
OpenMP for Networks of SMPs

Y. Charlie Huy, Honghui Luz, Alan L. Coxy and Willy Zwaenepoely

y Department of Computer Science
z Department of Electrical and Computer Engineering

Rice University, Houston, Texas 77005
fychu, hhl, alc, willyg@cs.rice.edu

Abstract

In this paper, we present the first system that implements
OpenMP on a network of shared-memory multiprocessors.
This system enables the programmer to rely on a single,
standard, shared-memory API for parallelization within a
multiprocessor and between multiprocessors. It is imple-
mented via a translator that converts OpenMP directives to
appropriate calls to a modified version of the TreadMarks
software distributed memory system (SDSM). In contrast to
previous SDSM systems for SMPs, the modified TreadMarks
uses POSIX threads for parallelism within an SMP node.
This approach greatly simplifies the changes required to the
SDSM in order to exploit the intra-node hardware shared
memory.

We present performance results for six applications
(SPLASH-2 Barnes-Hut and Water, NAS 3D-FFT, SOR, TSP
and MGS) running on an SP2 with four four-processor SMP
nodes. A comparison between the threaded implementation
and the original implementation of TreadMarks shows that
using the hardware shared memory within an SMP node
significantly reduces the amount of data and the number
of messages transmitted between nodes, and consequently
achieves speedups up to 30% better than the original ver-
sions. We also compare SDSM against message passing.
Overall, the speedups of multithreaded TreadMarks pro-
grams are within 7–30% of the MPI versions.

1. Introduction

The OpenMP Application Programming Interface (API)
is an emerging standard for parallel programming on
shared-memory multiprocessors. It defines a set of program
directives and a library for run-time support that augment
standard C/C++ [14] and Fortran 77/90 [13]. In contrast
to POSIX threads, another shared-memory API, and MPI,
a message-passing API, OpenMP facilitates an incremental
approach to the parallelization of sequential programs. In

other words, the programmer can add a parallelization di-
rective to one loop or subroutine of the program at a time.
This is a major reason for OpenMP’s growing popularity.

This paper reports on the first system that implements
OpenMP on anetworkof shared-memory multiprocessors.
This system enables the programmer to rely on a single,
standard, shared-memory API for parallelization within a
multiprocessorand between multiprocessors. Previously,
the only standard APIs available on this type of platform
were message-passing standards. In our system, OpenMP’s
program directives are processed by a source-to-source
translator that is constructed from the SUIF Toolkit [1].
In effect, the translator converts each OpenMP directive
into the appropriate calls to a modified version of the
TreadMarks software distributed shared-memory system
(SDSM) [2]. The translated source is a standard C or For-
tran 77 program that is compiled and linked with the modi-
fied TreadMarks system.

In its simplest form, running TreadMarks on a network
of SMPs could be achieved by simply executing a (Unix)
process on each processor of each multiprocessor node, and
have all of these processes communicate through message
passing. This approach requires no changes to TreadMarks,
and we will therefore refer to it as theoriginal version.
This version, however, fails to take advantage of the hard-
ware shared memory on the multiprocessor nodes. In order
to overcome this limitation, we have built a new version
of TreadMarks, in which we use POSIX threads to imple-
ment parallelism within a multiprocessor. As a result, the
OpenMP threads within a multiprocessor share a single ad-
dress space. We will refer to this system as thethread ver-
sion. Our approach is distinct from previous SDSM systems
for networks of SMPs, like Cashmere-2L [12] and HLRC-
SMP [10], which use (Unix) processes to implement par-
allelism within an SMP. Each of the processes has a sep-
arate address space, although the shared memory regions
(and some other data structures) are mapped shared between
the processes. We will refer to such a system as aprocess



version.
The use of a single address space within a multiprocessor

has plusses and minuses. On the positive side, it reduces the
number of changes to TreadMarks to support multithread-
ing on a multiprocessor. For example, the data within an
address space on a multiprocessor is shared by default. Fur-
thermore, a page protection operation by one thread applies
to the other threads within the same multiprocessor; the op-
erating system maintains the coherence of the page map-
pings automatically.

On the negative side, using a single address space within
a multiprocessor makes it more difficult to provide uniform
sharing of memory both between threads on the same node
and threads on different nodes. Under POSIX threads, an
application’s global variables are shared between threads
within a multiprocessor, but under TreadMarks they are
private with respect to threads on a different multiproces-
sor.1 However, since we provide the OpenMP API to the
programmer, these differences are hidden by our OpenMP
translator.

