
Compiler and Runtime Support for Running OpenMP Programs on 
Pentium- and Itanium-Architectures 

Xinmin Tian1, Milind Girkar1, Sanjiv Shah2, Douglas Armstrong2, Ernesto Su1, Paul Petersen2 
1Intel Compiler Laboratory, Software Solution Group, Intel Corporation 

13600 Juliette Lane, Santa Clara, CA 95052, USA  
2KAI Software Laboratory, Software Solution Group, Intel Corporation 

21906 Fox Drive, Champaign, IL 61820, USA 
{Xinmin.Tian, Milind.Girkar, Sanjiv.Shah, Douglas.Armstrong, Ernesto.Su, Paul.Petersen}@intel.com 

 
Abstract 

Exploiting Thread-Level Parallelism (TLP) is a promising 
way to improve the performance of applications with the 
advent of general-purpose cost effective uni-processor and 
shared-memory multiprocessor systems. In this paper, we 
describe the OpenMP∗ implementation in the Intel C++ 
and Fortran compilers for Intel platforms. We present our 
major design consideration and decisions in the Intel 
compiler for generating efficient multithreaded codes 
guided by OpenMP directives and pragmas. We describe 
several transformation phases in the compiler for the 
OpenMP* parallelization. In addition to compiler support, 
the OpenMP runtime library is a critical part of the Intel 
compiler. We present runtime techniques developed in the 
Intel OpenMP runtime library for exploiting thread-level 
parallelism as well as integrating the OpenMP support 
with other forms of threading termed as sibling parallelism. 
The performance results of a set of benchmarks show good 
speedups over the well-optimized serial code performance 
on Intel Pentium- and Itanium-processor based systems.   

Keywords: Parallelization, Hyper-Threading technology, 
OpenMP, compiler optimization, thread-level parallelism, 
shared-memory multiprocessor  

1. Introduction 
The explicitly parallel computing technology behind the 
OpenMP shared-memory programming model [2,3,5,6] 
provides a rich set of features, which allow the compiler to 
exploit thread-level parallelism and optimize applications 
on Intel Architecture (IA) based platforms. Shifting most of 
the complex tasks from the programmer to the compiler 
encourages programmers to write and port program to fully 
take advantage of the available state-of-the-art architecture 
features, such as Hyper-Threading technology, to exploit 
thread-level parallelism and boost application performance 

The Intel C++ and Fortran compilers support the OpenMP 
pragmas and directives in languages C++/C and Fortran95, 
on Windows and Linux platforms and on IA-32 [11] and 
Itanium Processor Family (IPF) architectures.  

The Intel OpenMP implementation in the compiler strives 
to: (a) generate multithreaded code which gains a true 
speedup over optimized uniprocessor code, (b) integrate 
parallelization tightly with advanced interprocedure, scalar 
and loop optimizations such as intra-register vectorization 
[2, 4] and memory hierarchy oriented optimizations [9, 10] 
to achieve better cache locality and efficiently exploit 
multi-level parallelism, and (c) minimize the overhead of 
data-sharing among threads. In this paper, we describe the 
implementation of the parallelization phase in the Intel 
compiler for OpenMP support. The remainder of this paper 
is organized as follows. The Section 2 presents an overview 
of the Intel high-performance compiler. Section 3 describes 
design decisions made in the Intel C++/Fortran compiler for 
generating efficient multithreaded code guided by OpenMP 
directives or pragmas, including code transformation phases 
where the OpenMP parallelizer interacts tightly with other 
optimizations.  Section 4 gives a high-level overview of the 
software architecture of the OpenMP run-time library and 
presents the key features and techniques developed in the 
Intel OpenMP run-time library for the Intel compiler. The 
Section 5 show performance results of a set of benchmarks 
on IA-32 and IA-64 based platforms. Finally, concluding 
remarks can be found in Section 6.  

2. Compiler Overview 
The Intel C++ and Fortran compilers have a single common 
intermediate representation named IL0 for the C++/C and 
Fortran95 languages. Hence, the OpenMP directive-guided 
parallelization, as well as a majority of other optimizations, 
is applicable through a single high-level transformation [2] 
irrespective of the high-level source language. Throughout 
the rest of this paper, we refer to the Intel C++ and Fortran 
compilers for Intel Pentium and Itanium processor family 
architectures collectively as “the Intel compiler”. In order to 
establish the context in which the OpenMP parallelization 
works, we give a brief overview of the Intel compiler for 
Pentium and Itanium processor-based platforms. 
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Inter-Procedural Optimization (IPO): this component 
includes points-to analysis and mod/ref analysis required by 
many other optimizations. Points-to analysis expands the 
capabilities of memory disambiguation by determining that 
which memory locations may be referenced by a memory 
reference.  

Multi-Entry Threading (MET): we have developed and 
implemented the new compiler technology named Multi-
Entry Threading (MET). The rationale behind MET is that 
the compiler does not create a separate compilation unit (or 
routine) for a parallel region or loop. Instead, the compiler 
generates a threaded entry and a threaded return for a given 
parallel region or loop [1,2].   

