
Parallel Lattice Boltzmann Simulation for Fluid Flow on Multicore Platform

Weibin Guo1, Cheqing Jin2, Jianhua Li1, Gaoqi He1
1 Department of Computer Science and Engineering
East China University of Science and Technology

2 Software Engineering Institute
East China Normal University

 Shanghai, China
e-mail: gweibin@ecust.edu.cn

Abstract—During the past fifteen years Lattice Boltzmann
method has attracted much attention in the area of CFD,
whereas it has also been recognized that it is both
computationally demanding and memory intensive. In this
paper we give a brief introduction to the equations for LBM
and the basic features, describe the programming model in
multicore computing environment, and outline the
parallelization strategies. Moreover, we explore corresponding
implementation on multicore platform. In order to
demonstrate the efficiency, several benchmark steady fluid
flow experiments have been performed. The results show that
our approach achieves good performance.

Keywords- Lattice Boltzmann method; Fluid flow; Parallel;
Multicore; OpenMP

I. INTRODUCTION
The Lattice Boltzmann method (LBM) has evolved to a

promising alternative to the well-established mesoscopic
approaches based on finite elements/ volumes for
computational fluid dynamics (CFD) simulations. The basic
idea behind is to develop a simplified kinetic model that
incorporates the essential physics and reproduces correct
macroscopic averaged properties. As a result it possesses
some unique advantages, e.g., simplicity - simplicity in the
mesh used (Cartesian mesh) and in the operations performed
(collision, advection and boundary update), extensibility –
can be easily extended to simulate a wide range of flow
problems, flexibility – deal flexible with complex boundary
conditions. These properties make LBM can be viewed as a
new paradigm to solve numerically, and an efficient method
to model complex fluid systems [1,2,3].

One of the challenges of LBM is the requirement of huge
computer resources. Employing LBM you model flows on
computer, it often involve many complex mathematics and
physics problems such as anomalistic structures, non-linear
dynamics systems, active boundary, and strict restrict
conditions, etc. These produce numerical simulations with
high demands for computational power in terms of memory
and speed [4,5]. There is a strong need to develop techniques
for improving the LBM performance.

The appearance of multicore processors opens the doors
of mainstream computing for parallel computing. Moore’s
law due to ever increasing clock speeds has been subsumed

by increasing members of cores per microchip. Multicore
processors deliver significantly greater computing power
through concurrency compared to conventional single core
processor chips. Future high performance computing (HPC)
machines will almost certainly contain multicore chips,
likely tied together into shared memory nodes as the machine
building block [6,7]. It provides a natural programming
paradigm, and this shift leads the integration of parallel
programming standards for high-end shard-memory machine
architectures into desktop programming environments.

It is therefore clear that multicore-based HPC
environment is the possibility to fulfill the large
computational requirements for simulating complex flows,
and provides a reliable solver for LBM simulations.
Williams et al. studied performance optimization of the LBM
on multicore platforms [6]. Liu et al. presented a design of a
unified parallel implementation of the LBM on several
multicore platforms including a cluster of Cell-based
PlayStation3 consoles and Compute Unified Device
Architecture based implementations on GPUs [7]. Stuermer
implemented the LBM on Cell [8]. Lacoursière described a
hybrid block parallel method to approximately solve
complementarity problems in real-time on multicore CPUs
[9]. Donath comparison of different parallel lattice
Boltzmann implementations on multi-core multi-socket
systems [10].

In this paper, we present a parallel lattice-Boltzmann
implementation for flow simulations. The code was designed
to run on a multicore platform, which used MS Visual studio
C++ 2005 and OpenMP as the develop tool.

In the next section, we introduce the underlying LBM
scheme, and describe the parallelization of the LBM
algorithm. Section 3 covers the OpenMP programming
model as well as the implementation of the standard LBM
algorithm. Several benchmark steady fluid flow problems are
presented in Section 4. Finally, some conclusions are drawn
in Section 5.

II. LATTICE BOLTZMANN METHOD AND ITS’
PARALLELIZATION

A. Basics of the Lattice Boltzmann Method
For two-dimensional incompressible flow, the 9-velocity

BGK model (id2q9) is widely used. For this model, the

2009 WASE International Conference on Information Engineering

978-0-7695-3679-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIE.2009.144

107

directions of the discrete velocity used in the model are
given by 00 =e , ()]2/)1sin[(],2/)1cos[(ππ −−= iiie for

i=1:4,)(]42)5sin[(],4/2/)5cos[(2 ππππ +−+−= iiie
for i=5:8. The evolution equation of the distribution
function),(g ti x reads [11]

)],(),([1),(),()0(tgtgtgtttcg iiiii xxx ex −−=Δ+Δ+
τ

, (1)

where x is a point in the discretized physical space and
txc ΔΔ= is the particle speed, xΔ and tΔ are the lattice

spacing and the time step, respectively. τ is the
dimensionless relaxation time.),()0(tgi x is the equilibrium
distribution function defined by

uueue],5.1)(5.4)(3[λ 2

2

2

2
)0(

ccc
pg ii

iii −⋅+⋅+= ω (2)

with the weighting factors iω are 4/9 for the rest particles (i
= 0), 1/9 for i = 1, 2, 3, 4, and 1/36 for i = 5, 6, 7, 8.

