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Abstract

Performance evaluation and modeling is a crucial pro-
cess to enable the optimization of parallel programs. Pro-
grams written using two programming models, such as MPI
and OpenMP, require an analysis to determine both per-
formance efficiency and the most suitable numbers of pro-
cesses and threads for their execution on a given platform.
To study both of these problems, we propose the construc-
tion of a model that is based upon a small number of param-
eters, but is able to capture the complexity of the runtime
system. We must incorporate measurements of overheads
introduced by each of the programming models, and thus
need to model both the network and computational aspects
of the system.

We have combined two different techniques: static anal-
ysis, driven by the OpenUH compiler, to retrieve applica-
tion signatures and a parallelization overhead measurement
benchmark, realized by Sphinx and Perfsuite, to collect sys-
tem profiles. Finally, we propose a performance evaluation
measurement to identify communication and computation
efficiency. In this paper we describe our underlying frame-
work, the performance model, and show how our tool can
be applied to a sample code.

1. Introduction

Clustered symmetric multiprocessors (SMP) are the

most cost-effective solution for large scale applications. Of

the top ten supercomputers listed in the Top500, most (if

not all) are clusters of SMPs. A combination of MPI [11]

and OpenMP [28] is regarded as a suitable programming

model for such architectures. For instance, developers can

employ MPI to communicate between nodes and OpenMP

for parallelization within the SMP node.

Some work has shown performance improvement using

the mixed mode model [36, 4, 13, 35, 10, 17]. Interestingly,

there are also significant reports of poor hybrid performance

[7, 21, 6, 8, 16, 22, 34] or ones that show minor benefits to

adding OpenMP to an MPI program [27, 3, 23, 13]. The

factors which can affect a hybrid MPI and OpenMP applica-

tion’s performance are numerous, complex and interrelated.

We can roughly classify them into three different areas:

• Poor MPI communication efficiency: application re-

lated problem such as types of MPI routines (block-

ing, collective), message size and network related such

as network contention. An MPI implementation may

also have impact to the performance such as message

buffering and synchronization.

• Poor OpenMP parallelization efficiency: critical sec-

tions that incur long wait times, OpenMP thread man-

agement overheads, and poor cache utilization and

false sharing may all reduce performance.

• Poor MPI and OpenMP interaction: load imbalance,

idle threads during MPI communication, or frequent

entering and exiting of OpenMP parallel regions in

order to execute MPI constructs reduces parallel effi-

ciency.

The first problem may be inherent in the algorithm or be

the result of an inefficient network or runtime library. The

second factor may be algorithm-related, the result of subop-

timal programming, or be caused by compiler and its run-

time system. The third problem can generally be solved

by employing the so called OpenMP-SPMD programming

technique, which requires extensive array privatization.

In order to obtain an efficient hybrid program, we must:

• Determine whether a program has efficiency problems

and develop a strategy to overcome these where possi-

ble.

• Determine the most efficient combination of MPI pro-

cesses and OpenMP threads on a given platform and

problem size.
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We have created performance evaluation tools to help us

measure the communication and the computation parts of

the program in order to carry out these tasks.

There are three major techniques for performance mod-

eling and prediction: analytical modeling, simulation, and

measurement/instrumentation. Analytical modeling has the

lowest cost as it is mostly based on static analysis. How-

ever it must make assumptions about a program’s control

flow and values of its data, and may not take the runtime

environment properly into account. Simulation enables an

automated approach to assessing program performance un-

der a variety of conditions, but take an excessive amount of

time. Dynamic measurement is probably the most accurate

of the techniques. However, instrumentation overhead may

significantly perturb results and huge trace/event files may

be generated; a program counter-based approach does not

suffer from these problems but has somewhat limited appli-

cability.

Our research goal is to model hybrid MPI and OpenMP

analytically, to detect communication and parallelization in-

efficiency, as well as inefficiencies caused by the strategy

used to combine the two programming models, and lastly to

use our model and additional insights to optimize the perfor-

mance of the mixed mode model. In this paper, we address

the problem of detecting performance problems posed by

MPI communication and OpenMP multithreaded computa-

tion. We propose a novel and low-cost approach to analyze

and model hybrid MPI and OpenMP performance behavior

analytically, enhanced with system profiling.

The remainder of this paper is organized as follows. In

the next section, we describe some related works on per-

formance modeling and prediction related to our work. In

section 3 we introduce our approach to analyzing hybrid

MPI and OpenMP applications and modeling the commu-

nication and multithreaded computation. Then, in section 4,

we report the experiment of our framework. Finally section

5 concludes the paper with a summary and some interesting

research directions.

2. Related Work

There are many performance models for distributed

memory such as LogP [9], LogGP [2] and PLogP [18].

