
OpenMP Parallelization of Jacquin Fractal Image
Encoding

Hua Cao
School of Software Engineer

Huazhong University of Science and Technology
 Wuhan, China

Caohua226@gmail.com

Xi-jin Gu
China Ship Development and Design Center

Wuhan, China
guxiqian@sohu.com

Abstract—The high compression ratio of fractal encoding is
based on the increasing of the computation complexity. In order
to meet the application requirements of real-time sharing and
transmission, it is becoming an important research area to
advance the encoding speed by developing the parallelization
algorithm based on multi-core programming. In this paper, the
OpenMP program model is applied to parallelize Jacquin fractal
coding algorithm. Experiment results show that the speed-up
ratio is more than four times compared with the original
sequential program by programming the proposed parallel
algorithm to Intel quad-cores CPU.

Keywords- OpenMP;Fractal Coding;Muli-core Programming

I. INTRODUCTION

Although the storage technology is developing rapidly in
recent years, but with the explosive growth of multimedia
information, the requirement to reduce the storage space of
image information has not been reduced yet. Fractal coding is a
new kind of image compression method which different from
the traditional transform-based ones. The compression ratio of
fractal coding can reach as highest as 10,000:1 and 500:1 in
general, much higher than the existing general DCT
compression ratio of 20:1 and DWT compression ratio of
200:1[1]. But the drawback that a large search considering
many blocks is computationally costly limits its widespread
application. Therefore, optimization technique should be
developed to reduce the execute time of fractal encoding for
real-time application.

Currently, related hardware and software supporting
parallelization have achieved greatly development. Among
them, PC-based multi-core technology provides a good
platform for parallel programming and it is becoming an
important research area to advance the encoding speed by
parallelization algorithm based on multi-core processors and
parallel program environment.

II. RELATED WORK

There are many methods having been proposed to speed up
the fractal coding, which can be divided into two categories.
One is based on the theoretical framework of fractal coding to
pre-classify the blocks using the methods such as DCT and
DWT [2][3], or make use of genetic algorithms to improve the

search path[4][5]. These methods are available to a
considerable acceleration of fractal coding, but they did not get
a multiple-level increase. The other is designed based on
parallel processing hardware module such as FPGA/DSP
[6][7], these methods rest upon specific hardware, the cost is
larger and often pre-configured for a specific fractal coding
framework, which is lack of flexibility.

With the emergence and extensive use of multi-core
processors, multi-core programming has begun to be applied to
various fields. PC-based multi-core processors provide a low-
cost hardware platform, theoretically speaking, several core
there are in multi-core processors can get the algorithm several
times speedup, which has greatly significance to application
performance improvement. At the same time specific
algorithms are still implemented by software in multi-core
program environment which in turn has a strong flexibility.

In this paper, with these strategies of partition paralleling,
definition and pre-procession of shared variable, parallelization
algorithm was presented after analyzing the sequential execute
code of fractal coding and implemented under the
programming environment of Intel multi-core processors and
Visual studio 2008 based on OpenMP programming model.
Experiments results show that the parallel algorithm greatly
improves the speed of image fractal coding.

III. OPENMP APPLICATION MODEL

OpenMP is a portable, scalable model that gives shared-
memory parallel programmers a simple and flexible interface
for developing parallel applications for platforms ranging from
the desktop to the supercomputer [8]. The OpenMP API uses
the fork-join model of parallel execution, all OpenMP
programs begin as a single process: the master thread. The
master thread executes sequentially until the first parallel
region construct is encountered. Then the master thread creates
a team of parallel threads, which is called fork. The statements
in the program that are enclosed by the parallel region
construct are then executed in parallel among the various team
threads. When the team threads complete the statements in the
parallel region construct, they synchronize and terminate,
leaving only the master thread, this process is called join.
OpenMP Execution Model is illustrated as figure 1.

Sponsored by National Science Foundation of China (60973085)

978-1-4244-7161-4/10/$26.00 ©2010 IEEE

OpenMP parallelism is specified through the use of
compiler directives and the directives format in C/C++ is as
follows:

#pragma omp parallel [clause [clause]...]

When a thread reaches a parallel directive, it creates a team
of threads and the code of this parallel region is duplicated and
all threads will execute that code.

There are two types of Work-Sharing constructs defined in
clause: DO /for Directive and SECTIONS Directive.

Figure 1. OpenMP Execution Model

The DO/for directive specifies that the iterations in the
followed loop must be executed in parallel by the team, which
represents a type of "data parallelism". The SECTIONS
directive is a non-iterative work-sharing construct. It specifies
that the enclosed section(s) of code are to be divided among
the threads in the team. Independent SECTION directives are
nested within a SECTIONS directive. Each SECTION is
executed once by a thread in the team. Different sections may
be executed by different threads.