2
0 4 cσλ −= , 2ci λλ = for i=1:4, and 2ci γλ = for

i=5:8. σ, λ, and γ are parameters satisfying
212, =+=+ γλσγλ .

The fluid kinematic viscosity υ is determined by

t
x

Δ
Δ−=

2)(
6

)12(τυ . The macroscopic flow velocity and

pressure are given by

∑= =
8

1i ii gceu ,)]([
4 0

8

1

2
usgcp

i
i +∑=

=σ
. (3)

B. Parallelization of the LBM Algorithm
Ease of implementation, parallelism, and computational

efficiency are the major features of LBM. But, for realistic
applications, the LBM is computationally very demanding,
since it needs fine spatial resolution and small time steps. For
example, three dimensional fluid flow simulations are known
to be computationally extensive. In LBM, the evolution rule
is the same for all cells and updating of the cells occurs
simultaneously in discrete time steps. The core algorithm can
be reduced to a few manageable subroutines, facilitating high
performance computing. Thus, parallelization will be a
suitable solver for flow LBM simulations [1,3].

The most natural approach to parallelize the LBM is by
domain decomposition, where the computational domain is
partitioned into smaller subdomains of desired size according
to the specification of the available processors. Each
processor performs computations on a certain subdomain and
exchanges information with other nodes.

In a standard LBM code with fused stream/collide step, a
time step can be performed in a single sweep over the
computational domain [3]. The LBM code break down into
two separate pieces operating on a set of distribution
functions, a non-linear collision operator and a linear
propagation operator. The computer-intensive collision step,

τ)),(),(()0(tgtg ii xx − , relaxation towards local equilibrium,
and involves data local only to that spatial lattice sites they
do not need any communication, the scheme is the inherent
spatial locality, and allows concurrent. For the propagation
step,),(),(tgtttcg iii x ex =Δ+Δ+ , which mainly deals
with memory access, interaction between processors is
necessary, i.e., at this step particle on a border node can
move to a lattice point in the domain of a neighboring
processor or vice versa. By using a ghost cell layer in the
surrounding of the subdomain, the propagation step can be
isolated from the data exchange step, and can perform in
parallel. After the propagation step, the values in the ghost
layer are sent to the neighboring processor.

Hence, the computation is independently carried out
point-by-point in the LBM. Due to the local character of the
LBM, the parallelization by simple domain decomposition is
straightforward and brings good results concerning the
parallel speed-up. Parallelization can be based on one- or
two-dimensional domain partitioning in equal size, namely
slice, and box decompositions [12].

III. LATTICE BOLTZMANN SIMULATION ON MULTICORE
PLATFORM

A. Programming model in multicore computing
environment
High end distributed and distributed shared memory

platforms with many cores will be deployed in the coming
years to solve flow problems. Their individual nodes will be
heterogeneous multithreading, multicore systems, capable of
executing many threads of control. The multicore system
presents applications developers with many challenges. For
example, the code will need to expose a sufficient amount
parallelism, additional resource sharing (and contention)
between threads that run on the same core [13].

Fortunately, the integration of the OpenMP parallel
programming model into Microsoft Visual C++ 2005
provides possible way for multicore application that bring
parallel computing to the desktop. OpenMP is essentially a
comparatively recent standardization SMP development and
practice. By using OpenMP, it is relatively easy to create
parallel applications in C, C++, and FORTRAN [14,15,16].
As a shared-memory programming paradigm, OpenMP is
suitable for parallelizing applications on simultaneous
multithreaded (SMT) and multicore processors. OpenMP
helps developers to create multithreaded applications more
easily while retaining the look and feel of serial
programming. It consists of a set of compiler directives and
library routines. The compiler generates a multi-threaded
code based on the specified directives. It allows multilevel
loop nest parallelism, enhances support for nested
parallelism and introduces tasks, which are conceptually
placed into a pool of tasks for subsequent execution by an
arbitrary thread.

B. Implementation of LBM
From the perspective of the application programmer, a

multicore processor is an SMP on a chip and OpenMP
programs just run nicely. Of course there is a lot more

108

u=0
v=0

u=0, v=0

u=1, v=0

u=0
v=0

sharing of resources, which may heavily impact
performance. Sharing of caches can be a major advantage
[17].

