
}
} }

Figure 1. Three stages of progressive alignment: (1) distance matrix; (2)

guided tree; (3) profile-profile progressive alignment.

MSA-CUDA: Multiple Sequence Alignment on
Graphics Processing Units with CUDA

Yongchao Liu, Bertil Schmidt, Douglas L. Maskell
School of Computer Engineering

Nanyang Technological University
Singapore, 639798

{liuy0039, asbschmidt, asdouglas}@ntu.edu.sg

Abstract—Progressive alignment is a widely used approach for
computing multiple sequence alignments (MSAs). However,
aligning several hundred or thousand sequences with popular
progressive alignment tools such as ClustalW requires hours or
even days on state-of-the-art workstations. This paper presents
MSA-CUDA, a parallel MSA program, which parallelizes all
three stages of the ClustalW processing pipeline using CUDA
and achieves significant speedups compared to the sequential
ClustalW for a variety of large protein sequence datasets. Our
tests on a GeForce GTX 280 GPU demonstrate average
speedups of 36.91 (for long protein sequences), 18.74 (for
average-length protein sequences), and 11.27 (for short protein
sequences) compared to the sequential ClustalW running on a
Pentium 4 3.0 GHz processor. Our MSA-CUDA outperforms
ClustalW-MPI running on 32 cores of a high performance
workstation cluster.

Keywords-multiple sequence alignment; CUDA; GPU;
ClustalW

I. INTRODUCTION
Multiple Sequence Alignments (MSAs) are one of the

primary research areas in bioinformatics, involving aligning
three or more biological sequences at the same time.
Exhaustive dynamic programming is a straightforward way
to compute optimal MSAs. However, the cost of this
approach is expensive in terms of both computing time and
memory space. This becomes especially evident with the
rapid growth of biological sequence databases demanding
more powerful high-performance computing solutions. To
overcome these constraints, some heuristics such as
progressive alignment [1], have been suggested. Progressive
alignment is a widely used heuristic for MSA. Many popular
MSA software packages have been developed based on this
approach, including T-Coffee [2], MUSCLE [3], and
ClustalW [4]. ClustalW has more than 26,000 citations in the
ISI Web of Science and is considered the most popular MSA
tool.

Typically, progressive alignment consists of three stages
(see Fig. 1): pairwise distance computation, guided tree
generation and profile-profile progressive alignment along
the guided tree. Stage 1 computes a distance matrix
comprised of the distance value between each pair of

sequences using pairwise alignment. Stage 2 generates a
guided tree from the distance matrix using distance-based
phylogenetic tree reconstruction methods. Stage 3 performs
progressive alignment of the various profiles to form the
final MSA along the guided tree.

Even though, the progressive alignment is much more
efficient than dynamic programming, it still suffers from a
high computational complexity. Much research work has
been done to accelerate the execution of progressive
alignment tools, especially ClustalW, using parallelization.
These solutions can be compared from the aspects of
granularity, target architecture, ClustalW stages parallelized
and parallel programming model used.

Coarse-grained parallel versions of ClustalW have been
designed to target shared memory multiprocessors,
distributed memory workstation clusters, symmetric
multiprocessors (SMPs) and SMP clusters. A commercial
parallel version of ClustalW presented by SGI [5] is
designed for expensive SGI shared memory multiprocessor
machines. ClustalW-MPI [6], Ebedes et al. [7] and
pCLUSTAL [8] all target distributed memory workstation
clusters using MPI but parallelize only Stages 1 and 3 of
ClustalW. ClustalW-SMP [9] is an SMP version of ClustalW
designed for SMP machines, which is written using the
Pthreads library and parallelized all the three stages of
ClustalW. Tan et al. [10] presented a parallel ClustalW
running on an SMP cluster by means of a mixed approach
using both MPI and OpenMP, but only parallelized Stages 1
and 3 of ClustalW.

Fine-grained parallelization approaches focus on multi-
core processors and accelerators such as FPGAs and GPUs.
MT-ClustalW [11] is designed to target multi-core
processors but merely re-parallelized Stage 2 using the
Pthreads library on the basis of ClustalW-SMP. Oliver et al.

2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors

1063-6862/09 $25.00 © 2009 IEEE

DOI 10.1109/ASAP.2009.14

121

Figure 2. Cells on the same minor diagonal (dashed line) can be

computed in parallel and the alignment matrix can be computed in minor
diagonal order.

[12] [13] constructed a linear systolic array to perform Stage
1 of ClustalW on a standard FPGA using Verilog HDL.
GPU-ClustalW [14] reformulated the dynamic programming
pairwise alignment algorithm and is implemented using
OpenGL on commercial graphics cards but only parallelized
Stage 1 of ClustalW.

