
Compiler and Runtime Support for Running OpenMP Programs on
Pentium- and Itanium-Architectures

Xinmin Tian1, Milind Girkar1, Sanjiv Shah2, Douglas Armstrong2, Ernesto Su1, Paul Petersen2
1Intel Compiler Laboratory, Software Solution Group, Intel Corporation

13600 Juliette Lane, Santa Clara, CA 95052, USA
2KAI Software Laboratory, Software Solution Group, Intel Corporation

21906 Fox Drive, Champaign, IL 61820, USA
{Xinmin.Tian, Milind.Girkar, Sanjiv.Shah, Douglas.Armstrong, Ernesto.Su, Paul.Petersen}@intel.com

Abstract

Exploiting Thread-Level Parallelism (TLP) is a promising
way to improve the performance of applications with the
advent of general-purpose cost effective uni-processor and
shared-memory multiprocessor systems. In this paper, we
describe the OpenMP∗ implementation in the Intel C++
and Fortran compilers for Intel platforms. We present our
major design consideration and decisions in the Intel
compiler for generating efficient multithreaded codes
guided by OpenMP directives and pragmas. We describe
several transformation phases in the compiler for the
OpenMP* parallelization. In addition to compiler support,
the OpenMP runtime library is a critical part of the Intel
compiler. We present runtime techniques developed in the
Intel OpenMP runtime library for exploiting thread-level
parallelism as well as integrating the OpenMP support
with other forms of threading termed as sibling parallelism.
The performance results of a set of benchmarks show good
speedups over the well-optimized serial code performance
on Intel Pentium- and Itanium-processor based systems.

Keywords: Parallelization, Hyper-Threading technology,
OpenMP, compiler optimization, thread-level parallelism,
shared-memory multiprocessor

1. Introduction
The explicitly parallel computing technology behind the
OpenMP shared-memory programming model [2,3,5,6]
provides a rich set of features, which allow the compiler to
exploit thread-level parallelism and optimize applications
on Intel Architecture (IA) based platforms. Shifting most of
the complex tasks from the programmer to the compiler
encourages programmers to write and port program to fully
take advantage of the available state-of-the-art architecture
features, such as Hyper-Threading technology, to exploit
thread-level parallelism and boost application performance

The Intel C++ and Fortran compilers support the OpenMP
pragmas and directives in languages C++/C and Fortran95,
on Windows and Linux platforms and on IA-32 [11] and
Itanium Processor Family (IPF) architectures.

The Intel OpenMP implementation in the compiler strives
to: (a) generate multithreaded code which gains a true
speedup over optimized uniprocessor code, (b) integrate
parallelization tightly with advanced interprocedure, scalar
and loop optimizations such as intra-register vectorization
[2, 4] and memory hierarchy oriented optimizations [9, 10]
to achieve better cache locality and efficiently exploit
multi-level parallelism, and (c) minimize the overhead of
data-sharing among threads. In this paper, we describe the
implementation of the parallelization phase in the Intel
compiler for OpenMP support. The remainder of this paper
is organized as follows. The Section 2 presents an overview
of the Intel high-performance compiler. Section 3 describes
design decisions made in the Intel C++/Fortran compiler for
generating efficient multithreaded code guided by OpenMP
directives or pragmas, including code transformation phases
where the OpenMP parallelizer interacts tightly with other
optimizations. Section 4 gives a high-level overview of the
software architecture of the OpenMP run-time library and
presents the key features and techniques developed in the
Intel OpenMP run-time library for the Intel compiler. The
Section 5 show performance results of a set of benchmarks
on IA-32 and IA-64 based platforms. Finally, concluding
remarks can be found in Section 6.

2. Compiler Overview
The Intel C++ and Fortran compilers have a single common
intermediate representation named IL0 for the C++/C and
Fortran95 languages. Hence, the OpenMP directive-guided
parallelization, as well as a majority of other optimizations,
is applicable through a single high-level transformation [2]
irrespective of the high-level source language. Throughout
the rest of this paper, we refer to the Intel C++ and Fortran
compilers for Intel Pentium and Itanium processor family
architectures collectively as “the Intel compiler”. In order to
establish the context in which the OpenMP parallelization
works, we give a brief overview of the Intel compiler for
Pentium and Itanium processor-based platforms.

Copyright 2003 IEEE. Published in the Proceedings of the 8th
International Workshop on High-Level Parallel Programming Models
and Supportive Environments HIPS2003 in conjunction with the
International Parallel and Distributed Processing Symposium
IPDPS2003, Nice Acropolis Convention Center,
Nice, France. April 22-26, 2003

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Inter-Procedural Optimization (IPO): this component
includes points-to analysis and mod/ref analysis required by
many other optimizations. Points-to analysis expands the
capabilities of memory disambiguation by determining that
which memory locations may be referenced by a memory
reference.

Multi-Entry Threading (MET): we have developed and
implemented the new compiler technology named Multi-
Entry Threading (MET). The rationale behind MET is that
the compiler does not create a separate compilation unit (or
routine) for a parallel region or loop. Instead, the compiler
generates a threaded entry and a threaded return for a given
parallel region or loop [1,2].