For LBM code, there is no temporal coherence or space
coherence data. We can take advantage of the tight coupling
of multi-core processors to derive work estimates for tasks
with very low overhead. Shared-memory parallel systems are
not as restrictive in terms of communication costs such that
using a higher number of partitions can be considered.
Hence, operating on shared-memory reduces the complexity
of cores and on-chip communication, allowing more cores
per transistors. In fact, the implementation of the LBM code
is parallelized using OpenMP, using loop scheduling and
chunk decomposition scheme to partite the whole lattice onto
a 1-dimensional or 2-dimensional processor grid.

The program begins with a single master thread of
execution. The master thread spawns teams of threads in
response to OpenMP directives, which perform work in
parallel. That is, each thread read the values of the current
time step from the shared-memory, execute the relaxation
and write the results back to a global array, as this can be
done independently for all cells. So, OpenMP directives are
inserted at key locations in the source code. The compiler
interprets the directives and creates the necessary code to
parallelize the indicated regions. Global error estimate was
computed in each iteration step and used as a stopping
criterion for these runs.

IV. EXPERIMENTS
As test cases we consider two benchmark fluid flow

problems: (i) incompressible flow over a backward-facing
step, and (ii) lib driven cavity flow. We tested these flows on
Quad-Core computers Dell PowerEdge 2950 based on Intel
Xeon CPU E5405 2.00 GHz with 1.99 GB main memory,
8.0 GB memory module support. On the software side we
used the OpenMP, and all the benchmarks were also
compiled by Microsoft Visual Studio .Net 2005.

A. Backward-facing step flow
The problem domain and boundary conditions of the

incompressible backward-facing step flow considered in this
study are summarized in Figure 1. The problem is
geometrically defined by two infinite parallel plates between
which a fluid flows with specified boundary conditions at the
inlet and outlet of the channel, with a backward-facing step
at the channel entrance.

Figure 1. Computational domain configuration.

A characteristic of this flow is that there is one eddy near
the floor and the ceiling, respectively [18]. The Reynolds
number is defined based on the height of the channel h and
the average entrance velocity. The extent of the computation
domain in the x direction is 15h. The lattice size was 600×40.
Here, using the slice decomposition, the overall
computational load was partitioned and assigned uniformly
among 1, 2, and 4 cores, respectively. The streamlines for
Re=800 are shown in Figure 2. The location of the
recirculation regions near the floor and of the region near the
ceiling is (3.25, 0.325) and (7.325, 0.850). The
corresponding sizes of recirculation bubble are 5.775 and
4.712. The data are in agreement with experiments [19]. The
experiment indicates that the running time reduces as the
number of cores increase and the efficiency increases with
the problem size.

Figure 2. Contours of streamfunction for Re=800.

B. Driven Cavity Flow
As a benchmark, the configuration of lid driven cavity

flow shown in Figure 3 considered here consists of a two-
dimensional square cavity whose top plate moves from left
to right with constant velocity, while the other three
boundaries are fixed.

The simulation was carried out on a 256×256 lattice. In
this example, using the box decomposition, the overall
computational load was equipartitioned and assigned
uniformly among 1, 2, and 4 cores, resulting in uniform
balance of computational load. Figure 4 shows the contours
of streamfunction at Re=3200.

Figure 3. Configuration. Figure 4. Contours of flow

 Streamfunction at Re=3200

The Reynolds number Re used in the problems is
Re=LU/υ, where L is the height of the cavity, U is the
velocity of the top plate. The result shows clearly the flow
pattern, i.e. there are one center primary vortex and three
first-class vortices, a pair of secondary ones of much smaller

u=24(y-0.5)(1-y)
v=0

1

0

0.5

u=v=0

u=∂u/∂x=0
v=0

u=v=0

u=v=0

100 200 300 400 500 600

10

20

30

40

109

strength develop in the lower corners of the cavity and a
tertiary vortex appears in the lower right corner. The
locations of the vortex, (0.518, 0.535) for primary vortex,
(0.059, 0.910) for top left vortex, (0.081, 0.131) for lower
left vortex and (0.831, 0.087) for lower right vortex, agree
well with those of previous work [19].

V. CONCLUSIONS
Physically based simulation is an important component

of many applications in current research areas of CFD. LBM
is a remarkably effective computational tool for tackling
complex fluid problems which can be extremely difficult via
conventional methods. Multicore processors will dominate
scientific computing in the near future. In this work we have
presented techniques for LBM simulation for fluid flows on
multi-core architectures. We applied domain partitioning to
perform the computations in parallel, and introduced the
implementation strategy on Intel quad-core machines using
MS Visual studio C++ 2005 and OpenMP.

