
Dragon: An Open64-Based Interactive Program Analysis Tool for Large
Applications

Barbara Chapman, Oscar Hernandez, Lei Huang, Een-hsiung Weng, Zhenying Liu, Laksono Adhianto, yi Wen
Department of Computer Science

University of Houston, Houston, Texas, 77204, USA
Email: dragon @cs.uh.edu, Web: http://www.cs.uh.edu/-draeon

Abstract- A program analysis tool can play an important
role in helping users understand and improve large
application codes. Dragon is a robust interactive program
analysis tool based on the Open64 compiler, which is an
open source UC++/Fortran77/90 compiler for Intel Itanium
systems. We designed and developed the Dragon analysis
tool to support manual optimization and parallelization of
large applications by exploiting the powerful analyses of the
Open64 compiler. Dragon enables users to visualize and
print the essential program structure of and obtain
information on their large applications. Current features
include the call graph, flow graph, and data dependences.
On-going work extends bath Open64 and Dragon by a new
call graph construction algorithm and its related
interprocedural analysis, global variable definition and
usage analysis, and an external interface that can be used by
other tools such as profilers and debuggers to share program
analysis information. Future work includes supporting the
creation and optimization of shared memory parallel
programs written using OpenMP.
Keywords: Open64 compiler, callgraph, dataflow analysis,
data dependences

I. Introduction
Scientific and induseial applications are becoming

increasingly large and complex. Most such applications are
difficult to understand, analyze, parallelize, and optimize. A
lot of effort is expended in the task of understanding a
complex code structure, especially when developing
parallel applications. Crucial information for any kind of
program analysis, or code reengineering, includes the call
graph, procedure control flow graphs and information on
the variables that are involved in data dependences.

A program analysis tool can be very useful by providing
this kind of information and more to aid users who need to
modify or improve large codes. Traditional sequential
optimizations may reorganize computation in loops or
merge loops to improve cache utilization, for which data
dependence information is indispensable, or they may
involve multiple procedures, such as inlining functions
when they are invoked inside a loop body. Parallelizing a
sequential code is time-consuming and often requires
considerable information on the structure of the entire code,
and the data dependences in loops, something that can be

- This work was pda l ly supported by the DOE under contract
DE-FC03-0IER25502 and by the Los Alamos National
Laboratory Computer Science Institute (LACSO through LANL
contract number 03891-99-23.

0-7803-7840-7/03/$17.00 02003 IEEE.

difficult to obtain without tool support. Furthermore,
optimization of parallel programs is challenging. For shared
memory parallel codes, optimization strategies may include
the privatization of scalar and m a y variables for improving
data locality, and reducing synchronizations, all of which
require considerable insight into a given code.

Dragon"' is an interactive tool that displays program
analysis results that are commonly needed to study and
change sequential or parallel codes. It handles the most
common programming languages and is aware of the MPI
and OpenMP APIs'" for parallel programming. We decided
to use the publicly available Open64 compiler infrastructure
to create this tool, since it is robust, has powerful analyses,
supports multiple languages and is open source. However,
this also constrains us to perform our work in such a way
that we can adapt to newer versions of the compiler
infrasaucture. Currently, Dragon has basic features
including the call graph, flow graph, data dependences and
OpenMF' parallel regions; it relates graphical information to
the original source code wherever possible and can display
both simultaneously. It is a robust tool that can visualize
large graphs for large real-world applications, and it is
freely available.

This paper presents the design and implementation of
Dragon. Section 2 describes the Open64 compiler'". The
following section describes Dragon, its structure,
functionalities and how it was built using Open64. We
briefly discuss several large applications that have been
studied using this tool. Related work is outlined; and last
but not least, the final section describes future work and our
conclusions.

11. Overview of Open64 Compiler
The Open64 compiler infrastructure was originally

developed by Silicon Graphics Inc. and is currently
maintained by Intel. Written in C++, it accepts Fortran
77/90 and CICtk, as well as a combination of any of these
with OpenMP, a shared memory programming API. The
system targets Intel's IA-64 processors. Open64 is a
well-written compiler that performs state of the art analyses
that can be exploited by tools such as Dragon. These
analyses include interprocedural analysis, data flow analysis,
data dependence analysis, and array region analysis. A
number of different research groups already base their
compiler research on this open source system.

