

A Parallel Cloth Simulator Using Multilevel Algorithms

R. Lario, C. García, M. Prieto, F. Tirado
Departamento de Arquitectura de Computadores y Automática

Facultad de C.C. Físicas. Universidad Complutense.
Ciudad Universitaria s/n 28040 Madrid. Spain.

{rlario,garsanca,mpmatias,ptirado}@dacya.ucm.es

Abstract
Certain aspects of a computer-generated world have
always been difficult to simulate. Cloth is one such
example since, unlike a rigid object, it is flexible and
subject to many internal and external forces which drive
the fabric into a natural form. As a consequence of these
difficulties, realistic simulations demand a significant
computational cost, which makes parallel computing
highly advantageous [1]. In this paper we analyze the
OpenMP-based parallelization of a virtual cloth simulator
based on multilevel techniques that attempts to simulate
the manner in which cloth drapes. OpenMP not only
offers a fast and direct way to treat the hierarchy of data
structures employed in our simulator, but also achieves
satisfactory efficiencies on the three different platforms
studied: a SGI Origin 2000, a SUN HPC 6500 and an
IBM SP2.

Keywords— Cloth modeling, parallel multilevel
techniques, OpenMP, MPI.

1 Introduction

The goal of this paper is to analyze the OpenMP-based
parallelization of a cloth simulator that attempts to
reproduce the manner in which cloth drapes. Cloth
modeling has received considerable attention in the
computer graphics community over the last few years.
The reasons are numerous, but just to cite a few examples
(for an extensive survey of the current state of cloth
modeling and its applications see reference [2]) we can
mention the appearance of clothing worn by virtual actors,
which is of considerable interest in the animation-
entertainment industry. The need is even greater within
the fashion industry, where computer-aided design tools
have to generate (as accurately as possible) the forms of
cloth objects so that the designer can easily experiment
with a variety of fabrics and patterns (on a 3D virtual
mannequin) before the garment is actually manufactured.

Modeling realistic clothes can be divided into two
separate problems; cloth motion modeling and collision
detection to stop cloth from penetrating into other
neighboring objects and to prevent collisions between
different parts of the cloth itself [1,2]. Although our long-

term goal is to study the whole process, in this paper we
have not considered any collision detection algorithm, our
analysis being limited to the first stage of the problem.

Among the different approaches to simulating flexible
materials we have chosen a physical-based method that
was first introduced by C. Feymann [3] and subsequently
improved by H. Ng et al [4,5]. From a numerical point of
view, this model involves the solution of an optimization
problem. The simulator has to minimize an energy
function, which depending on the configuration chosen,
has to satisfy certain constraints. Following [5], the
minimization technique we have employed is based on a
standard Polak-Ribiere method that is accelerated with a
multilevel scheme [6]. Our algorithm is presented in
section 2, along with a comparison with the H. Ng
approach.

The idea of applying parallel computing to reduce the
expensive computational cost of cloth simulators and to
deal with more realistic scenarios is not new [1,5]. In
section 3 we discuss some key factors that have been
necessary to consider in order to achieve an efficient
parallel implementation of our simulator. The main
difficulties are caused by the multilevel treatment of the
cloth, which accelerates the convergence of the
optimization process but which limits the achievable
parallel efficiency.

In section 4 we have investigated the performance of
our simulator on a SGI Origin 2000 (O2K) equipped with
400 MHz MIPS R12000 processors and 8 Mbytes of L2
cache, and two different UMA architectures: a SUN HPC
6500 SMP system (equipped with 400 MHz UltraSPARC-
II processors and 8 Mbytes of L2 cache) and one 16-way
SMP node of an IBM SP2 system based on the Nighthawk
Power3 processor (running at 375 MHz and equipped with
8 Mbytes of L2 cache). Compared to the message-passing
paradigm, OpenMP not only provides a straightforward
way to deal with the hierarchy of grid levels, but also
achieves satisfactory efficiencies. This paper ends with
some conclusions and hints about future research.