Multi-Level Parallelism (MLP): Intel compiler supports
intra-register vectorization for Pentium family processor
[2], and software pipelining for Itanium family processor
for exploiting instruction-level parallelism (ILP) on top of
exploiting thread-level parallelism (TLP). Exploiting MLP
(TLP+ILP) ensures the compiler fully utilizes the rich set of
performance features of Intel architecture for achieving the
highest application performance.

High-Level Optimization (HLO): those optimizations in
HLO include loop transformations such as loop fusion, loop
tiling, loop unroll-and-jam, loop distribution, profile-guided
data prefetching, scalar replacement and data optimizations
to improve data locality and reduce memory access latency.

Other Scalar Optimization Components: Intel compiler
implements an extensive set of scalar optimizations such as
branch-merging, strength reduction, constant propagation,
dead code elimination, copy propagation, partial dead store
elimination, and partial redundancy elimination (PRE) [8].

Architecture-specific code generation components include
instruction scheduling, register allocation, code ordering,
advanced instruction selection, and global code scheduling.

3. Implementation
In order to support the OpenMP programming model, the
Intel compiler has been extended throughout its various
components. First, the IL0 intermediate representation was
extended to represent the OpenMP directives/pragmas and
clauses. The compiler front-end parses OpenMP directives
(or pragmas) to generate consistent IL0 representation of
OpenMP code for the compiler middle-end. The OpenMP
parallelizer generates multithreaded codes based on IL0
codes corresponding to OpenMP constructs.

The design philosophy behind the implementation of the
OpenMP programming model in the Intel compiler is that a
single OpenMP parallelizer implementation is used across
all languages (C++/C and Fortran 95) and architectures (IA-
32 and IPF). The Intel compiler generates multithreaded
code that has references to a high-level run-time library API
designed and developed at Intel KAI Software Laboratory.

The following sections describe several transformations and
optimizations for OpenMP parallelization.

3.1 Compiler Front-End Support
The compiler’s front-end generates an IL0 representation of
the OpenMP code as shown in Figure 1, where the for loop
has been lowered into if and goto statements after the IL0
lowering phase. Each OpenMP pragma has been converted
into an equivalent pair of IL0 directive and its matching end
directive, which helps the WRN (work-region-node) graph
builder of the OpenMP parallelizer define the boundaries of
the OpenMP constructs.

Besides syntax and semantics checking, one of the issues
the FE needs to address is finding the implicit attributes of
variables that are not explicitly listed in a clause. In this
example, the array ‘a‘ and induction variable ’k‘ are listed
as shared and private, respectively. However, the array ‘b’
and variable ’x‘ are not specified in any clause. Based on
the OpenMP specification, the FE treats a locally declared
automatic variable as a private variable of the OpenMP
construct that immediately encloses it lexically. Thus, the
variable x is added to the private list of the worksharing for
construct.

Figure 1. Parallel Region and Worksharing Loop Example

Next step, the FE finds the implicit shared variables of the
parallel region based on a rule in OpenMP specification --
“the default attribute is default shared” if the default clause
is not specified. The results of the analysis is that the FE
generates private(x) and shared(b) for the parallel construct.
Note that register temps (e.g. t0 in Figure 1) created by the
FE are treated as private in the BE.

3.2 Pre-Pass Transformation
The pre-pass performs the transformation that converts a
parallel section to a parallel for loop, so the implementation
of parallel sections construct can leverage the multithreaded

void parwork() /* OpenMP C code sample */
{ double a[1000], b[1000];
 int k;
#pragma omp parallel shared(a) private(k)
 { int x;
#pragma omp for schedule(dynamic)
 for (k=0; k<16; k++) { do_work(k, a, b, &x); }
 }
}
entry extern void _parwork() /* IL0 pseudo-code after Front-End */
{ DIR_PARALLEL QUAL_SHARED_VAR (a) QUAL_PRIVATE_VAR (k)
 QUAL_SHARED_VAR (b) QUAL_PRIVATE_VAR (x)
 DIR_LOOP QUAL_SCHEDULE (DYNAMIC)
 k = 0(SI32); /* SI32 denotes the 32-bit signed int type */
 L13: if (k < 16(SI32)) {
 t0 = _do_work(k, &a[0(SI32)], &b[0(SI32)], &x);
 k = k + 1(SI32);
 goto L13;
 }
 DIR_END_LOOP
 DIR_END_PARALLEL
 return ;
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

code generation of the parallel loop. Essentially, a parallel
loop is generated and the loop trip count is the number of
sections. In Figure 2(a), there are three sections inside a
parallel sections construct, the pre-pass creates a parallel
loop with trip count 3, see Figure 2(b).

 void parsectfoo()
{ int y, x[5000];
 float w, z[3000];
 double u, v[5000];

#pragma omp parallel sections shared(w, z, y, x, u, v)
 {
 w = floatpoint_sect(z, 3000);
 #pragma omp section
 y = myinteger_sect(x, 5000);
 #pragma omp section
 u = mydouble_sect(v, 5000);
 }
 }
 (a) parallel sections before pre-pass

b void parsectfoo()
{ int y, x[5000];
 float w, z[3000];
 double u, v[5000];
 DIR_PAR_LOOP QUAL_SHARED(w, z, y, x, u, v) QUAL_PRIVATE(i
 for (id=1; id<=3; id++) {
 switch (id) {
 case 1: w = floatpoint_sect(z, 3000); break;
 case 2: y = myinteger_sect(x, 5000); break;
 case 3: u = mydouble_sect(v, 5000); break;
 }
 }
 DIR_END_PAR_LOOP
}
 (b) generated parallel loop after pre-pass

Figure 2. Pseudo-code After Pre-Pass of Parallelization

Given that the granularity of the parallel sections could be
dramatically different, the static or static-even scheduling
type may not achieve the best load balance. We decided to
use the runtime scheduling for a parallel loop generated by
the pre-pass in multithreaded code generation. Therefore,
the decision regarding scheduling is deferred until run-time,
and a better load balance can be achieved based on the
decision made by the OMP_SCHEDULE environment variable
and the OpenMP library at run-time.

