and the disparity between the two implementa-

tions are correlated with changes in occupancy. Habich

[7] uses 40 registers per thread, resulting in a maximum

occupancy of 25% and maximum performance of 250

MLUPS. When two arrays are present in our implemen-

tation (A-B pattern), the GPU kernel uses 32 registers

per thread, allowing a maximum of 33% occupancy. The

major difference between the A-B pattern and the A-A

pattern is the lower average occupancy of the GPU ker-

nels used. In the A-A pattern, two kernels are employed.

One (A-A:1) uses 32 registers per thread, while the other

(A-A:2) uses 64. On the 8800 GTX, kernels using 64

registers per thread can achieve a maximum occupancy

of 17%.

As seen in Fig. 7, GPU LBM performance for the

A-B pattern positively correlates with GPU occupancy.

Additionally, the maximum performance for occupancies

less than 33% is 236 MLUPS, and no simulation with

an occupancy of 33% runs at less than 250 MLUPS.

Fig. 7: Mean GPU pattern A-B performance vs. GPU occu-
pancy with 95% confidence interval

Due to differences in occupancy and kernel complex-

ity, the two memory access patterns perform at different

levels. For the test cases outlined in Sec. III-A, the av-

erage performance of the A-A pattern implementation is

209 MLUPS, with a maximum measured performance of

260 MLUPS. The A-B pattern implementation achieves

an average performance of 246 MLUPS on the same

test cases, with a maximum measured performance of

300 MLUPS.

554554554554554554

The 8800 GTX test platform has a theoretical maxi-

mum computation-to-memory bandwidth ratio of 345.6

GFLOPS / 86.4 GBps = 4 FLOPS / byte. Thus, the

observed FLOPS / byte ratio is 50 GFLOPS / 46.8 GBps

= 1.08 FLOPS / byte, or about 25% of the theoretical

maximum.

C. Comparison of CPU and GPU versions

The CPU version of the lattice Boltzmann simulation

is a single-precision implementation by Walsh et al. [15].

The collision and streaming steps are separate. Two sets

of fluid packets are maintained (A-B pattern), and each

set uses the following layout: fluid packet direction,

X, Y, Z. Parallelization of the CPU implementation

is achieved by using OpenMP to subdivide loops into

sections that can run on multiple processor cores. The

parallelized loops calculate the collision and streaming

steps separately for each node.

In the test cases described in Sec. III-A, the CPU

implementation, using a single core, achieved an average

performance of 6.18 MLUPS with a maximum measured

performance of 7.53 MLUPS. When tested across 4

cores, the CPU implementation achieved an average

performance of 8.99 MLUPS with a maximum mea-

sured performance of 11.1 MLUPS. When compared to

the high-performance GPU A-B memory access pattern

implementation results in Sec. III-B, it is seen that the

A-B pattern achieves average speedups of 40.3 and 27.7

over the single- and quad-core results, respectively, of

the CPU implementation. However, the scalability of the

CPU implementation is limited by cache effects.

D. Important Optimizations

To achieve high levels of performance on the GPU,

we utilize a number of strategies. Among these are

coalesced global memory access, use of shared memory,

restricting the number of registers per thread, careful use

of conditional statements, and a memory access pattern

that allows for the simulation of larger lattices. For the

A-B pattern, these strategies result in a 20% increase in

maximum MLUPS over the results in [7]. For the A-

A pattern, they allow for a 50% reduction in memory

requirements for a given lattice size.

To achieve maximum bandwidth to global memory,

the GPU’s memory controller combines global memory

reads and writes from a warp of threads into a single op-

eration if certain conditions are met concerning address

alignment and ordering between threads. In the LBM

simulation, changing only the layout of fluid packets

in global memory is observed to cause performance

penalties of up to 70% due to lack of coalescence. 100%

coalescence is achieved by propagating, in shared mem-

ory, directions that would have caused non-coalescence

if written directly to global memory. Each multiprocessor

has a limited number of registers, which are divided

between concurrently executing thread blocks. The lower

the number of registers required per thread, the higher

the number of thread blocks that can be run concur-

rently. The compiler can be coerced into limiting the

number of registers per thread (with the –maxrregcount

switch), but this practice can lead to substitution of

(relatively slow) global GPU memory for registers. Still,

trading off higher occupancy for a few extra global

memory accesses occasionally improves performance.

The kernels used in this LBM implementation require

between 32 and 64 registers each, giving a maximum

warp occupancy of 33%.