Multi-Level Parallelism (MLP): Intel compiler supports 
intra-register vectorization for Pentium family processor 
[2], and software pipelining for Itanium family processor 
for exploiting instruction-level parallelism (ILP) on top of 
exploiting thread-level parallelism (TLP). Exploiting MLP 
(TLP+ILP) ensures the compiler fully utilizes the rich set of 
performance features of Intel architecture for achieving the 
highest application performance. 

High-Level Optimization (HLO): those optimizations in 
HLO include loop transformations such as loop fusion, loop 
tiling, loop unroll-and-jam, loop distribution, profile-guided 
data prefetching, scalar replacement and data optimizations 
to improve data locality and reduce memory access latency.    

Other Scalar Optimization Components: Intel compiler 
implements an extensive set of scalar optimizations such as 
branch-merging, strength reduction, constant propagation, 
dead code elimination, copy propagation, partial dead store 
elimination, and partial redundancy elimination (PRE) [8]. 

Architecture-specific code generation components include 
instruction scheduling, register allocation, code ordering, 
advanced instruction selection, and global code scheduling.  

3. Implementation 
In order to support the OpenMP programming model, the 
Intel compiler has been extended throughout its various 
components. First, the IL0 intermediate representation was 
extended to represent the OpenMP directives/pragmas and 
clauses. The compiler front-end parses OpenMP directives 
(or pragmas) to generate consistent IL0 representation of 
OpenMP code for the compiler middle-end. The OpenMP 
parallelizer generates multithreaded codes based on IL0 
codes corresponding to OpenMP constructs. 

The design philosophy behind the implementation of the 
OpenMP programming model in the Intel compiler is that a 
single OpenMP parallelizer implementation is used across 
all languages (C++/C and Fortran 95) and architectures (IA-
32 and IPF). The Intel compiler generates multithreaded 
code that has references to a high-level run-time library API 
designed and developed at Intel KAI Software Laboratory. 

The following sections describe several transformations and 
optimizations for OpenMP parallelization.   

3.1 Compiler Front-End Support 
The compiler’s front-end generates an IL0 representation of 
the OpenMP code as shown in Figure 1, where the for loop 
has been lowered into if and goto statements after the IL0 
lowering phase. Each OpenMP pragma has been converted 
into an equivalent pair of IL0 directive and its matching end 
directive, which helps the WRN (work-region-node) graph 
builder of the OpenMP parallelizer define the boundaries of 
the OpenMP constructs.  

Besides syntax and semantics checking, one of the issues 
the FE needs to address is finding the implicit attributes of 
variables that are not explicitly listed in a clause. In this 
example, the array ‘a‘ and induction variable ’k‘ are listed 
as shared and private, respectively. However, the array ‘b’ 
and variable ’x‘ are not specified in any clause.  Based on 
the OpenMP specification, the FE treats a locally declared 
automatic variable as a private variable of the OpenMP 
construct that immediately encloses it lexically. Thus, the 
variable x is added to the private list of the worksharing for 
construct.  

Figure 1. Parallel Region and Worksharing Loop Example 

Next step, the FE finds the implicit shared variables of the 
parallel region based on a rule in OpenMP specification --
“the default attribute is default shared” if the default clause 
is not specified. The results of the analysis is that the FE 
generates private(x) and shared(b) for the parallel construct. 
Note that register temps (e.g. t0 in Figure 1) created by the 
FE are treated as private in the BE.    

3.2 Pre-Pass Transformation 
The pre-pass performs the transformation that converts a 
parallel section to a parallel for loop, so the implementation 
of parallel sections construct can leverage the multithreaded 

void parwork() /* OpenMP C code sample */ 
{  double a[1000], b[1000]; 
    int        k; 
#pragma omp parallel shared(a) private(k) 
    {    int x; 
#pragma omp for schedule(dynamic) 
          for  (k=0; k<16; k++)  {  do_work(k, a, b, &x);  } 
    } 
} 
entry extern void  _parwork()  /* IL0 pseudo-code after Front-End */ 
{  DIR_PARALLEL QUAL_SHARED_VAR (a) QUAL_PRIVATE_VAR (k) 
                                 QUAL_SHARED_VAR (b) QUAL_PRIVATE_VAR (x) 
         DIR_LOOP  QUAL_SCHEDULE  (DYNAMIC) 
           k = 0(SI32);                       /* SI32 denotes the 32-bit signed int type */  
    L13:   if ( k < 16(SI32) )    { 
                    t0 = _do_work( k, &a[0(SI32)], &b[0(SI32)], &x); 
                    k = k + 1(SI32);    
                   goto L13; 
              } 
         DIR_END_LOOP 
   DIR_END_PARALLEL 
   return ; 
} 
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code generation of the parallel loop. Essentially, a parallel 
loop is generated and the loop trip count is the number of 
sections. In Figure 2(a), there are three sections inside a 
parallel sections construct, the pre-pass creates a parallel 
loop with trip count 3, see Figure 2(b).    

 void parsectfoo() 
{  int      y,  x[5000]; 
   float    w, z[3000];  
   double u, v[5000]; 
 
