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Abstract-Diagnosis of students with learning disabilities has 
long been a difficult issue as it requires extensive man power and 
takes a long time. Through genetic algorithm based feature 
selection method and genetic based parameters optimization, 

artificial neural network (ANN) classifier has proven to be a good 
predictor to the diagnosis of students with learning disabilities. In 
this study, we keep focusing on the ANN model and compare 
three strategies of parallelizing the ANN parameter optimization 
procedure with OpenMP and MPI APIs. Not surprisingly, the 
outcomes show that all three parameter optimization procedures 
indeed converged or executed more quickly with the aid of 
parallel processing. In particular, the genetic-based method tends 
to derive the best accuracy and require less execution time. Most 

important of all, potentially due to a more diverse search space 
provided by the distributed parallel processing environment, the 
accuracy of the genetic-based ANN classifier may also be 

improved in general. In addition, with appropriate combinations 
of features and parameters setting, the accuracy in LD 
identification model has exceeded the 90% mark (using 5-fold 
cross validation), which is the best we have achieved so far. The 
result suggests that genetic-based (or perhaps similar) 
optimization methods may be benefited, both in reducing 
execution time and achieving better outcome, from current grid­
based computing technologies. 
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I. INTRODUCTION 

The term "learning disabilities" (LD) was first used in 1963 
rn However, experts in this field have not yet completely 
reach an agreement on the definition of LDs and its exact 
meaning r21. According to definition given by the United States 
National Center for Learning Disabilities [3], a learning 
disability is: 

"a neurological disorder that affects the brain's ability to 

receive, process, store, and respond to information. The 

term learning disability is used to describe the seeming 

unexplained difficulty a person of at least average 

intelligence has in acquiring basic academic skills. These 

skills are essential for success at school and work, and for 

coping with life in general. LD is not a single disorder. It 

is a term that refers to a group of disorders." 
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As a result, a person can be of average or above average 
intelligence, without having any major sensory problems (like 
blindness or hearing impairment), and yet struggle to keep up 
with people of the same age in learning and regular functioning. 

Due to the implicit characteristics of learning disabilities as 
stated above, the identification of students with LDs has long 
been a difficult and time-consuming process. In the United 
States, the so called "Discrepancy Model" [4], which states that 
a severe discrepancy between intellectual ability and academic 
achievement has to exist in one or more of these academic 
areas: (1) oral expression, (2) listening comprehension (3) 
written expression (4) basic reading skills (5) reading 
comprehension (6) mathematics calculation, is one of the 
commonly adopted criteria to evaluate whether a student is 
eligible for special education services. 

In Taiwan, the diagnosis procedure pretty much follows the 
"Discrepancy Model" and is roughly separated into 4 stages: (1) 
application for screening of potential students with LDs by 
parents, general education teachers and/or junior-level 
evaluation personnel, (2) identification of potential students 
with LDs by junior-level evaluation personnel, (3) diagnosis of 
possible students with LDs by senior-level evaluation 
personnel, and (4) final confirmation by special education 
specialists (usually college or university professors with LD 
major) [5]. Note, junior-level or senior-level evaluation 
personnel is selected special education teachers with days' 
(junior level) or weeks' (senior level) training on LD diagnosis 
related procedure. 

The sources of input parameters required in such prolonged 
process include information from parents, general education 
teachers, students' academic performance and a number of 
standard achievement and IQ tests. To guarantee collection of 
required information regarding to students suspected with LD, 
usually checklists of some kind are developed to assist parents 
and regular education teachers. The Learning Characteristics 
Checklists (LCe), a Taiwan locally developed LD screening 
checklist [6], is commonly used in most counties of Taiwan. 
Among the standard tests, the Wechsler Intelligence Scale for 
Children, Third or Fourth Edition (WISC III or IV) plays the 
most important role in the third and fourth stages of the current 
LD diagnosis model. The WISC-III is composed of 13 sub tests 
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[7]. The scores of the sub-tests are then used to derive 3 IQs, 
which include Full scale IQ (FIQ), Verbal IQ (VIQ), 
Perfonnance IQ (PIQ), and 4 indexes, which include Verbal 
Comprehension Index (VCI), Perceptual Organization Index 
(POI), Freedom from Distractibility Index (FDI), Processing 
Speed Index (PSI). There are also a number of locally 
developed standard achievement tests (AT), which typical 
consists of reading, math, and fields that related to students' 
academic achievement. 