3.3 Multithreaded Code Generation
The multithreaded code generator consists of many modules
such as variable classification, privatization, array lowering,
loop analysis, enclosing-while-loop generation for runtime,
dynamic and guided scheduling, post-pass threadprivate
handler and stack optimization. Essentially, it converts the
OpenMP constructs to multithreaded code at the IL0 level.
See the example in Figure 3. For the worksharing loop in
the routine parwork with the scheduling type dynamic, the
multithreaded code generation involves: (i) generating a
runtime dispatch and initialization (__kmpc_dispatch_init)

routine call to pass global loop lower-bound, upper-bound,
stride, and all other necessary information to the runtime
system; (ii) generating an enclosing while loop to dispatch
loop-chunk at runtime through the __kmpc_dispatch_next
routine supported in the library; (iii) localizing the loop
lower-bound, upper-bound, and privatizing the loop control
variable ‘k’ and local defined stack variable ‘x’. With the
MET technology [1], one threaded entry, or T-entry1, is
created within the parwork() for the parallel regions. The
T-entry parwork_par_region() corresponds to the semantics
of the parallel region. The call __kmpc_fork_call spawns a
team of threads to execute the threaded codes in parallel.

Figure 3. Pseudo-code After Multithreaded Code Generation

3.4 Aggressive Code Motion
In this Section, we present an optimization -- aggressive
code motion that lifts all read-only memory de-references
from inside of a region/loop/section to outside of a region/
loop/section. Essentially, the idea is that we do pre-load a
memory de-reference into a register temporary right after T-
entry, if a memory de-reference can be proved to be a read-

1 In [1], T-entry refers strictly to the entry point of a threaded region, or

T-region, which is the section of code enclosed between a T-entry and
its matching T-return. In this paper, we use T-entry to refer to the
threaded entry or region, as this use is unambiguous from the context
and often interchangeable.

void parwork() /* OpenMP C code sample */
{ double a[1000], b=1000;
 int k;
#pragma omp parallel shared(a, b) private(k)
 { int x = 7;
#pragma omp for schedule(dynamic)
 for (k=0; k<16; k++) { x = x + b*b; a[k] = a[k] + b * x; }
 }
}
entry extern void _parwork() /* IL0 pseudo-code after MT-code generation */
{
 b = 1000.00 (F64) /* F64 denotes the 64-bit float type */
 __kmpc_fork_call(…, __parwork_par_region, &a, &b)
 goto L46
 T-entry __parwork_par_region(ap, bp)
 { prv_x = 7; prv_k = 0
 if (1000 > prv_k) {
 t0 = (* F64)bp; lower = 0; upper = 999; stride = 1;
 __kmpc_dispatch_init(..., lower, upper, stride, ...)
 L33:
 t3 = __kmpc_dispatch_next(..,, &lower, &upper, &stride)
 if ((t3 & upper>=lower) != 0(SI32)) {
 prv_k = lower
 L17:
 prv_x = prv_x + t0 * t0
 ((* F64)ap)[prv_k] = ((* F64)ap)[prv_k] + t0 * prv_x
 prv_k = prv_k + 1
 if (upper >= prv_k) goto L17
 goto L33
 }
 }
 __kmpc_barrier(...)
 T-return
 }
 L46:
 return
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

only memory de-reference based on the load-store analysis
and memory disambiguation. In Figure 3, for example, the
memory de-reference of bp is lifted outside the loop and
pre-loaded into a register temp t0, and the memory de-
reference of bp is replaced by a load of register temp t0.

The benefit of the aggressive code motion is that it reduces
the overhead of a memory de-referencing, since the value is
preserved in a register temporary for the read operation.
The second benefit is that it enables advanced well-known
optimizations such as software pipelining, and vectorization
if the memory de-references in array subscript expressions
are lifted outside the loop. See another example in Figure 4,
the address computation of array involves the memory de-
references of the member lower and extent of the dope-
vector, the compiler lifts the memory de-references of lower
and stride outside the m-loop, because the compiler knows
that all references to members of the dope-vector are read-
only memory references inside the parallel do loop.

Figure 4. An Example of Aggressive Code Motion

In general, the aggressive code motion enables a number of
high-level optimizations such as loop unroll-and-jam, loop
tiling, and loop distribution as well. It resulted a very good
performance benefit in many real large applications.