2 Model Problem

The starting-point for our cloth simulator is an energy-
based physical model that describes a piece of cloth as a

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

2D grid in a 3D space. Every grid point C is characterized
by an individual energy related to certain physical
parameters (elasticity, bending and density) that can be
evaluated as a function of the relative position of each grid
point with its eight surrounding neighbors [2,3,4,5] as
described by the following equations:

distance mequilibriu

)
)pppp(

)p(p)p(p
(),p,pangle(p

CzCdensityCGravity

,SE))angle(C,NW(,SW))angle(C,NE(

S))angle(C,N,(W))angle(C,E,((C)Bending

))SEC()SWC(

)NWC()NEC(r(

)SC()NC(

)WC()EC((C)Strain

GravityKgBendingKbStrainKsEnergy

=

−⋅−
−⋅−

=

⋅⋅=

−+−+

−+−=

−−+−−

+−−+−−

+−−+−−

+−−+−−=

⋅+⋅+⋅=

σ

σ

ππ

ππ

σσ

σσ

σσ

σσ

0201

0201
arccos210

)()()(

22

22

2

22

22

22

22

22

22

i

j
NE

SW

NW

SE

N

W

S

E

C=Center

Fig 1. Surrounding neighbors of a central point.

The final equilibrium form of the cloth can be obtained by
finding its energy minimum. As in [4], the core of the
simulator is a point-by-point minimization algorithm that
modifies (relaxes) one grid point at a time to minimize its
energy as much as possible. The localness of this
relaxation process allows an efficient parallelization of the
algorithm, but from a numerical point of view it may
present (in general) two important difficulties [6]:

1. Slow convergence: in general, point-by-point
minimization does not handle large-scale features well.

2. Local minimum: instead of converging to the true
global minimum.

Fortunately, we have only observed the first of these in
our particular problem. The minimization technique
proposed in [4] copes with this first issue by combining a
standard Polak-Ribiere method with a multilevel scheme.
The intuitive idea is to employ coarse grids to determine
the overall form of the draped cloth, while the finest grid
or target grid is only necessary to obtain small-scale
details in the form. Quoting A. Brandt, "the multilevel
technique supplements the local processing with
increasingly larger scale processing" [6].

The combined algorithm, which we have denoted as
MPR (Multilevel Polak-Ribiere) can be define as:

Algorithm 1 MPR (ν1, ν2, γ): Multilevel Polack-Ribiere
V-cycle for a given target grid, where ν1 and ν2 denote the
number of iterations of the Polack-Ribiere method on the
descendant and ascendant parts of the cycle and γ denotes
the number of iterations on the coarsest grid.

 /* down */
for L=0..(num_levels-2)

relaxation Energy of grid[L] with Polak-
Ribiere Method (ν1 times)

restrict grid[L] to grid[L+1]
copy grid[L] to grid_old[L]

/* coarsest level */
L = num_levels-1
store grid[L] in grid_old[L]
relaxation Energy of grid[L] with Polak-Ribiere

Method (γ times)

/* up */
for L=(num_levels-2)..0

difference diff[L+1]=grid[L+1]–grid_old[L+1]
prolong diff[L+1] to diff[L]
update grid[L] = grid_old[L] + diff[L]
relax Energy of grid[L] with Polak-

Ribiere Method (ν2 times)

The transfer operators are used to connect the grid
levels. The restriction operator transfers values from a
finer to a coarser level while the prolongation operator
maps data from a coarser to a finer level.

∆Ε/τ

Target Grid:
128x128
elements

0

1500

3000

4500

7 6 5 4

Number of Grid Levels

Y

Fig 2. Benefits of the multilevel technique using a
MPR(1,1,5) cycle. ∆Ε/τ denotes the reduction of
energy obtained per second on a SGI O2.