To reduce memory requirements for lattice storage,

the A-A pattern of execution maintains a single array of

fluid packets, rather than two arrays as in previous GPU

implementations [6] [7]. This reduction is achieved by

alternating two kernels that read fluid packets from, and

write fluid packets to, the same memory locations, thus

avoiding the necessity that lattice node computations be

executed in a particular order. The use of two kernels for

the A-A pattern, one requiring 64 registers per thread,

adds a significant amount of execution overhead.

IV. RELATED WORK

Many parallel implementations of lattice Boltzmann

simulations have been produced for CPU clusters, as

well as single and clustered GPUs. Unless otherwise

noted, GPU architectures use single-precision floating

point, and other architectures use double-precision. Li

et al. [26] used a single GPU to run a D3Q19 lattice

Boltzmann simulation, yielding a speedup of 15.3 over

a CPU implementation. The maximum processing rate

of the single GPU was 3.8 MLUPS. Fan et al. [5]

used GPUs to accelerate lattice Boltzmann simulations,

resulting in a speedup of 21.4 over a cluster of an equal

number of CPUs. The maximum processing rate of the

GPU cluster was 49.2 MLUPS. Körner et al. [1] ran

D3Q19 LBM simulations on three clusters, each with 64

processors. On an Itanuim2 cluster, 64 nodes achieved

180 MLUPS.

Implementations utilizing CUDA tools have fared

better; Tölke and Krafczyk [6] ported a D3Q13 LBM

simulation to an NVIDIA GeForce 8800 Ultra GPU

using CUDA tools, reaching 592 MLUPS. Habich [7],

also using CUDA, produced a D3Q19 LBM simulation

that achieved 250 MLUPS on a single GeForce 8800

GTX GPU.

555555555555555555

The D3Q13 model [6] is simpler than the D3Q19 used

in this study model in that it tracks only 13 velocity

vectors at each node, instead of 19. Also, due to the

interconnection pattern of nodes in a D3Q13 lattice, a

grid of nodes can be decomposed into two independent

sub-grids, thus reducing computational requirements by

50% if only one sub-grid is simulated. However, even if

both sub-grids are simulated, the effective resolution of

fluid flow is less than that of the D3Q19 layout in which

all nodes are interconnected. Consequently, D3Q19 LBM

implementations are frequently preferred since they pro-

duce higher quality scientific results, particularly when

highly-resolved flow vector fields in complex pore spaces

are desired [15].

Compared to the D3Q13 implementation described in

[6], our implementation uses a similar percentage of

theoretical GPU memory bandwidth (54.3% vs. 61%,

respectively). When “register spillage” is taken into ac-

count, the percentage utilization of theoretical bandwidth

is the same as in [6].

This difference in memory bandwidth utilization is

attributable to three main factors: 1) the addition of six

additional fluid packets per lattice node for the D3Q19

model and their associated computation and bandwidth

requirements, 2) the difference in memory clock speeds

(1080 MHz vs. 900 MHz) between the NVIDIA 8800

Ultra used by Tölke et al. [6] and the NVIDIA 8800 GTX

used in this implementation, and 3) “register spillage,”

a phenomenon that occurs when the CUDA compiler

successfully implements a program in a user-specified

number of registers, but uses some global memory as a

substitute for additional registers. Register spillage has

the potential to increase multiprocessor occupancy, thus

increasing parallelism and latency-hiding. Unfortunately,

there is a trade-off involved; global memory access is

much slower than register access (∼400 clock cycles vs.

∼1 clock cycle). In the “A-B” kernel of this implemen-

tation, 32 registers are used for each kernel, but global

memory replaces the equivalent of four registers per

thread, reducing the effective bandwidth for fluid packet

transfers by 4/(32 + 4) = 11%. The “register spillage”

witnessed in this application is due to the increased

complexity of the D3Q19 model. If 36, rather than 32,

registers were used per thread, multiprocessor occupancy

would suffer at some block sizes (block size = lattice X

dimension).

Assuming that global memory bandwidth, rather than

floating point calculation, is the limiting factor, the es-

timated performance, when converting from the D3Q13

implementation in [6] to a D3Q19 implementation, is

592 MLUPS ∗13/19 ∗ (900 MHz)/(1080 MHz) ∗

32/(32 + 4) = 300 MLUPS. Thus, our implementation,

resulting in 300 MLUPS, achieves 100% of the estimated

peak performance, when limited by memory bandwidth.

Multiple studies cite cache effects and relatively low

memory bandwidth as reasons for sub-optimal LBM per-

formance on general-purpose processors [25][1]. Vector

machines avoid such problems by design. Wellein et al.

[25] and Pohl et al. [1] used an LBM code to compare

the performance of various CPU-based systems with that

of vector machines. In these studies it was discovered

that vector processors are particularly suited for LBM

computations, and that general-purpose processors are

adversely affected by cache behavior. With no cache, a

single NEC SX6 vector processor outperformed a single

Itanium2 processor by a factor of 8.