3.5 Support Nested Parallelism
Explicitly expressing nested parallelism is supported by the
OpenMP specification. However, most of existing OpenMP
compilers do not fully support nested parallelism, since the
OpenMP-compliant implementation is allowed to serialize
nested parallel regions, even when the nested parallelism is
enabled by the environment variable OMP_NESTED or
routine omp_set_nested(). For instance, the SGI’s compiler
supports nested parallelism only if the loops are perfectly
nested. Given that broad classes of applications, such as
imaging processing and audio/video encoding and decoding
algorithms, have shown performance benefits by exploiting
nested parallelism. We implemented the compiler and the
runtime library support needed for full nested parallelism in
the Intel compiler. In addition, there are a number of ways

to control nested parallelism. For example, the num_threads
clause can be added to a parallel region pragma line to
overwrite the number of threads the runtime system will
attempt to use for only that region. Note that this setting
will not persist to any subsequent or nested parallel regions.
In Figure 5, (a) shows a nested parallel region sample code,
and (b) shows its corresponding IL0 pesudo-code generated
by the C++ compiler Front-End.

Figure 5. An Example of MT-codegen for Nested Par-Regions

As showed in Figure 5 (c), there are two threaded entries, or
T-entries, created within the original function nestedpar().
The T-entry __nestedpar_par_region0() corresponds to the
semantics of the outer parallel region, and the T-entry
__nestedpar_par_region1() corresponds to the semantics of
the inner parallel region. For the inner parallel region in
the routine nestedpar, the variable id is a shared stack
variable for the inner parallel region. Therefore, it is
accessed and shared by the team of threads created for the
inner parallel region through the T-entry argument id_p.
Note that the variable id is a private variable for the outer
parallel region, since it is a local defined stack variable.

real allocatable:: w(:,:)
… …
!$omp parallel do shared(x), private(m,n)
do m=1, 1200 !! Front-End creates a dope-vector for allocatable
 do n=1, 1200 !! array w
 w(m, n) = … Î dv_baseaddr[m][n] = …
 end do
end do
… …
T-entry(dv_ptr …) !! Threaded region after multithreaded code generation
 … …
 t1 = (P32 *)dv_ptr->lower !! dv_ptr is a pointer that points
 t2 = (P32 *)dv_ptr->extent !! to dope-vector of array w
 do prv_m=lower, upper
 do prv_n =1, 1200 ! EXPR_lower(w(m,n)) = t1
 (P32 *)dv_baseaddr[prv_m][prv_ n] = … ! EXPR_stride(w(m,n)) = t2
 end do
 end do
T-return

(a) A Nested Parallel Region Code Sample
#include<omp.h>
void nestedpar()
{ static double a[1000];
 int id;
#pragma omp parallel private(id)
 { id = omp_get_thread_num();
#pragma omp parallel
 {
 do_work(a, id, id*100);
 }
 }
}
(b) IL0 Pseudo-Code Generated by C++ Front-End
entry extern void _nestedpar()
{
 DIR_PARALLEL QUAL_PRIVATE_VAR(id) QUAL_SHARED_VAR(a)
 t0 = _omp_get_thread_num()
 id = t0
 DIR_PARALLEL QUAL_SHARED_VAR(a) QUAL_SHARED_VAR(id)
 t1 = _do_work(&a, id, id * 100(SI32))
 DIR_END_PARALLEL
 DIR_END_PARALLEL
 return
}
(c) IL0 Pseudo Multithreaded Code Generated by Parallelizer
entry extern void _nestedpar()
{/* P32 denotes the 32-bit pointer type */
 ___kmpc_fork_call(___nestedpar_par_region0)(P32));
 goto L30
 T-entry void __nestedpar_par_region0()
 { t0 = _omp_get_thread_num();
 prv_id = t0;
 ___kmpc_fork_call(__nestedpar_par_region1)(P32), &prv_id)
 goto L20;
 T-entry void __nestedpar_par_region1(id_p)
 { t1 = _do_work(&a, *id_p, *id_p * 100)
 T-return
 }
 L20:
 T-return
 }
 L30:
 return
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

In addition, as we see in Figure 5 (c), there are no extra
arguments on the T-entry for sharing local static array ‘a’,
and there is no pointer de-referencing inside the T-region
for sharing the local static array ’a’ among all threads in the
teams of both the outer and inner parallel regions. This uses
our compiler technique presented in [2] for sharing static
data environment among threads; it is an efficient way to
avoid the overhead of argument passing across T-entries.

3.6 Workqueuing Model
The workqueuing model [7] was proposed to exploit task-
level or irregular parallelism. This model allows the user to
parallelize control structures that are beyond the scope of
those supported by the OpenMP programming model, while
still fitting into the framework defined by the OpenMP
specification. In particular, the workqueuing is a simple and
flexible programming model for specifying units of work
that are not pre-computed at the start of the worksharing
construct. See a simple example in Figure 6.

Figure 6. A While-Loop with Workqueuing Pragmas

The parallel taskq pragma specifies an environment for the
‘while loop’ in which to enqueue the units of work specified
by the enclosed task pragma. Thus, the while loop’s control
structure and the enqueuing are executed by single thread,
while the other threads in the team participate in dequeuing
tasks from the taskq queue and executing them. The clause
captureprivate ensures that a private copy of the pointer p
is captured at the time each task is being enqueued, hence
preserving the sequential semantics.