Figure 2 shows the benefits of the multilevel technique

using the average energy reduction per unit time (in
seconds) as a metric. The results have been obtained with
a MPR(1,1,5) cycle using a 1282 grid simulation. The
execution time measurements have been made on a SGI
O2 workstation equipped with a MIPS R10000
microprocessor running at 250 MHz. As can be observed,
going down to the coarsest grid dramatically improves the
performance of the algorithm.

To reduce progressive asymmetry errors the point-by-
point minimization employed in [4] was based on a
Jacobi-like approach for the update of the grid point
coordinates (following the analogy with the well-known

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Jacobi iterative method for solving linear systems of
equations): it used two grids, one for the previous position
and another for the new one, so that all the new positions
were computed taking only the original ones into account.

We have improved the H. Ng approach by overwriting
the point coordinates as soon as new positions are
calculated. In this way, not only are the memory
requirements of the optimization process reduced but so
too is the execution time to find the solution. However, we
should remark the order in which points are selected for
relaxation has to be chosen carefully to avoid asymmetric
errors. Among the different ordering strategies we have
investigated, the best results have been obtained using a
four-color interleaved update and an alternating zebra-like
ordering (red and black rows are not only interleaved but
also processed in opposite directions).

 Figure 3 compares the three different update strategies
using a MPR(1,1,5) cycle for different grid sizes. Both,
the zebra and the four-color updates outperform Jacobi,
the former being the best choice in most cases. Compared
to Jacobi, the improvement varies from around 40% for a
1282 cloth to more than 50% for a 10242 size.

∆Ε/τ (%)

0%

20%

40%

60%

80%

100%

128 256 512 1024
Cloth Size

Jacobi 4-Color Zebra
Fig 3. Performance of three different update
strategies using as a metric the reduction of
energy obtained per second (∆Ε/τ) on a SGI O2.

Finally, and just to give an example of the simulator
capability, figure 4 shows cloth with three fixed points.
The appearance of the cloth is satisfactory.

Fig 4. Cloth with three fixed points.

3 Parallel Implementation

One of the main advantages of the point-by-point
minimization technique lies on its inherent degree of
parallelism, which can be easily expressed using either
OpenMP directives (distributing the iterations of the for
loop that sweeps the different elements of the cloth across
threads) or the message passing paradigm (applying the
general principles of domain decomposition). Indeed, the
relaxation process on the finest level, i.e. without
considering the multilevel strategy, scales almost linearly
on the investigated systems using both OpenMP and MPI.
The contribution of the other components of the MPR
algorithm (copy, update, difference and grid transfer
operators) to the execution time are less significant than
the minimization cost. But in any case, they are also
parallel by nature and like the relaxation on the finest grid,
they do not present any kind of complications either.

 However, given a certain number of processors the
parallel version is only worthwhile beyond a certain cloth
size. Due to the multilevel treatment of the cloth, this
means that from some MPR level, which we have denoted
as the critical level (to be precise, in our code the critical
level is the level in which all processes/threads have to
process two lines), a parallel implementation cannot
improve the execution time of its sequential counterpart.
Indeed, it can deteriorate the performance due to an
unsatisfactory communication- to-computation ratio (from
a message-passing point of view) or the overheads
associated with short loops (from an OpenMP point of
view). This problem, which is very common in other
multi-level algorithms [7,8], may be alleviated in some
cases by setting the number of grid levels such that the
maximum level is the critical one. However, for the MPR
algorithm, the execution time improvement of this
approach does not compensate for the numerical
deterioration of the algorithm (note that, as we have
shown above, from a numerical point of view by far the
most efficient strategy is to choose the coarsest level as
coarse as possible).

Time Spent
on Each Grid

Level (%)

0%

20%

40%

60%

80%

100%

128 256 512 1024
Grid Size

Other Levels

3rd Level

2nd Level

Finest (1st)
Level

Fig 5. Time spent by the MPR algorithm on each
grid level for different grid sizes on a SGI O2.