#pragma omp parallel sections shared(w, z, y, x, u, v) 
      {   
               w = floatpoint_sect(z, 3000); 
      #pragma omp section  
               y = myinteger_sect(x, 5000); 
      #pragma omp section 
               u = mydouble_sect(v, 5000); 
      } 
  } 
                (a) parallel sections before pre-pass 

b void parsectfoo() 
{  int      y,  x[5000]; 
   float    w, z[3000];  
   double u, v[5000]; 
 DIR_PAR_LOOP QUAL_SHARED(w, z, y, x, u, v) QUAL_PRIVATE(i
       for (id=1; id<=3; id++) { 
            switch (id) {  
                 case 1: w = floatpoint_sect(z, 3000);  break; 
                 case 2: y = myinteger_sect(x, 5000);  break; 
                 case 3: u = mydouble_sect(v, 5000);  break; 
            } 
       } 
 DIR_END_PAR_LOOP 
} 
               (b) generated parallel loop after  pre-pass 

 
Figure 2. Pseudo-code After Pre-Pass of Parallelization 

Given that the granularity of the parallel sections could be 
dramatically different, the static or static-even scheduling 
type may not achieve the best load balance. We decided to 
use the runtime scheduling for a parallel loop generated by 
the pre-pass in multithreaded code generation. Therefore, 
the decision regarding scheduling is deferred until run-time, 
and a better load balance can be achieved based on the 
decision made by the OMP_SCHEDULE environment variable 
and the OpenMP library at run-time.  

3.3 Multithreaded Code Generation 
The multithreaded code generator consists of many modules 
such as variable classification, privatization, array lowering, 
loop analysis, enclosing-while-loop generation for runtime, 
dynamic and guided scheduling, post-pass threadprivate 
handler and stack optimization. Essentially, it converts the 
OpenMP constructs to multithreaded code at the IL0 level. 
See the example in Figure 3. For the worksharing loop in 
the routine parwork with the scheduling type dynamic, the 
multithreaded code generation involves: (i) generating a 
runtime dispatch and initialization (__kmpc_dispatch_init) 

routine call to pass global loop lower-bound, upper-bound, 
stride, and all other necessary information to the runtime 
system; (ii) generating an enclosing while loop to dispatch 
loop-chunk at runtime through the __kmpc_dispatch_next 
routine supported in the library; (iii) localizing the loop 
lower-bound, upper-bound, and privatizing the loop control 
variable ‘k’ and local defined stack variable ‘x’. With the 
MET technology [1], one threaded entry, or T-entry1, is 
created within the parwork() for the parallel regions. The 
T-entry parwork_par_region() corresponds to the semantics 
of  the parallel region. The call __kmpc_fork_call spawns a 
team of threads to execute the threaded codes in parallel.  

Figure 3. Pseudo-code After Multithreaded Code Generation 

3.4 Aggressive Code Motion 
In this Section, we present an optimization -- aggressive 
code motion that lifts all read-only memory de-references 
from inside of a region/loop/section to outside of a region/ 
loop/section. Essentially, the idea is that we do pre-load a 
memory de-reference into a register temporary right after T-
entry, if a memory de-reference can be proved to be a read-

                                                                 
1  In [1], T-entry refers strictly to the entry point of a threaded region, or 

T-region, which is the section of code enclosed between a T-entry and 
its matching T-return. In this paper, we use T-entry to refer to the 
threaded entry or region, as this use is unambiguous from the context 
and often interchangeable. 

void parwork() /* OpenMP C code sample */ 
{  double a[1000], b=1000;  
    int        k; 
#pragma omp parallel shared(a, b) private(k) 
    {    int x = 7; 
#pragma omp for schedule(dynamic) 
          for (k=0; k<16; k++) {  x = x + b*b; a[k] = a[k] + b * x;  } 
    } 
} 
entry extern void  _parwork()  /* IL0 pseudo-code after MT-code generation */ 
{   ... ... 
     b = 1000.00 (F64)                              /* F64 denotes the 64-bit float type */ 
     __kmpc_fork_call(…, __parwork_par_region, &a, &b) 
     goto L46 
     T-entry __parwork_par_region(ap, bp) 
     {  prv_x = 7;   prv_k = 0 
         if  (1000 > prv_k) { 
               t0 = (* F64)bp;   lower  = 0;   upper  = 999;   stride = 1; 
               __kmpc_dispatch_init(..., lower, upper, stride, ...) 
          L33: 
               t3 = __kmpc_dispatch_next(..,, &lower, &upper, &stride) 
              if ((t3 & upper>=lower) != 0(SI32)) { 
                   prv_k = lower 
              L17: 
                   prv_x = prv_x + t0 * t0 
                   ((* F64)ap)[prv_k] = ((* F64)ap)[prv_k] + t0 * prv_x 
                   prv_k = prv_k + 1 
                   if (upper >= prv_k)    goto L17 
                   goto L33 
             } 
         } 
          __kmpc_barrier(...) 
         T-return 
    } 
    L46: ... ... 
     return 
} 
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only memory de-reference based on the load-store analysis 
and memory disambiguation. In Figure 3, for example, the 
memory de-reference of bp is lifted outside the loop and 
pre-loaded into a register temp t0, and the memory de-
reference of bp is replaced by a load of register temp t0.   