To support the workqueuing model as the Intel OpenMP
extension, the Intel C++ compiler’s OpenMP support has
been extended throughout its various components. First, the
IL0 intermediate language has to be expanded to represent
the new workqueuing constructs and clauses. The front-end
parses the new pragmas and produce IL0 representation of
the workqueuing code for the middle-end. The OpenMP
parallelizer generates the multithreaded code corresponding
to workqueuing constructs. More implementation details of
workqueuing model described in paper [1].

4. Multithreaded Runtime Library
The Intel OpenMP runtime library represents a complete
redesign at a high level, with only bottom level components

re-used from the previous Intel OpenMP runtime library. It
remains the backwards compatible in the functionality and
performance with the previous Intel runtime library. This
section describes some features of the Intel runtime library
together with its high level architecture.

4.1 Runtime Library Architecture
The Intel OpenMP runtime library has been designed to
exploit nested and sibling parallelism for satisfying the
requirements of users using OpenMP in their applications.
The typical OpenMP user community has strong roots in
scientific high-performance parallel computing. Common
uses of the OpenMP in this space are parallelizing entire
application executables, with the main thread of control is
controlled by the OpenMP programmers. There is also an
increasing use of OpenMP mixed with Message Passing
Interface* (MPI*) for large problem solving. In addition to
the traditional uses identified above, users are starting to
use OpenMP in applications where a programmer has little
control over the main thread of execution. This scenario is
fairly common in applications controlled by Graphical User
Interfaces (GUI’s), such as those applications built with the
Microsoft Foundation Classes (MFC), whereby graphical
sub-system controls the main thread of execution and makes
calls into the user’s application. This programming model is
also common whenever the programmer is writing libraries
that are called by others – the library writer has little control
over the calling environment. Such scenarios often result in
multiple system threads invoking the OpenMP – a situation
we term sibling parallelism.

In it ia l U se r T h re ad

P th rea d s /
W in T h re ad s

O p en M P
W o rk e r T h re ad s

T ra d it io n a l
O p e n M P

S ib lin g
P ara lle l ism

R T L
T h re a d P o o l

 N e s ted
P a ra lle l ism

Figure 7. Intel OpenMP Runtime Library Architecture

Figure 7 shows an overview of Intel’s OpenMP runtime
support. The implementation of the Intel OpenMP runtime
library strives to: (a) provide right and rich functionalities,
(b) provide good performance, (c) provide good portability
and extensibility, (iv) provide hooks to other tools that are
part of multithreaded software development. The following
subsections describe design considerations and features of
the Intel OpenMP runtime library.

4.2 Runtime Support for Nested Parallelism
The specification for OpenMP provides some information
on how nested parallelism should be handled. When the
Intel runtime library was extended to support the nested

void wq_test(LIST *p)
{
#pragma intel omp parallel taskq shared(p)
 { while (p != NULL) {
 #pragma intel omp task captureprivate(p)
 {
 wq_workitem(p)
 }
 p= p->next;
 }
 }
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

parallelism, it was designed to conform to this specification.
The specification supports nested parallelism in OpenMP
simply by allowing the use of OpenMP parallel teams
nested within already parallel OpenMP regions. By default,
the nested parallelism is disabled and nested regions will be
serialized, that is they will create a new team containing one
thread. This feature must first be enabled either via the
environment variable OMP_NESTED or with the routine
omp_set_nested. There are several methods to control how
many threads are used in the various parallel regions:

Figure 8. An Example of Configuring the Number of Threads

• An implementation-specific environment variable has
been added in the new library. The KMP_MAX_THREADS
variable allows the user to set the maximum number of
threads the runtime library will use for OpenMP
threads. This includes the initial thread, OpenMP
worker threads created and being used, OpenMP
worker threads waiting in the free pool, and system
threads that were created by the user who then
subsequently started to exploit sibling parallelism. This
allows the user to limit the number of threads to the
number of processors, insuring that an application or a
library used by an application does not oversubscribe
the system with OpenMP threads.

• The OMP_NUM_THREADS environment variable is used
to specify default number of threads that the runtime
library will try to use whenever creating a new parallel
region. Unless users override this setting, the library
will attempt to use this many threads at every level,
until the KMP_MAX_THREADS limit is reached.

• The routine omp_set_num_threads() is an API call that
allows the user to specify how many threads the
runtime system should try to use at the next parallel
region encountered by the thread that made the call. In
traditional one-level fork/join OpenMP it only really

makes sense for the original starting thread to make
this call. With nested parallelism support, any thread
can make this call and teams that thread subsequently
creates will be affected by the new setting. This setting
is somewhat persistent as shown in Figure 8.

• num_threads(n) is a clause that the user can place on
the parallel pragma line. This setting specifies how
many threads the runtime system will attempt to use for
only that parallel region. This setting is not persistent at
all and only applies to its own region.

Figure 8 is an example of how to configure the number of
threads through those runtime library calls that control the
amount of parallelism for achieving better performance.

4.3 Support Sibling Parallelism
One of desired features beyond the OpenMP model is to
enable support for exploiting the sibling parallelism. This
model allows different system threads to start the OpenMP
teams and vice-versa. In supporting the sibling parallelism,
a majority of the work necessary to support the nested
parallelism is already required, as presented in previous
subsection. The issues we had to address in the design of
supporting sibling parallelism in the Intel OpenMP runtime
library are centered around the following questions:

• Should those sibling system threads share the OpenMP
threadprivate variables?

