
Parallel Performance Study of Monte Carlo Photon Transport Code on
Shared-, Distributed-, and Distributed-Shared-Memory Architectures

Amitava Majumdar
San Diego Supercomputer Center

University of California San Diego
9500 Gilman Drive, La Jolla CA 92093-0505

majumdar@sdsc.edu

Abstract
We have parallelized a Monte Carlo photon transport
algorithm. Three different parallel versions of the
algorithm were developed. The first version is for the
Tera Multi-Threaded Architecture (MTA) and uses Tera
specific directives. The second version, which uses MPI
library calls, has been implemented on both the CRAY
T3E and the 8-way SMP IBM SP with Power3
processors. The third version is a hybrid MPI-OpenMP
implementation and is used on the SMP IBM SP. This
version uses MPI to communicate between nodes and
OpenMP to perform shared memory operations among
processors within a node. We explain the three different
parallelization approaches and present parallel
performance results of these three parallel
implementations on three different machines. We
observe near perfect speedup for the three versions on
the three architectures. The results on the SMP IBM SP
suggest that the hybrid MPI-OpenMP programming is
suitable for SMP type machines.

1. Introduction

 Monte Carlo particle transport is an inherently
parallel (or embarrassingly parallel) computational
method that has been studied on a number of alternative
architecture [1,2,3,4,5,6]. Currently there is interest to
simulate enormously large Monte Carlo particle
transport problems for neutron and photon transport on
teraflop scale machines. Present teraflop scale parallel
architectures are multiple node architectures where
each node is a Symmetric Multi-processor (SMP).
These new architectures encourage a hybrid parallel
programming paradigm. In this model computational
work load is divided across distributed memory nodes
using explicit message passing, and within a node work
load is divided across multiple processors using shared
memory programming. This does not, however,

preclude explicit message passing among multiple
processors within a node. Recently there is also interest
to explore multithreaded architectures to improve
parallel performance of scientific codes.

This paper summarizes recent experiences with
adapting a Monte Carlo photon transport code to
several latest architecture machines. The code has been
adapted to different parallel programming styles, such
as purely shared memory (using multithreading), purely
message passing (using MPI), and hybrid of message
passing and shared memory (using MPI and OpenMP).
Parallel versions of the code were implemented on
three different parallel architectures. The different
parallel architectures targeted are the shared memory
Tera MTA, the distributed memory Cray T3E, and the
8-way SMP IBM SP with Power3 processors.

2. Description of Monte Carlo Code

TPHOT, the code used for this parallel performance
study, is a time-dependent Monte Carlo photon
transport code. TPHOT simulates photon transport
within high-density, high-temperature Inertial
Confinement Fusion (ICF) plasma in two-dimensional
r-z geometry, and includes realistic opacity data. The
plasma is divided into zones, each with its own
composition, temperature, and density. Each zone is a
simple volume of revolution, bounded by at most four
surfaces. This geometry allows all particles to be
treated simultaneously irrespective of zone.

Photons are sampled uniformly and isotropically
within each zone from a Planckian energy spectrum.
The energy range is discretized into several energy
groups. The number of photons emitted within each
zone is a function of material properties of the zone and
volume of the zone. The photons that are emitted within
each zone and energy group are then followed through
the plasma until they are absorbed, escape, or reach

0-7695-0574-0/2000 $10.00 � 2000 IEEE

census, i.e., the end of a time step. Besides absorption,
the photons may undergo Thompson scattering.

The overall workload can be divided into four
categories, (1) pre-processing work, (2) serial Monte
Carlo work, (3) parallel Monte Carlo work, and (4)
post-processing work. The pre-processing work
includes reading the input data, the serial Monte Carlo
work includes preparing geometry and material
properties for all the zones, parallel Monte Carlo work
includes the actual particle history tracking and
accumulating tallies, and the post-processing work
includes writing output results. Our measurement of
timing does not include the pre-processing and post-
processing work.

In TPHOT, the geometry and material properties of
zones are constant in time, and time stepping is used
only to determine when results are output to a census
file. In a more general case, one might model coupled
photon transport and hydrodynamics, in which case the
geometry and material properties could change from
one time step to another. The present simulation
includes only the within time step Monte Carlo
calculations.