We measure our OpenMP system’s performance on an
IBM SP2 with multiprocessor nodes. The machine has four
nodes, andeachnode has four processors. We use six appli-
cations: SPLASH-2 Barnes-Hut and Water, NAS 3D-FFT,
Red-Black SOR, TSP, and MGS. We compare the results for
our OpenMP system to two alternatives: MPI and OpenMP
with the original TreadMarks. In both of these cases, the
shared memory within a multiprocessor is simply used for
fast message passing.

Our results show that using hardware shared memory
within an SMP node significantly reduces the amount of
data and the number of messages transmitted. Conse-
quently, the speedups improve up to 30% over the original
TreadMarks implementation. In addition, we found that the
multithreaded TreadMarks performs fewer page protection
operations. The reduction in the number of page protection
operations ranges from a low factor of 1.9 to a high factor
of 6.2. Our experiments also show that the multithreaded
TreadMarks programs incur 1.2–5 times fewer page faults
than their single-threaded counterparts.

We also compare SDSM against message passing. Over-
all, the speedups of multithreaded TreadMarks programs
are within 7–30% of the MPI versions.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the OpenMP API. Section 3
presents an overview of the original TreadMarks system
and describes the modifications to support OpenMP and
a network of shared-memory multiprocessors. Section 4
describes the source-to-source translator for OpenMP. Sec-
tion 5 evaluates our system’s overall performance and com-

1This issue is not specific to TreadMarks. The use of a single address
space on a node would give rise to similar non-uniformities in sharing
within and across nodes with other SDSM systems.

pares it to MPI and TreadMarks without support for shared-
memory multiprocessors. Section 6 discusses related work.
Section 7 summarizes our conclusions.

2. The OpenMP API

The OpenMP API [13, 14] defines a set of program di-
rectives that enable the user to annotate a sequential pro-
gram to indicate how it should be executed in parallel. In
C/C++, the directives are implemented as#pragma state-
ments, and in Fortran 77/90 they are implemented as com-
ments. OpenMP is based on a fork-join model of paral-
lel execution. The sequential code sections are executed
by a single thread, called themaster thread. The paral-
lel code sections are executed by all threads, including the
master thread. OpenMP provides three kinds of directives:
parallelism/work sharing, data environment, and synchro-
nization. We only explain the directives relevant to this
paper, and refer interested readers to the OpenMP stan-
dard [13, 14] for the full specification.

The fundamental directive for expressing parallelism is
theparallel directive. It defines aparallel regionof the
program, that is executed by multiple threads. All of the
threads perform the same computation, unless awork shar-
ing directive is specified within the parallel region. Work
sharing directives, such asfor , divide the computation
among the threads. For example, thefor directive specifies
that the iterations of the associated loop should be divided
among the threads so that each iteration is performed by
a single thread. Thefor directive can take aschedule
clause that specifies the details of the assignment of the iter-
ations to threads. Schedules can specify assignments such
as round-robin or block. OpenMP also defines shorthand
forms for specifying a parallel region containing a single
work sharing directive. For example, theparallel for
directive is shorthand for aparallel region that contains
a singlefor directive.

The data environment directives control the sharing of
program variables that are defined outside of a parallel
region.2 They appear at the beginning of a parallel re-
gion, immediately following the parallel directives. The
data environment directives include:shared , private ,
firstprivate , reduction , and threadprivate .
Each directive is followed by a list of variables. Variables
default to shared , which means shared among all the
threads in a parallel region. Aprivate variable has a sep-
arate copy per thread. Its value is undefined when entering
or exiting a parallel region. Afirstprivate variable
has the same attributes as aprivate variable except that
the private copies are initialized to the variable’s value at
the time the parallel region is entered. Thereduction
directive identifies reduction variables. According to the

2The variables defined inside of a parallel region are implicitly private.

2



standard, reduction variables must be scalar, but we ex-
tend the standard to include arrays. Finally, OpenMP pro-
vides thethreadprivate directive for named common
blocks in Fortran 77/90 and global variables in C/C++.
Threadprivate variables are private to each thread, but
they are global in the sense that they are defined for all
parallel regions in the program, unlikeprivate variables
which are defined only for a particular parallel region.