LogP [9] predicts the communication performance by as-

suming only constant-size, small messages are communi-

cated between the nodes. LogGP [2] is an extension of the

LogP model that additionally allows for large messages by

introducing the gap per byte parameter. PLogP [18] is an-

other extension of the LogP model by including major con-

tributing factors such as copying data to and from network

interfaces.

Some models have been proposed for shared memory

[12, 15]. The Queuing Shared Memory (QSM) model [12]

takes into consideration the number of memory accesses

and contention at the memory, but does not differentiate be-

tween between contiguous versus non-contiguous accesses.

On the other hand, Helman and JaJa [15] takes into account

contention at both the processors and the memory.

MPI application performance is modeled and predicted

using static analysis by [20]. The SUIF compiler is em-

ployed to parse the source code and retrieve information on

MPI communication calls and arithmetical operations from

the intermediate representation. The PERC project [32]

uses the so-called convolution technique to combine ma-
chine profiles and application signatures for both serial and

parallel programs. An application signature is a summary

of the fundamental operations to be carried out by the appli-

cation, independent of any particular machine. A machine
profile is a representation of the capability of a resource/sys-

tem to perform operations. An application signature is col-

lected by a dynamic instruction trace and then ”mapped”

with a machine profile by using the ”convolution” method.

The POEMS project [1] developed an accurate perfor-

mance model for parallel applications executing on dedi-

cated, shared memory systems. The model has two lev-

els: a lower-level queuing model to characterize the impact

of contention and caching effects, and a higher-level task

graph model of the application. Marin et al [24] suggest

a semi-automatic approach to model and predict the char-

acteristics of program behavior. They use a combination of

the attributes of applications and the result of simple probes.

Although the model shows high accuracy for sequential pro-

grams, it is unknown if it will extend to model parallel pro-

grams. Other work on predicting computation performance

is carried out by [31, 26]. Shen et al. [31] estimate the

locality phases of a program via a combination of locality

profiling and run-time prediction, while [26] uses dynamic

sampling of trace snippets throughout an application’s exe-

cution to model performance behavior.

3. Methodology

The main idea of our approach is to exploit and appro-

priately adapt the ideas of the PERC project to evaluate

the performance of an MPI and/or OpenMP program. We

follow their definition of application signature. However,

we retrieve application information such as the memory

access pattern and floating point operation from the com-

piler, rather than tracing program behavior at run time. Our

system profile is similar to the machine profile defined in

PERC, but we extend their definition to include character-

istics of the network and the compiler’s runtime library. By

combining an application signature and system profile, we

can model the behavior of an application on a given tar-

get system for different problem sizes without requiring

program execution. In this section we describe how we
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model analytically parallel performance measurement, how

we collect system profile and how we combine the two ap-

proaches.

3.1. Performance Measurement

The parameters we use to measure performance behavior

are based on the work of Chow et al [8] where it is suggested

that message-passing efficiency can be measured based on

the ratio of the communication time of a hybrid applica-

tion and the communication time of the pure MPI version.

Assume tcomm
hyb is the estimated communication time of hy-

brid application, tcomm
mpi is the communication time if the

application is executed without multithreading (pure MPI),

p is the number of MPI processes, mt is the number of

threads used in communication, and nt is the total number

of OpenMP threads (obviously, nt ≥ mt), then the message

passing efficiency emp can be defined as:

emp(ntp) =

∑
tcomm
hyb (mtp)∑
tcomm
mpi (ntp)

(1)

The parameter (ntp) in emp is used as a function of the total

number of CPUs used by the program. Therefore if a hybrid

application employs p×nt processors although only p×mt

are used to perform communication, we need to compare it

with a pure MPI program running with p × nt processes.

Our formula is more accurate than [8] if a hybrid application

uses more than 1 thread to perform communication.

Modeling multithreading efficiency can be very tricky

and is more difficult to determine than message-passing ef-

ficiency. First, parallelization overhead varies significantly

based upon (at least) the compiler, machine architecture,

operating system and runtime library. We can deal with this

by employing microbenchmarks to measure the overheads

exclusively. Some benchmarks, such as Sphinx [33] and

EPCC [5] are developed specifically for this purpose.

Second, compared to a message-passing based program,

cache memory has a bigger impact on multithreading appli-

cations. It is known that a cache-optimized multithreaded

program can achieve significant speedup compared to an

unoptimized program [25]. Most analytic performance

models for parallel programs have only limited ability to

consider cache behavior such as cache misses, while sim-

ulation is a more promising technique for capturing false
sharing.