Besides ClustalW, parallel solutions for other MSA tools
have also been developed. Zola et al. [15] presents a parallel
implementation of T-Coffee running on workstation clusters
using MPI, which parallelizes the library generation stage
and the progressive alignment stage. Deng et al. [16]
parallelized three modules (FRA, PMC and CT) which take
most of the runtime of MUSCLE with OpenMP. Boukerche
et al. [17] designed an FPGA-based hardware accelerator to
execute the most compute-intensive part of DIALIGN.

In this paper, we show how the CUDA programming
model can be used to parallelize all three stages of ClustalW
in Sections 2 to 5. Section 6 evaluates the performance of
the CUDA-based approach to ClustalW 2.0.9 and ClustalW-
MPI. Finally, Section 7 concludes the paper.

II. CUDA PROGRAMMING MODEL
CUDA (Compute Unified Device Architecture) is an

extension of C/C++ which enables users to write scalable
multi-threaded programs for CUDA-enabled GPUs [18].
CUDA programs can be executed on GPUs with NVIDIA’s
Tesla unified computing architecture [19].

CUDA programs contain a sequential part, called a
kernel. The kernel is written in conventional scalar C-code. It
represents the operations to be performed by a single thread
and is invoked as a set of concurrently executing threads.
These threads are organized in a hierarchy consisting of so-
called thread blocks and grids. A thread block is a set of
concurrent threads and a grid is a set of independent thread
blocks. The total size of a grid (dimGrid) and a thread block
(dimBlock) is explicitly specified in the kernel function-call:

kernel<<<dimGrid, dimBlock, … >>> (parameters);
The hierarchical organization into blocks and grids has

implications for thread communication and synchronization.
Threads within a thread block can communicate through a
per-block shared memory (PBSM) and may synchronize
using barriers. However, threads located in different blocks
cannot communicate or synchronize directly. Besides the
PBSM, there are four other types of memory: per-thread
private local memory, global memory for data shared by all
threads, texture memory and constant memory. Texture
memory and constant memory can be regarded as fast read-
only caches.

The Tesla architecture supports CUDA applications
using a scalable processor array. The array consists of a
number of streaming multiprocessors (SMs). Each SM
contains eight scalar processors (SPs), which share a PBSM
of size 16 KB. All threads of a thread block are executed
concurrently on a single SM. The SM executes threads in
small groups of 32, called warps, in single-instruction
multiple-thread (SIMT) fashion. Thus, parallel performance
is generally penalized by data-dependent conditional
branches and improves if all threads in a warp follow the
same execution path.

III. PARALLELIZATION OF PAIRWISE DISTANCE
COMPUTATION

Given two sequences Sa and Sb of lengths la and lb
respectively, their distance d(Sa, Sb) is defined as:

(,)

(,) 1
min{ , }

a b
a b

a b

nid S S
d S S

l l= − (1)

where nid(Sa, Sb) denotes the number of exact matches in the
optimal local alignment of Sa and Sb. The value nid(Sa, Sb)
can be computed in linear space using three passes: a
forward score-only pass using Smith-Waterman (SW)
algorithm [20] [21], a reverse score-only pass using SW
algorithm and a traceback computation pass using Myers-
Miller algorithm [22].

We are using the following notations for the SW
algorithm: a substitution table sbt, a gap opening penalty ρ,
and a gap extension penalty σ, the following recurrences for
1 ≤ i ≤ la, 1 ≤ j ≤ lb:

(,) max{ (1,) , (1,) }
(,) max{ (, 1) , (, 1) }
(,) max{0, (,), (,), (1, 1)

([], [])}a b

E i j E i j H i j
F i j F i j H i j
H i j E i j F i j H i j

sbt S i S j

σ ρ σ
σ ρ σ

= − − − − −
= − − − − −
= − −

+ (2)

The recurrences are initialized as H(i, 0) = H(0, j) = E(0, j) =
F(i, 0) = 0 for 0 ≤ i ≤ la and 0 ≤ j ≤ lb. The maximum local
alignment score maxScore is defined as the maximal value in
matrix H. The three arrows in Fig. 2 show the data
dependencies in the alignment matrix: each cell depends on
its left, upper, and upper-left neighbors. This dependency
implies that all cells on the same minor diagonal in the
alignment matrix are independent from each other and can be
computed in parallel (also shown in Fig. 2). Thus, the
alignment can be computed in minor-diagonal order from the
top-left corner to the bottom-right corner in the alignment
matrix. Note that, in order to calculate minor diagonal i only
the results of the minor diagonal i−1 and i−2 are necessary
and therefore maxScore can be found in linear space.