The synchronization directives includebarrier ,
critical , and flush . A barrier directive causes
the thread to wait until all of the other threads in the par-
allel region have reached this point. After thebarrier ,
all threads are guaranteed to see all modifications made be-
fore the barrier. Acritical directive restricts access to
the enclosed code to only one thread at a time. When a
thread enters a critical section, it is guaranteed to see all
modifications made by all the threads that entered the crit-
ical section earlier. Theflush directive specifies a “cross
thread” sequence point in the program at which all threads
are guaranteed to have a consistent view of the variables
named in theflush directive, or of all of the memory if no
variables are specified.

3. TreadMarks

TreadMarks [2] is a user-level SDSM system that runs
on most Unix and Windows NT-based systems. It pro-
vides a global shared address space on top of physically
distributed memories. The parallel threads synchronize via
primitives similar to those used in hardware shared-memory
machines: barriers and locks. In C, the program has to call
theTmk malloc routine to allocate shared variables in the
shared heap. In Fortran, the shared data are placed in a com-
mon block loaded in a standard location.

3.1. Implementation Overview

Memory coherence and synchronization are the key
functions performed by TreadMarks.

3.1.1 Memory Coherence

TreadMarks relies on user-level memory management sup-
port provided by the operating system to detect accesses to
shared memory at the granularity of a page. Alazy invali-
dateversion ofrelease consistency(RC) [7] and a multiple-
writer protocol are employed to reduce the amount of com-
munication involved in implementing the shared memory
abstraction.

RC is a relaxed memory consistency model. In RC,or-
dinaryshared memory accesses are distinguished fromsyn-
chronizationaccesses, with the latter category divided into
acquireandreleaseaccesses. RC requires ordinary shared
memory updates by a threadp to become visible to another

threadq only when a subsequent release byp becomes vis-
ible toq via some chain of synchronization events. In prac-
tice, this model allows a thread to buffer multiple writes
to shared data in its local memory until a synchronization
point is reached.

With the multiple-writer protocol, two or more threads
can simultaneously modify their own copies of a shared
page. Their modifications are merged at the next synchro-
nization operation in accordance with the definition of RC,
thereby reducing the effect of false sharing.

The lazy implementation delays the propagation of con-
sistency information until the time of an acquire. Further-
more, the releaser informs the acquiring thread which pages
have been modified, causing the acquiring thread toinvali-
dateits local copies of these pages. A thread incurs a page
fault on the first access to an invalidated page, and obtains
an up-to-date version of that page from the previous re-
leasers.

3.1.2 Synchronization

Barrier arrivals are modeled as releases, and barrier depar-
tures are modeled as acquires. Barriers have a centralized
manager. At a barrier arrival, each thread sends a release
message to the manager, and waits for a departure message.
The manager broadcasts a barrier departure message to all
threads after all have arrived at the same barrier.

The two primitives for mutex locks are lock release and
lock acquire. Each lock has a statically assigned manager.
The manager records which thread has most recently re-
quested the lock. All lock acquire requests are sent to the
manager, and, if necessary, forwarded by the manager to the
thread that last requested the lock.

3.2. Modifications for OpenMP

To support OpenMP-style environments, recent versions
of TreadMarks includeTmk fork and Tmk join prim-
itives, specifically tailored to the fork-join style of paral-
lelism expected by OpenMP and most other shared memory
compilers [1]. For performance reasons, all threads are cre-
ated at the start of a program’s execution. During sequential
execution, the slave threads are blocked waiting for the next
Tmk fork issued by the master.

3.3. Modifications for Networks of Multiprocessors

The modified version of TreadMarks uses POSIX
threads to implement parallelism within a multiprocessor.
Hence, the OpenMP threads within a multiprocessor share
asingleaddress space. This has many advantages and a few
disadvantages in both the implementation of TreadMarks
and its interface.

3



3.3.1 Implementation Issues

By using POSIX threads, data is shared by default among
the processors within a single machine, and coherence is
maintained automatically by the hardware. Thus, we did
not have to modify TreadMarks to enable the sharing of ap-
plication data or its own internal data structures between
processors within the same machine. We did, however, have
to modify TreadMarks to place some data structures, such
as message buffers, in thread-private memory.

Synchronizing access by the processors within a ma-
chine to the internal data structures was straightforward.
The critical sections within TreadMarks were already
guarded by synchronization because incoming data and
synchronization requests occur asynchronously, interrupt-
ing the application. Thus, with one exception, we simply
changed the existing synchronization to work with POSIX
threads. The exception is that we added a per-page mutex
to allow greater concurrency in the page fault handler.