Diagnosis of students with LDs then involves mainly 
interpreting the standard test scores and comparing them to the 
nonns that are derived from statistical method. As an example, 
in case the difference between VIQ and PIQ is greater than 15, 
representing significant discrepancy between a student's 
cultural knowledge, verbal ability, etc, and hislher ability in 
recognizing familiar items, interpreting action as depicted by 
pictures, etc, is a strong indicator in differentiating between 
students with or without LD [7]. A number of similar indicators 
together with the students' academic records and descriptive 
data (if there is any) are then used as the basis for the final 
decision (by senior evaluation personnel and special education 
specialists). Confinned possible LD students are then evaluated 
for one year before admitting to special education. However, it 
deserves to note that a previous study in Taiwan reveals that 
the certainty in predicting whether a student is having a LD 
using each one of the currently available predictors is in fact 
less than 50% [8]. 

As we can see, the above procedure involves extensive 
manpower (mainly the overloaded special education teachers) 
and resources. In addition, the diagnosis process requires that 
the special education teachers having a strong background in 
both psychology and statistics. Unfortunately, those were not 
commonly included in their training at the college level. 
Furthermore, a lack of nationally regulated standard for the LD 
diagnosis procedure and criteria result in possible variations on 
the outcomes of diagnosis. In most cases, the difference can be 
quite significant [5]. Accordingly, the quality of interpretation 
varied and the pressure is primarily on the special education 
specialists at the final stage. 

With the advance in artificial intelligence (AI) and its 
successful applications to various classification problems, it is 
interesting to investigate how these AI-based techniques 
perfonn in identifying students with LDs. In our previous study, 
we made attempts in adopting two well-known artificial 
intelligence techniques, artificial neural network (ANN) and 
support vector machine (SVM), together with various feature 
selection algorithms and evolutionary computation, to the LD 
diagnosis problem [5, 9]. The results show that ANN classifier 
does well in positively identifying students with LDs. In 
subsequent studies, we combined various feature selection 
techniques and genetic-based parameters optimization with the 
ANN classifier, which further improves the overall 
identification accuracy [10, 11]. However, although ANN­
based classifier perfonns well in LD diagnosis problem, the 
procedure is computation-intensive and may take a while to 
proceed. The situation is even more difficult when ANN is 
wrapped with genetic-based algorithm for parameter 
optimization. Accordingly, grid-based parallel computing has 

been used to speedup the ANN training and validation 
procedure [12]. 

In this paper, we still focus on the ANN classification 
model and try to further explore the potential limit that ANN 
classifier can achieve through the use of parallelized genetic 
algorithm based feature selection procedure and parameters 
optimization algorithm. Our codes are modified so that they 
can take full advantage of current multi-core processor 
technology and grid-based distributed parallel computing 
environment. The outcomes show that parallel processing not 
only reduce the ANN training time substantially, but also 
improve the correct identification rate in LD identification. 

This rest of the paper is organized as follows. Section 2 
briefly describes history of AI techniques on the special 
education applications. Section 3 and 4 presents the experiment 
settings, design and corresponding results. Finally, Section 5 
gives a summary of the paper and lists some issues that deserve 
further investigation. 

II. RELATED WORK 

Artificial intelligence techniques have long been applied to 
special education. However, most attempts occurred in more 
than one or two decades ago and mainly focused on using the 
expert systems to assist special education in various ways [5]. 

There were also numerous classification techniques other 
than neural network that have been developed and widely used 
in various applications [13]. For a classification problem, it is 

necessary to first try to estimate a function f: RN -7 {± I} 
using training data, which are I N-dimensional patterns Xi and 

class labels Yi ' where 

(1) 

such that f will classify new samples (x, Y ) correctly. 

