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Abstract— Parallel processor architectures are a promising 
solution to provide the required computing performance for 
current and future high performance applications. Certainly, the 
impact on the computational power of such a parallel computer 
system is related to the inherent parallelism of the algorithm to 
be implemented. The implementation of an algorithm onto a 
parallel computer architecture, requires from the developers a 
good knowledge of the underlying hardware in order to exploit 
the effect of the parallelization most beneficial. In order to hide 
as good as possible the complexity of the hardware from the 
developers, novel programming languages for parallel computers 
were developed. For example the programming models CUDA, 
OpenMP, OpenCL, Open GL and MPI are targeting novel 
multiprocessor system-on-chip architectures like the Intel Single 
Chip Cloud Computer with 48 cores or the Nvidia Tesla 
processors with hundreds of processor cores. If a new hardware 
architecture is invented and developed, it is always beneficial to 
follow standards in programming models in order to keep a 
compatibility to already developed programs. A novel runtime 
adaptive multiprocessor system-on-chip is the RAMPSoC. 
RAMPSoC combines the benefits of multiprocessors and 
reconfigurable hardware in one system and is therefore of high 
importance for future system design. In order to align the 
RAMPSoC approach to current standards, a support for 
Message Passing Interface (MPI) was included recently. This 
important step allows now to re-use already existing source code 
written with MPI extensions on a runtime adaptive platform. 

Keywords- Message Passing Interface (MPI); MPSoC; FPGA; 
Reconfigurable Computing; Runtime Reconfiguration; Network-
on-Chip (NoC) 

I.  INTRODUCTION 
Efficient process intercommunication on Multi-Processor 

System-on-Chip (MPSoC) is a crucial requirement, if 
algorithms were implemented on numerous processor cores in 
a parallel computer system. Since multiprocessors, like e.g. the 
Intel Single Chip Cloud (Intel SCC) Computer [1] with its 48 
x86 compatible processors or the Nvidia Fermi processor with 
512 CUDA cores, became state-of-the-art, researchers from 
industry and academic investigate on novel programming 
models and languages. The general goal is to hide the hardware 
complexity from the user by simultaneously keeping traditional 

standards like C or C++. Certainly these programming 
standards need to be extended by methods, which allow to 
exploit the parallelism on the underlying hardware. However, 
the communication and task distribution is hidden by a library 
of functions which are standardized in order to enable a re-use 
of software on different multiprocessors. Another important 
requirement of the programming model is to enable and 
support scalability of the underlying hardware. No developer 
will accept the burden to re-design the proven software in case 
that the number of processors for this application will vary 
from one series of a multiprocessor chip to the next one. 
Exactly this argument encouraged the developer of the 
RAMPSoC approach to support also a well established 
programming language. RAMPSoC, which especially benefits 
through a runtime scalable architecture, definitely requires such 
programming models. Since the RAMPSoC approach is based 
on a distributed memory model, the choice was to support MPI 
(Message Passing Interface) [2]. As RAMPSoC provides a 
specialized, highly flexible and runtime adaptive Network-on-
Chip, the integration suitable to the hardware was created and 
developed fully new, but provides the identical methods on the 
programming layer, which allows to start immediately any MPI 
compatible software. The following sections in this paper 
describe the process of integrating MPI on RAMPSoC and 
show the benefit with an application example from 
bioinformatics. The paper is organized in the following 
manner: In Section II related work is presented. Section III 
presents the hardware architecture and the design methodology 
of RAMPSoC. The design and implementation of the MPI 
support for RAMPSoC is described in Section IV. The 
application integration and the results of RAMPSoC-MPI using 
a well-known bioinformatics algorithm programmed with the 
MPI standards are presented in Section V. Finally, the paper is 
closed by presenting the conclusions and future work in 
Section VI. 

II. RELATED WORK 
MPI is the programming standard used for describing a 

parallel program for a multiprocessor system with a distributed 
memory, e.g. computer clusters, supercomputers and parallel 
computers. 
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 There exist several different implementations for MPI. 
TABLE I.  shows the most well known implementations, like 
OpenMP [3][4] and MPICH [5], and two MPI implementations 
for embedded systems and compares them against the in this 
paper described RAMPSoC-MPI implementation. 