The benefit of the aggressive code motion is that it reduces 
the overhead of a memory de-referencing, since the value is 
preserved in a register temporary for the read operation. 
The second benefit is that it enables advanced well-known 
optimizations such as software pipelining, and vectorization 
if the memory de-references in array subscript expressions 
are lifted outside the loop. See another example in Figure 4, 
the address computation of array involves the memory de-
references of the member lower and extent of the dope-
vector, the compiler lifts the memory de-references of lower 
and stride outside the m-loop, because the compiler knows 
that all references to members of the dope-vector are read-
only memory references inside the parallel do loop.  

Figure 4. An Example of Aggressive Code Motion 

In general, the aggressive code motion enables a number of 
high-level optimizations such as loop unroll-and-jam, loop 
tiling, and loop distribution as well. It resulted a very good 
performance benefit in many real large applications.  

3.5 Support Nested Parallelism  
Explicitly expressing nested parallelism is supported by the 
OpenMP specification. However, most of existing OpenMP 
compilers do not fully support nested parallelism, since the 
OpenMP-compliant implementation is allowed to serialize 
nested parallel regions, even when the nested parallelism is 
enabled by the environment variable OMP_NESTED or 
routine omp_set_nested(). For instance, the SGI’s compiler 
supports nested parallelism only if the loops are perfectly 
nested. Given that broad classes of applications, such as 
imaging processing and audio/video encoding and decoding 
algorithms, have shown performance benefits by exploiting 
nested parallelism. We implemented the compiler and the 
runtime library support needed for full nested parallelism in 
the Intel compiler. In addition, there are a number of ways 

to control nested parallelism. For example, the num_threads 
clause can be added to a parallel region pragma line to 
overwrite the number of threads the runtime system will 
attempt to use for only that region. Note that this setting 
will not persist to any subsequent or nested parallel regions. 
In Figure 5, (a) shows a nested parallel region sample code, 
and (b) shows its corresponding IL0 pesudo-code generated 
by the C++ compiler Front-End.  

Figure 5. An Example of MT-codegen for Nested Par-Regions 

As showed in Figure 5 (c), there are two threaded entries, or 
T-entries, created within the original function nestedpar(). 
The T-entry __nestedpar_par_region0() corresponds to the 
semantics of the outer parallel region, and the T-entry 
__nestedpar_par_region1() corresponds to the semantics of  
the inner parallel region.  For the inner parallel region in 
the routine nestedpar, the variable id is a shared stack 
variable for the inner parallel region. Therefore, it is 
accessed and shared by the team of threads created for the 
inner parallel region through the T-entry argument id_p. 
Note that the variable id is a private variable for the outer 
parallel region, since it is a local defined stack variable. 

real allocatable:: w(:,:) 
… …                                      
!$omp parallel do shared(x), private(m,n) 
do  m=1, 1200                    !!  Front-End creates a dope-vector for allocatable  
    do n=1, 1200                  !!  array w           
         w(m, n) = …      Î   dv_baseaddr[m][ n] = …   
    end do 
end do 
… …  
T-entry(dv_ptr …)   !! Threaded region after multithreaded code generation  
     … …  
     t1 = (P32 *)dv_ptr->lower                         !! dv_ptr is a pointer that points 
     t2 = (P32 *)dv_ptr->extent                         !! to dope-vector of array w 
     do prv_m=lower, upper              
          do prv_n =1, 1200                                        ! EXPR_lower(w(m,n)) = t1 
             (P32 *)dv_baseaddr[prv_m][prv_ n] = …  ! EXPR_stride(w(m,n)) = t2 
          end do 
    end do  
T-return 

(a) A Nested Parallel Region Code Sample 
#include<omp.h> 
void nestedpar() 
{   static double a[1000]; 
     int    id; 
#pragma omp parallel private(id) 
    {       id = omp_get_thread_num(); 
#pragma omp parallel 
        { 
             do_work(a, id, id*100); 
        } 
    } 
} 
(b) IL0 Pseudo-Code Generated by C++ Front-End  
entry extern void  _nestedpar() 
{ 
   DIR_PARALLEL QUAL_PRIVATE_VAR(id) QUAL_SHARED_VAR(a) 
      t0 = _omp_get_thread_num() 
      id = t0 
      DIR_PARALLEL QUAL_SHARED_VAR(a) QUAL_SHARED_VAR(id) 
         t1 = _do_work(&a, id, id * 100(SI32)) 
      DIR_END_PARALLEL 
   DIR_END_PARALLEL 
   return 
} 
(c) IL0 Pseudo Multithreaded Code Generated by Parallelizer 
entry extern void _nestedpar()   
{ ....../* P32 denotes the 32-bit pointer type */ 
   ___kmpc_fork_call(___nestedpar_par_region0)(P32)); 
   goto L30 
     T-entry void __nestedpar_par_region0() 
     {    t0 = _omp_get_thread_num(); 
          prv_id = t0; 
         ___kmpc_fork_call(__nestedpar_par_region1)(P32), &prv_id) 
         goto L20; 
            T-entry void __nestedpar_par_region1(id_p) 
            {    t1 = _do_work( &a, *id_p, *id_p * 100) 
                 T-return 
            } 
         L20: 
       T-return 
     } 
   L30: 
   return 
} 
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In addition, as we see in Figure 5 (c), there are no extra 
arguments on the T-entry for sharing local static array ‘a’, 
and there is no pointer de-referencing inside the T-region 
for sharing the local static array ’a’ among all threads in the 
teams of both the outer and inner parallel regions. This uses 
our compiler technique presented in [2] for sharing static 
data environment among threads; it is an efficient way to 
avoid the overhead of argument passing across T-entries.   