The intermediate representation for the Open64 compiler,
called WHIRL, has fi<e different levels, starting with very
high level (VHL) WHIRL, and serves as the common
interface among all the front-end and back-end components.

-792.

mailto:cs.uh.edu
http://www.cs.uh.edu/-draeon

Each optimization phase is designed to work at a specific
level of WHIRL. Our tool gathers information primarily
from the VHL and High Level (HL) WHIRL phases, which
preserve high level control flow constructs, such as do and
for Imps. HL WHIRL can be translated back to C and
Fortran source code with only a minor loss of semantics.

The Open64 compiler basically consists of five modules
as shown in Fig. 1, with multiple frontends (FE) that parse
ClFortran programs and translate them into VHL WHIRL.
Additional “special-purpose” modules include automatic
parallelization (APO). If interprocedural analysis is invoked,
then P L (the local part of interprocedural analysis) first
gathers data flow analysis information 60m each procedure
locally, and the information is summarized and saved in
files. Then, the main IPA module generates the call graph
and performs interprocedural analysis and transformations
based on the call graph. Open64 next invokes the loop nest
optimizer (LNO), the medium-level code optimizer
(WOPT), and the code generator (CG). WOPT performs
aggressive data flow analysis and optimizations based on
SSA form. LNO calculates a dependence graph for all array
statements inside each loop of the program, and performs
loop transformations. CG creates assembly codes, which are
finally transformed to binaries by AS (assembler).

I I

p+q+Jj-bm 71F90)

Re. 1 The modules of the Oren64 comoiler
We descr ig IPA, WOPT and’LNO the following,

because the Dragon tool uses their data structures to provide
information.
A. IPA

In order to extract the call graph from the Open64
compiler, we require execution of both local IPA (IPL) and
main IPA (pre-linker), achieved by setting the IPA flag. In
this case, IPL first collects the local information of each
procedure unit such as call site information, formal and
actual procedure parameters, global variables accesses, and
stores them in files in WtWL format. The pre-linker reads
these files and performs the call graph construction and
interprocedural analyses such as global variable
optimization, dead function elimination, alias analysis,
cloning analysis, constant propagation, function inlining,
and array region analysis for the dependence analyzer of the
LNO. After that, the pre-linker saves them into files for
further processing by the other module. Both nodes and
edges of the call graph contain pointers that can access
summary information generated by IPL.
B. WOFT

Depending on the compiler options selected by the users,
the WOIT module may be invoked multiple times on the
same program unit during different compiler phases. WOFT
operates on code intraprocedurally. I t lowers the VHL
WHIRL for a program unit, and computes the control flow
graph and basic blocks before performing data flow analysis.
After computing the dominator tree, dominator frontier and

control dependence set, it converts HL WHIRL to a hashed
SSA form. It then performs def-use analysis, alias
classification and pointer analysis, induction variable
recognition and elimination, copy propagation, dead code
elimination, partial redundancy, elimination and more.
Finally, it transforms the SSA form back to WHIRL after
these analyses and optimizations.

The flow graph data structure contains the basic blocks in
depth-first and post-order, the dominator tree in preorder
and post-dominator tree in post-order. It also reflects. the
calls inside a basic block. ?he basic block data structure
includes the type of the hasic block, predecessor list,
successor list, etc.
C. LNO

This module includes the data dependence tests. Open64
uses a hierarchical approach to look for loop level data
dependences. LNO creates a dependence graph for all m a y
statements inside each loop of the program. There is one
graph per loop nest in a program unit; thus edges may only
exist between an array definition and usage if they share at
least one common loop. Each edge can be mapped to a
dependence distance and direction vector; each-edge is also
linked to the WHIRL.