The actual optimal alignment path can be found in linear
space by computing a traceback with the Myers-Miller

122

typedef struct tagNode
{

int A, B, M, N;
int tb, te, branch, type;

} Node;
typedef struct tagStack
{

int top;
nodes [MAX_STACK_DEPTH];

}Stack;
#define NONE (-1) //nothing to do
#define PREFIX 0 //upper-left section of the “optimal midpoint”
#define SUFFIX 1 //lower-right section of the “optimal midpoint”
#define TYPE1 1 //type 1 “optimal midpoint”
#define TYPE2 2 //type2 “optimal midpoint”
Iterative procedure diff (A, B, M, N, tb, te)
{

Stack stack;
Node node;

stack_init (&stack);
node_init (&node, A, B, M, N, tb, te, NONE,NONE);
stack_push (&stack, &node);
while (!stack_empty (&stack)) {

Node* tmp = stack_pop(&stack);
A = tmp->A; B = tmp->B; M = tmp->M; N = tmp->N; tb = tmp->tb; te = tmp->te;
//if the type of the mid point is TYPE2
if (tmp->type == TYPE2 && tmp->branch = SUFFIX) {

del (2); //deleting “amini amini + 1“
}

Handle the boundary cases N=0 and M≤1 by examining all possible optimal alignments;
//compute and find the “optimal midpoint” (midi, midj)
midi = M/2;
Compute HH and DD in a forward phase using the enhanced SW Algorithm;
Compute RR and SS in a reverse phase using the Enhanced SW Algorithm;
Find minj [0, N] by minj [0, N] {min (HH[j]+RR[j], DD[j]+SS[j]-_gapOpen)};

//divide and conquer around the “optimal midpoint” (midi, midj)
type = the type of the “optimal midpoint” (midi, midj);
if (type == TYPE1){

node_init (&node, A+midi, B+midj, M–midi, N–midj, _gapOpen, te, type, SUFFIX);
stack_push(&stack, &node);
node_init (&node, A, B, midi, midj, tb, _gapOpen, type, PREFIX);
stack_push (&stack, &node);

}else{ //definitely TYPE2
node_init (&node, A+midi+1, B+midj, M–midj–1, N–midj, 0, te, type, SUFFIX);
stack_push(&stack, &node);
node_init (&node, A, B, midi – 1, midj, tb, 0, type, PREFIX);
stack_push(&stack, &node);

}
}

}

Figure 3. Pseudocode of the stack-based iterative implementation of the
Myers-Miller algorithm.

algorithm. The central idea of Myers-Miller is to find the
“optimal midpoint” of an optimal alignment using a forward
and a reverse pass. By recursively calculating optimal
midpoints on both sides of this “optimal midpoint”, the
complete traceback path can be found. The sequential
implementation of this algorithm uses a recursive divide-
and-conquer method. However, CUDA does not support
recursion. Therefore, we have developed a new stack-based
iterative implementation shown in Fig. 3. MSA-CUDA uses
this implementation for both pairwise alignments in Stage 1
and profile-profile alignments in Stage 3.

Considering the pairwise distance computation of one
pair of sequences as a task, we have investigated two
approaches for parallelizing Stage 1 using CUDA.

• Inter-task parallelization. Each task is assigned to
exactly one thread and dimBlock tasks are performed
in parallel by different threads within the thread
block.

• Intra-task parallelization: Each task is assigned to a
whole thread block and all dimBlock threads in the
thread block cooperate to perform the task in
parallel, exploiting the parallel characteristics of
cells in the minor diagonals as shown in Fig. 2.

In order to achieve high efficiency for inter-task
parallelization, the runtime of all threads in a thread block

should be roughly identical. We therefore order the input
sequences based on their lengths. Hence, for two adjacent
threads in a thread block, the difference value between the
products of the lengths of the associated sequences is
minimized.

During the execution of pairwise distance computation,
additional memory is required to store intermediate
alignment data. The size of this memory is O(min{la, lb}) for
the two parallelization, given two sequences of length la and
lb (e.g. Stage 1 requires about 16 × min{la, lb} bytes for inter-
task parallelization and about 40 × min{la, lb} bytes for intra-
task parallelization). To support much longer sequences, the
global memory is used to store the immediate results. The
two approaches work in a multi-pass fashion, where in every
pass, a grid consisting of thread blocks whose number is
equal to or less than the number of SMs are bound to the
corresponding kernel and launched, and the memory
allocated for one pass is multiplexed by the successive
following passes, reducing the requirements for global
memory. For inter-task parallelization, the total amount of
required memory for n input sequences of average length lave
can be estimated as:

 () bytesavedimBlock SM number O l× × (3)

For intra-task parallelization, the total amount of required
memory for the same input sequences can be estimated as:

 () bytesaveSM number O l× (4)

To gain maximum bandwidth and best performance, all
threads in a half-warp should access the intermediate results
in global memory in a coalesced pattern. A prerequisite for
coalescing is that the words accessed by all threads in a half-
warp must lie in the same segment. The memory spaces
referred to by the same variable names (not referring to same
addresses) for all threads in a half-warp have to be allocated
in the form of an array to keep them contiguous in address.
Fig. 4 presents two global memory allocation patterns of a
basic type vector variable of size N for M processing entities
(threads or thread blocks, here). Inter-task parallelization
exploits the pattern shown in Fig. 4 (a), where a memory slot
is allocated to a thread in a thread block and is indexed top-
to-bottom, and the access to MemSlot using the same index
for all threads in a half-warp is coalesced into one or two
memory transactions depending on the compute capability of
devices. Intra-task parallelization exploits the pattern shown
in Fig. 4 (b), where a memory slot is allocated to a thread
block and is indexed left-to-right, and the coalesced access is
able to be obtained using the common global memory access
pattern, i.e. that successive threads access the successive
addresses in a memory slot.

To maximize performance and to reduce the bandwidth
demand of global memory, we propose a cell block division
method for the forward score-only pass when using inter-
task parallelization, where the alignment matrix is divided
into cell blocks of equal size. A cell block is a square matrix
of size n × n. Assume that the lengths of a pair of sequences

123

…
…

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

…
…

M
em

Slot [0...N
]

Entity 0
Entity 1
Entity 2
Entity 3

Entity M
-4

Entity M
-3

Entity M
-2

Entity M
-1

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

Figure 4. Two global memory allocation patterns of a basic type vector

variable of size N for M processing entities (threads or thread blocks).

are la and lb, respectively. In this case, la and lb must be
multiples of n. If the length is not a multiple of n, the
sequence is padded with dummy symbols. To keep
maxScore unchanged, the dummy symbol is added to the
substitution table and the score between the dummy symbol
and itself or a real symbol is set to zero. For simplicity,
assume that la and lb are multiples of n. Without cell block
division, the computation of H(i, j) results in one load
operation and one store operation for the intermediate results
stored in the global memory. We define the runtime of one
load operation to be Tl, the runtime of one store operation to
be Ts and the computation time of one cell value to be Tc.
Then, without cell block division, the total runtime can be
estimated as:

 ()a b l s cl l T T T× × + + (5)

However, when using the cell block division method, the
computation of n cells in one column (or row) in a cell block
only requires one load operation and one store operation on
the global memory instead of n load operations and n store
operations. In this case, the total runtime can be estimated as:

 ()1
a b l s cl l T T T

n
⎛ ⎞× × + +⎜ ⎟
⎝ ⎠

 (6)

Since one global memory access takes hundreds of clock
cycles, the cell block division method leads to a signification
reduction of the total runtime due to a reduction in the global
memory accesses. However, the size of cell block is limited
by the amount of shared memory (or registers) available per
thread. Therefore, this leads to the optimal cell block size of
8 × 8 for our implementation.

The multi-pass inter-task parallelization requires a large
number of tasks to be efficient. If there are only a few tasks
available (e.g. ≤ 100), intra-task parallelization is preferable.
The intra-task parallelization executes in a model similar to
the execution model of OpenMP. For a loop that can be
parallelized between iterations, it is divided into separate
iterations and distributes them to threads or warps in a thread

block. For Stage 1, one pairwise distance computation is
assigned to a whole thread block and computed by all
threads in the thread block along the time axes from the top-
left corner to the bottom-right corner in the alignment matrix
(shown in Fig. 2). In each pass, all cells on a minor diagonal
are computed in parallel by all threads, one of which is
assigned to compute a separate group of cells. Due to the
independent execution of different warps, barrier
synchronization is necessary before starting the computation
of the next minor diagonal after the completion of the current
one.

Obviously, if the sequence length is relatively large and
almost no threads in the thread block are idle, a good
performance can be gained, albeit the irregular number of
cells on different minor diagonals. However, if the sequence
length is relatively small, many threads in the thread block
will be idle for much of the runtime or even all the time,
which results in a poor performance since the access latency
of the global memory cannot be offset by overlapping with
computing.