OpenMPI supports around 300 MPI standard commands 
and is available as open source. The drawback is the huge code 
size of 47 MB, which is not feasible for an embedded system 
like RAMPSoC. 

MPICH is also available as open source and it supports as 
well 300 commands. Also here the drawback is the huge code 
size of 40 MB, which is required for this implementation. 

TMD-MPI [6], on the other hand, was especially designed 
for embedded systems. Therefore, it only requires 9KB of 
memory. The drawbacks are that it is a proprietary 
implementation and that it only supports 11 MPI commands. 

Finally, SoC-MPI [7] is another example for a lightweight 
MPI implementation for embedded systems. It is proprietary 
and requires 13 KB of memory. It supports only 6 MPI 
commands, which are fewer functions than TMD-MPI. 

In summary, none of these implementations fulfill all the 
requirements of the RAMPSoC system, which are a lightweight 
implementation, the support of sufficient MPI standard 
functions to port existing MPI applications onto RAMPSoC 
and finally the support of the runtime adaptive Network-on-
Chip called Star-Wheels. Therefore, a custom MPI 
implementation called RAMPSoC-MPI was developed. It 
supports the most frequently used 18 MPI standard commands 
and requires only 43 KB of memory. The implementation is 
divided into separate layers. This way it can be easily ported to 
other MPSoCs and other communication infrastructures. 

III. RAMPSOC 
RAMPSoC [8] was designed to provide the flexibility and 

performance needed for embedded high performance 
computing applications, such as image processing in 
surveillance systems. As shown in Figure 1. , RAMPSoC is an 
MPSoC with a distributed memory approach consisting of a 
combination of heterogeneous processors and finite state 
machines (FSM). The processors as well as the FSMs can be 
closely coupled with one or several hardware accelerators. 
Different communication infrastructures like point-to-point, 
buses, network-on-chips (NoC) or a hybrid of these are 
supported. It further provides a scalable, heterogeneous and 
runtime adaptive NoC called Star-Wheels Network-on-Chip 
[9], which is described in detail in the next subsection. Figure 

1. shows how the processing elements of RAMPSoC are 
connected over an incomplete version of the Star-Wheels NoC. 

 

Figure 1.  RAMPSoC architecture at one point in time with a 
incomplete Star-Wheels Network-on-Chip [9]. 
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The processors, the accelerators and the communication 
infrastructure can be adapted at runtime to the requirements of 
the application. For controlling and supervising the runtime 
adaptation a special purpose operating system called CAP-OS 
[10] (Configuration Access Port-Operating System) has been 
developed. As shown in Figure 1. CAP-OS receives task 
graphs of the partitioned application from the user together 
with the partial bitstreams of the processors and the 
accelerators and the compiled software programs for the 
processors. All data (task graphs, partial bitstreams and the 
compiled software programs) has been generated using the 
novel semi-automatic design methodology of the RAMPSoC 
approach [11]. CAP-OS is responsible for the runtime 
scheduling of the tasks to the available processors and for 
managing the available hardware resources in such a way that 
the real-time requirements are fulfilled, while the used 
hardware resources and therefore the power consumption are 
minimized. 

A. Star-Wheels Network-on-Chip 
To provide an efficient and flexible communication 

structure for runtime adaptive MPSoCs for dataflow intensive 
applications such as image processing the Star-Wheels 
Network-Chip was developed. It has to fulfill several 
requirements. First, it needs to support the runtime adaptation 
of the PEs by recognizing, if a PE has been exchanged, added 
or removed at runtime. Second, it needs also to support the 
runtime adaptation of the network. This means the topology 
and the number of switches need to be adaptive. Therefore, the 
network needs to be modular and scalable. It should be 
organized in a decentralized fashion. This means, there is no 
centralized arbiter. Each switch decides on its own over the 

TABLE I.  COMPARISON OF DIFFERENT MPI IMPLEMENTATIONS AGAINST RAMPSOC-MPI 
 

 OpenMPI [3][4] MPICH [5] TMD-MPI [6] SoC-MPI [7] RAMPSoC-MPI 
Availability Open-Source Open-Source Proprietary Proprietary Proprietary 

