
H/S Collaborative Development of a Ubiquitous Processor Free from Instruction
Scheduling and Pipeline Disturbance

Masa-aki Fukase
Graduate School of Science and Technology

Hirosaki University
Hirosaki, Japan

slfuka@eit.hirosaki-u.ac.jp

Tomoaki Sato
C&C Systems Center
Hirosaki University

Hirosaki, Japan
tsato@cc.hirosaki-u.ac.jp

Abstract—Parallelism is one of fundamental concepts of recent
years’ trend in developing cutting edge VLSI processors in
order to achieve power conscious high performance. HCgorilla
is a ubiquitous processor that does not make much of high
clock speed, but seeks high performance by applying the
architecture of multicore and multiple pipeline. Each of two
symmetric cores is composed of Java compatible media pipes
and cipher pipes for cipher streaming. Similarly to other
processors, HCgorilla is also accompanied with the awkward
issue of instruction pipelining. Focusing on this, this paper
shows how H/S collaborative parallelism can be used to
accelerate the processing speed of the HCgorilla. The novelty
of utilizing media pipes as fully as possible owes to a triple
scheme for a waved MFU (multifunctional unit), multistack,
and interleaved issue of related codes. Since this is useful for
out-of-order arithmetic issue in conjunction with parallel stack
operation, the triple scheme achieves a processor system free
from not only instruction scheduling but also pipeline
disturbance. The triple scheme is applied for the improved
version of an HCgorilla chip and parallelizing compilers.
According to H/S collaboration, these parallelizing steps are
moved to web servers. This surely lightens the burden of
mobile platforms.

Keywords-parallelism; H/S collaboration; ubiquitous
processor; instruction scheduling

I. INTRODUCTION1
Parallelism has been dominating in the recent years’

processor market ranging from embedded to high-
performance VLSI systems, and the degree of parallelism
continues increasing. This trend has been driven by the
demand for power conscious high performance especially in
ubiquitous fields. To take advantage of the increasing degree
of parallelism, sophisticated H/S co-design scheme is
indispensable. Actually, the hardware parallelism of
multicore and multiple pipeline requires efficient software
support for abstracting TLP (thread level parallelism) and
ILP (instruction level parallelism). In addition, load
balancing and instruction scheduling schemes are needed for
cores and pipelines, respectively.

HCgorilla is a ubiquitous processor that does not make
much of high clock speed, but seeks high performance by

This work is supported by VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Synopsys, Inc.

applying the architecture of multicore and multiple pipeline
[1, 2]. Each of two symmetric cores is composed of Java
compatible media pipes and cipher pipes for cipher
streaming. HC is the abbreviation of hardware cryptography.
In order to achieve effective media processing over internet,
strong conscious has been paid for utilizing floating point
arithmetic and Java IP (intellectual property).

Floating point arithmetic is indispensable for basic
algorithms of image processing, etc. Since the floating point
arithmetic is used in conjunction with integer arithmetic, this
requires complicated instruction scheduling to map codes
with different latencies on arithmetic execution units.
Although the previous version of HCgorilla needed
instruction scheduling together with parallelizing executable
codes [1], an improved version is free from such process [2].
This is due to the wave-pipelining of a multifunctional unit.

On the other hand, Java IP is required to receive benefit
for media processing so far developed. Thus, HCgorilla’s
media pipe is able to execute Java bytecodes and do stack
operation following JVM (Java virtual machine) style.
However, stack machines have been generally recognized to
be opposed to ILP due to in-order serial process [3]. That is,
another kind of pipeline disturbance due to the stack
machine’s serial processing has still remained even if the
problem of instruction scheduling is solved.

As a solution for the awkward issue of the instruction
pipelining due to different latencies and the stack machine’s
serial processing, H/S collaborative parallelism is really
reasonable. Actually, the VLSI trend of parallelism owes
both hardware and software techniques. However, software
requires rather huge resource, power, cost, etc. This surely
restricts the scale of systems, and is inconvenient for
ubiquitous computing. Thus, hardware parallelism is rather
practical in collaboration with software support in order to
achieve a processor system free from not only instruction
scheduling but also pipeline disturbance.

According to this policy, a triple scheme for a waved
MFU (multifunctional unit), multistack, and interleaved
issue of related codes is exploited in this study. The waved
MFU is free from the scheduling of arithmetic issue. Then,
the combination of multistack and interleaved issue is useful
for parallel stack operation. The triple scheme is applied for
the improved version of an HCgorilla chip and parallelizing
compilers.