Inter-task and intra-task parallelization both use constant
memory to store read-only parameters and the substitution
stable. The substitution table is loaded into shared memory,
as the performance of constant memory degrades linearly if
multiple addresses are requested by threads. This is because
threads may frequently access different addresses in the
substitution table. Texture memory is used to store the
ordered input sequences. The symbols of a sequence are
restricted to be stored in the same row of the texture array.
All sequences are sequentially stored in the array row by row
from top-left to bottom-right. A hash table records the
location coordinate in the texture array and length of each
sequence and provides the fast access to any sequence.

IV. PARALLELIZATION OF NEIGHBOR-JOINING TREE
In ClustalW, the guided tree is reconstructed using the

neighbor-joining (NJ) method [23] [24]. Stage 2 can be
further divided into two sub-stages:

• Stage 2a: Reconstruction of the unrooted NJ tree (NJ
tree reconstruction);

• Stage 2b: Rooting the NJ tree and computing
sequence weights (NJ tree rerooting).

The improved compact memory algorithm, which we
present in detail in [25], is used for the NJ tree reconstruction
sub-stage. After the reconstruction of NJ tree, Stage 2b starts
to reroot the unrooted NJ tree, to recalculate the weights of
sequences and to traverse the rooted tree to identify the
alignment steps for Stage 3. The unrooted NJ tree is rerooted
using a “mid-point” method [26]. The root is placed at the
position where the means of branch lengths on either side of
the root are identical. The position is determined using the
following algorithm:

• Every node of the NJ tree is iteratively selected as
the reference node;

• Determine which leaf node is on the left or on the
right of the selected node. If a leaf node is not a
descendent of the selected node, it is positioned on
the left; otherwise, on the right. The distance

124

Figure 5. Example of a rooted guided tree produced by the NJ method.

Figure 6. Three initial auxiliary vectors storing the dependency

relationship with their left and right sub-trees and the aligned flags.

between each leaf node and the selected node is then
computed. If the selected node is an ancestor of a
leaf node, the distance between them can be
computed directly by summing the length of each
branch along the path from the leaf node to the
selected node; otherwise, the distance is the sum of
the branch lengths from either of them to their
common ancestor;

• Compute the difference value between the means of
branch lengths on the left and on the right of the
selected node;

• Exhaustively compute the difference values between
the means of branch lengths on the left and on the
right for all nodes and then select the node that gives
the minimum positive difference value (including 0)
and produces the shallowest tree;

• Insert a new root as the ancestor of the node selected
in the previous step.

For the CUDA implementation, all the tree nodes are
stored in a vector and the relationship between nodes is
maintained through vector indices instead of pointers. Each
node object stores the indices of itself, its parent and its left
and right children, and accesses them using vector index.
One thread block is assigned to compute the difference value
of the means of branch lengths on the left and on the right of
one node, which is selected as the reference. Every thread in
the thread block is assigned to perform the computation on a
separate sub-set of leaf nodes. For each leaf node in a sub-
set, the corresponding thread identifies on which side of the
selected node this leaf node lies and computes the distance
between this leaf node and the selected node. Shared
memory is exploited to store the results of all threads in a
thread block and texture memory is used to store the tree
structure.

V. PARALLELIZATION OF PROGRESSIVE ALIGNMENT
The final stage performs profile-profile alignments

following the rooted guided tree from the leaves up to the
root. Every leaf node of the guided tree corresponds to a
sequence and each internal node corresponds to a profile-
profile alignment produced from the aligned sequences in the
left sub-tree and in the right sub-tree. The alignment
corresponding to an internal node can be launched if and
only if the alignments corresponding to the roots of its left
and right sub-trees have been performed. Obviously, the
alignments at the same level of the guided tree can be
performed in parallel but even alignments that are not at the
same level could also be parallelized. For example, in Fig. 5,
all alignments with the same patterns can be performed in
parallel.

Initially, the rooted guided tree is depth-first traversed in
post-order to number all the internal nodes and build the
dependency relationship with their left and right sub-trees.
All internal tree nodes are stored in a vector in traversal-
order. For all tree nodes, three auxiliary vectors are used to
record the indices of their children, the indices of their right
children and a flag indicating whether the corresponding
alignments has been performed. For a leaf node, the indices

of its left and right children are set to 0. For an internal node,
if one child is a leaf, then the index of this child is also set to
0. The dummy sub-tree numbered as 0 is always defined
aligned since it corresponds to an input sequence for an
alignment. Fig. 6 presents the three initial auxiliary vectors
for the rooted guided tree shown in Fig. 5.

