
Concurrencer: a Tool for Retrofitting Concurrency into Sequential Java
Applications via Concurrent Libraries

Danny Dig, John Marrero, Michael D. Ernst
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{dannydig,marrero,mernst}@csail.mit.edu

Abstract

Parallelizing existing sequential programs to run ef-
ficiently on multicores is hard. The Java 5 package
java.util.concurrent (j.u.c.) supports writing con-
current programs. To use this package, programmers still
need to refactor existing code. This is tedious, error-prone,
and omission-prone.

This demo presents our tool, CONCURRENCER, which enables
programmers to refactor sequential code into parallel code
that uses j.u.c. concurrent utilities. CONCURRENCER does
not require any program annotations, although the trans-
formations span several, non-adjacent, program statements
and use custom program analysis. A find-and-replace tool
can not perform such transformations. Empirical evalua-
tion shows that CONCURRENCER refactors code effectively: CON-

CURRENCER correctly identifies and applies transformations
that some open-source developers overlooked, and the con-
verted code exhibits good speedup.

1 Introduction

The computing hardware industry has shifted to multi-
core processors. This demands that programmers find and
exploit parallelism in their programs, if they want to reap
the same performance benefits as in the past.

The dominant paradigm for concurrency in desktop pro-
grams is shared-memory, thread-based. However, this
paradigm increases the risk for deadlocks and data-races,
commonly known as thread-safety concerns. In addition,
the programmer needs to consider scalability concerns as
well: will the parallelized program continue to run faster
when adding more parallel resources?

To meet the needs of programmers with respect to
thread-safety and scalability, the Java standard library has
been extended with a package, java.util.concurrent
(from here on referred as j.u.c.), containing several util-

ity classes for dealing with concurrency. Among oth-
ers, j.u.c. contains a set of Atomic classes which of-
fer thread-safe, lock-free programming over single vari-
ables, and several thread-safe abstract data types (e.g.,
ConcurrentHashMap) optimized for scalability. Java
7 will contain a framework Fork/Join Task1 for fine-
grained parallelism of intensive computations.

However, manually refactoring a program to use j.u.c.
utilities is tedious because it requires changing many lines
of code, is error-prone because programmers can use the
wrong APIs, and is omission-prone because programmers
can miss opportunities to use the enhanced APIs.

This demo presents CONCURRENCER, our extension to
Eclipse’s refactoring engine. CONCURRENCER enables Java pro-
grammers to quickly and safely refactor their sequential
programs to use j.u.c. utilities. In this demo we present
three refactorings: (i) CONVERT INT TO ATOMICINTEGER, (ii) CON-

VERT HASHMAP TO CONCURRENTHASHMAP, and (iii) CONVERT RECUR-

SION TO FJTASK.
The first two refactorings are “enabling transforma-

tions”, i.e., they make a program thread-safe, but do not
introduce multi-threading into a single-threaded program.
Our previous study [1] of five open-source projects that
were manually parallelized by their developers shows that
these two refactorings were among some of the most com-
monly used in practice. The third refactoring introduces
multi-threading: it converts a sequential recursive divide-
and-conquer algorithm into one which solves the subprob-
lems in parallel using ForkJoinTasks.

For evaluation, we compared the manually refactored
code in 6 open-source projects with code refactored auto-
matically. The results show that CONCURRENCER is effective
and the parallel code exhibits good speedup.

A more detailed description of CONCUR-

RENCER can be found in the ICSE’09 research
track [2]. CONCURRENCER can be downloaded from:
http://refactoring.info/tools/Concurrencer

1http://gee.oswego.edu/dl/concurrency-interest/

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE Companion Volume399

2 Concurrencer

Supported Refactorings. The first refactoring, CON-

VERT INT TO ATOMICINTEGER, enables a programmer to convert
an int field to an AtomicInteger. AtomicInteger

is a lock-free utility class which encapsulates an int

value and provides update operations that execute atomi-
cally. Our refactoring replaces field updates with calls to
AtomicInteger’s APIs.

For example, a common update pattern on an int field
is (i) read the current value, (ii) add delta, and (iii) up-
date the field value. To make this update thread-safe, the
three operations need to execute atomically. Tradition-
ally, programmers use locks to ensure atomicity. Due to
the program having to frequently acquire and release the
lock, the program does not scale well under heavy lock-
contention. CONCURRENCER finds such read/add/update code
patterns and replaces them with a call to AtomicInteger’s
getAndAdd() which atomically executes the update with-
out locks (instead it uses efficient compare-and-swap).