Code size MPI layer 25 MB  7 MB 9 KB 13 KB 37 KB 
Code-size all layers 40 MB 47 MB -- -- 43 KB 

Number of supported 
MPI standard commands 

300 300 11 6 18 
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routing strategy. Furthermore, each switch can check the 
existence and the addresses (ID number) of its direct neighbors. 
The size of the switches has to be reasonable in order to be area 
efficient for FPGAs. As the network will be used for runtime 
adaptive MPSoCs, it should support different clock domains. 
Moreover a low latency and a high data throughput are 
demanded by the target applications. To get a good tradeoff 
between area and performance constraints a novel 
heterogeneous topology as shown in Figure 2. was developed. 
All shown connections are bidirectional. It uses the novel 
Wheel topology to provide many parallel communication 
channels within each subnet. For communication between 
different subnets the Star topology is used. The Wheel topology 
combines the benefits of the ST Spidergon [12] and the star 
topology. This means, that the routing algorithm is much 
simpler compared to the Spidergon and the central switch is not 
as complex and high in area utilization as it would be for a 
simple Star topology. Furthermore, the number of switches 
between a sender and a receiver varies between two for 
neighboring and three for not neighboring switches. This 
results in a reduced latency compared to the Star topology, 
which always has three switches between a sender and a 
receiver. The benefits compared with a full connection 
topology are fewer connections and less area consumption. The 
Star-Wheels NoC is scalable and runtime adaptive by 
exploiting the dynamic and partial reconfiguration feature of 
Xilinx FPGAs. Therefore, if the full featured Wheel topology is 
not needed, each subnet could also be implemented or modified 
at runtime into a line, ring or star topology. 

Due to this heterogeneous topology three different types of 
switches exist. The subswitch connects the different processing 
elements (PEs) to the network. Seven subswitches form the 
peripheral ring of one subnet, but not all of them have to be 
present at one point of time. The subswitches have the simplest 
structure as they have a maximum of four bidirectional 
connections. One to the PE, one to the left and one to the right 
neighbor subswitch in the peripheral ring and one to the 
superswitch, which is the central switch of each subnet. The 
superswitch allows the communication between subswitches, 
which are not direct neighbors. Neighboring subswitches can 
communicate directly with each other using the peripheral ring. 
This way the complexity and therefore also the required area of 
the superswitch can be reduced. It has a maximum of nine 
connections and is therefore the most complex one. Seven 
bidirectional connections are for the seven subswitches and two 
additional connections are used to communicate with other 
subnets over the central rootswitch. In the current 
implementation four subnets are connected via two 
bidirectional connections to the rootswitch. The number of 
subnets and connections between the subnets and the 
rootswitch can be increased at the cost of higher resource 
requirements for the rootswitch as well as for the superswitch. 
To support different clock domains the buffers within each 
switch are asynchronous. 

 

Figure 2.  Heterogenous topology of the Star-Wheels 
Network-on-Chip 
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To achieve a high data throughput combined with a low 
latency, a heterogeneous communication protocol combining 
the benefits of circuit- and packet-switching was chosen. For 
control purposes, such as establishing and freeing a 
communication channel a packet-based communication 
protocol is used. To exchange data between to processing 
elements over the communication channels a circuit-switching 
communication protocol is used. The packet-switching and the 
circuit-switching are physically separated. This means for each 
type of communication protocol different communication ports 
are used, so that they will not interfere with each other. This 
synergy of two communication principles is beneficially for 
image processing applications, as circuit-switching offers the 
required performance for transferring large amounts of data, 
such as images or tiles of images, between two processing 
partners. Furthermore, no additional data buffers are required to 
reorder the incoming packages of a PE. This way the size of the 
switches can be kept small.  

The control-packets support also the runtime adaptation of 
the network and the multiprocessor system. They are used to 
recognize, if the network topology or the number or addresses 
of the PEs has been changed at runtime. This runtime 
adaptation is feasible in e.g. Xilinx FPGAs, which provide a 
feature called dynamic and partial reconfiguration. With this 
feature a part of the configuration memory of the FPGA can be 
exchanged, while the rest continues to process undisturbed. 
Each switch has an internal timer. If within the user-specified 
time interval no communication has occurred between a switch 
and one of its neighbors or the PE, the switch sends a control-
packet to them to check if they still exist. If he does not receive 
an answer within a second user-specified time interval, it 
assumes that the neighbor has been removed and it updates its 
internal routing table. If on the other side the switch receives an 
answer, it checks if the address of this communication partner 
is still the same. If not the routing table is updated accordingly. 
The control-packets are processed within each switch using a 
round robin scheme. 