The main part of the particle transport algorithm, i.e.
where the parallel Monte Carlo work can be done, has
an outer loop over the zones to generate the photons.
Inside this loop over zones is a loop over energy
groups. In addition, inside the energy group loop is a
loop over photons emitted in a particular zone and in a
particular energy group. The simulation within a time
step continues until the loop over zones has been
completed and all of the photons have been emitted and
followed. Relevant pseudo-code for these loops
follows. In the following pseudo code the variable edep
is the energy deposited in each zone and energy group,
and it is a function of the Planckian energy spectrum,
the material properties, and the volume of each zone.
do i = 1, number_of_zones
 do j = 1, number_of_energy_groups
 .
 (update of some tally variables)
 number_of_photons_in_i_and_j = function of (edep)
 do k = 1, number_of_photons_in_i_and_j
call multiple subroutines to track the photon history
(update tallies inside subroutines called from the
innermost loop over number_of_photons_in_i_and_j)
 end do
 end do
end do

Since the photons do not interact with each other,
their histories are independent and can be computed
simultaneously. For distributed memory machines
accumulations of various tallies at the end of the
simulation is the only place where communication is
necessary. For shared memory machines the tallies are

shared variables, which are updated during each history
simulation. This allows a embarrassingly parallel
implementation, which should exhibit nearly linear
speedup, provided that (1) the workload can be
balanced by a suitable assignment of photons or zones
to processors, and (2) each processor has ready access
to the geometry and the material properties required for
the tracking of particles assigned to that processor. The
second condition implies that the geometry and
material properties of the whole domain of interest
must fit in the local memory of a processor. In case of
distributed memory machines, if the geometry and
material properties of the whole domain do not fit in
the local memory of a processor then the algorithm,
although theoretically embarrassingly parallel, is not
embarrassingly parallel in practice. If a particle moves
to a zone whose properties are not available in the local
memory, then communication would be required
among processors while tracking a particle history and
the algorithm is no longer embarrassingly parallel.

To obtain reproducible results, each processor
should also generate an independent reproducible
sequence of random numbers, which are not correlated
to another processor’s random number sequence. We
have used the parallel Linear Congruential random
number generator from the NAS 2 Parallel Benchmark
[7] suite, which satisfies this condition.

3. Description of parallel machines

3.1. The Tera MTA

The Tera MTA [8, 9] represents a radical departure
from traditional vector- or cache-based computers.
MTA processors have no data cache or local memory.
Instead, they are connected via a network to commodity
memory, configured in a shared memory fashion.
Randomized memory mapping and high
interconnectivity network provide near-uniform access
time from any processor to any memory location.
Hardware multithreading is used to tolerate high
latencies to memory. This latency is typically on the
order of 150 clock cycles. The processor can issue an
instruction containing a memory reference and two
other operations per clock period. The other operations
can be floating add and a floating point fused multiply-
add. Thus, the theoretical peak speed of a processor is
three floating point operations per clock. In practice, no
more than two floating point operations per clock have
been sustained on realistic computations. Typically,
performance is further limited by the network
bandwidth, which can return at most one 8 byte (64bit)
word to each processor every clock. Expected benefits
of the MTA include high processor utilization, near

0-7695-0574-0/2000 $10.00 � 2000 IEEE

linear scalability, and reduced programming effort
specially compared to distributed memory machines
using explicit message passing.

Currently the largest MTA, the only one other than
Tera Company’s own machine, is located at the San
Diego Supercomputer Center (SDSC). It has eight
processors running at 260 MHz and has 8 gigabyte of
shared memory.

3.2. The Cray T3E

SDSC’s Cray T3E has 272 distributed memory
processors of which 260 are available for running
dedicated parallel applications. Each processor is a
DEC Alpha 21164 chip running at 300 MHz clock
speed and has 128 megabytes of memory. The DEC
Alpha chips are capable of a theoretical peak speed of
600 MFLOPS. MPI, SHMEM, and other message
passing library calls are used to develop parallel
programs on this architecture.

3.3. The IBM SP

SDSC recently received the latest Power3 processor
based SMP IBM SP nodes. Currently there are 144
SMP nodes with 8 processors per node. Each SMP
node has 4 gigabyte of memory shared among its eight
Power3 processors running at 222 MHz each. The
Power3 processors are capable of executing four
floating point operations per cycle. The theoretical
peak performance of the Power3 chip is 888 MFLOPS.