The synchronization functions provided by TreadMarks
to the program were modified to combine the use of POSIX
threads-based synchronization between processors within a
machine and the existing TreadMarks implementation be-
tween machines. Thus, the program can continue to use a
single API, that of TreadMarks, for synchronization.

Our last change to the implementation was in the mem-
ory coherence mechanism. We added a second mapping
at a different address within each machine’s address space
for the TreadMarks supported shared data heap/common
block, i.e., the memory that is shared between machines.
The first, or original, mapping is used exclusively by the
application; the modified version of TreadMarks never ac-
cesses the shared data through this mapping. Instead, it uses
the second mapping, which permits read and write access at
all times. This mapping is used to update shared-memory
pages so that the application’s mapping can remain invalid
while the update is in progress. This insures that another
thread cannot read or modify the page until the update is
complete.

In fact, the use of two mappings reduces the number of
mprotect , or page protection, operations performed by
TreadMarks, even on a single-processor node. For example,
in the original TreadMarks, a read access to an invalid page
would result in twomprotect operations: one to enable
write access in order toupdate the page and another to make
the page read-only after the update. In the modified version,
only the lattermprotect operation is performed. The sec-
ond mapping eliminates the need for the firstmprotect
operation.

Finally, because of our use of a single address space,
the operating system automatically maintains the coherence
of the page mappings in use by the different processors
within a machine. Furthermore, anmprotect by one
thread within a machine applies to the other threads. In

contrast, systems such as Cashmere-2L [12], that use Unix
processes instead of POSIX threads, must perform the same
mprotect in each process’s address space. The reason is
that mprotect only applies to the calling process’s ad-
dress space, even if theunderlying memory is shared be-
tween address spaces.

3.3.2 Interface Issues

Our use of POSIX threads had one undesirable effect on
the TreadMarks interface. Under POSIX threads, global
variables are shared; whereas, in the original TreadMarks
API, global variables are private. Thus, in our modified
version of TreadMarks, global variables are shared between
threads within a multiprocessor but are private with respect
to threads on a different multiprocessor. Rather than at-
tempting to solve this problem in the run-time system, we
chose to address it in the OpenMP translator where a solu-
tion is straightforward.

4. The OpenMP Translator

The OpenMP to TreadMarks translation process is rel-
atively simple, because TreadMarks already provides a
shared memory API on top of a network of computers. First,
the OpenMP synchronization directives translate directly to
TreadMarks synchronization operations. Second, the com-
piler translates the code sections marked withparallel
directives to fork-join code. Third, it implements the data
environment directives in ways that work with both Tread-
Marks and POSIX threads, hiding the interface issues dis-
cussed in Section 3.3.2 from the programmer.

4.1. Implementing Parallel Directives

To translate a sequential program annotated with paral-
lel directives into a fork-join parallel program, the transla-
tor encapsulates each parallel region into a separate subrou-
tine. This subroutine also includes code, generated by the
compiler, that allows each thread to determine, based on its
thread identifier, which portions of a parallel region it needs
to execute. At the beginning of a parallel region, the master
thread passes a pointer to this subroutine to the slave threads
at the time of the fork. Pointers toshared variables and
initial values offirstprivate variables are copied into
a structure and passed to the slaves at the fork.

4.2. Implementing Data Environment Directives

Variables accessed within a parallel region de-
fault to shared . If a global variable is annotated
threadprivate , it cannot be annotated again within
a parallel region. Thus, the translator allocates all global

4



variables on the shared heap unless they are annotated
threadprivate .

For eachthreadprivate global variable, the com-
piler allocates an array ofnt copies of the global variable,
wherent is the number of threads per node. Each reference
to the global variable is replaced by a reference to the array,
specifically, a reference to the element corresponding to the
thread’s (local) id.

In TreadMarks, a thread’s stack is kept in private mem-
ory. Thus, variables declared within a procedure that are ac-
cessed within a parallel region must be moved to the shared
heap. In addition, variables declared within a procedure and
passed by reference to another procedure are moved to the
shared heap because the translator cannot prove that such
a variable will not be used in a parallel region. Storage for
these variables is allocated at the beginning of the procedure
and freed at the end.

Implementingprivate variables is straightforward:
whenever a variable is annotated private within a parallel re-
gion, it is redeclared in the procedure generated by the com-
piler that encapsulates the parallel region. Because each
thread calls this procedure after the fork, these variables will
be allocated on the private stack of each thread.