B. Design Methodology 
To program such a complex hardware structure a design 

methodology was developed to hide the complexity of the 
hardware architecture from the user. Figure 3. shows this 
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design methodology, which consists of a combination of 
commercial and custom tools. In this first version still some 
manual steps are required. The design methodology requires an 
application written in C, C++ as an input. It is separated in 3 
phases. Phase 1 partitions the application on a functional basis 
using a hierarchical clustering algorithm. Therefore, the timing 
of the different functions is profiled using a commercial 
profiling tool like e.g. the AMD CodeAnalyst. After that, the 
call graph is generated using a own developed tracing library. 
The communication analysis still had to be done manually in 
this version. As an alternative a novel neighborhood 
relationship was developed, which is explained in detail in 
[11]. The results from the application analysis step are used in 
the closeness function of the hierarchical clustering algorithm. 
The results of phase 1 are a suggested partitioning of the 
application as well as a suggested MPSoC architecture. This 
suggestion includes a definition of the number of processors 
and their required communication infrastructure. The MPSoC 
architecture then can be designed with the GUI of the Xilinx 
Platform Studio (XPS). 

In Phase 2 a line by line profiling, with e.g. the AMD 
CodeAnalyst, has to be done for the code fragment of each 
processor separately. The output of the profiling is then used by 
the custom HW/SW partitioning tool called ProfileAnalyzer. 
This tool calculates the execution times within each function 
and each loop and also illustrates these results and their relation 
to each other graphically to the user. Finally, it generates a list 
of possible hotspots, which would be good candidates for one 
or several accelerators. 

Phase 3 is the implementation phase. Here, the code of the 
application has to be manually partitioned. Inter-processor 
communication has to be inserted manually. The C-code, 
which shall be outsourced in a hardware accelerator, needs to 
be adapted depending on the requirements of the commercial 
C-to-FPGA compiler, e.g. ImpulseC [13]. Then the Xilinx tools 
are used for hardware synthesis and the GCC compiler is used 
for generating the binaries for the processors. Finally, a custom 
tool called GenerateRCS is used for generating the full and 
partial bitstreams. 

 

Figure 3.  Design methodology of RAMPSoC without MPI 
support 
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Even though in this first version several steps are manually, 
no knowledge of hardware description languages is required.  

IV. RAMPSOC-MPI 
As many high performance computing (HPC) applications 

are written using the MPI standard, it was desired to support 
such a standard in RAMPSoC as well. This way, such 
applications can be transferred fast and without knowledge of 
the underlying hardware. Furthermore, applications written 
with MPI provide a possibility for the user to suggest an 
efficient partitioning and to insert user knowledge about the 
application behavior into the C-code. Moreover, these 
applications are very scalable, which is a desired feature for 
such an adaptive MPSoC like RAMPSoC. Therefore, the 
design methodology of RAMPSoC was extended to support 
also C, C++ applications with MPI, as described in Subsection 
IV.A. As the available open source MPI implementations are 
too huge in terms of memory allocation, they cannot be used by 
an embedded system. Therefore, an own modular MPI 
implementation was developed, which is described in detail in 
Subsection IV.B. This MPI implementation was developed to 
support the communication mechanisms of the Star-Wheels 
Network-on-Chip, but due to the usage of different 
implementation layers it can be easily ported to other 
communication infrastructures. Furthermore, the application 
programmer does not need to know the specific protocols of 
the underlying communication infrastructure, as these are 
hidden. 

A. Integration into the Design Methodology 
The design methodology of RAMPSoC has been extended 

to support also C, C++ applications using the MPI standard. 
Two custom tools have been developed, which resulted in a 
stronger automation of the design methodology as can be seen 
in Figure 4.  