The SP nodes allow symmetric multi-processing
among the processors within a node and message
passing across nodes. MPI, LAPI and other library calls
can be used to do message passing across nodes.
Within nodes, either OpenMP library calls or pthreads
can be used to perform shared memory programming
among processors. MPI can also be used to
communicate among the processors within a node.

4. Parallelization on the MTA

4.1. Parallelization by zones

Since the computations across zones are
independent and the Tera MTA prefers outer-loop
parallelization, in our first implementation on the MTA
we parallelized the outermost zone loop. The inner
loops include many subroutine calls and shared
accumulators, and hence the Tera compiler was not
able to parallelize the outermost zone loop
automatically. Thus an ASSERT PARALLEL
directive and several ASSERT LOCAL directives were

inserted to force the compiler to parallelize the loop
and to identify the local variables respectively.
Moreover, each global tally (such as the number of
photons escaped, number of photons absorbed, etc.)
had to be preceded with an UPDATE directive to
insure determinacy. The UPDATE directives perform
atomic update on shared variables. The parallel pseudo-
code, including the aforementioned directives in bold,
is as follows.
C$TERA ASSERT PARALLEL
do i = 1, number_of_zones
C$TERA ASSERT LOCAL (various local variables
like particle’s position, velocity, etc. and local
variables required for the random# generator)
 do j = 1, number_of_energy_groups
 .
C$TERA UPDATE directives before each tally
statement
 number_of_photons_in_i_and_j = function of (edep)
 do k = 1, number_of_photons_in_i_and_j
call multiple subroutines to track the photon history
(C$TERA UPDATE directives before each tally
statement inside subroutines called from the
innermost loop over
number_of_photons_in_i_and_j)
 end do
 end do
end do

As will be seen shortly from Results and discussion
section, parallelization done over zones only does not
scale well on the MTA. There was insufficient
parallelism to hide latency and get good load balance
among MTA processors.

4.2. Parallelization by zones and energies

In the second approach, parallelism was increased
by collapsing the two outer loops over zones and
energies into a single loop. This increased the total
number of iterations for the loop. In addition, the order
of processing the zones was reversed, since the number
of photons in a zone is proportional to its size, and the
size of a zone grows with a zone’s index value. The
resulting pseudo-code is as follows.
C$TERA ASSERT PARALLEL
 do ij = number_of_zones*number_of_energy_groups-
1,0,-1
C$TERA ASSERT LOCAL (particle’s position,
velocity, etc. and local variables required for the
random# generator)
 .
C$TERA UPDATE before each tally statement
 i = (ij/ number_of_energy_groups) + 1
 j = ij - number_of_energy_groups*(i - 1) + 1

0-7695-0574-0/2000 $10.00 � 2000 IEEE

 .
 number_of_photons_in_ij = function of (edep)
 do k = 1, number_of_photons_in_ij
call multiple subroutines to track the photon history
(C$TERA UPDATE before each tally statement
inside subroutines called from the innermost loop
over number_of_photons_in_ij)
 end do
 end do
This approach showed near perfect speedup as
explained in Results and discussion section.

5. Parallelization on the Cray T3E

The parallel version of TPHOT developed for the
Cray T3E uses the MPI library. The parallelization
strategy for the T3E is different from that used on the
MTA. If NP is the number of T3E processors available,
then the parallel pseudo-code for the main
computation-intensive part of the code is shown below.
The modified part of the pseudo-code is in bold letters.
do i = 1, number_of_zones
 do j = 1, number_of_energy_groups
 .
 (update of some tally variables)
 number_of_photons_in_i_and_j =function
of((edep)/NP)
 do k = 1, number_of_photons_in_i_and_j
call multiple subroutines to track the photon history
(update of tally variables inside subroutines called from
the innermost loop over
number_of_photons_in_i_and_j)
 end do
 end do
end do
.
Call to multiple MPI_REDUCE(..) to add up all
tally variables.

The above modification makes the energy deposited
in each zone and each energy group a fraction 1/NP of
the total energy for each processor. The net effect is
that each of the NP processors simulates 1/NP of the
total photons over all the zones. This parallelization
strategy effectively parallelizes by distributing 1/NP of
the total number of photons to each processor. Since
each photon history is independent of any other photon
history, it is possible to parallelize this way.

At the end of the simulation one of the NP
processors needs to perform multiple MPI reduction
operations to add up various global tallies accumulated
on each of the NP T3E processors. All these material
and mesh structure properties are in COMMON block
storage and reside on each processor’s local memory.
As noted previously one requirement for this

parallelization strategy, specifically of concern for
distributed-memory machines, is that the geometry and
material properties for the whole domain must fit in the
memory of each processor.