3.6 Workqueuing Model 
The workqueuing model [7] was proposed to exploit task-
level or irregular parallelism.  This model allows the user to 
parallelize control structures that are beyond the scope of 
those supported by the OpenMP programming model, while 
still fitting into the framework defined by the OpenMP 
specification. In particular, the workqueuing is a simple and 
flexible programming model for specifying units of work 
that are not pre-computed at the start of the worksharing 
construct.  See a simple example in Figure 6.  

Figure 6. A While-Loop with Workqueuing Pragmas 

The parallel taskq pragma specifies an environment for the 
‘while loop’ in which to enqueue the units of work specified 
by the enclosed task pragma. Thus, the while loop’s control 
structure and the enqueuing are executed by single thread, 
while the other threads in the team participate in dequeuing 
tasks from the taskq queue and executing them. The clause 
captureprivate ensures that a private copy of the pointer p 
is captured at the time each task is being enqueued, hence 
preserving the sequential semantics. 

To support the workqueuing model as the Intel OpenMP 
extension, the Intel C++ compiler’s OpenMP support has 
been extended throughout its various components. First, the 
IL0 intermediate language has to be expanded to represent 
the new workqueuing constructs and clauses. The front-end 
parses the new pragmas and produce IL0 representation of 
the workqueuing code for the middle-end. The OpenMP 
parallelizer generates the multithreaded code corresponding 
to workqueuing constructs. More implementation details of 
workqueuing model described in paper [1].  

4. Multithreaded Runtime Library 
The Intel OpenMP runtime library represents a complete 
redesign at a high level, with only bottom level components 

re-used from the previous Intel OpenMP runtime library. It 
remains the backwards compatible in the functionality and 
performance with the previous Intel runtime library. This 
section describes some features of the Intel runtime library 
together with its high level architecture. 

4.1 Runtime Library Architecture  
The Intel OpenMP runtime library has been designed to 
exploit nested and sibling parallelism for satisfying the 
requirements of users using OpenMP in their applications. 
The typical OpenMP user community has strong roots in 
scientific high-performance parallel computing. Common 
uses of the OpenMP in this space are parallelizing entire 
application executables, with the main thread of control is 
controlled by the OpenMP programmers. There is also an 
increasing use of OpenMP mixed with Message Passing 
Interface* (MPI*) for large problem solving. In addition to 
the traditional uses identified above, users are starting to 
use OpenMP in applications where a programmer has little 
control over the main thread of execution. This scenario is 
fairly common in applications controlled by Graphical User 
Interfaces (GUI’s), such as those applications built with the 
Microsoft Foundation Classes (MFC), whereby graphical 
sub-system controls the main thread of execution and makes 
calls into the user’s application. This programming model is 
also common whenever the programmer is writing libraries 
that are called by others – the library writer has little control 
over the calling environment. Such scenarios often result in 
multiple system threads invoking the OpenMP – a situation 
we term sibling parallelism.  
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Figure 7. Intel OpenMP Runtime Library Architecture 

Figure 7 shows an overview of Intel’s OpenMP runtime 
support. The implementation of the Intel OpenMP runtime 
library strives to: (a) provide right and rich functionalities, 
(b) provide good performance, (c) provide good portability 
and extensibility, (iv) provide hooks to other tools that are 
part of multithreaded software development. The following 
subsections describe design considerations and features of 
the Intel OpenMP runtime library.   