5. Performance

5.1. Platform

Our experimental platform is an IBM SP2 consisting of
four SMP nodes. Each node contains four IBM PowerPC
604 processors and 1 Gbyte of memory. All of the nodes
are running AIX 4.2.

5.2. Applications and Their OpenMP Implementa-
tions

We use six applications in this study: SPLASH-2
Barnes-Hut, NAS 3D-FFT, SPLASH-2 Water, Red-Black
SOR, TSP and MGS. Table 1 summarizes the problem sizes,
the sequential running times, and the parallelization direc-
tives used in the OpenMP implementations of the applica-
tions. The sequential running times are used as the basis for
the speedups reported in the next section.

Barnes Barnes-Hut from SPLASH-2 [15] is anN -body
simulation code using the hierarchical Barnes-Hut
method. A shared tree structure is used to represent
the recursively decomposed subdomains (cells) of the
three-dimensional physical domain containing all of
the particles. The other shared data structure is an ar-
ray of particles corresponding to the leaves of the tree.
Each iteration is divided into two steps.

1. Tree building: A single thread reads the particles
and rebuilds the tree.

Appl. Size, Iterations Sequential OpenMP Parallel
Time (sec.) Directives

Barnes 65536 158.0 parallel region
3D-FFT 128�128�64, 10 65.2 parallel for
Water 4096, 4 760.3 parallel for/region
SOR 8K x 4K, 20 149.0 parallel for
TSP 19 cities, -r14 248.1 parallel region
MGS 2K x 2K 563.3 parallel for

Table 1. Application, problem size, sequen-
tial execution time, and parallelization direc-
tive(s) in the OpenMP programs.

2. Force evaluation: All threads participate. First,
they divide the particles by traversing the tree
in the Morton ordering (a linear ordering of the
points in higher dimensions) of the cells. Specif-
ically, theith thread locates theith segment. The
size of a segment is weighted according to the
workload recorded from the previous iteration.
Then, each of the threads performs the force eval-
uation for its particles. This involves a partial
traversal of the tree. Overall, each thread reads
a large portion of the tree.

In OpenMP, the force evaluation is parallelized using
theparallel region directive.

3D-FFT 3D-FFT from the NAS benchmark suite [3] solves
a partial differential equation using three-dimensional
forward and inverse FFT. The program has three
shared arrays of data elements and an array of check-
sums. The computation is decomposed so that every
iteration includes local computation and a global trans-
pose, with both expressed as data parallel operations.

In OpenMP, the data parallelism is expressed using the
parallel for directive.

Water Water from the SPLASH-2 [15] benchmark suite is
a molecular dynamics simulation. The main data struc-
ture in Water is a one-dimensional array of molecules.
During each time step, both intra- and inter-molecular
potentials are computed. The parallel algorithm stat-
ically divides the array of molecules into equal sized
contiguous blocks, assigningeach block to a thread.
The bulk of the interprocessor communication results
from synchronization that takes place during the inter-
molecular force computation.

In OpenMP, the evaluation of intra-molecule potentials
requires no interactions between molecules and is par-
allelized using theparallel for directive. The
evaluation of inter-molecule potentials is parallelized
using theparallel region directive. Each thread is

5



assigned a subset of the molecules. It accumulates the
results of the force computation into private memory
during the computation, and only synchronizes with
the other threads afterwards to perform a reduction.

SOR Red-Black Successive Over-Relaxation is a method
for solving partial differential equations by iterating
over a two-dimensional array. In every iteration, each
of the array elements is updated to the average of the
element’s four nearest neighbors.

These data parallel operations are expressed in
OpenMP using theparallel for directive.

TSP TSP solves the traveling salesman problem using a
branch-and-bound algorithm. The major data struc-
tures are a pool of partially evaluated tours, a priority
queue containing pointers to tours in the pool, a stack
of pointers to unused tour elements in the pool, and the
current shortest path. A thread repeatedly dequeues the
most promising path from the priority queue, either ex-
tends it by one city and enqueues the new path, or takes
the dequeued path and tries all permutations of the re-
maining cities.

In OpenMP, the threads are created using the
parallel region directive. Accesses to the priority
queue are synchronized using thecritical direc-
tive.

MGS Modified Gramm-Schmidt (MGS) computes an or-
thonormal basis for a set of N-dimensional vectors. At
the ith iteration, the algorithm first normalizes theith
vector sequentially, then makes all vectorsj > i or-
thogonal to vectori in parallel. Vectors are assigned
to threads in a cyclic manner to balance the load. All
threads synchronize at the end of each iteration.