The data dependence test first checks for trivial cases
(such as non-linear array expressions, different array
dimensions, etc.). For example, if all the dimensions are too
messy or contain non-linear terms, or if there is a symbolic
term that varies in a loop for which we are computing a
distancddirection, it r e m s dependence. If any dimension
has two non-equal constants, the trivial test will infer
independence, and otherwise continue dependence testing.

Then it performs the base test as follows. If the bases are
the same and the bounds match, it continues dependence
testing; but if the bases arc disjoint it returns independence;
if the bases overlap then it reports dependence. If these tests
are insufficient, it bies to apply the GCD test; if it is still
inconclusive, it solves a system of equations for exact data
dependence using the Omega Test. Thus it is very powerful.

The results of data dependence analysis are used within
Open64, in particular, to optimize loops. The strategy is
based on a unified cost model and a model of the target
cache. LNO includes well-known uni-modular loop
bansformations. It uses these to perform locality
optimization, automatic parallelization, and OpenMP
translation; heuristics integrated with software pipeliming
also employ LNO.

111. Dragon Tool
We chose Open64 as an infrastructure for implementing

Dragon since it contamed a robust set of advanced compiler
analyses satisfying our requirements‘”.

Ir-tools is an Open64 utility for debugging purposes that
outputs WHIRL to ascii text. We initially attempted to use
this for our work. However, it does not contain any
functionality for retrieving the compiler’s analysis results
and was thus quickly abandoned. Note that for other
pulposes, ir-tools can help build OpenWhased tools (see
Section IV).

-793-

Direct modification of the Open64 compiler was the
straightforward approach, and we have developed code to
exwact the information needed by Dragon. It necessitated
only minimal modifications to Opcn64. An extra module,
which can be tuiied on or off via compiler llags, was added
to Open64 to export analysis results into a program
database. A user program is coinpiled by Open64 with our
switch. Afterwards, Dragon visualizes the information
stored in the database according to user needs.

Another design issue is how to display compile time
analysis results in a user-friendly manner. One solution is to
display the information in graphical form. For some
applications, results such as the call graph, however, may bc
too large. For example, the POP 2.0 code"" has a total of
428 procedures. Consequently we think that a hicrarchical
display model may be necessary. We display sourcc code
along @tu infor!paiion relevant to that portion of code.

Fig. 2 The architecerc of Dragon lool

Fig. 2 shows the architecture of Dragon. Dashed lines
surround the Open64 modules. Useful information, such a s
flow graph, call graph, dependence informalion, is extracted
tiom different compiler modules and exported to the
program analysis database. We added one module,
CFG-IPL, after FE in order to be able to map source code
accurately to the control flow graph (as explaiiied in
subsection E). In this module, the control flow graph is
generated and stored in the program database. IPA, WOPT
and LNO me executed. Once partial compilation completcs
(no code is generated), Dragon exploits the information that
has k e n gathered in the program database, mapping it with
the source code and displaying it in graphical and text form
as required.

The program information provided by Dragon can be
displayed on the screen or saved in printable formats
(.vcg, .ps, or .bmp) using VCG1I2'. We describe its features
in more detail below.
A. The Call Graph

A call graph represents calling relationships in a program.
The call graph contains a node for each procedure in the
program, and a drected edge linking a pair of nodes if and
only if the procedure corresponding to the source node may
invoke the sink node's procedure at run time. The graph can
be cyclic where recursion is allowed. With Open64 and
Dragon, the caller and callee may be in difterent languages.
For instance, a Fortran program can call a tunction witten

in C, and vice versa. Our graph distinguishes the root
procedure (main program), leaf procedures (that do not call
any other routines), dcad procedures (that are ncver called),
and procedures containing OpenMP codc via node coloring.
Clicking on a node or selecting a procedure fiom a text list
of procedure names will cause the corresponding source
code to be displayed in a separate browser window. Fig. 3
shows the call arauh for an OueiiMP + MPI version of

Open64's call graph data structure is based on a class
with a method that caii retrieve a WHIRL tree or any
information on a particular program unit and the
Corresponding symbol tables. Sincc the first WHLRL node
corresponds to a function entry or alternate cntry, we can
acccss the sourcc position, filename and procedure name
fiom there. Using thc call graph structure we can rctrieve
the total number of nodes in lhe graph. We determine
whether the procedure contains OpenMP constructs by
querying the program unit table (PU-TABLE).