In MSA-CUDA, the progressive alignment is conducted
iteratively in a multi-pass way. For each pass, firstly, all
undone alignments that are able to be performed in this pass
are identified by checking the flag words of their left and
right children stored in the flag-vector. If both of its left and
right children have been aligned, this alignment is added to
the ready alignment list managing all the alignments to be
performed in this pass; otherwise, this alignment has to wait
until both of its children have been aligned. After the
completion of the ready alignment list, the pairs of profiles
corresponding to those alignments are constructed. Secondly,
the pairwise alignments of all pairs of profiles are performed
on the GPU in parallel. Thirdly, gaps are added to the
sequences corresponding to each pair of profiles by tracing
back its optimal alignment. Finally, all the alignments
performed in this pass will set their flag words in the flag-
vector to indicate that they are aligned.

As illustrated in Fig. 5, the guided tree is seldom well-
balanced and the numbers of alignments that can be
performed in one pass decreases as the alignments move up
to the root of the tree. Therefore, MSA-CUDA uses the
following parallelization strategy. When the number of
alignments to be performed in one pass is relatively large, an
inter-task parallelization method is utilized; and when it is
relatively small, an intra-task parallelization method is
superior. Thus, a combination of inter-task and intra-task
parallelization is used to compute all the alignments to be
performed in one pass. A threshold determines the branches
of the program flow. If the total number of alignments or the
remaining number of alignments after one or more passes is
still greater than or equal to threshold, the inter-task
parallelization method is used; otherwise, the intra-task
parallelization method is used to compute those remaining

125

45.16 47.13

24.49
27.38

23.82 26.14

10.43 10.44

4.65
6.87

1.65 1.94
0
5

10
15
20
25
30
35
40
45
50

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

Sp
ee

du
ps

Sequences

Inter-task Parallelization Intra-task Parallelization

Figure 7. Speedup comparison of inter-task and intra-task parallelization

for Stage 1.

1.56

7.38

16.75

21.56
19.88

23.20

2.67 3.86 2.67 2.49 2.68
4.03

2.25

4.85
7.22 8.40 7.30

11.08

0

5

10

15

20

25

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

Sp
ee

du
ps

Sequences

NJ Tree Reconstruction NJ Tree Rerooting Guided Tree Overall

Figure 8. Speedups for Stage 2.

alignments.
Constant memory is exploited to store all read-only

parameters. Since any profile-profile alignment has a
different substitution table, texture memory is used to store
the substitution tables. Substitution tables are then loaded
into shared memory from texture memory during the kernel
runtime. Texture memory is also used to store the 2D
profiles of each alignment. A hash table records the location
coordinate in the texture array, the width and height of each
profile, and provides fast access to any profile.

VI. PERFORMANCE EVALUATION
MSA-CUDA is benchmarked on an nVIDIA GeForce

GTX 280 graphics card, with 30 SMs comprising 240 SPs
and 1 GB RAM, installed in a PC with an AMD Opteron 248
2.2 GHz processor running the Linux OS. The sequential
ClustalW (version 2.0.9) program is profiled on a desktop
PC with a Pentium 4 3.0 GHz processor and 1 GB RAM
running the Linux OS. ClustalW-MPI [27] is benchmarked
on a workstation cluster with 16 nodes connected through a
fast 10 Gb/s InfiniBand switch. Each node is equipped with a
dual-core Intel Xeon 3.0 GHz processor and 4 GB RAM
running the Linux OS.

Three kinds of protein sequence datasets are used to
evaluate the performance of MSA-CUDA. They are further
subdivided into two representative datasets with different
numbers of sequences. The datasets consist of sequences
selected from the Human immunodeficiency virus dataset
downloaded from NCBI [28], as given below:

• Case 1: Small number of long sequences. 400
sequences of average length 856 and 1,000
sequences of average length 858;

• Case 2: Medium number of average-length
sequences. 2,000 sequences of average length 266
and 4,000 sequences of average length 247;

• Case 3: Large number of short sequences. 4,000
sequences of average length 57 and 8,000 sequences
of average length 73.

Fig. 7 shows the performance comparison of the inter-
task and intra-task parallelization for Stage 1. The graph
clearly shows that the inter-task parallelization outperforms
the intra-task parallelization for all datasets. Using the inter-
task parallelization, the highest and the lowest speedups are
47.13 and 23.82. The average speedups are 46.15, 25.94, and
24.98 for Case 1, 2, and 3, respectively. Thus, if there are
sufficient tasks and available large device memory capacity
on the GPU, MSA-CUDA chooses inter-task parallelization
for Stage 1. In general, the highest speedup is achieved for
Case 1 datasets. This can be explained by the larger amount
of computation performed compared to Cases 2 and 3.