In OpenMP, the normalization of each vector is per-
formed by the master thread, and the parallel updates
are expressed using theparallel for directive
with a static schedule. The static schedule uses a chunk
size of one.

5.3. Results

We first compare the performance of the OpenMP pro-
grams translated into TreadMarks programs modified to
use POSIX threads within an SMP node (OpenMP/thread)
against the performance of those same programs trans-
lated into original TreadMarks programs using processes
(OpenMP/original). In the latter, processes on the same
node communicate via message passing instead of using the
hardware shared memory.

We then compare the OpenMP/thread and
OpenMP/original versions of the applications against

Barnes 3D-FFT Water SOR TSP MGS
0

2

4

6

8

10

12

14

16

OpenMP/orig OpenMP/thread MPI

Figure 1. Speedup comparison between the
OpenMP/original, OpenMP/thread, and MPI
versions of the applications on an SP2 with
four four-processor SMP nodes.

MPI versions of the same applications. We use the MPICH
(http://www.mcs.anl.gov/mpi/mpich) implementation of
MPI, because it takes advantage of the hardware shared
memory when sending messages within the same node. We
count both the total number of messages and the number of
messages that actually cross node boundaries.

Figure 1 shows the speedups for the OpenMP/original
programs with four processes per node, OpenMP/thread
programs with four threads per node, and MPI programs
with four processes per node on the four-node SP2. Table 2
compares the amount of data and the number of messages
communicated for the different cases.

5.3.1 OpenMP/original versus OpenMP/thread

In terms of relative speedup, the applications can be cate-
gorized into three groups. The first group consists of TSP
and MGS, which have a low to moderate computation to
communication ratio. Thus, the five-fold reduction in the
amount of data transmitted results in significant speedups.
The second group consists of Barnes, Water, and SOR,
which have very high computation to communication ratios.
In this case, a 3.3 to 9 fold reduction in data leads to little
improvement in running time. FFT forms the third group,
where we see a slight slowdown for the OpenMP/thread
code. The slowdown happens in the transpose stage where
all processors request data from one processor at a time,
invoking large numbers of request handlers on that proces-
sor’s node. We suspect that AIX 4.2 incurs a certain degree
of serialization in handling these requests which contributed

6



Appl. OpenMP/ OpenMP/ MPI
original thread Total Off-node

Data (Mbytes)
Barnes 543.0 166.4 259.7 207.8
3D-FFT 159.4 126.5 157.3 125.8
Water 192.3 42.7 34.6 26.0
SOR 0.64 0.07 9.8 2.0
TSP 2.8 0.55 0.03 0.026
MGS 508.6 102.2 251.6 201.3

Messages
Barnes 841565 100259 720 576
3D-FFT 40975 31694 9750 7800
Water 78402 24667 1776 1344
SOR 3637 735 1200 240
TSP 9227 4853 1256 1070
MGS 184583 37041 30720 24576

Table 2. Amount of data and number of mes-
sages transmitted in the OpenMP/original,
OpenMP/thread, and MPI versions of the ap-
plications on an SP2 with four four-processor
SMP nodes.

to the slowdown of the thread version. The reduction in data
and number of messages of the thread version of 3D-FFT is
too small to offset the slowdown from the above serializa-
tion.

Overall, compared to OpenMP/original, the
OpenMP/thread programs send less data, from a low
of 26% less data for 3D-FFT to a high of 9.1 times less
data for SOR, and fewer messages, from a low of 29%
fewer messages for 3D-FFT to a high of 8.4 times fewer
messages for Barnes.

Table 3 compares the number of times that the
mprotect operation is performed in the process and the
thread versions of the translated OpenMP programs on four
SMP nodes. First, the OpenMP/thread programs with one
thread per node perform 25–56% fewermprotect op-
erations than the corresponding OpenMP/original versions
with one process per node, indicating that the alias mapping
(See Section 3.3.1) reduces the number ofmprotect op-
erations independent of any multithreading effects. Second,
the OpenMP/thread programs with four threads per node
perform 1.9–6.2 times fewermprotect operations than
the OpenMP/original codes with four processes per node,
indicating that multithreading further reduces the number
of mprotect operations.