Among all the classification techniques, artificial neural 
network (ANN) has received lots of attentions due to their 
demonstrated perfonnance and has gained widely acceptance 
beginning from the 1990s [14]. An artificial neural network is a 
mathematical representation that is inspired by the way the 
brain process infonnation. Many types of ANN models have 
been suggested in the literatures, with the most popular one for 
classification being the multilayer perceptron (MLP) with back 
propagation. The goal of this type of network is to create a 
model that correctly maps the input to the output using 
historical data so that the model can then be used to predict the 
outcome when the desired output is unknown. MLP with back 
propagation is typically composed of an input layer, one or 
more hidden layers and an output layer, each consisting of 
several neurons. Each neuron processes its inputs and generates 
one output value that is transmitted to the neurons in the 
subsequent layer. 

Figure 1 provides an example of an MLP with one hidden 
layer and one output neuron. The output of i-th hidden neuron 
is then computed by processing the weighted inputs and its bias 

tenn bi as follows: 

4264 



� = f
'(b, + t. WifXj] (2) 

where wij denotes the weight connecting input Xj to hidden 

unith; . 

Similarly, the output of the output layer is computed as 
follows: 

y 
= 

jOutPUt (b + i: WjXj] 
J=I 

(3) 

with n being the number of hidden neurons and W j represents 

the weight connecting hidden unit j to the output neuron. A 
threshold function is then applied to map the network output y 
to a classification label. The transfer functions jh 

and joutput 

allow the network to model non-linear relationships in the data. 
Also note that the number of hidden layer nodes does not need 
to be the same as the number of input nodes. 

• 
• 

Xn---'[]L-���� hn 
Hidden 
Layer 

Input 
Layer 

Output 
Layer 

Figure 1. MLP with one hidden layer. 

y 

The applications of ANN range from signal processing in 
communications to pattern recognition in business, engineering 
and medicine [15]. In the field of special education, ANN has 
been used as an arithmetic training tool for the children with 
learning disabilities [16] and for prediction of successful or 
unsuccessful completion of special education programming for 
students diagnosed with SED (Serious Emotional Disturbance) 
with up to 64% of accuracy [17]. In addition, ANN has also 
been applied to the diagnosis of autism with very high correct 
identification rate [18]. However, the autism diagnosis is not as 
complicated as the LD diagnosis problem. 

There are also a number of researches indicate that 
application of data dimensionality reduction pre-processing 
step prior to the classification procedure does improve the 
overall classification performance [19, 20]. Furthermore, 
feature selection can also provide a better understanding of the 
underlying process that generated the data [21]. Feature 
selection approaches can be categorized into filter and wrapper 

based. For wrapper approach, feature selection is wrapped 
around the classification algorithm and the result of 
classification is used as the evaluation criterion to guide the 
search of optimal features set. Although computational 
expensive for larger data set, wrapper approach may perform 
better in finding useful subsets of relevant variables [21]. 

In addition, genetic algorithms have been applied to a 
number of optimization problems [22]. For example, 
combining genetic algorithm with the above mentioned feature 
selection procedure has been shown to be quite effective in 
searching for the optimal feature subsets [20]. Genetic 
algorithm has also been used to train the ANN classification 
model and construct the structure of networks [23]. 

However, the ANN model training and genetic algorithms 
based procedures may require extensive computation and take 
quite a long time to process [11]. Fortunately, researches have 
shown parallel processing may provide affordable 
computational power to speedup the time-consuming process 
[12, 24]. For network connected cluster or grid environment, 
message passing interface (MPI) is usually used to coordinate 
computing nodes for completing a common task. On the other 
hand, to take full advantage of the currently available multi­
core processor technology, OpenMP may be used explicitly to 
direct multi-threaded, shared memory parallelism. 