IV. PARALLELIZATION OF JACQUAIN FRACTAL ENCODING

A Jacquin Fractal Encoding
Fractal coding is a lossy image compression method using

fractals. Barnsley led development of fractal coding in 1987
which based on human intervention. Arnaud Jacquin
implemented the first automatic algorithm in software in 1992.
After that, most of development in fractal coding are based on
the Jacquin’s algorithm. All methods are based on the fractal
transform using iterated function systems which relying on the
fact that parts of an image often resemble other parts of the
same image. Fractal algorithms convert these parts into
mathematical data called "fractal codes" which are used to
recreate the encoded image. The approach for Jacquin’s fractal
encoding is the following:

Step1: Partition the image domain into Range blocks Ri of size
s×s.

Step2: For each Ri, search the image to find a Domain block Di
of size 2s×2s that is very similar to Ri.

Step3: For each Ri, record the best matched mapping
parameters of Di, including: coordinate of Di, type of affine
transformation to Di, factors of contrast and translation of gray
scale, et al.

Fractal encoding is extremely computationally expensive
because of the search used to find the self-similarities.
Decoding however is quite fast. While this asymmetry has
made it impractical for real time applications. In order to solve

this problem, OpenMP programming model is introduced
which can make full use of parallel processing based on multi-
core to reduce the time of execute code.

B Parallelization of Jacquain Algorithm
By the following steps, parallelization of Jacquin

Algorithm is achieved: Search range in sequential program of
Jacquin’ fractal encoding is partitioned into a team of sub
search range, which be allocated to a group of threads
implemented in parallel based on OpenMP program model.
The specific procedure is described in C++ like language as
follows:

1) Sequential Execution
EncImage (BYTE *pbits, CEncodedData *pd)
// pbits is the original image , pd is the fractal codes
{
for(i=0;i<iBlk1;i++)

for(j=0;j<jBlk1;j++) // Ri loop
GetImageBlock(pbits,imgMin); //Get the Ri from original image
for(i2=0;i2<iBlk0;i2++)
for(j2=0;j2<jBlk0;j2++) // Di loop

 { GetImageBlock(pbits,imgMax); / / Get the Di from original image
 DeflateImage(imgMax,imgMin2);

// retracting transformation
double ss,oo,dd;

 for(int iType=0;iType<8;iType++)
 // Eight types of affine transformation
 {

Transform(imgMin2,imgTrans,iMin,iType);
CalcParams(imgMin,imgTrans,iMin,&ss,&oo,&dd);
// Calculate the variance between Range and Domain blocks

 if(dd<d) pd->SetAt(i,j,ed);// Record the fractal codes
}

}
The first for-loop (called Ri loop) complete the extraction of

non-overlapping range blocks. The second for-loop (called Di
loop) complete contraction transform and eight types of affine
transformation for each extracted Domain block. Variances
between each range block and all of transformed Domain
blocks are calculated to find the most similar domain block
which possess the minimal variance, whose parameters are
recorded in the vector pd as fractal codes.

2) Parallel Execution

In the sequential execution procedure of Jacquin’s fractal
coding, the fractal codes are generated by calculating variance
between each range block in Ri loop with all of transformed
domain blocks. It is compute independent for each Ri loop
searching for the best matched domain block in Di loop and
there is also no data correlation between different Ri loop,
which meet the requirements of parallel execution. Therefore,
Ri loop computation can be assigned into the multi-core
parallel threads by OpenMP directives. Issues involved in
parallelization of Jacquin’s fractal coding are described as
follows:

a) Data Partition Parallel
In this paper, the means of parallel blocks is applied to

partition the data involved in Ri loop along the horizontal
direction. Therefore, several slice area are formed and a multi-
core thread is responsible for searching the fractal codes of

every range block involved in Ri loop at every slice region. The
final fractal codes are combined with the ones of each slice
region. Partition parallel processes are shown in figure 2.

Figure 2. Partition-level parallel strategy

Data segmentation is implemented through controlling the
range of the for-loop, the procedure is described as follows:

#pragma omp parallel for
for (num=0; num<nthreads; num++)
{

for (i= (iBlk1/nthread)*num; i<(iBlk1/nthread)*(num+1); i++)
for (j=0; j<jBlk1; j++) // Ri loop
{

Get Domain Blocks from image;
Deflate and Affine Transform to each Domain Blocks;
Calculate variance between Range Blocks and Domain Blocks;
Generate the fractal codes;

}

}

In the procedure, nthread is the number of parallel threads
and the iBlk1 is the total number of horizontal range blocks in
the image.

b) Pretreatment of Shared Varial
In the sequential program of Jacquin algorithm, the

operations of deflate and affine transform to each domain block
are repeated in every one of Ri loop, which consumes a large
amount of computing resources. In parallelization of Jacquin
algorithm, this operation is moved out of the Ri loop and
pretreated before parallel region to generate a sequence of
deflate and affine transform of all domain block. The matrix
sequence is set to be shared variable in compiler directives of
OpenMP, so that all of threads in the parallel region can read
the data in the matrix sequence to search best matched blocks.
The procedure is described as follows:

Pretreat (BYTE *pbits, BYTE ***pDomainMatrix[row][line][type])

{

Fetch all Domain Blocks from image;

 Affine Transformation for each Domain Blocks;

}

#pragma parallel for firstprivate(pd),lastprivate(pd), share(pDomainMatrix)

for (num=0; num<nthreads; num++)

{

 for(i= (iBlk1/nthread)*num;i<(iBlk1/nthread)*(num+1); i++)

for(j=0; j<jBlk1; j++) // Ri loop

 {Calculate variance between Range Blocks and Domain Blocks;}

}

pDomainMatrix is the matrix sequence of the deflate and
affine transformation of all domain blocks, row and line is the
coordinate of each domain block, type is the type of affine
transformation.

Figure 3. Parallelization Scheme of Jacquin Encoding

c) Fork and Join of Fractal code
pd is the complete fractal codes of the image, which is the

combination of sub fractal codes generated from each threads
in parallel partitions. The fractal codes vector of pd is forked
by the clause of firstprivate(pd) into variables with the same
name in parallel partitions being initialized according to the
value of their original objects prior to entry into the parallel
construct. Similarly, lastprivate (pd) clause combines the value
with copies from the loop iteration or section to the original
variable object so that the fractal codes vector is joined again.
The clause is described as follows:
CEncodedData *pd=0;
#pragma parallel for firstprivate (pd), lastprivate (pd), share (pDomainMatrix)

Through deal with the above issues, the whole
parallelization procedure of Jacquin algorithm is shown in
Figure 3.

V. EXPERIENT RESULTS

Experimental platform is the Intel (R) Core (TM) 2 8200
processor (2.33GHz) with four cores, RAM is 2GB. The
operating system is Windows XP SP3 and the compiler is the
Visual Studio 2008. In the project's properties dialog box,
change "Language" page under the "C / C + +"on the left box
"Configuration Properties" to "Yes / (OpenMP)" A patch file,

(a) Single thread

(b) Four threads

"vcomp90.dll" also need to be installed into the directory of
windows/system32, otherwise there would be a compile error
when the OpenMP program be running.

Figure 4. Speed-up ratio with different threads

Test image is the 512×512 grayscale Lena image, the
speed-up ratio that runtime in single-thread and multi-thread is
the index of performance evaluation. The performance with
2,4,8,16 and 32 threads was tested and the results shown in
Figure 4.

Figure 5. CPU Usage of single thread and multi-threads

The experimental results in Figure 4 show that, with the
increase in the number of parallel threads, the performance

improvement is very obvious. When the number of threads is
under eight, the performance increase almost linearly with the
number of multi-threads and four cores are made full used of.
Figure 5 present that the usage of CPU research 100% in four
threads, in sharp contrast with the one of 25% in single thread.
This is mainly attributed to the low data relationship in the
search process of Jacquin algorithm, which is very suitable for
parallelization. However, performance improvement under
more than eight threads become not obvious, that is due to the
method of fork-join be used in OpenMP program model
written in run-time using fork, merge methods, a substantial
increase in the number of threads, thread creation will increase
accordingly, destroy overhead. A recommended OpenMP
thread is 2 times the number of multi-core, experimental
verification of this result.

VI. CONCLUSION

By analyzing the sequential version of Jacquin fractal
coding algorithm, parallelization of Jacquin algorithm is
researched and implemented based on OpenMP parallel
programming model. Experimental results show that the
proposed parallel algorithm for fractal coding is feasible and
improvement in the encoding speed is extremely obvious.

REFERENCES

[1] Jacquin A E. Fractal image coding: a review[C]. Proceeding of the
IEEE,1993,81(10):1451-145.

[2] Tomas Zumbakis, Jonas Valantinas. A new approach to improving
fractal image compression times[C]. Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, 2005, 468-
473.

[3] Jeng J H, Truong T K, Sheu J R. Fast fractal image compression using
the hadamard transform [J]. IEEE Transactions on Image Signal
Process, 2000, 147(6):529-534..

[4] Trieu-Kien Truong, Jyh-Horng Jeng, Irving S Reed, et al. A fast
encoding algorithm for fractal image compression using the DCT inner
product[J]. IEEE T ransactions on Image Process2ing,2000,9(4):529-
534.

[5] Zhu wei yong, Yu Hai, Song Chun lin, et al. Novel fast fractal image
compression approach based on error threshold and hierarchical
search[J]. Mini2M icro System s, 2005, 26 (2) : 277-280.

[6] S McBader, P Lee, NC SpA. An FPGA implementation of a flexible,
parallel image processing architecture suitable for embedded vision
systems. Parallel and Distributed Processing, 2003.

[7] J Batlle, J Marti, P Ridao, J Amat. A New FPGA/DSP-Based Parallel
Architecture for Real-Time Image Processing. Real-Time
Imaging,2002,8(10):345-356.

[8] http://www.openmp.org