Table 3 also shows that multithreading can reduce
the number of page faults: while the number of page
faults incurred by OpenMP/thread with one thread per
node and OpenMP/original with one process per node
are the same, the OpenMP/thread programs with four
threads per node incur 1.2–5 times fewer page faults than
their OpenMP/original counterparts with four processes per

Application Orig/1 Thrd/1 Orig/4 Thrd/4
mprotect Count

Barnes 67315 43158 201797 84843
3D-FFT 65650 50200 97690 50588
Water 32668 23073 119970 34049
SOR 1209 969 6037 969
TSP 6947 5529 11628 5438
MGS 30730 21511 86154 21118

Page Fault Count
Barnes 25882 25882 97148 68205
3D-FFT 30860 30860 39020 31155
Water 13533 13523 46130 30329
SOR 480 480 2400 480
TSP 2895 2889 4794 4047
MGS 14336 14336 40346 32404

diff Count
Barnes 14984 14984 44028 33253
3D-FFT 15404 15404 19370 15501
Water 5090 5090 13017 7890
SOR 240 240 1200 240
TSP 1394 1394 1599 1357
MGS 3072 3072 3827 3724

Table 3. Number of mprotect operations,
page faults, and diffs in the OpenMP/original
and OpenMP/thread versions of the ap-
plications. Orig/1 and Orig/4 denote
OpenMP/original with 1 and 4 processes
on a node, and Thrd/1 and Thrd/4 denote
OpenMP/thread with 1 and 4 threads on a
node, respectively.

node. This reduction comes from two sources. First, for
multiple-reader pages, only one of the threads on a node
needs to fault in order to update the page and make it ac-
cessible by all of the threads, whereas each of the processes
on a node has to fault once to update its own copy. Sec-
ond, using multithreading eliminates the faults required by
a process accessing a page that was invalidated by other pro-
cesses on the same node.

Finally, Table 3 shows that for 16-way parallelism on
four nodes, OpenMP/thread creates 1.03–5 times fewer
diffs than OpenMP/original.

5.3.2 OpenMP versus MPI

A previous study comparing SDSM with message pass-
ing [8] has shown that, in general, SDSM programs send
more messages and data than message passing versions due
to the separation of synchronization and data transfer, the
need to handle access misses caused by the use of an in-
validate protocol, false sharing, and diff accumulation for
migratory data. In our experiments, the OpenMP/original
programs sent between 3 and 1169 times more messages
than their MPI counterparts. The difference was the least

7



for SOR and the most for Barnes. The reason that the
MPI version of Barnes sends so few messages is because
it replicates the particles and duplicates rebuilding the tree
by every process. As a consequence, within an iteration,
the only communication by each process is a single broad-
cast of all the particles modified by that process. Except for
SOR, the amount of data sent by TreadMarks ranges from
an equal amount for 3D-FFT to 93 times more data for TSP.
For SOR, because a large percentage of the elements re-
main unchanged, and because TreadMarks only communi-
cates diffs, the TreadMarks program sends 15.5 times less
data than the MPI code, which always communicates whole
boundary rows. As has been demonstrated by Dwarkadas et
al. [5], many of the causes of the gap in data and message
count between SDSM and MPI can be overcome with ad-
ditional compiler support, which is currently not present in
our translator.

Our results with the OpenMP/thread programs show that
on SMP nodes using multithreading in SDSM can signif-
icantly reduce the above gaps in the number of messages
and the amount data transmitted between SDSM and MPI
programs. In fact, the OpenMP/thread programs send from
1.63 times fewer messages, for SOR, to only 139 times
more messages, for Barnes, than the MPI codes. Similarly,
OpenMP/thread sends 1.2–140 times less data than MPI for
four out of the six applications, and only 1.2–18 times more
data than MPI for the other two.

Table 2 further shows that, for all applications except
SOR, the MPI versions send about12

15
of the total data and

messages across node boundaries. This corresponds to the
ratio of off-node processors versus all processors as viewed
by each processor. For SOR, the MPI program sends only
20% of the total data and messages across node boundaries
because communication only occurs between neighboring
processes and the neighboring processes are in most cases
within the same node.

6. Related Work

Previously, we developed support for OpenMP pro-
gramming on networks of single-processor workstations
through a compiler that targets the TreadMarks software
distributed shared-memory system [9]. Our experiments
showed that the OpenMP versions of the five selected ap-
plications achieve performance within 17% of their hand-
written TreadMarks counterparts, suggesting that the com-
piler and the fork-join model incur very little overhead.

We are aware of four implementations of SDSM on net-
works of SMPs [6, 11, 12, 10].