III. DATA SETS AND EXPERIMENTAL SETTINGS 

Our objective in this study is to explore how the distributed 
(and multi-core) parallel processing environment, like grid­
computing, may improve performance of the genetic-based 
parameter optimization in terms of processing speed and 
accuracy in constructing a ANN-based LD identification model. 
The data sets, as listed in Table I, we use are collected from 
three counties in the northern and southern Taiwan, all have 
been tested in previous studies [5, 9-12]. All data samples in 
Table I are pre-processed with a normalization procedure as 
depicted in equation (2). 

L-L .  
mm (2) 

Lmax -Lmin 
where L is the value of the original data sample to be 
normalized and (Lmin, Lm.x) are the minimum and maximum 
values of samples in that particular feature. 

In addition, a wrapper-based genetic feature selection 
procedure combining SVM learner (with RBF kernel and C­
SVC SVM type, as used in [5]) is applied to the three data sets. 
Note that SVM learner is chosen because it is known to be able 
to minimize the structured risk while separating the two classes 
[25], which may result in models that have better generalization 
capability. For the genetic-based feature selection procedure, 
we use binary chromosome encoding with one-point crossover 
and tournament selection. Probabilities of crossover and 
mutation are 0.8 and 0.1, respectively. The size of population 
and generation are set at thirty and fifty, respectively. In 
addition, accuracy in classification is used to evaluate the 
fitness of populations. The above feature selection procedure is 
performed fifty times and then output the feature set that results 
in the best accuracy in LD identification. The selected features 
for the three data sets are listed in Table II. 
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TABLEr. DATA SETS AND THEIR FEATURES USED IN THIS STUDY 

sample 
percentage 
of students featurexsize 

* 

size 
with LDs 

data set I 652 22.7% WISC-IIIx7 ' WISC-IIIx I3 

data set 2 125 19.5% 
WISC-IIIx7 ' LCCx6 ' 

ATx3 

data set 3 159 47.8% 
WISC-IIIx7 ' LCCx6 ' 

ATx3 

*WISC-IIIx7 includes three IQ scores and 4 indexes, while WISC-IIIx I3 
includes the 13 WISC subtests. Please refer to [7] for further details. LCC 
represents learning characteristics checklist, which include LCC overall index 
and indexes A-E. Please refer to [6] regarding details of LCC. AT represents 
achievement test, for dataset 2 it includes Word Recognition (WR), Reading 
and Math sub-tests, while for dataset 3 it includes Chinese, English and Math 
sub-tests. 

TABLE II. 

data set 

2 

3 

SELECTED FEATURES FOR SEBSEQUENT EXPERIMENTS 

features 

VIQ, PIQ, FIQ, VCI, POI, FDI, PSI (WISC-IIIx7) 

Math, VIQ, PIQ, FIQ, VCI, FDI, PSI 

Chinese, Math, LCC-B, LCC-C, LCC-E, LCC-T, 
PIQ, POI, FDI, PSI 

Three strategies for constructing a better ANN 
classification model are experimented and compared, which 
include parallel exhaustive search, parallel genetic-based search, 
and one combining the both. In all three approaches, the 
number of hidden layer, number of input and output neurons 
are set to one, number of features, and one, respectively. 

Table III lists pseudo code (in sequential form) for the 
exhaustive search strategy. We iterate the number of hidden 
nodes (between 1 and 26), momentum (M=0.0-71.0, step 0.1), 
and learning rate (L=0.0-71.0, step 0.1) at the first stage. In 
subsequent stages, we narrow down the range of momentum 
and learning rate (controlled by the parameter depth) of the 
search process. For example, if depth=1 and L=0.5 achieves the 
best accuracy in stage one, L would then be varied in between 
0.45 and 0.55 (L =0.45-70.55, step 0.01) in stage 2. 