4.2 Runtime Support for Nested Parallelism 
The specification for OpenMP provides some information 
on how nested parallelism should be handled. When the 
Intel runtime library was extended to support the nested 

void wq_test(LIST *p) 
{                                   
#pragma intel omp parallel taskq shared(p)  
  {  while (p != NULL) {        
          #pragma intel omp task captureprivate(p)            
           { 
               wq_workitem(p) 
           } 
           p= p->next; 
      } 
  } 
}
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parallelism, it was designed to conform to this specification. 
The specification supports nested parallelism in OpenMP 
simply by allowing the use of OpenMP parallel teams 
nested within already parallel OpenMP regions. By default, 
the nested parallelism is disabled and nested regions will be 
serialized, that is they will create a new team containing one 
thread. This feature must first be enabled either via the 
environment variable OMP_NESTED or with the routine 
omp_set_nested. There are several methods to control how 
many threads are used in the various parallel regions: 

Figure 8. An Example of Configuring the Number of Threads  

• An implementation-specific environment variable has 
been added in the new library. The KMP_MAX_THREADS 
variable allows the user to set the maximum number of 
threads the runtime library will use for OpenMP 
threads. This includes the initial thread, OpenMP 
worker threads created and being used, OpenMP 
worker threads waiting in the free pool, and system 
threads that were created by the user who then 
subsequently started to exploit sibling parallelism. This 
allows the user to limit the number of threads to the 
number of processors, insuring that an application or a 
library used by an application does not oversubscribe 
the system with OpenMP threads. 

• The OMP_NUM_THREADS environment variable is used 
to specify default number of threads that the runtime 
library will try to use whenever creating a new parallel 
region. Unless users override this setting, the library 
will attempt to use this many threads at every level, 
until the KMP_MAX_THREADS limit is reached. 

• The routine omp_set_num_threads() is an API call that 
allows the user to specify how many threads the 
runtime system should try to use at the next parallel 
region encountered by the thread that made the call.  In 
traditional one-level fork/join OpenMP it only really 

makes sense for the original starting thread to make 
this call. With nested parallelism support, any thread 
can make this call and teams that thread subsequently 
creates will be affected by the new setting. This setting 
is somewhat persistent as shown in Figure 8. 

• num_threads(n) is a clause that the user can place on 
the parallel pragma line. This setting specifies how 
many threads the runtime system will attempt to use for 
only that parallel region. This setting is not persistent at 
all and only applies to its own region. 

Figure 8 is an example of how to configure the number of 
threads through those runtime library calls that control the 
amount of parallelism for achieving better performance.   

4.3 Support Sibling Parallelism  
One of desired features beyond the OpenMP model is to 
enable support for exploiting the sibling parallelism. This 
model allows different system threads to start the OpenMP 
teams and vice-versa. In supporting the sibling parallelism, 
a majority of the work necessary to support the nested 
parallelism is already required, as presented in previous 
subsection. The issues we had to address in the design of 
supporting sibling parallelism in the Intel OpenMP runtime 
library are centered around the following questions: 

• Should those sibling system threads share the OpenMP 
threadprivate variables? 

• Should system threads created from within OpenMP 
team of threads return the same value for the function 
call omp_get_thread_num() that their OpenMP creator 
thread returns? That is, Should the new thread be 
considered a part of the team that the parent thread 
belonged to? 

Figure 9. An Example of Exploiting Sibling Parallelism 

Our decisions are settled on not sharing thread identifiers 
between system threads and their OpenMP parent, and on 
not sharing threadprivate variables among system threads. 
System threads are essential flat with respect to each other, 
just like WinThreads. The primary reasons for this decision 
were both ease of use for application programmers and ease 
of conceptual understanding. The conceptual model of 
sibling parallelism we envision is the following: each 
system thread created by the system (i.e., not created by 
OpenMP thread) has an OpenMP parallel region around 

// Start with one thread 
omp_set_num_threads(3) 
#pragma omp parallel 
{    // three threads used here 
      omp_set_num_threads(29) 
      #pragma omp parallel 
      {   // three teams have 29 threads each here  } 
      #pragma omp master 
             omp_set_num_threads(178); 
      #pragma omp parallel 
      {    // one team has 178 threads here 
            // two teams have 29 threads here 
      } 
} 
#pragma omp parallel 
{  // 3 threads here also 
    #pragma omp parallel 
    {    // 3 teams of 3 threads each here 
          // note how the 29 and 178 settings are lost. 
    } 
} 

 __crt_init() 
{ 
    int rc; 
    … …  
#pragma omp parallel  
           num_threads(1) if(false) 
   { 
        rc = main(argc, argv);  
   } 
    … … 
    return rc; 
} 

int pthread_create(userarg,  
                             userfunc(), ……) 
{ 
     … …. 
 #pragma omp parallel  
                 num_threads(1) if(false) 
     { 
            userfunc(userarg);  
     } 
     … … 
     return …; 
} 
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with exactly one thread. Programmatically, we represent 
this with a simple rewrite of two system routines: the 
__crt_init() routine that calls the users’ main(), and the 
pthread_create() (CreateThread() on Windows) routine that 
starts system threads on user routines (see Figure 9).  

Since each system thread is at the top of its own nested 
OpenMP hierarchy, it should be noted that a forked system 
thread would return the false to omp_in_parallel(), even if 
created from an OpenMP worker thread. This makes sense, 
since the new system thread may have no connection to the 
worker thread that created it, and could have its entry point 
anywhere doing possibly unrelated work.  This allows any 
model of parallelism and does not force the programmer to 
make an arbitrary connection between two unrelated 
threads. If the newly created thread is considered a pseudo-
member of its parent’s team, then many questions would 
arise; such as to whether it should participate in barrier 
pragmas. This would be very difficult since the new thread 
might have no way of getting to the barrier pragma without 
a long jump or other contorted method. If the programmer 
does, however, wish for the newly created thread to share 
the work of an OpenMP worker thread, it is a simple task to 
store the result of the omp_get_thread_num() in a private 
variable that can then be shared by the two threads. 