 

Figure 4.  RAMPSoC design methodology for MPI-based 
C/C++ applications 
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1) Communication Analysis 
The communication analysis has been automated in such a 

way that it uses static code analysis for generating the call 
graph and for extracting the communication costs between the 
different functions. For MPI applications it further extracts the 
communication costs of the MPI commands. The flow diagram 
of the communication analysis tool is given in Figure 5. In this 
first version of the tool only applications written in C are 
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supported, but the support for C++ is currently under 
development. 

 

Figure 5.  Flow diagram of the communication analysis tool 
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First, the tool searches all C input files for the MPI_Init 
command, which is used in all standard MPI applications for 
initialization purposes. If this command is not found, it is 
assumed, that the given application is not a MPI application. In 
this case the tool follows the left path in the flow diagram. If 
MPI_Init was found, then the tool follows the right path in the 
flow diagram.  

In the second step the tool searches in both paths for the 
function declarations in all input files and generates a list with 
a structure for each found function. In order to find the function 
declaration, the user needs to declare the functions used within 
a file at the beginning of this file and marking the functions 
with a specific begin and end comment, as shown in Figure 6. 
In addition, the tool searches for the multiple keyword, which 
is specified by the following user comment “//multiple call 
possible”. With this parameter the user can specify, if a specific 
function can be multiplied and mapped onto several processors. 
One example are the slave functions of the bioinformatics 
algorithm, as this is only one function, which can be multiplied, 
depending on the available number of processors, in order to 
speed up the overall execution. This way, the knowledge of the 
user about the application can be exploited by the tool. For MPI 
applications the tool searches further for all MPI commands 
and parameters used within each function and store this 
information also in the structure of the each function. 

 

Figure 6.  Programming rules for function declarations 
 

In the third step, the tool searches within the different C 
input files for the parameters of each function and stores them 
also in the structure of each function. This is done for both 
types of applications. The function parameters are used to 
extract the communication costs for each function. If a function 

has pointers as parameters, the communication analysis tool 
will ask the user to specify a typical size for this pointer. With 
this information the tool generates the call graph for the 
application. For non MPI applications the communication 
analysis tool finishes after this step and generates a summary 
file with the call graph of the application.  

For MPI applications a fourth step is required in order to 
find related MPI commands and to add this information as well 
as the MPI communication costs into the structure of each 
function. This means, to find for example for each MPI_Send 
the corresponding MPI_Recv command. It also considers that 
one MPI_Recv command can have several MPI_Send 
commands. For each command it analyzes the communication 
costs and stores them into the list of functions. Finally, a 
summary file is generated, which is used by the SW/SW 
partitioning tool, which executes the hierarchical clustering 
algorithm. The original closeness function of the hierarchical 
clustering algorithm was extended to support also MPI 
applications, as can be seen in equation (1). 
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                                tasks to be clustered 
MPI_COM (x, y): Communication costs between two tasks  
                                communicating via MPI 
Call_COM(x, y):   Communication costs between two tasks in  
                                the call graph 
NH(x, y):                Proximity of two tasks based on the call   
                                Graph 
�MPI:                       Weighting factor for MPI communication 
�Call:                        Weighting factor for call graph  
                                communication 

(1)

The closeness function differentiates between 
communication costs resulting from the call graph (Call_COM) 
and communication costs resulting from MPI commands 
(MPI_COM). Two weights were introduced �MPI and �Call. The 
communication costs for the call graph receive a higher weight 
(�Call) to assure, that they will be more likely clustered. The 
communication costs for the MPI commands receive a lower 
weight (�MPI), because the usage of MPI between two functions 
is a signal given by the user, that these two functions should be 
placed on two different processors. 

Depending on the application programmer the values for 
the weights can be adapted. Here for �MPI 0.2 and for �Call 0.8 
have been used. If the application does not use MPI, then �MPI 
will be set to 0 and for �Call will be set to 1. 

If MPI_COM and Call_COM are unknown, the clustering 
can still be done by using the own developed proximity 
heuristic as mentioned in Subsection III.B. 

2) Inter-Processor Communication 
The inter-processor communication has been automated for 

MPI applications through the development of an own MPI 
implementation for RAMPSoC called RAMPSoC-MPI. It 
currently supports the 18 most frequently used MPI standard 
commands and translates them at runtime into the 
corresponding commands required by the communication 
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protocol of the Star-Wheels NoC as described in the next 
subsection. 