6. Parallelization on the IBM SP

6.1. Parallelization using MPI on IBM SP

In this approach we used the same parallel version
of TPHOT that was used on the T3E i.e. a purely MPI
version of the code. To use this version the SMP based
SP was treated, from users point of view, as a purely
distributed memory machine. The eight processors
within a node have access to 1/8th fraction of the total
memory as long as more than one MPI task is used per
node. In current status of the machine, if one processor
is used as the only MPI task per node then it has access
to only 2 gigabyte of the memory. Message passing was
done among the eight processors within a node as well
as among processors across nodes using MPI. Another
feature of the current machine is that up to 4 MPI tasks
on 4 processors can run on a node using the fast switch.
To use 8 MPI task per node a slower interconnect
switch has to be used.

6.2. Parallelization using MPI-OpenMP on
IBM SP

In the hybrid mode of MPI-OpenMP parallelization,
TPHOT was first parallelized across the nodes using
MPI as described for the T3E parallelization in section
5. One MPI task was assigned to each SMP node. Then
within a node OpenMP was used to parallelize the
outer most loop over zones similar to the Tera
parallelization described in section 4.1. The parallel
pseudo code for the hybrid MPI-OpenMP version of
TPHOT is as follows, with the modified part of the
pseudocode in bold letters.
!$OMP PARALLEL DO
!$OMP& PRIVATE(*newly created temporary
tally variables that are tallied in subroutines called
within the inner most loop over
number_of_photons_in_i_and_j)
!$OMP& PRIVATE(particle’s position, velocity,
etc. and private variables required for the random#
generator)
!$OMP& reduction(**various tally variables)
do i = 1, number_of_zones
 do j = 1, number_of_energy_groups
 .
 (update some **tally variables)

0-7695-0574-0/2000 $10.00 � 2000 IEEE

 number_of_photons_in_i_and_j =function
of((edep)/NP)
 do k = 1, number_of_photons_in_i_and_j
call multiple subroutines to track the photon history
(Pass in *newly create temporary tally variables to
above subroutines and update tallies in them)
(Do OpenMP reduction operation on these newly
created temporary tally variables returned back from
above subroutines)
 end do
 end do
end do
.
Call to various MPI_REDUCE(..) to add up tally
variables.

The OpenMP version of the code required
additional modifications than simply replacing Tera
directives with equivalent OpenMP directives. The tally
variables are shared variables, located in COMMON
blocks, and to insure proper updates of these tally
variables we declared them as OpenMP reduction
variables. When a subroutine (such as the subroutines
called within the inner most loop over
number_of_photons_in_i_and_j) manipulates a
variable that exists in a COMMON block, it does not
affect the private copy. Hence it was necessary to
create additional temporary tally variables (for each of
the tally variables that were updated in the subroutines
called within the inner most loop over
number_of_photons_in_i_and_j) and pass them into
these subroutines. OpenMP reduction operations done
on these new temporary tally variables insured
determinacy.

MPI_REDUCE operations were done among MPI
tasks across nodes to complete the accumulation of all
the tally variables created in each node. In summary the
hybrid version distributes total number of photons
equally among nodes, and within a node distributes the
zones among processors.

7. Results and discussion

The physical problem simulated is of photon
transport through an ICF plasma consisting of a 50%-
50% mixture of deuterium and tritium (D-T) at elevated
temperature and density. This mixture is surrounded by
a SiO2 region, also at elevated temperature and density.
A single time step is modeled, during which
approximately 24,000,000 photons are emitted in both
regions. The regions are divided up into 1,960 zones,
arising from 49 axial mesh intervals and 40 radial mesh
intervals. Twelve energy groups are used.

Tables 1,2,3, and 4 contain TPHOT timing results
on various parallel machines. We provide the wall

clock execution time, the speedup, and the efficiency.
Speedup is the ratio of the code execution time on one
processor to that on multiple processors. Efficiency is
defined as the speedup divided by the number of
processors.