Speedups for the NJ tree reconstruction sub-stage
generally increase with the number of input sequences, but
grow more slowly for the larger datasets (see Fig. 8).
Consequently, the highest speedup of 23.20 is achieved
using the dataset of 8,000 sequences. As expected, the
sequence length has little impact on the runtime. Speedups
for the NJ tree rerooting sub-stage are relatively low, the
highest and the lowest speedups are 4.03 and 2.49. The

speedup of this sub-stage depends on the number of
sequences as well as the tree topology. The overall speedup
of Stage 2 is mainly subject to the speedup of the NJ tree
reconstruction sub-stage since it dominates the total runtime.

The speedups for Stage 3 vary largely (see Fig. 9),
ranging from 1.35 to 5.94. There are several reasons for this.
Firstly, the building of the profiles of each alignment is
performed sequentially on the CPU, reducing the speedups
achieved in the parallelized parts. Secondly, the speedup
heavily depends on the topology of the guided tree. The
topology greatly influences the number of alignments that
can be processed in parallel. Thirdly, the lengths of the
profiles of an alignment also have impact on performance.
Generally, larger datasets and longer sequences mean better
performances.

Fig. 10 presents the speedups of MSA-CUDA and
ClustalW-MPI compared to the sequential ClustalW. MSA-
CUDA achieves average overall speedups of 36.91, 18.74
and 11.27, respectively for Case 1, 2 and 3, and outperforms
ClustalW-MPI for all test cases. The speedup for ClustalW-
MPI is particularly poor for Case 3 since it exploits an older
NJ tree reconstruction algorithm and does not parallelize it.
However, even for Case 1 datasets, for which Stage 2 has a
negligible runtime, MSA-CUDA on a single GPU is able to
outperform ClustalW-MPI on 32 CPU cores by a small
margin.

126

3.06

3.86

1.48 1.35

5.94

2.20

0

1

2

3

4

5

6

7

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

Sp
ee

du
ps

Sequences

Figure 9. Speedups for Stage 3.

32.29

41.53

18.37 19.11

12.16 10.38

31.78

39.24

16.15

10.29

0.98 0.71
0
5

10
15
20
25
30
35
40
45

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

Sp
ee

du
ps

Sequences

MSA-CUDA Clusta lW-MPI

Figure 10. Speedup comparison between MSA-CUDA and ClustalW-

MPI.

VII. CONCLUSIONS
MSA-CUDA demonstrates that CUDA-compatible

graphics hardware provides a cost-effective high-speed
solution to MSA. Through parallelization of all three stages
of ClustalW, we have achieved average speedups of 36.91
(for long protein sequences), 18.74 (for average-length
protein sequences), and 11.27 (for short protein sequences)
on a single GPU, which is available for less than US$500 at
any local computer outlet. These speedups also compare
favorably to ClustalW-MPI on a high-performance compute
cluster with 32 CPU cores. A comparison of these two
parallelization approaches shows that GPU acceleration is
clearly superior in terms of price/performance. The very
rapid growth of biological sequence databases demands even
more powerful high-performance solutions in the near future.
Hence, our results are especially encouraging since GPU
performance grows faster than Moore’s law as it applies to
CPUs.

ACKNOWLEDGMENT
We would like to thank Dr. Liu Weiguo and Dr. Shi

Haixiang for helping to provide the experimental
environments for conducting the tests.

REFERENCES
[1] D. Feng and R. Doolittle, “Progressive sequence alignment as

a prerequisite to a correct phylogenetic Trees,” J. Molecular
Evolution, vol. 25, Aug. 1987, pp. 351 – 360, doi:
10.1007/BF02603120.

[2] C. Notredame, D.G. Higgins and J. Heringa, “T-Coffee: a
novel method for fast and accurate multiple sequence
alignment,” J. Mol. Biol., vol. 302, Sep. 2000, pp. 205 – 217,
doi: 10.1006/jmbi.2000.4042.

[3] R.C. Edgar, “MUSCLE: a multiple sequence alignment
method with reduced time and space complexity,” BMC
Bioinformatics, vol. 5, Aug. 2004, doi: 10.1186/1471-2105-5-
113.

[4] J.D. Thompson, D.G. Higgins and T.J. Gibson,
“CLUSTALW: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice,”
Nucleic Acids Res., vol. 22, Nov. 1994, pp. 4673 – 4680.

[5] Silicon Graphics, Inc., http://www.sgi.com.
[6] K.B. Li, “Clustal-MPI: ClustalW analysis using parallel and

distributed computing,” Bioinformatics, vol. 19, Aug. 2003,
pp. 1585-1586.

[7] J. Ebedes and A. Datta, “Multiple sequence alignment in
parallel on a workstation cluster,” Bioinformatics, vol. 20,
Feb. 2004, pp. 1193-1195.