4.4 Runtime Library Performance Tuning 
Efficient execution of the OpenMP applications requires the 
runtime to maintain a thread pool rather than starting and 
stopping system threads at each parallel region. Therefore, 
the thread pooling is an essential feature of the runtime. The 
OpenMP allows orphaned directives that require run-time 
computation of binding rules to determine how to interpret 
the directives. Efficient computation of these binding rules 
is another important feature of the runtime.   

Compared to the previous Intel OpenMP runtime library, 
sibling and nested parallelism require a level of indirection 
in order to find which sibling or nested team the current 
thread is a member of. This indirection is a potential source 
of performance loss.  However, we were able to optimize 
the performance to minimize this penalty. In real, coarse-
grained, applications we have observed no performance 
penalty in going to the new runtime library. In fine-grained 
micro-benchmarks, the new runtime incurs minimal penalty 
for most cases.  

Another important issue in the design of the OpenMP 
runtime library centers on the question of what to do with 
idle threads while they are waiting, whether it be in the 
thread pool between parallel regions or waiting for a 
synchronization event.  The Intel OpenMP runtime library 
provides two types of control for this: (i) an environment 
variable indicating if the user is looking to optimize 
turnaround time or system throughput because of resource 
sharing with other jobs or users, (ii) some variables that 
control the amount of time spinning when idle before 

falling asleep.  The environment variable KMP_LIBRARY 
can be set to turnaround or throughput. The default value is 
”throughput“ to provide a pretty safe environment whereby 
creating more threads than processors in compute intensive 
applications, or accidental sharing of the machine, does not 
result it terrible performance yields() the processor to other 
threads or jobs more often than the turnaround library.  
Both libraries also provide variables to control the amount 
of time that threads spin at barriers before going to sleep. 
The environment KMP_BLOCKTIME allows the user to 
specify about how much time each thread should spend 
spinning. The user can also adjust this setting at runtime 
using the kmp_set_blocktime() API call. When adjusted at 
run-time, the setting applies to the system thread that called 
it as well as any OpenMP worker threads under it in the 
nested OpenMP hierarchy. This new setting is especially 
important for Hyper-Threading (HT) enabled processors. 
On a HT-enabled processor more than one thread can be 
executing on the same processor at the same time. This 
means that both threads have to share that processor’s 
resources. This makes spin-waiting extremely expensive 
since the thread that is just waiting is now taking valuable 
processor resources away from the other thread that is 
doing useful work. Thus, when using Hyper-Threading, the 
blocktime should be very short so that the waiting thread 
sleeps as soon as possible allowing still useful threads to 
more fully utilize all processor resources. 

5. Performance Results 
We have conducted our performance measurements with a 
set of selected benchmarks to validate the effectiveness of 
our OpenMP implementation in the Intel high-performance 
compilers. The multithreaded codes generated by the Intel 
compiler are highly optimized with architecture-specific, 
and advanced scalar and array optimizations assisted with 
our aggressive memory disambiguation. The performance 
measurement of two micro-benchmarks matrix multiply 
matmul (256x256) and memory copy memcopy (4096) is 
carried out on an Intel Hyper-Threading technology enabled 
single-processor system running at 2.66GHz, with 2048M 
memory, 8K L1-Cache, and 512K L2-Cache. 

The performance scaling is derived from serial execution 
(SEQ) with Hyper-Threading technology disabled, and 
multithreaded execution with one thread and two threads 
with Hyper-Threading technology enabled. In Figure 3, we 
show the normalized speed-up of the two chosen micro-
benchmarks compared to the serial execution with Hyper-
Threading technology disabled. The OMP1 and OMP2 
denote the multithreaded code generated by the Intel 
OpenMP C++ and Fortran compiler executing with one 
thread and two threads, respectively. As shown in Figure 
10, the matmul (OMP2 w/ HT) achieved a 45% performance 
improvement by the second threads running on the second 
logical processor. No multithreading overhead is observed 
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for one thread run comparing with the serial run. The 
multithreaded code of the memcopy does show a 7% 
performance degradation due to the overhead of thread 
creation and forking, synchronization, scheduling at run-
time, and memory de-referencing for sharing local stack 
variables (OMP1 w/ HT), but the second thread running on 
the second logical processor contributed to the overall 9% 
performance gain (OMP2 w/ HT).  
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Figure 10. Performance of Two Micro-benchmarks 

Figure 11 shows the performance results of three well-
known benchmarks: N-queens (13x13), Strassen (1024×1024 
double-precision floating-point matrix), and Permanent 
(11x11 matrix), those benchmarks are written with the Intel 
workqueuing model [1][7] using parallel, taskq and task 
pragmas. The performance speedup ranges from 3.44x to 
5.22x on an Intel XeonTM system with four processors 
running at 1.6 GHz, with 8K L1 cache, 256K L2 cache, 
1MB L3 cache per processor, and 2GB of shared RAM on 
a 400MHz system bus. The performance measurement has 
been conducted with both Hyper-Threading Technology 
disabled and enabled.    
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Figure11. Performance of Workqueuing Benchmarks 