• Should system threads created from within OpenMP
team of threads return the same value for the function
call omp_get_thread_num() that their OpenMP creator
thread returns? That is, Should the new thread be
considered a part of the team that the parent thread
belonged to?

Figure 9. An Example of Exploiting Sibling Parallelism

Our decisions are settled on not sharing thread identifiers
between system threads and their OpenMP parent, and on
not sharing threadprivate variables among system threads.
System threads are essential flat with respect to each other,
just like WinThreads. The primary reasons for this decision
were both ease of use for application programmers and ease
of conceptual understanding. The conceptual model of
sibling parallelism we envision is the following: each
system thread created by the system (i.e., not created by
OpenMP thread) has an OpenMP parallel region around

// Start with one thread
omp_set_num_threads(3)
#pragma omp parallel
{ // three threads used here
 omp_set_num_threads(29)
 #pragma omp parallel
 { // three teams have 29 threads each here }
 #pragma omp master
 omp_set_num_threads(178);
 #pragma omp parallel
 { // one team has 178 threads here
 // two teams have 29 threads here
 }
}
#pragma omp parallel
{ // 3 threads here also
 #pragma omp parallel
 { // 3 teams of 3 threads each here
 // note how the 29 and 178 settings are lost.
 }
}

 __crt_init()
{
 int rc;
 … …
#pragma omp parallel
 num_threads(1) if(false)
 {
 rc = main(argc, argv);
 }
 … …
 return rc;
}

int pthread_create(userarg,
 userfunc(), ……)
{
 … ….
 #pragma omp parallel
 num_threads(1) if(false)
 {
 userfunc(userarg);
 }
 … …
 return …;
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

with exactly one thread. Programmatically, we represent
this with a simple rewrite of two system routines: the
__crt_init() routine that calls the users’ main(), and the
pthread_create() (CreateThread() on Windows) routine that
starts system threads on user routines (see Figure 9).

Since each system thread is at the top of its own nested
OpenMP hierarchy, it should be noted that a forked system
thread would return the false to omp_in_parallel(), even if
created from an OpenMP worker thread. This makes sense,
since the new system thread may have no connection to the
worker thread that created it, and could have its entry point
anywhere doing possibly unrelated work. This allows any
model of parallelism and does not force the programmer to
make an arbitrary connection between two unrelated
threads. If the newly created thread is considered a pseudo-
member of its parent’s team, then many questions would
arise; such as to whether it should participate in barrier
pragmas. This would be very difficult since the new thread
might have no way of getting to the barrier pragma without
a long jump or other contorted method. If the programmer
does, however, wish for the newly created thread to share
the work of an OpenMP worker thread, it is a simple task to
store the result of the omp_get_thread_num() in a private
variable that can then be shared by the two threads.

4.4 Runtime Library Performance Tuning
Efficient execution of the OpenMP applications requires the
runtime to maintain a thread pool rather than starting and
stopping system threads at each parallel region. Therefore,
the thread pooling is an essential feature of the runtime. The
OpenMP allows orphaned directives that require run-time
computation of binding rules to determine how to interpret
the directives. Efficient computation of these binding rules
is another important feature of the runtime.

Compared to the previous Intel OpenMP runtime library,
sibling and nested parallelism require a level of indirection
in order to find which sibling or nested team the current
thread is a member of. This indirection is a potential source
of performance loss. However, we were able to optimize
the performance to minimize this penalty. In real, coarse-
grained, applications we have observed no performance
penalty in going to the new runtime library. In fine-grained
micro-benchmarks, the new runtime incurs minimal penalty
for most cases.

Another important issue in the design of the OpenMP
runtime library centers on the question of what to do with
idle threads while they are waiting, whether it be in the
thread pool between parallel regions or waiting for a
synchronization event. The Intel OpenMP runtime library
provides two types of control for this: (i) an environment
variable indicating if the user is looking to optimize
turnaround time or system throughput because of resource
sharing with other jobs or users, (ii) some variables that
control the amount of time spinning when idle before

falling asleep. The environment variable KMP_LIBRARY
can be set to turnaround or throughput. The default value is
”throughput“ to provide a pretty safe environment whereby
creating more threads than processors in compute intensive
applications, or accidental sharing of the machine, does not
result it terrible performance yields() the processor to other
threads or jobs more often than the turnaround library.
Both libraries also provide variables to control the amount
of time that threads spin at barriers before going to sleep.
The environment KMP_BLOCKTIME allows the user to
specify about how much time each thread should spend
spinning. The user can also adjust this setting at runtime
using the kmp_set_blocktime() API call. When adjusted at
run-time, the setting applies to the system thread that called
it as well as any OpenMP worker threads under it in the
nested OpenMP hierarchy. This new setting is especially
important for Hyper-Threading (HT) enabled processors.
On a HT-enabled processor more than one thread can be
executing on the same processor at the same time. This
means that both threads have to share that processor’s
resources. This makes spin-waiting extremely expensive
since the thread that is just waiting is now taking valuable
processor resources away from the other thread that is
doing useful work. Thus, when using Hyper-Threading, the
blocktime should be very short so that the waiting thread
sleeps as soon as possible allowing still useful threads to
more fully utilize all processor resources.