9th IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-4147-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICIS.2010.45

57

II. H/S COLLABORATIVE PARALLELISM
H/S co-design does not mean simply relying on software

components for sophisticated multimedia processing, but
implicitly supporting hardware activity by the potential of
software. Table 1 summarizes the H/S collaborative scheme
established in designing HCgorilla. This surveys hardware
and software techniques, the object of collaboration, the
effect of collaboration, and contribution for ubiquitous
applications. Multicore architecture is basically promising
for mobile processors as well as PC processors to achieve
high performance with less power.

TABLE I. OVERVIEW OF THE H/S COLLABORATION SCHEME

Although software parallelism has put much emphasis on

TLP, ILP is still an important subject even for multithreaded
processors. Actually, multithreaded and multicore processors
include scalar units that execute arithmetic instructions in
parallel. With respect to this viewpoint, the hardware
parallelism of multiple pipeline is more important to fully
utilize software parallelism. Multiple pipeline is inevitably
encumbered by instruction scheduling. This is one of the
most important issues to fully utilize multiple pipeline like a
regular scalar unit.

The essence of H/S collaborative parallelism for the
awkward instruction pipelining lies in how to merge scalar
units and issue executable codes in parallel. Incorporating
MFU in EX stage frees anxious instruction scheduling,
because it takes the same latency to execute any function.
However, it surely reduces clock speed. This is caused by the
scale up of a multifunctional circuit. Such degradation can be
recovered by wave-pipelining, because it has potential to
achieve higher speed with less occupied area. Thus, this
study finds usefulness in the wave-pipelining of the resultant
MFU.

In order to fully utilize the waved MFU, further
improvement is required. The waved MFU access stacks to
cover Java, which is well suited to follow the global
engineering of platform neutrality, multithreading for
dynamic interaction over Internet, etc. Thus, multistack is
crucial for both fully utilizing the waved MFU and

sustaining stack machine’s IPC. The multistack is achieved
by providing stacks equal to the wave degree of the waved
MFU. Each stack is provided with a dedicated arithmetic
code. Then, those arithmetic codes are interleaved in order to
fully utilize the waved MFU. Both the instruction fetch
according to an LIW (Long Instruction Word) mode and the
operation of multistack are interleaved to achieve
disturbance free pipelined arithmetic processing.

Fig. 1 exactly illustrates multiple pipeline structure in
conjunction with multistack and waved-MFU. The parallel
degree of the multistack is made correspond to the wave
degree of the execution stage. In this case the degree is three
for convenience sake. The executable codes are output from
an LIW compiler that extract ILP, and is stored in an
instruction cache. The issue of stack-related codes like load,
store, arithmetics are interleaved. Also, the stack operations
of pop up and push down are interleaved. The twofold
interleaving makes the stack related codes occupy a single
stack continuously by one clock.

Figure 1. Multiple pipeline structure in conjunction with multistack and

waved-MFU.

Fig. 2 illustrates the interleaved LIW issue in the case of

simple summation. Although more practical summation is
carried out for floating point numbers, integer summation is
shown to focus on interleaving. Anyway, the simple
summation is frequently used, for example, as a part of a
normalized correlation factor. This factor is used in stereo
matching, which is a basic obstacle detection algorithm for
the image processing of ASV (advanced safety vehicle) and
ITS (intelligent transport system). Since the parallel degree is
three corresponding to Fig. 1, the source code is unfolded
into three stack codes, and these are interleaved. Here,
“1iadd” is an executable code that adds the stack’s first top
and the second top, and pushes down the stack’s first top.

III. HARDWARE DESIGN
HCgorilla is a processor architecture designed for the

ubiquitous computing of media processing and cipher
streaming as well. Basically, HCgorilla is composed of two
symmetric cores to cover bidirectional communication. Fig.
3 shows the hardware organization of HCgorilla,5 that is the
fifth version of HCgorilla designed in this study. Each core
has two arithmetic media pipes and a cipher pipe. The
arithmetic pipe has a double stack and a two-waved MFU.
Since the parallel degree of the media pipe is two, each core
is able to execute four stack-related codes in parallel

58

following JVM style. The cipher pipe with a random number
generator executes a SIMD mode cipher codes.

Figure 2. Interleaved issue.

Figure 3. Hardware organization of HCgorilla.

HCgorilla.5 has been implemented by using a 0.18-μm

CMOS chip [2]. Table 2 summarizes the architectural
aspects of the HCgorilla.5 chip compared with those of
dominant versions so far developed. Although HCgorilla.4
improves the HCgorilla.3 chip [1] that lacks floating point
units, it requires instruction scheduling between floating and
integer units. HCgorilla.5 is free from this issue due to the
use of the two-waved MFU and the double stack. Interleaved
issue to the double stack is useful for sustaining IPC or full
utilization of the waved MFU. The HCgorilla.5’s instruction
set is composed of 2 cipher codes and 102 media codes. 58
media codes are Java compatible. The parallel execution of
media codes and cipher codes is indispensable for the basic
ability of HCgorilla that unifies Java features, strong
security, low power, and high throughput.