Fortunately, as figure 5 shows, the time spent by the

MPR algorithm on the very coarse levels (below the
critical one) is only a small fraction of the total execution
time which makes the implementation of an

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

agglomeration strategy attractive [7], i. e. adjusting the
number of processors/threads as the problem size
decreases and even using only one single processor/thread
on very coarse levels.

From a message-passing point of view, this scheme
makes implementation laborious since at sub-critical
levels it is necessary to dynamically rearrange the
communication patterns and grid distributions. However,
it can be implemented easily with OpenMP, just by
changing the number of threads below the critical level.
Our first attempt consisted in controlling the number of
threads with the omp_set_num_threads function,
which seems to fit perfectly with this kind of hierarchical
applications, but the experimental results have been
disappointing so far. In this work, the agglomeration has
been implemented through the #pragma omp master
directive, i.e. from the critical level, only the master
thread does the calculations.

Sequential
Processing

critical level

boundaries
exchange

Global
all-to-all

communication

Replication

Sequential
Processing

critical level

boundaries
exchange

Global
all-to-all

communication

Replication
Fig 6. MPR replication-based simulator.

As a reference, we have compared the performance of

the OMP version with a MPI implementation based on a
1-D decomposition and a data replication operation (see
figure 6), so that from the critical level all the processes
can independently perform the rest of the computation.
Although it could be argued that a better MPI
implementation may be obtained by adjusting the number
of processors as the cloth size decreases, this
implementation is conceptually more similar to the
investigated OpenMP version.

4 Experimental Results

4.1 SGI Origin 2000

Figure 7 shows the parallel efficiencies achieved with

the OpenMP and the MPI simulators in the SGI O2K. As
can be seen, its NUMA architecture does not impose any
important performance degradation in the OpenMP
version, whose efficiencies can be even better than those
obtained with MPI. Focusing on the OpenMP simulator,

data distribution can be effectively done when data are
initiated through the Origin first-touch policy using an
appropriate parallel loop whose iterations are distributed
conveniently among the processors. However, we should
remark this technique only allows a page-based
distribution (there is not element granularity but page
granularity), which may be inadequate, especially when
coarse levels are processed. Obviously, instead of forcing
a reduction in the degree of parallelism with the master
directive in order to steer clear from this problem, it can
be avoided by padding the array to separate data blocks by
at least one page of memory. However, it is our personal
opinion that this technique requires a level of manual
tuning not easily justifiable with the easy-to-parallelize
principles of OpenMP.

O2K

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16
Processors

E
ff

ic
ie

n
cy

128x128 OMP

128x128 MPI

512x512 OMP

512x512 MPI

Fig 7. Parallel efficiency obtained by the OpenMP
and MPI simulators on the SGI O2K.

128x128 O2K- MPI

0

2

4

6

8

10

12

1 2 4 8 16

Processors

Ti
m

e
 (

s)

Replication

Communication

Computation

Fig 8. Execution time profile obtained with the
MPI simulator on the SGI O2K.

Figure 8 shows an execution time profile of the MPI-
based simulator for the 1282 cloth size (the smallest size
considered). The communication cost shown in this figure
only accounts for the boundary exchange up to the critical
level, while the replication cost accounts for the global
communications required to replicate data and the
computations below the critical level (i.e. computations
that cannot be done in parallel). As can be seen,
replication cost is the main reason behind the poor
performance exhibited in the sixteen-processor case. This
measure explains why the OpenMP version achieves
better performance in this case, despite the problems
mentioned above. For larger cloth sizes, the impact of the

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

data replication is not so important since its overhead (in
absolute values) is independent of the cloth size (note that
the size of the critical level only depends on the number of
processors). For the sixteen-processor simulation for
example, replication cost ranges from the significant 45%
illustrated in figure 5 to a mere 5% for the 5122 cloth size.