The graphics processing unit (GPU) architecture (Sin-

gle Instruction, Multiple Thread) is similar to that of

a vector machine (Single Instruction, Multiple Data).

GPUs are designed for high pixel throughput, which

requires high memory bandwidth for large data sets.

By maintaining high bandwidth to main memory, GPUs

avoid some limitations imposed by cache size and cache

effects typical of general-purpose processors. For exam-

ple, an application may perform poorly on a CPU due

to cache capacity misses or cache trashing. The same

application may perform better on a GPU, because the

GPU has no cache that fills the same role.

V. CONCLUSIONS AND FUTURE WORK

We show that a GPU-based D3Q19 lattice Boltzmann

simulation of fluid flow can achieve 300 MLUPS using

one pattern of execution, and efficient utilization of

GPU RAM using another pattern of execution. Both

patterns result in speedups of more than 28x over a quad-

core CPU implementation using OpenMP. The increase

in performance over a previous D3Q19 GPU imple-

mentation [7] is due to increased GPU multiprocessor

occupancy. Based on memory bandwidth utilization, our

D3Q19 simulation is as efficient as a D3Q13 GPU

implementation [6], and models fluid flow at a higher

level of detail.

Future work will include extension of the GPU-based

lattice Boltzmann simulation to multiple GPUs and GPU

clusters. Because the maximum lattice size that can be

simulated efficiently is determined by GPU RAM, using

multiple GPUs will allow for the simulation of larger

domains.

Programming in NVIDIA’s CUDA environment is a

significant departure from traditional parallel environ-

ments, such as MPI or OpenMP. Failure to adhere to

a few key strategies, such as global memory coales-

cence, avoiding divergent warps, and maximizing occu-

556556556556556556

pancy, can result in lackluster performance. However,

memory coalescence requirements have been reduced in

NVIDIA’s more recent GPUs.

Despite the additional difficulty, GPUs offer substan-

tial performance benefits to a wide variety of appli-

cations, e.g., [18][26][27][28][15], and CUDA allows

more precise utilization of graphics hardware than other

alternatives, including OpenGL, Rapidmind [29], and

BrookGPU [30].

VI. ACKNOWLEDGMENTS

This work was supported in part by the National

Science Foundation under Grants No. EAR-0510723 and

DMS-0724560. We would also like to thank the George

and Orpha Gibson Endowment for its generous support

of the Hydrogeology and Geofluids Research Group, as

well as Erich Frahm, the Laboratory for Computational

Science & Engineering, and NVIDIA for their advice

and support.

REFERENCES

[1] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein,
and T. Zeiser, “Performance evaluation of parallel large-scale
lattice boltzmann applications on three supercomputing archi-
tectures,” in SC ’04. Washington, DC, USA: IEEE Computer
Society, 2004, p. 21.

[2] G. Amati, S. Succi, and R. Piva, “Massively parallel lattice-
boltzmann simulation of turbulent channel flow,” International

Journal of Modern Physics C, vol. 8, pp. 869–877, 1997.
[3] X. Wu, V. Taylor, C. Lively, and S. Sharkawi, “Performance anal-

ysis and optimization of parallel scientific applications on cmp
cluster systems,” Parallel Processing Workshops, International

Conference on, vol. 0, pp. 188–195, 2008.
[4] K. Sano, O. Pell, W. Luk, and S. Yamamoto, “Fpga-based

streaming computation for lattice boltzmann method,” Field-

Programmable Technology, 2007. ICFPT 2007. International

Conference on, pp. 233–236, Dec. 2007.
[5] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster

for high performance computing,” in SC ’04: Proceedings of the

2004 ACM/IEEE conference on Supercomputing. Washington,
DC, USA: IEEE Computer Society, 2004, p. 47.

[6] J. Tölke and M. Krafczyk, “Teraflop computing on a desktop pc
with gpus for 3d cfd,” International Journal of Computational

Fluid Dynamics, vol. 22, pp. 443–456, Aug. 2008.
[7] J. Habich, “Performance evaluation of numeric compute ker-

nels on nvidia gpus,” Master’s thesis, University of Erlangen-
Nürnberg, June 2008.