B. OSI (Open System Interconnection) Model for RAMPSoC-
MPI 
To abstract from the complexity of the underlying hardware 

and to make the MPI implementation easily portable for other 
communication infrastructures the layered approach of the OSI 
standard model has been exploited, resulting in the RAMPSoC 
model. As shown in Figure 7. six layers have been used.  

 

Figure 7.  Relation between the OSI model and the 
RAMPSoC model. 
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The layer with highest abstraction is the MPSoC Layer, 
which corresponds to the combination of the Application- and 
the Presentation Layer of the OSI model. The MPI Protocol 
Layer corresponds to the Session Layer and the Physical Layer 
is identical in both models. The Transportation Layer of the 
OSI model is split into two layers in the RAMPSoC model: 
MPI Implementation Layer and FSL Layer, which are 
explained in detail in the next two subsections. Here, two layers 
were used for the RAMPSoC model in order to adapt the MPI 
implementation in the future easily to other communication 
infrastructures. Finally, the Network- and the Data Link Layer 
of the OSI model correspond to the Star-Wheels NoC Layer of 
the RAMPSoC model. 

1) MPI Implementation Layer 
This layer implements the 18 different MPI commands for 

the RAMPSoC. MPI_Broadcast calls for example 
MPI_Comm_size, MPI_Comm_rank and several MPI_Send 
commands. Within this layer, only virtual addresses are used 
for the different application functions. These virtual addresses 
are equal to the global rank, which represents the ID of each 
function / task within the application.  

2) FSL Layer 
In this layer the virtual addresses and therefore the global 

rank of the tasks / functions are transferred into the physical 
addresses of the executing processor within the Star-Wheels 
NoC. In the Star-Wheels NoC each processor has a specific 
address consisting of 6 Bit, 3Bit specifying the ID of the subnet 
and the other 3 Bit specifying the ID of the subswitch within 
the subnet to which the processor is connected. Furthermore, in 
this layer the establishment and freeing of a communication 
channel using the in Subsection III.A described control packets 

are done. In addition, incoming packets are analyzed and 
processed accordingly. 

V. APPLICATION INTEGRATION AND RESULTS 
To evaluate the functionality of RAMPSoC-MPI, a 

bioinformatics HPC application for DNA sequence alignment 
was used. This application, called Z-align [14], is from the 
research group of Prof. Alba de Melo. Z-align is a parallel 
variant of the Smith-Waterman algorithm that runs in user-
restricted memory space and uses affine gap penalties. It is 
programmed with MPI and was evaluated by the research 
group of Prof. Alba de Melo on a cluster computer. The 
algorithm was partitioned for the RAMPSoC using the new 
version of the design methodology. Figure 8. shows the 
resulting call graph consisting of 20 functions. 

 

Figure 8.  Call graph for the z-Align algorithm 
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The extracted MPI communications are shown in Figure 9. 
On the top right are two MPI_Bcast functions and the others 
are MPI_Send and MPI_Recv functions. 

 

Figure 9.  MPI communications between the functions / tasks 
of the z-Align algorithm. On the top right are two MPI_Bcast 
functions, all others are MPI_Send and MPI_Recv functions. 
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Figure 10. shows the summary, which is generated by the 
communication analysis tool for the z-Align algorithm. There 
are four columns. The first one shows the name of each 
function, the second one shows the ID, the third one shows the 
MPI communications (MPI_Com) of each functions and finally 
the fourth column shows the call graph communication 
(Call_Com) for each function. For MPI_Com and Call_Com 
the sender, the receiver and the length of the message are 
given. In Figure 10. two examples are given to show the 
relation between the summary file and the MPI_Com graph 
(see Figure 9. ) and the call graph (see Figure 8. ). This 
summary is then used as an input for the hierarchical clustering 
algorithm, which partitions the applications for the processors 
of RAMPSoC. 
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The z-Align application was then partitioned for three 
processors: One master and two slaves, as shown in Figure 11. 
The processors were placed in different subnets to explore also 
the behaviour of the Star-Wheels NoC. Before executing the z-
Align algorithm, the master processor sends to each slave its 
global rank and its subnet – and subwitch ID within the Star-
Wheels NoC. Normally, this functionality would be done by 
the CAP-OS processor together with the resource management, 
scheduling and configuration management. As here the full 
functionality of CAP-OS was not required, no additional CAP-
OS processor was added. The application was easily integrated 
into RAMPSoC without modification and it was evaluated with 
two sequences on a ML507 evaluation board from Xilinx with 
a Virtex-5FX70T FPGA. 