Table 1 gives performance results for solving the
test problem with TPHOT on the MTA using the two
different strategies as explained in section 4. Tables 2
and 3 give performance results of TPHOT, parallelized
using MPI, on the T3E and the SP respectively. On a
single-processor, the MTA is about four times faster
than the T3E and about 2.5 times faster than the SP.
This is partly due to poor cache reusability of the code
which, being a Monte Carlo code, has many conditional
branch statements. Also on the MTA even for one
processor parallel execution takes place due to
multithreading. Each MTA processor typically used 60
threads. On the MTA, the second strategy of
parallelizing across fused loops of zones and energies
shows better performance even on single processor.
The reason for this is that switching loop indices from
higher to lower allowed better load balance among 60
threads, within one processor, since the volumes of the
zones became larger at the beginning and smaller at the
end. Number of photons emitted in a zone is
proportional to the size of the zone.

Scalability on the T3E is nearly linear to 64
processors. Scalability on the SP is also almost linear
to 64 processors. We notice minimal effect of the slow
switch on the SP machine since the MPI
implementation of TPHOT has very little
communication. For the MPI implementation of
TPHOT, used on the T3E and the SP, parallelization is
done across the 24,000,000 photons. Even on 64
processors, the work per processor (=24,000,000/64
=375,000 photon simulations) is substantial. Since the
computation is embarrassingly parallel and there is
little communication between processors, scalability is
linear. The good scalability on the T3E and the SP is
possible because the geometry and material properties
for all the zones fit in the local memory of each
processor. For much larger problems this may not be
possible. Scalability on the MTA is poor when
parallelization is only by zones, but nearly linear to 8
processors when parallelization is by both zones and
energies. Poor scalability on the MTA when
parallelized across the 1,960 zones is due to insufficient
parallelism and poor load balance. For the 8-processor
case, each processor covers 245 (=1,960/8) zones and
simulates all 24,000,000 photons in these 245 zones.
On the MTA typically 60 threads are used per
processor. This allows each thread to cover on the
average about 4 (= ~245/60) iterations. This does not
provide enough work for all the threads in a processor
to hide latency efficiently. Parallelizing over fused

0-7695-0574-0/2000 $10.00 � 2000 IEEE

zones and energy groups resulted in total iteration of
23520 (=1960*12) for the outer loop. This allowed
each processor to cover 2940 (=23520/8) iterations.
Clearly this modification provided enough iteration for
all the threads, even for 8 MTA processors, to hide
latency and amortize overheads, and hence resulted in
near perfect scalability.

Next, we discuss the parallel performance of the
hybrid MPI-OpenMP implementation of TPHOT on
the SMP IBM SP. These results are given in table 4.
We notice that the OpenMP parallel performance
across processors within a node is near perfect for
TPHOT. This is evident from the timing and speedup
data shown in the first four rows, with numerical data,
of table 4 where number of threads increase from 1 to
8. We implemented both of the shared memory
parallelization approaches, as explained in section 4.1
and 4.2, using OpenMP. Unlike the MTA there was no
difference in performance between these two
approaches on the shared memory processors, within a
node, of the SP. This is expected on the SP since even
for the parallelization over zones there is enough
iteration (1960) for 8 OpenMP threads of the SP
processors within a node. The scaling of the MPI-
OpenMP implementation across nodes is almost linear
as evident from the timing results shown in the last five
rows of table 4.

The hybrid MPI-OpenMP version of TPHOT is the
most complex, in terms of programming, among the
three parallel versions. OpenMP is also prone to false
sharing when an array of data is accessed and updated
by all the processors of a node and may become the
bottleneck. Currently OpenMP compilers are also less
robust than MPI compilers and hence require careful
programming and testing. However, this hybrid
programming model allows to use the whole shared
memory of a SMP node. It is necessary to use the
hybrid MPI-OpenMP mode of TPHOT on the SMP SP
since the large share memory available within a node
will be required to simulate very large problems.
Comparing the scaling results between tables 3 and 4 it
appears that for large simulations, which use very large
number of nodes, the hybrid model might outperform
the straight MPI model on SMP IBM SP.

Acknowledgments

John Feo of Tera Computer company provided many
valuable suggestions. Author also acknowledges the
computational resources at the San Diego
Supercomputer Center and the DARPA contract
DABT63-97-C-0028, the NSF grant ASC-9613855,

and the NSF NPACI Cooperative Agreement number
ACI-9619020.

References

[1] W. R. Martin, A. Majumdar, J. A. Rathkopf, and M.
Litvin, "Experiences with Different Parallel
Programming Paradigms for Monte Carlo Particle
Transport Leads to a Portable Toolkit for Parallel
Monte Carlo,’’ Proceedings of International Joint
Conference on Mathematical Methods and
Supercomputing in Nuclear Applications, Karlsruhe,
Germany, Vol. II, pp. 418 (April 1993).