The SMP-Shasta system [11] implements eager release
consistency (ERC) and a single-writer protocol with vari-
able granularity by instrumenting the executable to insert
access control operations (in-line checks) before shared

memory references. Novel techniques are developed to
minimize the overhead of in-line checks.

In their paper, Erlichson et al. [6] present a single-writer
sequential consistency implementation, and identify net-
work bandwidth as the bottleneck. Earlier work (e.g. [4])
has demonstrated that the performance of such a system can
be poor when false sharing occurs. Finally, our implementa-
tion is a relatively portable user-level implementation, while
theirs is a kernel implementation specific to the Power Chal-
lenge Irix kernel.

Cashmere-2L [12] uses Unix processes instead of
POSIX threads. Therefore, it must perform the same
mprotect in each process’s address space. The reason
is that mprotect only applies to the calling process’s
address space, even if theunderlying memory is shared
between address spaces. The protocol implemented by
Cashmere-2L also takes advantage of the Memory Channel
network interface unique to the DEC Alpha machines.

Samanta et al. [10] present an implementation of a lazy,
home-based, multiple-writer protocol across SMP nodes.
Similar to Cashmere-2L, their implementation uses Unix
processes instead of POSIX threads in exploiting the hard-
ware coherence and synchronization within an SMP.

7. Conclusions

In this paper, we present the first system that implements
OpenMP on anetworkof shared-memory multiprocessors.
This system enables the programmer to rely on a single,
standard, shared-memory API for parallelization within a
multiprocessorand between multiprocessors. The system
is implemented via a translator that converts OpenMP di-
rectives to appropriate calls to a modified version of Tread-
Marks that exploits the hardware shared memory within an
SMP node using POSIX threads.

Using the hardware shared memory within an SMP node
can significantly reduce data and messages transmitted by
a SDSM. In our experiments, the translated multithreaded
TreadMarks codes send from a low of 26% less data and
29% fewer messages to a high of 9.1 times less data and 8.4
times fewer messages for our collection of applications than
the translated single-threaded TreadMarks counterparts. As
a consequence, they achieve up to 30% better speedups than
the latter for all applications except 3D-FFT, for which the
thread version is 8% slower than the process version. We
suspect the slowdown in 3D-FFT is due to an artifact of AIX
and not indicative of a more general problem. Overall, the
speedups of multithreaded TreadMarks codes on four four-
way SMP SP2 nodes are within 7–30% of the MPI versions.

8



References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W.
Tseng. The SUIF compiler for scalable parallel machines.
In Proceedings of the 7th SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Feb. 1995.

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
memory computing on networks of workstations.IEEE
Computer, 29(2):18–28, Feb. 1996.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. Technical Report TR RNR-91-002,
NASA Ames, Aug. 1991.

[4] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for re-
ducing consistency-related information in distributed shared
memory systems.ACM Transactions on Computer Systems,
13(3):205–243, Aug. 1995.

[5] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An integrated
compile-time/run-time software distributed shared memory
system. InProceedings of the 7th Symposium on Architec-
tural Support for Programming Languages and Operating
Systems, pages 186–197, Oct. 1996.

[6] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy.
SoftFLASH: Analyzing the performance of clustered dis-
tributed virtual shared memory. InProceedings of the 7th
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 1996.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15–26, May 1990.

[8] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Quantifying the performance differences between PVM and
TreadMarks.Journal of Parallel and Distributed Comput-
ing, 43(2):56–78, June 1997.

[9] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on net-
works of workstations. InProceedings of Supercomputing
’98, Nov. 1998.

[10] R. Samanta, A. Bilas, L. Iftode, and J. Singh. Home-based
SVM protocols for SMP clusters: design and performance.
In Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, Feb. 1998.

[11] D. Scales, K. Gharachorloo, and A. Aggarwal. Fine-
grain software distributed shared mmeory on SMP clusters.
In Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, pages 125–136,
Feb. 1998.

[12] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
Software coherent shared memory on a clustered remote
write network. InProceedings of the 16th ACM Sympo-
sium on Operating Systems Principles, pages 170–183, Oct.
1997.

[13] The OpenMP Forum. OpenMP Fortran Application Pro-
gram Interface, Version 1.0. http://www.openmp.org, Oct.
1997.

[14] The OpenMP Forum. OpenMP C and C++ Application Pro-
gram Interface, Version 1.0. http://www.openmp.org, Oct.
1998.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and method-
ological considerations. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, June 1995.

9