 

Figure 11.  Implemented RAMPSoC system consisting of 3 
Xilinx MicroBlaze processors connected over the Star-

Wheels NoC on a ML507 evaluation board from Xilinx with 
a Virtex-5FX70T FPGA. 
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For each MPI command within RAMPSoC, the execution 
time was measured on the MicroBlaze processors. It was 
differentiated between the execution time of the MPI 
Implementation Layer and the FSL Layer, because the FSL 
Layer depends on the communication infrastructure. TABLE 
II. shows the supported MPI commands and their execution 
times for a system clock of 125 MHz. MPI_Comm_size, 
MPI_Comm_rank and MPI_Bcast call other MPI commands. 

MPI_Send and MPI_Recv are the two commands, which use 
the FSL Layer to communicate between two processors. 
MPI_Init and MPI_Finalize have the highest execution times, 
because they initialize / free the data structures, which are used 
within the RAMPSoC-MPI to store important information for 
each function / task, e.g. the global rank. 

TABLE II.  IMPLEMENTED MPI COMMANDS AND THEIR 
EXECUTION TIME ON A XILINX MICROBLAZE AT 125 MHZ 

 

 MPI command Execution Time 
@ 125 MHz(μs) 

1 MPI_Init 47,04 
2 MPI_Finalize 52,43 
3 MPI_Initialized 0,43 
4 MPI_Finalized 0,43 
5 MPI_Comm_group 3,21 
6 MPI_Group_size 0,52 
7 MPI_Group_rank 1,02 
8 MPI_Group_free 1,19 
9 MPI_Comm_size  

(calls 5,6,8) 
5,9 

10 MPI_Comm_rank  
(calls 5, 7, 8) 

6,23 

11 MPI_Group_excl 11,37 
12 MPI_Comm_create 5,65 
13 MPI_Comm_free 1,17 
14 MPI_Status_set_elements 0,54 
15 MPI_Get_count 2,16 
16 MPI_Send 0,79 (+ 2,59 for 

FSL Layer)  
17 MPI_Recv 1,47 (+3 for FSL 

Layer) 
18 MPI_Bcast  

(calls 9, 10, 16/17) 
18,33 /16,09 
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Figure 10.  Summary of the communication analysis tool 
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VI. CONCLUSIONS AND FUTURE WORK 
This paper describes the integration of the MPI 

programming standard to the RAMPSoC approach. It enables 
to re-use existing applications on the novel runtime adaptive 
hardware. The approach provides a further abstraction layer 
over the complex hardware through the realization of the 
traditional OSI / ISO layer model. The MPI standard is 
supported by the RAMPSoC toolflow, which automatically 
partitions the MPI application onto the RAMPSoC resources 
consisting of multiple processor cores and an adaptive 
Network-on-Chip. This feature is achieved through an 
extension of the cost function in the hierarchical clustering 
algorithm used within the toolflow. The approach is evaluated 
with the z-Align algorithm from the bioinformatics domain.  

For future work, it is envisioned to extend the MPI 
commands and user defined data types in order to increase 
compatibility to other application source codes. Furthermore, 
multitasking will be supported in order to enable intra-
processor communication between tasks. Along with this, the 
Star-Wheels NoC will be improved to support more 
communication features of MPI. 

The realization of standard programming models on novel 
multiprocessor systems is a mandatory step to receive 
acceptance from developers and researchers. However, it is still 
a hot topic in research to find a proper way to program parallel 
hardware efficient and from a high abstraction layer. 
Programming models like e.g. MPI, OpenCL, OpenMP etc. are 
a step forward in this direction and need to be evaluated on 
several platforms like e.g. the RAMSoC system. 
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