Our model for a serial computation loop is based on

[38], where the estimated execution time of a loop tcomp
serial

is defined as the total of the sum of predicted cache misses

tcache, loop overhead toverhead and arithmetic processing

tmachine including pipelining, register pressure and latency.

tcomp
serial = tmachine + toverhead + tcache (2)

Without loss of generality, we simplify our model of es-

timated execution time of a parallel loop tcomp
par to:

tcomp
par =

tcomp
serial

nt
+

∑
tcomp
unpar +

∑
O (3)

Where
∑

O is the total multithreading overhead and tcomp
unpar

is the portion of the code that cannot be parallelized.

Many OpenMP codes contain not only worksharing direc-

tives such as OMP DO in Fortran (or pragma omp for in

C) to mark parallel loops, but also critical regions using

CRITICAL directive or locks, or even explicit barrier syn-

chronizations. In this case,
∑

O is the sum of all overheads

and synchronization costs incurred by OpenMP directives.

Ideally, tcomp
par would also have an additional cache penalty

to take false sharing into account. Determining a suitable

penalty is not trivial, however, since it needs to be machine-

dependent. Within a cc-NUMA architecture, this penalty

may depend on the distance between two nodes. Includ-

ing false sharing in our model will be a major focus of our

future work.

The multithreading efficiency measurement is simply

the ratio of the execution time for the sequential program∑
tcomp
serial and its parallel version:

emt =
∑

tcomp
serial

nt

∑
tcomp
par

(4)

=
∑

tcomp
serial

nt

(
t
comp
serial

nt
+
∑

tcomp
unpar+

∑
O

) (5)

The value of emt will lie between zero and one, and could

only be equal to one if there is no serial code and no parallel

overheads are incurred. The definition does not take the

cumulative effect of multiple caches into account and will

thus not be able to predict superlinear speedup, which does

occur in practice.

3.2. Performance Modeling

As shown in Figure 1, our framework tool comprises

three main parts:

• Eclipse[37] for the main user interface.

• Benchmarks to construct the system profile: Sphinx

[33] to retrieve parallel overheads (MPI, OpenMP and

hybrid MPI+OpenMP) and Perfsuite [19] to collect

hardware information.

• The OpenUH compiler [29] to analyze source code and

determine application signatures.

All parts are based on open source tools. Eclipse [37] is an

extensible open source IDE that can be used to create appli-

cations as diverse as web sites, embedded Java programs,
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Figure 1. Tool framework

C++ programs, and Enterprise JavaBeans. We are currently

developing a new plug-in to deal with user interaction. Our

framework needs user input to provide the number of MPI

processes, OpenMP threads and loop iterations.

As shown in equation 1, our performance measurement

requires that we obtain the value of tcomm, the latency

of message-passing communication. Existing models typi-

cally assess parameters such as message size, latency, trans-

fer time per byte, gap per message and number of nodes.

However, an approach that does not take the MPI imple-

mentation into account is not sufficiently accurate for our

purposes so that here we intend to use measurements in-

stead. Many benchmarks (e.g. SKaMPI [30], Sphinx [33]

(ar branch of SKaMPI) and Pallas MPI benchmark [14]

have been created to obtain more realistic figures for a given

target system (machine, MPI implementation, compiler and

operating system). We decided to use Sphinx due to its

flexibility, ease of configuration and also its support for

OpenMP and hybrid MPI+OpenMP. Sphinx (and SKaMPI)

is also very accurate: it not only repeats the test based on

the distribution of the results, but also supports high tim-

ing resolution. A disadvantage was that the OpenMP over-

head measurements were not complete and not fully tested.

We have accordingly extended Sphinx to measure the over-

heads of most OpenMP constructs including synchroniza-

tion (master, ordered, set/unset lock) and variable scoping

(such as private, lastprivate and threadprivate).

Perfsuite [19] is open source software and contains a

small set of tools, utilities, and libraries for user-level ap-

plication performance analysis on x86 and ia64 Linux sys-

tems. Perfsuite provides access to accurate, high-resolution

timers, information about architectural features such as de-

tails of the memory hierarchy, and resource usage informa-

tion such as CPU time consumed or the resident set size of

a running application. One of the Perfsuite tools we are in-

terested in is psinv. This tool retrieves hardware informa-

Cost factor Execution time

(cycles) (seconds)

Machine cycles 130000.00 0.050544

Loop Overhead cycles 525252.00 0.204217978

Cache cycles 85799.43 0.033358818

Total 741051.43 0.289514255

Table 1. The estimated execution time of the
loop in matrix-multiply function.

tion such as clock speed, memory size, cache size and cache

line size. In conjunction with array usage analysis from the

compiler, this information is useful to predict cache reuse,

loop cost and false sharing in an application [25].