Results show that this approach can offer significant
performance benefits on real scientific applications, and the
speed-up also increases with the problem size. We therefore
believe that multicore-based HPC systems will be an
important tool in modeling complex CFD problems in the
future. Next work will continue exploring parallelization for
3-dimensional flows on multicore systems.

ACKNOWLEDGMENT
This work was supported by Hi-Tech Research and

Development Program of China (Grant No.
2006AA10Z315), MOE-Intel Model Curriculum Program,
and by the National Natural Science Foundation of China
(Grant No. 60703026, Grant No. 60803020).

REFERENCES
[1] S. Succi, The lattice Boltzmann equation for fluid dynamics and

beyond, Oxford: Clarendon Press, 2001, pp.3–25.
[2] T. Zeiser, Flow simulation with lattice Boltzmann methods: Basics

and recent enhancements, Karlsruhe: Bundesanstalt für Wasserbau,
2007, pp.15–23.

[3] C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser, “Parallel
Lattice Boltzmann Method for CFD Applications,” in Numerical
Solution of Partial Differential Equations on Parallel Computers,
LNCSE, vol. 51, A.M. Bruaset and A. Tveito, eds. 2006, pp. 439–
465.

[4] K. Mattila, J. Hyvaluoma, and J. Timoneh, “Comparison of
implementations of the lattice-Boltzmann method,” Computers and
Mathematics with Applications, vol. 55, 2008, pp. 1514–1524.

[5] K. Stratford and I. Pagonabarraga, “Parallel simulation of particle
suspensions with the lattice Boltzmann method,” Computers and
Mathematics with Applications, vol. 55, 2008, pp. 1585–1593.

[6] S. Williams, J. Carter and L. Oliker, J. Shalf, and K. Yelick. “Lattice
Boltzmann Simulation Optimization on Leading Multicore
Platforms,” Proc. IEEE Int. Symp. Parallel & Distributed Processing
(IPDPS 2008), IEEE Press, Apr. 2008, pp. 1–14.

[7] L. Peng, K. Nomura, T. Oyakawa, R. K. Kalia, A. Nkano, and P.
Vashishta. “Parallel Lattice Boltzmann Flow Simulation on Emerging
Multi-core Platforms,” Euro-Par 2008, LNCS, vol. 5168, 2008, pp.
763–777.

[8] M. Stuermer, “Fluid simulation using the Lattice Boltzmann Method
on the Cell Processor”, Vortrag: inladung, Zentralinstitut fur
Angewandte Mathematik des Forschungszentrum Juelich, 2007.

[9] C. Lacoursière, “A Parallel Block Iterative Method for Interactive
Contacting Rigid Multibody Simulations on Multicore PCs,” PARA
2006, LNCS, vol. 4699, 2007, pp. 956–965.

[10] S. Donath, K. Iglberger, G. Wellefin, T. Zeiser, A. Nitsure, and U.
Rüde, “Performance comparison of different parallel lattice
Boltzmann implementations on multi-core multi-socket systems,” Int.
J. Comp. Sci. Eng., vol. 4:1, 2008, pp. 3–11.

[11] Z. L. Guo, B. C. Shi, and N. C. Wang, “Lattice BGK model for
incompressible Navier-Stokes equation,” J. Comput. Phys., vol. 165,
2000, pp. 288–306.

[12] D. Kandhai, A. Koponen, and A. G. Hoekstra et al., “Lattice-
Boltzmann hydrodynamics on parallel systems,” Comput. Phys.
Commun, vol. 111, 1998, pp. 14–26.

[13] B. Cgapman, “Managing Multcore with OpenMP,” EuroPVM/MPI
2008, LNCS, vol. 5205, 2008, pp. 3–4.

[14] A. Marowka. “Performance of OpenMP Benchmarks on Multicore
Processors,” ICA3PP 2008, LNCS, vol. 5022, 2008, pp. 208–219.

[15] M. C. Maury, X. Ding, C. D. Antonopoulos, and D. S. Nikolopoulos,
“An evaluation of OpenMP on Current and Emerging
Multithreaded/Multicore Processors,” IWOMP 2005/2006, LNCS,
vol. 4315, 2008, pp. 133–144.

[16] V. Sarkar, “Programming Challenges for Petascale and Multicore
Parallel Systems,” HPCC 2007, LNCS, vol. 4782, 2007, pp. 1.

[17] C. Terboven, D. Mey, and S. Sarholz, “OpenMP on Multicore
Architectures,” IWOMP 2007, LNCS, vol. 4935, 2008, pp. 54–64.

[18] J. L. Shon, , “Evaluation of FIDAP on some classical laminar and
turbulent benchmarks,” J. Numerical Methods in Fluids, vol. 8, 1988,
pp. 1469–1490.

[19] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for
incompressible flow using the Navier-Stokes equations and a
multigrid method,” J. Comput. Phys., vol. 48, 1982, pp. 387–413.

110