5. Performance Results
We have conducted our performance measurements with a
set of selected benchmarks to validate the effectiveness of
our OpenMP implementation in the Intel high-performance
compilers. The multithreaded codes generated by the Intel
compiler are highly optimized with architecture-specific,
and advanced scalar and array optimizations assisted with
our aggressive memory disambiguation. The performance
measurement of two micro-benchmarks matrix multiply
matmul (256x256) and memory copy memcopy (4096) is
carried out on an Intel Hyper-Threading technology enabled
single-processor system running at 2.66GHz, with 2048M
memory, 8K L1-Cache, and 512K L2-Cache.

The performance scaling is derived from serial execution
(SEQ) with Hyper-Threading technology disabled, and
multithreaded execution with one thread and two threads
with Hyper-Threading technology enabled. In Figure 3, we
show the normalized speed-up of the two chosen micro-
benchmarks compared to the serial execution with Hyper-
Threading technology disabled. The OMP1 and OMP2
denote the multithreaded code generated by the Intel
OpenMP C++ and Fortran compiler executing with one
thread and two threads, respectively. As shown in Figure
10, the matmul (OMP2 w/ HT) achieved a 45% performance
improvement by the second threads running on the second
logical processor. No multithreading overhead is observed

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

for one thread run comparing with the serial run. The
multithreaded code of the memcopy does show a 7%
performance degradation due to the overhead of thread
creation and forking, synchronization, scheduling at run-
time, and memory de-referencing for sharing local stack
variables (OMP1 w/ HT), but the second thread running on
the second logical processor contributed to the overall 9%
performance gain (OMP2 w/ HT).

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

1 .6 0

M a tm u l M e m c o p y

S
p

ee
d

u
p

S E Q

O M P 1

O M P 2

Figure 10. Performance of Two Micro-benchmarks

Figure 11 shows the performance results of three well-
known benchmarks: N-queens (13x13), Strassen (1024×1024
double-precision floating-point matrix), and Permanent
(11x11 matrix), those benchmarks are written with the Intel
workqueuing model [1][7] using parallel, taskq and task
pragmas. The performance speedup ranges from 3.44x to
5.22x on an Intel XeonTM system with four processors
running at 1.6 GHz, with 8K L1 cache, 256K L2 cache,
1MB L3 cache per processor, and 2GB of shared RAM on
a 400MHz system bus. The performance measurement has
been conducted with both Hyper-Threading Technology
disabled and enabled.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Queens Strassen Permanent

S
p

ee
d

u
p

SEQ w/o HT

OMP1 w/o HT

OMP2 w/o HT

OMP4 w/o HT

OMP8 w/ HT

Figure11. Performance of Workqueuing Benchmarks

We disabled Hyper-Threading technology while measuring
the performance of serial run of sequential code, and 1-, 2-,
and 4-thread run of threaded code generated by the Intel
compiler. In this way, we can guarantee that all threads
were scheduled on different physical processors, because
there is no guarantee that two threads will not be scheduled
onto the same physical processor when Hyper-Threading
technology is enabled, even though the number of threads is

less than the number of physical processors. With Hyper-
Threading technology disabled, the speedups of N-queens,
Strassen and Permanent benchmark are 3.32, 3.39, and
3.16 respectively, with 4-thread run (OMP4) over the serial
run. Note that the runtime overhead of all three threaded
codes is very small and not notable. We enabled the Hyper-
Threading technology for the 8-thread run (OMP8), the
speedup is 5.22 for N-queens, 3.44 for Strassen, 4.27 for
Permanent. Thus, the performance gain due to the Hyper-
Threading technology is 57% for N-queens, 1.5% for
Strassen, and 35% for Permanent. For the Strassen, we
only saw 1.5% gain from the Hyper-Threading technology,
which is mainly limited to memory bandwidth for the given
array size of 8MB (more detailed analysis is in the scope of
our next paper on performance study).

In addition to the IA-32 performance measurement, in order
to evaluate our implementation in the Intel compiler for the
OpenMP support on the Intel Itanium Architectures, we
conducted the performance measurement with NAS Parallel
Benchmarks Suite, which is parallelized with the OpenMP
programming model, on a dual-processor Intel Itanium

processor-based SMP system running at 800MHz (512K L2
cache, 1MB L3 cache per processor) with 1GB memory.
The NAS Parallel Benchmarks is a popular benchmarking
suite, written in Fortran 77, which is often used for the
performance evaluation on multiprocessor system.

0.00

0.50

1.00

1.50

2.00

2.50

BT CG EP FT IS LU MG SP

S
p

ee
d

u
p SEQ

OMP1

OMP2

Figure 12. Performance of NAS Parallel Benchmarks

We have been using the Class-A problem sizes for our
measurement. The performance improvement of the NAS
benchmarks is shown in the Figure 12. The speedups are
measured and computed based on the execution time of
serial run of each benchmark. The speedup ranges from
1.33 for IS (Integer Sorting) to 1.91 for EP (Embarrassing
Parallelism). The concluding remark derived from our
results is that the multithreaded code generated by the Intel
compiler achieved a good speedup on the dual-processor
Itanium SMP system. Note that the overhead of the
multithreaded code for BT, CG, EP, LU MG, and SP is not
notable with one thread run, however, we saw 19% and
28% performance slowdown for FT and IS, respectively,
with multithreaded code running with one thread comparing
to their serial code. More detailed performance analysis is
in the scope of our next paper on performance study.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