Our tool works as follows. First, the OpenUH compiler

parses and analyzes a hybrid MPI and OpenMP program.

The compiler then extracts for each computational loop: the

estimated computation time tcomp
serial and list of OpenMP di-

rectives. The compiler also outputs MPI routines including

the type of variable and its message length. Since in most

cases the problem size is undefined during compilation, we

need to manually define the value, then pass it to Sphinx

to measure the estimated communication time tcomm
mpi and

tcomm
hyb for target the runtime library and machine. The com-

putation of emt and emp is then carried out in our Eclipse

plugin.

4. Case study

Due to the space constraint, we consider one simple case

study only, a parallel matrix multiply C = A × B using

Cannon algorithm. The code is an interesting problem for

two reasons. First, the communication is performed out-

side the computation, which simplifies the explanation of

our methodology. Second, matrix multiplication is not eas-

ily identified as parallelizable due to a data dependency in

the innermost loop.

The main loop of the program consists of two functions:

local matrix multiplication and message-passing communi-

cation to rotate the matrix A and B. The matrix rotation is

based on two point-to-point message-passing communica-

tion patterns of MPI Send and MPI Recv, while the ma-

trix multiply computation is parallelized with an OpenMP

parallel for directive.

We conduct our experiment on an HP RX8620 with 16

itanium2 1.5GHz processors with 6MB cache and 32x1GB

DIMMs of RAM, running on Linux kernel 2.6 with Intel

compiler version 9.0 and MPI library from ScaMPI v 1.5.

The result of predicted communication efficiency can be

seen in Table 2. As we can see, our estimated emp is not

very accurate where the error ranges between 12 to 32%.
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CPUs Estimated emp Real emp Error (in %)

4 1 1 0

9 1.832 2.731 32.916

16 3.139 2.758 12.132

Table 2. Estimated communication efficiency
emp vs. real emp

nt Overhead O Estimated emt Real emt Error (in %)

1 0.013 0.956 1 4.402

2 0.144 0.499 0.500 0.184

3 0.179 0.349 0.334 4.609

4 0.203 0.262 0.249 5.214

Table 3. Estimated multithreading efficiency
emt vs. real emt

This inaccuracy is understandable because measured com-

munication times vary widely.. Sphinx report that the stan-

dard deviation of the real communication is up to 151%.

Thus we believe that a large error margin is tolerable.

Our current multithreaded computation model can only

be accurate if false sharing is not significant. In our matrix

multiply case, we expect few occurrences of false sharing.

Our compiler first estimates the serial execution time of the

multiplication loop as shown in Table 1. Then we model

the parallel version according to Equation 3 where the over-

head O is measured by Sphinx. Next, we measure the pre-

dicted multithreading efficiency emt and compare with the

real emt. Not surprisingly, the error is relatively small (up

to 5.2%), as shown in Table 3.

What we can learn from our performance model is that

for the given problem size, it is not beneficial to increase the

number of threads due to significant OpenMP overhead in-

troduced by the Intel OpenMP compiler. On the other hand,

communication efficiency can be increased by adding the

number of MPI processes. However, since the proportion

of communication time is much smaller than the compu-

tation time, there is no significant benefit in increasing the

number of MPI processes.

5. Discussion

In this paper, we have proposed a novel and cost ef-

ficient approach to model and evaluate parallel OpenMP,

MPI and hybrid MPI+OpenMP with reasonable accuracy.

Our approach is based on a combination of static analysis

and feedback from a runtime benchmark for both commu-

nication and multithreading efficiency measurement. The

static analysis performed by OpenUH compiler serves to

retrieve application signature such as computation loops,

cache access pattern, MPI routines and OpenMP directives;

while runtime benchmarks from Sphinx and Perfsuite are

helpful to collect system profile such as communication la-

tency, overhead and machine information. This approach

has the advantage of being fast, more accurate than the gen-

eral analytical model and it does not require program execu-

tion. Moreover, we also allow user interaction to define un-

known variables such as the number of MPI processes and

OpenMP threads. This feature enables greater flexibility for

users to model application behavior for different problem

sizes, different numbers of threads and processes and dif-

ferent target machines without running the application. Last

but not least, another advantage compared to other method-

ologies is that we can reuse the same application signature
to predict the performance on another machine with a dif-

ferent problem size. The same holds for the machine profile,

when we can reuse to measure the performance of other ap-

plications.

The result of this performance evaluation and model-

ing is used for program analysis and optimization. For in-

stance, in the example of matrix multiplication, our tool

is able to identify that the communication efficiency can

be increased by using another MPI communication routine

such as MPI Sendrecv instead of using the combination

of MPI Send and MPI Recv.
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