The second refactoring, CONVERT HASHMAP TO CONCURREN-

THASHMAP, enables a programmer to convert an HashMap

field to ConcurrentHashMap, a thread-safe, highly
scalable implementation for hash maps. Our refac-
toring replaces map update patterns with calls to
ConcurrentHashMap’s atomic APIs.

For example, a common update pattern is (i) check if a
map contains a 〈key, value〉 pair, and if it is not present,
(ii) place the pair in the map. For thread-safety, the two
operations need to execute atomically. Traditionally, a pro-
grammer would use a map-common lock. Since all accesses
to the map have to acquire the map’s lock, this can severely
degrade the map’s performance. CONCURRENCER replaces such
an updating pattern with a call to ConcurrentHashMap’s
putIfAbsent which atomically executes the update with-
out locking the entire map.

The third refactoring, CONVERT RECURSION TO FJTASK, con-
verts a sequential divide-and-conquer algorithm into an al-
gorithm which solves the recursive subproblems in paral-
lel using the Fork/Join Task framework. Our refactor-
ing encapsulates the subproblems as ForkJoinTasks and
passes them to the framework for effective scheduling.

For example, a sequential mergeSort(array) first
checks whether the input array is of trivial size (and sorts
it directly), otherwise splits the array into two halves, sorts
each half, and then merges the sorted halves. CONCURRENCER

parallelizes this algorithm using the skeleton of the sequen-
tial algorithm. For the base-case it (i) checks whether the
array is smaller than a user-defined threshold and (ii) in-
vokes the original sequential sort. For the recursive case, it
creates ForkJoinTasks for each of the two halves, sched-
ules the two tasks in parallel, waits for the computations to
finish, and then merges the two sorted halves.

Implementation. CONCURRENCER is implemented as an ex-
tension to Eclipse’s refactoring engine, thus it conveniently
provides previewing the code changes, undo, etc. The pro-
grammer only needs select the method or field to be refac-
tored, and the concurrency refactoring (and the sequential
threshold in case of CONVERT RECURSION TO FJTASK).

CONCURRENCER’s program analysis determines (i) whether
it is safe to remove synchronization locks that might protect
field accesses, (ii) its data-flow analysis determines what
variables are written in the update patterns and read after-
ward, and assigns them appropriately when the update pat-
tern is replaced with a single API call. The analysis and the
code edits are implemented on top of Eclipse’s JDT.

Evaluation. We used CONCURRENCER to refactor the
same fields that the open-source developers of Tomcat,
MINA, JaxLib, Zimbra, GlassFish, and Struts refactored to
AtomicInteger or ConcurrentHashMap. There were a
total of 141 such refactorings. Using CONCURRENCER, the de-
velopers could have saved changing 1019 LOC manually.

We then compared the manually vs. automatically refac-
tored programs. In terms of errors in using the j.u.c. APIs,
the open source developers 4 times erroneously replaced
infix expressions like ++f with f.getAndIncrement()

(which corresponds to the postfix expression f++). CON-

CURRENCER used the correct API calls. In terms of missing
opportunities to convert from old update patterns to the new
atomic APIs, the programmers missed 43 out of 83 such
opportunities. CONCURRENCER only missed 10 opportunities.

We also used CONCURRENCER to parallelize 6 divide-and-
conquer algorithms using CONVERT RECURSION TO FJTASK. CON-

CURRENCER changed 302 LOC and the parallelized code ex-
hibits on average 1.84x speedup on a 2-core machine and
3.28x speedup on a 4-core machine.

3 Conclusions

Refactoring sequential code to concurrency is not triv-
ial. Even seemingly simple refactorings like replacing data
types with thread-safe, scalable implementations provided
in java.util.concurrent, is prone to human errors and
omissions. This demo presents CONCURRENCER which auto-
mates three refactorings. Our preliminary experience with
CONCURRENCER shows that it is more effective than a human
developer in identifying and applying such transformations.

References

[1] D. Dig, J. Marrero, and M. D. Ernst. How Do Programs Become More Con-
current? A Story of Program Transformations. Tech Report MIT-CSAIL-TR-
2008-053.

[2] D. Dig, J. Marrero, and M. D. Ernst. Refactoring Sequential Java Code for

Concurrency via Concurrent Libraries. To Appear in Proceedings of ICSE’09.

400