Finally, it is also interesting to note that the boundary-
exchange related cost is not an important issue in this
case. For small problem sizes, it is insignificant compared
to the replication cost (for the 1282 case, it just represents
a mere 7% in the sixteen-processor simulation), while for
large problem sizes they are of the same order.

4.2 Sun HPC 6500

Figure 9 shows the efficiency data obtained in the SUN
HPC 6500 system. Results are (qualitatively) very similar
to those obtained in the SGI O2K, i.e. for small problem
sizes OpenMP outperforms MPI due to the replication
cost (see figure 10), while for large problem sizes, the
overhead associated with data replication becomes
insignificant and the MPI simulator achieves better
performance.

SUN

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16
Processors

E
ffi

ci
e

n
cy

128x128 OMP

128x128 MPI

512x512 OMP

512x512 MPI

Fig 9. Parallel efficiency obtained by the OpenMP
and MPI simulators on the SUN HPC 6500.

128x128 -SUN- MPI

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16

Processors

Ti
m

e
 (

s)

Replication

Communication

Computation

Fig 10. Execution time profile obtained with the
MPI simulator on the SUN HPC 6500.

However as could be expected, OpenMP scales better

in this system than in SGI O2K due to the benefits of the
UMA architecture: even for the 1282 problem, OpenMP
achieves a satisfactory efficiency of about 0.67 in the

sixteen-processor case. In addition, the benefits of the
agglomeration technique (i.e. using the master directive)
experienced in the SGI O2K are in this case almost
negligible.

Regarding the MPI version and compared to the SGI
O2K, the communication and replication costs are slightly
better in this system although we should note that the
computation cost is around 50-70 % lower in the SGI
O2K (see figure 13).

4.3 IBM SP2

SP2

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16
Processors

E
ff

ic
ie

n
cy

128x128 OMP

128x128 MPI

512x512 OMP

512x512 MPI

Fig 11. Parallel efficiency obtained by the
OpenMP and MPI simulators on the IBM SP2.

Figure 11 shows the parallel efficiency obtained on a 16-
way SMP node of an IBM SP2 system. Unlike the other
systems under study, OpenMP has always outperformed
MPI, although the performance becomes similar as the
problem size increases. The results for the OpenMP
version are very similar to those obtained on the SUN
HPC system, the benefits of the agglomeration technique
also being negligible in this case.

128x128 SP2- MPI

0

2

4

6

8

10

12

14

1 2 4 8 16

Processors

Ti
m

e
 (

s)

Replication

Communication

Computation

Fig 12. Execution time profile obtained with the
MPI simulator on a SMP node of an IBM SP2.

Regarding the MPI version (see figure 12), replication

also limits the performance for small cloth sizes.
However, the communication cost of the MPI version is
larger than in the other systems. For example, for the 5122
size, the sixteen-processor simulation expends 20% of the
execution time in communication above the critical level,
while for other systems the percentage is only around
10%.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

4.4 Performance Comparison

Finally, we have compared the results obtained from the
three systems using as a metric the execution time gain
with regard to the SUN HPC system.

512x512 (OMP)

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8

0 4 8 12 16
Processors

G
ai

n

Gain (O2K)
Gain (SP2)

512x512 (MPI)

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8

0 4 8 12 16
Processors

G
ai

n

Gain (O2K)
Gain (SP2)

Fig 13. Gains in the SGI O2K and the IBM SP2
compared to the SUN HPC 6500 using OpenMP
(on the left) and MPI (on the right).

As figure 13 shows, the performance of the SP2
system using OpenMP is qualitatively similar to the SUN
HPC but with an improvement in the execution time of
about 60-70%. In the SGI O2K, the gain also starts as
70%, but it drops with the number of processors, reaching
40% for the sixteen-processor case.

For the MPI simulator (figure 13), the results are just
the opposite. In the SGI system the gain remains above
60%, while in the SP2 it drops linearly with the number of
processors due to the communication cost.