6. Conclusion and Future Work
In this paper, we presented the compiler and runtime
support of OpenMP in the Intel compiler for the OpenMP
directive-guided multithreading. We also demonstrated that
performance gains are achieved on Intel platforms based on
a set of benchmarks. The Intel OpenMP C++ and Fortran
compiler has been designed and implemented to leverage
the Pentium and Itanium architecture features. This has
been achieved by tightly integrating OpenMP pragma- and
directive-guided parallelization with advanced well-known
optimizations while generating efficient threaded codes for
exploiting parallelism at various levels. The performance
results show that OpenMP programs compiled with the
Intel C++/Fortran compiler achieved a good performance
gain on Intel Hyper-Threading technology enabled Pentium
4 processor-based single- and multi-processor systems, and
as well as on Intel Itanium Processor Family (IPF) based
multiprocessor systems. One important observation we have
is that exploiting thread-level parallelism causes inter-
thread interference in caches, and places greater demands
on memory system. But, the Hyper-Threading Technology
in Intel Pentium 4 processor hides the additional latency, so
that there is only a small impact on the whole program
performance, hence, we achieved the overall performance
gain by exploring the use of logical processor. With Intel’s
Hyper-Threading and compiler technology, we can shrink
the processor-memory performance gap and achieve desired
performance gain. In the future, our work is heading in the
following directions:

• Investigate the possibility of more aggressive memory
optimizations, and identify opportunities of exploiting
multi-level parallelism to leverage new architecture and
micro-architecture features, and add compiler support
of workqueuing model for the Fortran 95 language

• Support teamprivate clause that allows the user to
specify that what was a threadprivate variable should
now be shared among the threads of a new nested team.
What was unique to the thread that created the nested
parallel region should now be shared among it and its
children in the new team

• The usefulness of Intel’s KMP_MAX_THREADS extension
raises the question of extending the OpenMP standard
to include this environment variable. A proposed name
is OMP_MAX_THREADS.

Acknowledgements
The authors thank all members of the Intel compiler team for their
great work in designing and implementing the Intel C++/Fortran
high-performance compiler. In particular, we thank Paul Grey,
Aart Bik, Ernesto Su, Hideki Saito, Dale A. Schouten for their
contribution in PAROPT projects, Max Domeika and Diana King
for the OpenMP C++/C front-end support, Bhanu Shankar and
Michael L. Ross for the OpenMP Fortran front-end support, Knud

J. Kirkegaard for IPO support, and Zia Ansari for PCG support.
Special thanks go to Grant Habb, Bill Margo and the compiler
group at KSL for developing and tuning the OpenMP runtime
library. We would like to thank the Intel Russia iNNL OpenMP
validation team for developing OpenMP test suites and extensive
testing of the Intel compiler.

References
[1] Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv

Shah, Paul Petersen, “Compiler Support for Workqueuing
Execution Model for Intel SMP Architectures”, EWOMP
2002 Fourth European Workshop on OpenMP Roma, Italy,
September 18-20th, 2002

[2] Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki
Saito, Ernesto Su, “Intel OpenMP∗ C++/Fortran Compiler
for Hyper-Threading Technology: Implementation and
Performance”, Intel Technology Journal, Vol. 6, Q1, 2002
http://www.intel.com/technology/itj

[3] OpenMP Architecture Review Board, “OpenMP C and C++
Application Program Interface,” Version 2.0, March 2002,
http://www.openmp.org

[4] Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian,
“Automatic Intra-Register Vectorization for the Intel®
Architecture,” To appear in International Journal of Parallel
Programming, April 2002.

[5] OpenMP Architecture Review Board, “OpenMP Fortran
Application Program Interface,” Version 2.0, November
2000, http://www.openmp.org

[6] Christian Brunschen and Mats Brorsson, “OdinMP/CCp–A
Portable Implementation of OpenMP for C,” in Proceedings
of the First European Workshop on OpenMP (EWOMP
1999), September 1999.

[7] Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop,
“Flexible Control Structures for Parallelism in OpenMP,” in
Proceedings of the First European Workshop on OpenMP
(EWOMP),http://www.it.lth.se/ewomp99/papers/grant.pdf

[8] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu,
Raymond Lo, and Peng. Tu, "A new algorithm for partial
redundancy elimination based on SSA form," in Proc. of the
ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation, June 1997, pp. 273-286.

[9] Jyh-Herng Chow, Leonard E. Lyon, and Vivek Sarkar,
“Automatic Parallelization for Symmetric Shared-Memory
Multiprocessors, in Proceedings of CASCON’96: 76-89,
Toronto, ON, November 12-14, 1996.

[10] Michael J. Wolfe, High Performance Compilers for Parallel
Computers, Addison-Wesley Publishing Company, Redwood
City, California, 1996.

[11] Debbie Marr, Frank Binns, David L. Hill, Glenn Hinton,
David A. Koufaty, J. Alan Miller, and Michael Upton,
“Hyper-Threading Technology Microarchitecture and
Architecture,” Intel Technology Journal, Vol. 6, Q1, 2002.
http://www.intel.com/technology/itj


Intel is a registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

∗Other brands and names may be claimed as the property of others.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