We disabled Hyper-Threading technology while measuring 
the performance of serial run of sequential code, and 1-, 2-, 
and 4-thread run of threaded code generated by the Intel 
compiler. In this way, we can guarantee that all threads 
were scheduled on different physical processors, because 
there is no guarantee that two threads will not be scheduled 
onto the same physical processor when Hyper-Threading 
technology is enabled, even though the number of threads is 

less than the number of physical processors. With Hyper-
Threading technology disabled, the speedups of N-queens, 
Strassen and Permanent benchmark are 3.32, 3.39, and 
3.16 respectively, with 4-thread run (OMP4) over the serial 
run. Note that the runtime overhead of all three threaded 
codes is very small and not notable. We enabled the Hyper-
Threading technology for the 8-thread run (OMP8), the 
speedup is 5.22 for N-queens, 3.44 for Strassen, 4.27 for 
Permanent. Thus, the performance gain due to the Hyper-
Threading technology is 57% for N-queens, 1.5% for 
Strassen, and 35% for Permanent. For the Strassen, we 
only saw 1.5% gain from the Hyper-Threading technology, 
which is mainly limited to memory bandwidth for the given 
array size of 8MB (more detailed analysis is in the scope of 
our next paper on performance study). 

In addition to the IA-32 performance measurement, in order 
to evaluate our implementation in the Intel compiler for the 
OpenMP support on the Intel Itanium Architectures, we 
conducted the performance measurement with NAS Parallel 
Benchmarks Suite, which is parallelized with the OpenMP 
programming model, on a dual-processor Intel Itanium 

processor-based SMP system running at 800MHz (512K L2 
cache, 1MB L3 cache per processor) with 1GB memory. 
The NAS Parallel Benchmarks is a popular benchmarking 
suite, written in Fortran 77, which is often used for the 
performance evaluation on multiprocessor system.  
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Figure 12. Performance of NAS Parallel Benchmarks 

We have been using the Class-A problem sizes for our 
measurement. The performance improvement of the NAS 
benchmarks is shown in the Figure 12. The speedups are 
measured and computed based on the execution time of 
serial run of each benchmark. The speedup ranges from 
1.33 for IS (Integer Sorting) to 1.91 for EP (Embarrassing 
Parallelism). The concluding remark derived from our 
results is that the multithreaded code generated by the Intel 
compiler achieved a good speedup on the dual-processor 
Itanium SMP system. Note that the overhead of the 
multithreaded code for BT, CG, EP, LU MG, and SP is not 
notable with one thread run, however, we saw 19% and 
28% performance slowdown for FT and IS, respectively, 
with multithreaded code running with one thread comparing 
to their serial code. More detailed performance analysis is 
in the scope of our next paper on performance study.  
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6. Conclusion and Future Work 
In this paper, we presented the compiler and runtime 
support of OpenMP in the Intel compiler for the OpenMP 
directive-guided multithreading. We also demonstrated that 
performance gains are achieved on Intel platforms based on 
a set of benchmarks. The Intel OpenMP C++ and Fortran 
compiler has been designed and implemented to leverage 
the Pentium and Itanium architecture features. This has 
been achieved by tightly integrating OpenMP pragma- and 
directive-guided parallelization with advanced well-known 
optimizations while generating efficient threaded codes for 
exploiting parallelism at various levels. The performance 
results show that OpenMP programs compiled with the 
Intel C++/Fortran compiler achieved a good performance 
gain on Intel Hyper-Threading technology enabled Pentium 
4 processor-based single- and multi-processor systems, and 
as well as on Intel Itanium Processor Family (IPF) based 
multiprocessor systems. One important observation we have 
is that exploiting thread-level parallelism causes inter-
thread interference in caches, and places greater demands 
on memory system. But, the Hyper-Threading Technology 
in Intel Pentium 4 processor hides the additional latency, so 
that there is only a small impact on the whole program 
performance, hence, we achieved the overall performance 
gain by exploring the use of logical processor. With Intel’s 
Hyper-Threading and compiler technology, we can shrink 
the processor-memory performance gap and achieve desired 
performance gain. In the future, our work is heading in the 
following directions:  

• Investigate the possibility of more aggressive memory 
optimizations, and identify opportunities of exploiting 
multi-level parallelism to leverage new architecture and 
micro-architecture features, and add compiler support 
of workqueuing model for the Fortran 95 language  

• Support teamprivate clause that allows the user to 
specify that what was a threadprivate variable should 
now be shared among the threads of a new nested team. 
What was unique to the thread that created the nested 
parallel region should now be shared among it and its 
children in the new team 

• The usefulness of Intel’s KMP_MAX_THREADS extension 
raises the question of extending the OpenMP standard 
to include this environment variable. A proposed name 
is OMP_MAX_THREADS.   
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