5 Conclusions and Future Research

To sum up the previous sections, the overall objective of
our research is to develop a realistic cloth simulator.
Parallel computing is highly recommended for this
problem in order to reduce the expensive computational
cost and deal with more realistic scenarios. As other
hierarchical applications, what limits the scalability of the
MPR algorithm is the multilevel treatment of the cloth. In
any case, for the model problem studied, OpenMP offers
an effortless way to get a parallel version of the code and
also achieves satisfactory efficiencies using up to 16
processors in the three different investigated platforms.

In the IBM SP2, the OpenMP version has always
achieved better results than the MPI simulator. However,
in the SGI O2K and the SUN HPC 6500, the message-
passing version of the simulator outperforms its OpenMP
counterpart for large problem sizes. The page-based
decomposition of the SGI O2K only limits its
performance of the OpenMP version when the ratio
between the cloth size and the number of threads is small.
The main problem of the MPI version is the cost of data
replication, but this cost only depends on the number of
processors, which makes this overhead insignificant for
large problem sizes.

However we should remark that for moderate-size
parallelism, which is the target of this research (the size of
current departmental servers, which is the most common
computing platform on CAD-CAM environments, ranges
from 4-way to 16-way SMP system) the differences in
performance do not justify the extra coding effort required
by MPI.

Finally, we should note that the algorithm presented in
this paper has to be considered as the building block of a
more general simulator that has to include collision
detection and to allow multi-block simulations. Indeed,
we are currently studying a multi-block MPR algorithm
where the cloth is divided into a set of pieces that are
treated by the MPR algorithm independently (apart from
the block connections). In this way, the simulator can deal
with geometric complexities and can be applied to more
general cloth samples than rectangular grids.

6 Acknowledgments

This work has been supported by the Spanish research
grant TIC 99-0474 and by the European Community
programme "Access to Research Infrastructure action of
the Improving Human Potential Programme (contract No
HPRI-CT-1999-00026) ". We would also like to thank
Centro de Supercomputación Complutense (CSC), Centre
Europeu de Parallelisme de Barcelona (CEPBA) and
EPCC for providing access to the parallel systems
employed in this work.

7 References

[1] S. Romero, L. F. Romero and E.L. Zapata."Fast cloth

simulation with parallel Computers". Proc. 6th Int'l Euro-Par
Conference (Euro-Par'2000). Munich, Germany, 2000.

[2] D. H. House and D. E. Breen. "Cloth Modeling and
Animation". Published by A.K. Peters, Ltd. June 2000.

[3] C. Feynman. "Modelling the appearance of Cloth".
Master's thesis, Dept. of EECS, Massachusetts Inst. of
Technology, Cambridge, Mass., 1986.

[4] H. N. Ng, R. L. Grimsdale and W. G. Allen. "A system
for modelling and visualization of cloth material".
Computers and Graphics, Vol. 19 (3), pp. 423-430, 1995.

[5] H. N. Ng and R. L. Grimsdale. "Computer Graphics
Techniques for Modeling Cloth". IEEE Computer Graphics
and Applications, Vol. 16 (5), pp. 28-41, September 1996.

[6] A. Brandt. "Multiscale Scientific Computations: Review
2000". Proc. 10th Copper Mountain Conferences on
Multigrid Methods, Copper Mountain, CO. April 2001.

[7] M. Prieto, R. Santiago, D. Espadas, I. M. Llorente and
F.Tirado. "Parallel Multigrid for Anisotropic Elliptic
Equations". Journal of Parallel and Distributed Computing,
vol. 61, no. 1, pp. 96,114. Academic Press, 2001.

[8] M. Prieto, R. Santiago, I. M. Llorente and F.Tirado. ”A
Multigrid Solver for the Incompressible Navier-Stokes
Equations on a Beowulf-class System”. Proc. of the ICPP
2001. Valencia, September 2001.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