[2] F. W. Bobrowicz, J. E. Lynch, K. J. Fisher, and J.
E. Tabor, "Vectorized Monte Carlo Photon Transport,"
Parallel Computing, 1, pp. 295-305 (1984).

[3] W. R. Martin, P. F. Nowak, and J. A. Rathkopf,
"Monte Carlo Photon Transport on a Vector
Supercomputer,’’ IBM Journal of Research and
Development, 30, pp. 193 (1986).

[4] W. R. Martin, T. C. Wan, T. S. Abdel-Rahman, and
T. N. Mudge, "Monte Carlo Photon Transport on
Shared Memory and Distributed Memory Parallel
Processors,’’ International Journal of Supercomputer
Applications, 1 (3), pp. 57 (1987).

[5] P. J. Burns, M. Christon, R. Schweitzer, O. M.
Lubeck, H. J. Wasserman, M. L. Simmons, D. V.
Pryor, "Vectorization of Monte Carlo Particle
Transport: An Architectural Study Using the LANL
Benchmark ’’GAMETAB’’," Proceedings
Supercomputing89, Reno, Nevada (Nov. 13-7, 1989)

[6] W. R. Martin and F. B. Brown, "Status of
Vectorized, Monte Carlo for Particle Transport
Analysis," International Journal of Supercomputer
Applications, 1 (2), pp. 11 (1987).

[7] See http://science.nas.nasa.gov/Software/NPB

[8] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K.
S. Gatlin, N. Mitchel, J. Feo, and B. Koblenz, "Multi-
processor Performance on the Tera MTA," Proceedings
Supercomputing98, Orlando, Florida (Nov. 7-13, 1998)

[9] J. Boisseau, L. Carter, K. S. Gatlin, A. Majumdar,
and A. Snavely, "NAS Benchamarks on the TERA
MTA", Proceedings Workshop on Multi-Threaded
Execution, Architecture, and Compilers (M-TEAC),
Las Vegas, Nevada (January 1998).

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Table 1. Parallel performance on the MTA
using multithreading

Procs Time
(sec)

Speed-
up

Efficiency

Parallelization by zones only
1 764 1.00 1.00
2 400 1.91 0.95
4 227 3.37 0.84
8 167 4.58 0.57

Parallelization by zones and energies
1 745 1.00 1.00
2 370 2.01 1.01
4 187 3.98 0.99
8 94 7.92 0.99

Table 2. Parallel performance on the T3E
using MPI

Procs Time
(sec)

Speed-
up

Efficiency

1 2,997 1.00 1.00
2 1,507 1.99 0.99
4 746 4.01 1.02
8 377 7.95 0.99
16 189 15.86 0.99
32 95 31.55 0.98
64 47 63.76 0.99

Table 3. Parallel performance on the SP using MPI (* used the slow switch)

of
nodes

MPI task
per node

Total # of MPI
tasks

Time(sec) Speedup Efficiency

1 1 1 1924 1.00 1.00
1 2 2 963 1.99 0.99
1 4 4 482 3.99 0.99
1 8* 8 243 7.92 0.99
2 2 4 482 3.99 0.99
2 4 8 241 7.98 0.99
2 8* 16 123 15.64 0.97
4 2 8 242 7.95 0.99
4 4 16 121 15.90 0.99
4 8* 32 61 31.54 0.98
8 2 16 121 15.90 0.99
8 4 32 62 31.03 0.96
8 8* 64 32 60.12 0.94
16 8* 128 17 113.17 0.88

Table 4. Parallel performance on the SP using MPI-OpenMP

#of
nodes

of MPI task
per node

of OpenMP
threads per
node

(#of MPI task)
*(#of OpenMP
threads.)

Time
(sec)

Speedup Efficiency

1 1 1 1 1943 1.00 1.00
1 1 2 2 960 2.02 1.01
1 1 4 4 485 4.00 1.00
1 1 8 8 244 7.96 0.99
2 1 8 16 122 15.92 0.99
4 1 8 32 61 31.85 0.99
8 1 8 64 31 62.67 0.98
16 1 8 128 16 121.43 0.95

0-7695-0574-0/2000 $10.00 � 2000 IEEE