[8] J. Cheetham, et al., “Parallel ClustalW for PC clusters”,
International Conference on Computational Science and Its
Applications (ICCSA 2003), LNCS, Jan. 2003, pp. 300–309,
doi: 10.1007/3-540-44843-8.

[9] O. Duzlevski, “SMP version of ClustalW 1.82,” unpublished.
[10] G. Tan, S. Feng and N. Sun, “Parallel multiple sequences

alignment in SMP cluster,” International Conference on High
Performance Computing in Asia Region (HPC Asia 2005),
IEEE Press, Jul. 2005, pp. 425 – 431, doi:
10.1109/HPCASIA.2005.70.

[11] K. Chaichoompu, S Kittitornkun and S. Tongsima, “MT-
ClustalW: multithreading multiple sequence alignment,”
IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2006), IEEE Press, Apr. 2006, doi:
10.1109/IPDPS.2006.1639537.

[12] T. Oliver, B. Schmidt, D. Nathan, R. Clemens and D.
Maskell, “Using reconfigurable hardware to accelerate
multiple sequence alignment with ClustalW,” Bioinformatics,
vol. 21, May 2005, pp. 3431-3432, doi:
10.1093/bioinformatics/bti508.

[13] T. Oliver, B. Schmidt and D.L. Maskell, “Reconfigurable
architectures for bio-sequence database scanning on FPGAs,”
IEEE Trans. Circuits Syst. II, vol. 52, Dec. 2005, pp. 851-855,
doi: 10.1109/TCSII.2005.853340.

[14] W. Liu, B. Schmidt, G. Voss and W. Muller, “Streaming
algorithms for biological sequence alignment on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol.
18, Sep. 2007, pp. 1270-1281, doi: 10.1109/TPDS.2007.1069.

[15] J. Zola, X. Yang, S. Rospondek and S. Aluru, “Parallel T-
Coffee: a parallel multiple sequence aligner,” International
Society of Computers and their Applications (ISCA 2007),
pp. 248 – 253.

127

[16] X. Deng, E. Li, J. Shan, W. Chen, “Parallel implementation
and performance characterization of MUSCLE,”, IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2006), IEEE Press, April. 2006, doi:
10.1109/IPDPS.2006.1639616.

[17] A. Boukerche, J.M. Correa, A.C.M.A. Melo, R.P. Jacobi and
A.F. Rocha, “An FPGA-based accelerator for multiple
biological sequence alignment with DIALIGN,” International
Conference on High Performance Computing (HiPC 2007),
LNCS, Jan. 2008, pp. 71-82, doi: 10.1007/978-3-540-77220-
0_11.

[18] J. Nickolls J., I. Buck, M. Garland and K. Skadron, “Scalable
parallel programming with CUDA,” ACM Queue, vol. 6,
Mar./Apri. 2008, pp. 40-53, doi: 10.1145/1365490.1365500.

[19] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym,
“NVIDIA Tesla: a unified graphics and computing
architecture,” IEEE Micro., vol. 28, Mar./Apri. 2008, pp. 39-
55, doi: 10.1109/MM.2008.31.

[20] T. Smith and M. Waterman, “Identification of common
molecular subsequences,” J. Mol. Biol., vol. 147, Mar. 1981,
pp. 195-197.

[21] O. Gotoh, “An improved algorithm for matching biological
sequences,” J. Mol. Biol., vol. 162, Dec. 1982, pp. 707-708.

[22] E.W. Myers and W. Miller, “Optimal alignments in linear
space,” Comput. Appl. Biosci., vol. 4, Mar. 1988, pp. 11-17.

[23] M. Saitou and N. Nei, “The neighbor-joining method: a new
method for reconstructing phylogenetic trees,” Mol. Biol.
Evol., vol. 4, Jul. 1987, pp. 406-425.

[24] J.A. Studier and K.J. Keppler, “A note on the neighbor-
joining algorithm of Saitou and Nei,” Mol. Biol. Evol., vol. 5,
Nov. 1988, pp. 729-731.

[25] Y. Liu, B. Schmidt and D.L. Maskell, “Parallel reconstruction
of neighbor-joining trees for large multiple sequence
alignments using CUDA,” IEEE International Workshop on
High Performance Computational Biology (HiCOMB 2009),
in press.

[26] J.D. Thompson, D. Higgins and T.J. Gibson, “Improved
sensitivity of profile searches through the use of sequence
weights and gap excision”, Comput. Appl. Biosci., vol. 10,
Feb. 1994, pp. 19-29.

[27] ClustalW-MPI, http://www.bii.a-
star.edu.sg/achievements/applications/clustalw/download.php.

[28] NCBI home page, http://www.ncbi.nlm.nih.gov.

128