Originally, the pre-linker could not retrievc the cuiI'eiit
source file name of each entry WHIRL node siiice the tables
that contain the iilenames and directory names were not
updated properly. We modified the function to flush the
tables purposely so as to obtain the filename.

We implemented a method that cxtracts thc call graph in
preorder fashion and stores it in the database, where each
node contains infoimation about its source code location,
source file name, directory name, line number, node
identification, call sites, aiid any OpcnMP directives it has.

Ope1164 has difliculty handling calls with formal
procedure parameters. For these it tries to use constant
propagation to spread real cakes, which often does not
work. Weng ct al.'L6' developed a new algorithm to
construct a precise and correct call graph. This algorithm
can retrieve the exact call chains needed by many other
analyses. We plan to impleincnt this algorithm in Open64,
and develop interprocedural analyses based upon it.
U. The Control Flow Graph

The coiitrol flow graph represents the detailed structure
of e n individual subroutine or function. It is the basis for
dataflow analysis and many standard optimizations. Open64
constructs the conwol flow graph li.oni HL WHIRL, doing
so multiple times in different phases of the compiler
analyses while translating a program. Dragon retrieves the
control flow graph for each procedure in the 1PL module. A
iiodc in the graph (Fig. 4) represents a basic block, and it is
linked to all the possible successor nodes in the procedure

by directed edges, so that each possible execution path
within the procedure is displayed. Nodes are colored to
distinguish the enhies and exits of a procedure, branches

basic blocks and flow graph of each procedure, along with
source ctxle location inforniation (directory name, file name
and line number), in Dragon’s database. In order to map the
source code with the control flow graph accurately, the
generated flow graph needs to be modified to rctlcct source
code location, since the control llow graph coiistriictioii
may restructure some statements. For example, a do loop
that comprises four basic blocks, lNm, END, BODY, aiid
STEP, nceds to be changed to two basic blocks, the loop
condition and its body.

Dragon requires an exact mapping between the analyses
and the source code. For example, a code segment should
be highlighted if a basic block node in the control flow
graph is selected. This one-to-one conespondeuce with the
source code is retained in VHL WHIRL. However, the
control flow graph computed in Open64 is based on HL
WHIRL. That means some constructs that are directly
represented in VHL WHRL have been aanslated to a lower
level representation. In particular, Fortran 90 is translated to
Fortrim I1 as part of this lowering. Without any additional
work, loops would appear in the control ilow graph in place
of array statcments, leading to a source code mapping
problem.

One possible solution to this is to record the translation
and mapping from VHL to HL WHIRL This would
generally help us deal with mappings between the source
code and subsequent WHIRL and related analysis, but it
requires non-trivial programming eiYort, siiice Open64 was
not designed to keep such an exdct mapping.

A simpler strategy was to deal with the control flow
graph mapping problem separately by adding code to
construct the control flow graph before VIlL WHIRL is
lowered. Our cusrcnl system includes the CFG-IPL module
that does so by invoking the pre-optimizer and storing the
results in the Dragon database. It does not affect Opcn64
analyses because the flow graph is rebuilt in other modules
as required.