TABLE II. SPECIFICATIONS OF HCGORILLA FAMILY

IV. SOFTWARE DESIGN
The design of software for HCgorilla includes Java as is

described in Table 1. Fig. 4 illustrates the flow of Java
language processing for HCgorilla, which is compared with
that for commercial processors. The turning point of the both
flows is the processing of class files. While commercial
processors directly receive them via Internet to take the
benefit of platform neutrality, HCgorilla receives the product
of class files produced in web servers. The processing of
class files is supported by the software composed of a Java
interface and parallelizing compilers.

Figure 4. Java language processing flow for HCgorilla vs. commercial

processors.

A main idea shown in Fig. 4 is moving the necessary

parallelizing steps from the processor to a web server. These
are installed in web servers, and finally outputs executable
parallel codes to Internet. They are directly run on HCgorilla.
Since the small scale is imposed on ubiquitous clients,
installing the software support in external large servers is

59

very convenient for HCgorilla-embedded small platforms.
Although any processor is allowed to run Java by installing
JVM and JIT (just-in-time compiler), this needs more
software load and memory space. Such imposition surely
degrades response time, power consciousness, usability, cost,
and the performance of small mobile devices.

Fig. 5 shows more clearly the physical arrangement of
ubiquitous clients embedded with HCgorilla chip, web
server, software support, and parallelizing compilers. Such
architecture can be easily established by simply installing the
software support in web servers. For example, the software
support may run on proxy servers.

Figure 5. Global architecture of HCgorilla, web server, software support,
and parallelizing compiler.

The one of anticipative drawbacks of this approach is

web delays. Obviously, it will cost some time to transfer the
executable code over the internet. However, the transfer of
class files to commercial processors also takes some time. In
addition, the transfer time is not so important for the
evaluation of web delays [4]. The main factor of web delays
is the response time of web servers. Another apprehension
about this approach is to keep security during the transfer.
However, getting the executable codes over the internet does
not yield a problem of trust, because Java is basically seeks
for global standard in Internet.

Table 3 summarizes the granularity of parallelism of the
software support. According to HCgorilla’s parallelism, the
parallelizing compilers for HCgorilla are a multicore
compiler and LIW compiler. Their role is to abstract media
codes that are executable in parallel by the double core and
multiple pipelines. In order to fully utilize the parallelism of
multicore, TLP is taken into account of. Although
multithreading is not always only one software technique for
parallelizing applications run on multicore chips, it is not the
main concern of this study.

TABLE III. GRANULARITY OF PARALLELISM

Fig. 6 shows the basic algorithm of the HCgorilla’s
multicore compiler designed to abstract TLP from executable
serial codes or the Java interface output. The multicore
compiler judges threading by looking for return process that
expresses the end of instructions sequence or thread. Other
abstraction units like functions and loops should be
incorporated in the next step of this study. Fig. 7 shows the
basic algorithm of the LIW compiler that abstracts ILP from
each thread and does reorder and renaming as shown in. The
LIW compiler outputs the codes executable in parallel by the
media pipes. The output is mapped on an instruction cache
within each core.

Figure 6. The algorithm of HCgorilla’s multicore compiler.

Although main techniques illustrated in Figs. 6 and 7 are
not so specialized, there exist some novelties. They are as
follows. Firstly, the LIW compiler basically reflects the
parallel structure of the execution stage and abstracts codes
that use one of multiple execution units. Other codes that do
not use execution units are not the target of the LIW
compiler, because they are basically processed in serial.
Secondly, HCgorilla’s jump codes do not need renaming.

60

Generally, renaming or the readdressing of parallelized code
sequences is required for both TLP and ILP abstraction in
order to avoid the conflict of data cache access. This
complements the logical share of data cache by the cores.
Some of jump codes direct absolute addresses, and such
codes need renaming by modifying their destination
addresses in parallelization. However, renaming is not
necessary for HCgorilla’s jump codes, because all of the
HCgorilla’s jump codes point destination indicated by the
sum of the address of itself and the operand.

Figure 7. The algorithm of HCgorilla’s LIW compiler.

Table 4 summarizes the specifications of the

implementation example of the software support. While the
Java interface is written in C, the parallelizing compilers
have been written in Java. These are combined within web
servers as is shown in Fig. 5.