[8] NVIDIA, “Geforce gtx 280 specification,” 2008, [Online].
Available: http://www.nvidia.com/object/product geforce gtx
280 us.html

[9] S. Succi, R. Benzi, and F. Higuera, “The lattice Boltzmann
equation: A new tool for computational fluid-dynamics,” Physica

D: Nonlinear Phenomena, vol. 47, no. 1-2, pp. 219–230, 1991.
[10] S. P. Dawson, S. Chen, and G. D. Doolen, “Lattice Boltzmann

computations for reaction-diffusion equations,” The Journal of

Chemical Physics, vol. 98, no. 2, pp. 1514–1523, 1993.
[11] X. Shan and H. Chen, “Lattice boltzmann model for simulating

flows with multiple phases and components,” Phys. Rev. E,
vol. 47, no. 3, pp. 1815–1819, Mar 1993.

[12] N. Thurey and U. Rude, “Free surface lattice-boltzmann fluid
simulations with and without level sets,” in Vision, Modeling,

and Visualization 2004. IOS Press, 2004, pp. 199–208.

[13] D. Raabe, “Overview of the lattice boltzmann method
for nano- and microscale fluid dynamics in materials
science and engineering,” Modelling and Simulation in Materials

Science and Engineering, vol. 12, pp. R13–R46(1), November
2004. Available: http://www.ingentaconnect.com/content/iop/
msmse/2004/00000012/00000006/art00r01

[14] D. Kandhai, D. J.-E. Vidal, A. G. Hoekstra, H. Hoefsloot,
P. Iedema, and P. M. A. Sloot, “Lattice-Boltzmann and Finite
Element Simulations of Fluid Flow in a SMRX Static Mixer
Reactor,” International Journal for Numerical Methods in Fluids,
vol. 31, pp. 1019–1033, Nov. 1999.

[15] S. D. C. Walsh, M. O. Saar, P. Bailey, and D. J. Lilja, “Accelerat-
ing geo-science and engineering system simulations on graphics
hardware,” In Review, 2009.

[16] S. D. C. Walsh and M. O. Saar, “Macroscale lattice-boltzmann
models for solute and heat transport in heterogeneous porous
media.” In Preparation, 2009.

[17] F. Qui, Z. Fan, Y. Zhao, H. Lorenz, J. Zhou, and A. Kaufman,
“Gpu-based visual simulation of dispersion in urban environ-
ments,” 2006.

[18] M. Krafczyk and J. Tölke, “Towards real-time prediction of
tsunami impact effects on nearshore infrastructure,” 2007.

[19] Y. Zhao, L. Wang, F. Qiu, A. Kaufman, and K. Mueller, “Melting
and flowing in multiphase environment,” Computers and Graph-

ics, vol. 30, no. 4, pp. 519 – 528, 2006.
[20] W. J. Bosl, J. Dvorkin, and A. Nur, “A Study of Porosity and Per-

meability Using a Lattice Boltzmann Simulation,” Geophysical

Research Letters, vol. 25, pp. 1475–1478, 1998.
[21] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick,

“Lattice boltzmann simulation optimization on leading multicore
platforms,” Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pp. 1–14, April 2008.
[22] CUDA Programming Guide, 1st ed., NVIDIA, 2008, [Online].

Available: http://developer.download.nvidia.com/compute/cuda/
1 1/NVIDIA CUDA Programming Guide 1.1.pdf

[23] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics

and Beyond. Oxford University Press, 2001.
[24] T. Pohl, M. Kowarschik, J. Wilke, K. Igleberger, and U. Rude,

“Optimization and profiling of the cache performance of parallel
lattice boltzmann codes,” Parallel Processing Letters, vol. 13, pp.
549–560, 2003.

[25] G. Wellein, T. Zeiser, G. Hager, and S. Donath, “On the
single processor performance of simple lattice boltzmann
kernels,” Computers and Fluids, vol. 35, no. 8-9, pp.
910 – 919, 2006, proceedings of the First International
Conference for Mesoscopic Methods in Engineering and
Science. Available: http://www.sciencedirect.com/science/article/
B6V26-4HVDYJJ-4/2/21fc67683bc889045d128a80434bc31d

[26] W. Li, Z. Fan, X. Wei, and A. Kaufman, GPU Gems 2. Addison-
Wesley, 2005, ch. Flow Simulation with Complex Boundaries, pp.
747–764.

[27] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation with
cuda,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley
Professional, August 2007, ch. 31.

[28] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose
computation on graphics hardware,” Computer Graphics Forum,
vol. 26, no. 1, pp. 80–113, 2007.

[29] Rapidmind, “Rapidmind datasheet,” 2007, [Online]. Available:
http://www.rapidmind.net/pdfs/RapidmindDatasheet.pdf

[30] I. Buck, T. Foley, D. Horn, J. Sugerman, and P. Hanrahan,
“Brook for gpus,” 2003, [Online]. Available: http://graphics.
stanford.edu/projects/brookgpu/AF-Brook.ppt

557557557557557557