Since the original code did not handle the featuses of
VHL WHIRL that are lowered, our method required us to
extend the existing flow graph construction code, primarily
to deal with Fortran 90 features such as assay statements,
‘may sections use, the WHERE construct, and more. There

are a fcw limitations at present; for example, the select-case
structure is replaced by if consaucts.
C. The Data Dependence Graph

Data dependence information is essential io aiiy effort to
rcorganize a sequential program containing loops or to
obtain a parallel counterpart. However, even though this
concept is well understood by mauy application developers,
it is notoriously difficult to detect the dependences that exist
in cvcn m a l l regions of code. We implemented ti function
in Dragon to extract the data dependence graph fiom Loop
Nest Optimizer (LNO) in Open64 compiler where each
node in the data dependence graph can map to a WHIRL
node. This mapping requires the traversal of WHIRL tree
bottom-up until ai expression or statement level node was
found. From extracted data dependencc graph of NAS B T
benchmark codc in Fig. 5 , there is ai1 edge that connccts the
use of rhs(n,i,j,k+l) to the definition of rhs(m,i,j,k); and
therefore the Dragon will show that the loop j , i, 111, 11 are a11

iriillelizable, and the loop level k niust be executed
qiientially duc to the true dependence of variablc rhs.
do j = 1, gcid_poinfs(?j-2

dei= l ,pirlgnints(l)-2
......
do k=ksizc-l,O,-l

do I~=~,RLOCK_SIZE
do n=I,BLOCK-SIZB

cndda
rhs(n1,ij.k) = rhs(ni,i,i,k) - ihs(m,n,cc.k)*lhs(a,ij,k+l)

cllddo
cnddo

enddo
:nddo

Fig. 5 NAS BT Ixachioark cxamplc c d c
D. The User Interface

To build the Dragon user interface, we used Visual
Workshop from Sun Microsystems to manage the X11
k s s t i f widgets. We rely on a public domain Motif widget
called XmCraph to display the call graph and tlow graph.
This widget has proved to be effective when dealing with
large graphs, and it was vcry easily integrated with the rest
of the intcrfiice. Each node in such a graph is a button that
calls its corrcsponding callback function if activated.

IV. Evaluation of Dragon Tool

containing mnnbcr “f

POP lletn 2.0 46,378

Many midrange applications including POP, ASCI
Sweep3d and UMT98, GenIDLEST and NAS OpenMP
parallel benchmarks‘”, have been analyzcd successfully by
Dragon. Both POP beta 2.0 and GcnlDLEST are real-world
applications containing MPI and OpenMP, as shown in
Tablc I . Dragon helps users easily locate procedures
containing OpenMP codes, and find the parallel regions.