TABLE IV. SPECIFICATIONS OF THE SOFTWARE SUPPORT

V. EVALUATION
The effectiveness of the idea described in this paper is

shown in view of hardware and software aspects. Fig. 8

shows the effect of the triple scheme for a waved MFU,
multistack, and interleaved issue by using an arithmetic test
program that sums integers. The running time is derived
from the analysis on the space-time chart drawing the
pipeline behavior of the media pipes. While HCgorilla.4
executes four threads at 400 MHz, HCgorilla.5 does eight
threads at 200 MHz. Since the effect of arithmetic
parallelism is mostly dominant, HGgorilla.5 is faster
excepting upper limit x is small. Small x reflects the
dominancy of clock speed. In running practical application
programs that repeat similar multimedia process, HCgorilla.5
is more superior in view of parallelism.

Figure 8. Running time of an arithmetic test program.

The prototyping compilers shown in Table 4 have been

evaluated by using arithmetic media codes for simple
summation and combination, Tower of Hanoi, and a Java
benchmark of SPEC JVM98. The metrics are memory space,
running time, and the effect on performance. Fig. 9 shows
IPC before and after parallelization of the test programs of
simple summation and combination. The derivation of IPC is
similar to that of running time shown in Fig. 8.

Fig. 9 shows that IPC increases after parallelization.
Thus, the feasibility of the parallelizing compilers in
combination with multiple pipelines is obvious. Then, 60%
improvement is achieved for Summation and 20% for
Combination. The reason why the improvement of
Summation is larger than Combination is because
Summation’s ILP is more explicit. Since the target processor
has only two cores, the data presented in Fig. 9 show not so
large improvement. This implies that marginal improvement
will surely increases as the number of cores in the case of
simply structured programs easily divided into parallel
codes. This is worth of effective feedback from the
evaluation of parallelizing compilers to hardware design.

61

Figure 9. IPC before and after parallelization.

Table 5 summarizes the effect of parallelization.

Although the evaluation is primitive, it shows the
reasonability of the parallelizing compilers. Tower of Hanoi
cannot be handled by the prototyping compilers. Occupied
words are the total number of instruction cache addresses.
The length of thread 1 or thread 2 is shorter than the length
of serial codes before compilation due to the effect of
parallelization. The occupied words of instruction cache have
been determined by the great of thread1 and thread2. The
occupied area of HCgorilla’s instruction cache has been
measured to optimize the hardware chip performance like
pipeline degree, clock speed, and power dissipation. The
total number of clock cycles has been counted to measure
running time. The number of clocks and running time have
been derived by analyzing pipelined behavior on a time and
space coordinates.

TABLE V. EFFECT OF PARALLELIZATION

In view of the ubiquitous network shown in Fig. 5 that is
a long term goal of this study, the overhead analysis about
the cost for running the parallelizing compiler outside the
mobile client should be performed. In addition, practical gain
of using the parallelizing compiler must be clarified in more
detail in a multimedia streaming environment. How much
performance gain and power reduction can be achieved is
desirable for the H/S collaborative development.

VI. SUMMARY
This article has described the triple scheme for the

development of the ubiquitous processor HCgorilla free from
not only instruction scheduling free but also pipeline
disturbance. The triple scheme has been applied for the
HCgorilla.5 chip and the development of parallelizing
compilers according to H/S collaborative development
strategy. Although more implementation examples and
experiments are needed to prove the proposed approach, the
effect of the triple scheme on performance and the feasibility
of software support have been shown.

The next step of this study will be a more in depth
analysis on (1) HCgorilla.5’s advantage against that of the
version 4 by using more practical test programs with floating
point arithmetic operations, (2) practical gain of using the
parallelizing compilers in a multimedia streaming
environment, (3) quantitative feedback for the H/S
collaborative development through the overall evaluation of
the HCgorilla chip and the parallelizing compilers, (4)
overhead about the cost for running the parallelizing
compiler outside the mobile client.

REFERENCES
[1] M. Fukase, K. Noda, A. Yokoyama, and T. Sato, “Design and Chip

Implementation of the Ubiquitous Processor HCgorilla,” Proc. of
ASP-DAC 2009, pp. 129-130, Jan. 2009.

[2] M. Fukase, R. Murakami, and T. Sato, “Design and Chip
Implementation of an Instruction Scheduling Free Ubiquitous
Processor,” ASP-DAC 2010 (In press).

[3] S. Nakagawa and H. Yanagi, “Development of Realtime JavaTM
Processor Execution Core,” OMRON TECHNICS, Vol. 40, No. 1, pp.
38-42, 2000.

[4] M. Zari, H. Saiedian, and M. Naeem, “Understanding and Reducing
Web Delays,” Computer Magazine, Vol. 34, No. 12, pp. 30-37, Dec.
2001.

62