~

48,711
~~~ 

V. Ongoing work 



We are working on a variety of additional features, 
including tracking variable definitions and uses, and 
determining which procedures use a given global variable. 
SSA form is used in Open64 to perform such data flow 
analysis efficiently in WOPT module. Since it is not 
equivalent to the source code and not accurate in terms of 
original variables in the source code, we are using the 
bit-vector data flow analysis based on normal IR to retrieve 
the accurate variable information. 

Many tools need program analysis information to 
perform their tasks. A common Program Database Toolkit 
(PDT)@’ is ideal to share analysis information with many 
tools. We are working toward a standard for program 
analysis information and interfacing Dragon with the PDT, 
developed by the University of Oregon. We plan to use the 
Open64 infrastructure to populate the analysis database so 
that other tools can query it. 

VI. Related Work 
Foresys‘” provides a good deal of support for application 

improvement, but is limited to Foman. Captools[4’ 
transforms a sequential Foman 77 program into MPI or 
OpenMP programs after asking the user questions to help 
the process. Others such as Source Navigator[”’ accept 
multiple languages, multiple platforms but lack of OpenMP 
support. Some commercial tools including Canal can also 
provide program analysis but they are l i t e d  in their 
availability. A d ” ’  based on the WPP compiler can 
graphically display interprocedural analysis results of 
programs to help the users parallelize loops in OpenMP. 
Collect and analyzer in SUN Workshop are JAVA based 
analysis tools which allow the interpretation of profiling 
and performance statistics. Dragon’s CUI enables a faster 
display than these tools. 

VII. Conclusions and Future Work 
Dragon is an interactive tool that provides detailed 

information about a C/Fortran77/Fortran90 program that 
may contain OpenMP/MPI constructs. It takes advantage of 
Open64 analysis and capabilities. The basic information 
displayed in our graphical tool is general-purpose and could 
be employed in many situations, Eom analyzing legacy 
sequential code to helping users reconstmct parallel code. 
The PDT provided by Dragon enables us to collaborate with 
profiler and debuggers and provide wider information to 
users. It also shows that Open64 is a good basis for building 
taols such as ours. 

We are also usmg Open64 in ow research on advanced 

131. Hernandez, “Dragon Analysis Tool”, Master Thesis. 
Department of Computer Science, University of Houston. 
December 2002. 
141. S. Ierotheou, S .  P. Johnson, M. Cross, and P. Legget, 
“Computer Aided Parallelisation Tools (CApTools) - 
Conceptual Overview and Performance on the 
Parallelisation of Structured Mesh Codes,” Parallel 
Computing, 22 (1996) 163-195. 
[5 ] .  H. Jin, M. Frumkin, J. Yan, “The OpenMP 
Implementation of NAS Parallel Benchmarks and Its 
Performance”, NASA Technical Report, NAS-99-01 I ,  1999. 
[61. K. A. Lmdlan, et. al. “A Tool Framework for Static 
and Dynamic Analysis of Object-Oriented Software with 
Templates”, Proceedings of the 2000 ACM/LEEE 
conference on Superwmputing., Dallas, Texas, 2000. 
171. 2. Liu, B. M. Chapman, T.-H. Weng, 0. Hernandez, 
Improving the Performance of OpenMP by Array 
Privatization. WOMPAT’2002, Workshop on OpenMP 
Applications and Tools. The University of Alaska Fairbanks. 
Fairbanks, Alaska. August 5-7,2002. 
[SI. Open64 compiler, http:llopen64.sourceforge.netJ 
[91. The OpenMP Application Program Interface. 
http://www.openmp.ag 
[IO]. Parallel Ocean Program(P0P). 
httu://www.acl.lanl.~ov/climate/modelr/is/uou/ 
[ 111. Source Navigator, http://sourcenav.sourceforge.net/ 
[121. G. Sander, M. Alt, C. Ferdinand, R. Wilhelm, “CLaX, 
A Visualized Compiler”, In F. J. Brandenburg, ed.: Graph 
Drawing, ’ Symposium on Graph Drawing GD’95, 
Proceedings, Lecture Notes in Computer Science 1027, pp. 
459-462, Springer Verlag, 1996 
[13].M. Satoh, Y. Aoki, K Wada, T. Iitsuka, and S .  
Kikuchi, “Interprocedural Parallelizing Compiler WPP and 
Analysis Information Visualization too Aivi”, Second 
European Workshop on OpenMP ( EWOMP 2000 ), 2000 
c14l.K. Tafti. CmIDLEST - A Scalable Parallel 
Computational Tool for Simulating Complex Turbulent 
Flows, Proceedings of the ASME Fluids Enginee~ng 
Division, FED 256, ASME-IMECE, Nov. 2001, New York. 
[ l51.T:H. W a g ,  B. M. Chapman, “Implementing 
OpenMP Using Dataflow Execution ‘Model for Data 
Locality and Efficient Parallel Execution”. Proceedings of 
the 7th workshop on High-Level Parallel Programming 
Models and Supportive Environmenfs (HIPS-7), IEEE, Ft. 
Lauderdale, April 2002. 
[16].T.-H. Weng, Y. Wen, B. M: Chapman, “GI1 Graph 
and Side Effect Analysis in One Pass”, Technical Report. 
Department of Computer Science, University of Houston. 
,.-,.a 

compiler teachniques, &cluding translating to SPMD style 
OpenMP[61, which promises to provide good performance. 
We will extend data flow analysis for OpenMP programs, 
and wmpile OpenMP to macro task graphs[ls’ using m a y  
region analysis. 

’””’ 

References 
[I]. Dragon tool, hnp://www.cs.uh.edu/-dragon 
[Z]. Foresys, http://www.simulog.fr/ir/is/2forel.htm 

-796- 

http:llopen64.sourceforge.netJ
http://www.openmp.ag
http://sourcenav.sourceforge.net
http://www.simulog.fr/ir/is/2forel.htm