With genetic-based search approach, the three parameters 
(number of hidden nodes, learning rate and momentum) are 
real-value encoded into the chromosome. Note, real-value 
encoding is chosen as it performs slightly better in terms of 
speed and accuracy as compared to binary encoding in our 
cases. In addition, random number seeds are also encoded in 
the chromosome since it may affect the initial weights and bias 
of neural network. Unless otherwise specify, the population 
(number of chromosomes) and generation are set to twenty and 
fifty. For combination of the above two approaches, we replace 
stage two of Table III with genetic-based search approach and 
bound the search space of the number of hidden nodes, 
learning rate and momentum to [1, 26], [Lo-0.05, Lo+0.05] 

and [Mo-0.05, Mo+0.05], respectively (Lo and Mo are 

learning rate and momentum that achieve the best accuracy in 
stage one). In each stage of all the three strategies, the number 
of epoch in ANN model training is fixed at 500. 

TABLE III. EXHAUSTIVE PARAMETERS SEARCH PROCEDURE 

For data-set = {data set I, data set 2, data set 3 } 
Stage I :  

For L = 0 to 1.0 step 0.1 

For M = 0 to 1.0 step 0.1 

For H= I to 26 step I 
With data-set, Perform 5-fold cross validation 

Performance evaluation & Store the result; 

Output best CIR, and 10 / MO that achieve the best CIR 

Stage 2: 

For (D = I to depth) 

For H= I to 26 step I 
I I I 

For L = (LO- 2 x lOD ) to (LO+ 2 x lOD ) step ( lOD+' ) 

I I I 
For M= (M(j- 2xlOD ) to (MO+ 2xlOD ) step (IOD+' ) 

With data-set, perform 5-fold cross-validation & store the 
result; 

Output best CIR, and LD / MD that achieve the best CIR 

A mini-grid environment containing 11 nodes, include 1 
server node and 10 computing nodes (as shown in Table IV) 
running Linux operating system (Fedora 10) connected via 
local area network (see Figure 2), is established with the aid 
of Globus toolkit version 4.2.1 [26] for the experiments. 

TABLE IV. NODE DETAILS OF THE MINI-GRID IN OUR STUDY 

node ID CPU 

Server Intel i7 960 Quad Core CPU 2.67GHz 

node 1-4 AMD Athlon 64X2 Dual Core Processor 5600+ 

node 5-8 Intel Core 2 Duo CPU E8400 3.00GHz 

node 9 AMD Athlon 64X2 Dual Core Processor 5000+ 

node 10 Intel Core 2 Dual CPU 6300 1.86GHz 

memory 

8GB 

2GB 

2GB 

1GB 

2GB 

Grid-enabled Message Passing Interface (MPICH-G2) 
[27] is adopted to coordinate computation among the 
computing resources. OpenMP APIs [28] are also used to 
explore the current multi-core processor technology within 
each individual node. For exhaustive parameter search 
strategy, the computation loads are statically and evenly 
distributed among the computing nodes and processing cores 
with depth set to 1 (please refer to Table III). For genetic­
based parameter search, we adopt the asynchronous Parallel 
Distributed Genetic Algorithm (PDGA) proposed in [29] as it 
has been proven to be effective and easy to implement. 
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Accordingly, the parallelized genetic-based ANN parameter 
search procedure will be named PDGA-ANN hereafter. 

PC.8 

slemr 
� 

pc. 9 

Figure 2. LAN-based mini-grid environment. 

IV. EXPERIMENT DESIGN AND RESULTS 

We designed and conducted four experiments as listed 
follow. To evaluate the experiment outcomes, a performance 
index: correct identification rate (CIR) is defined as follows. 

(number of correct LD and non - LD identification) 
CIR= (3) 

(total number of cases) 
In the first experiment, we compare the three parallelized 

ANN classification parameter search strategies (exhaustive, 
genetic-based, and combination of the above two) described 
earlier in Section III in terms of performance in execution time 
and CIR on each of the three available datasets. The outcomes 
of experiment 1 are shown in Table V. Note, all the numbers 
shown represent the average of twenty consecutive runs on a 5-
node (node 1 �4 and node 9) mini-grid computing environment. 

TABLE V. PERFORMANCE COMPARISON ON THREE PARAMETERS 
SEARCH STRATEGIES (ALL TIME IN SECONDS) 

data set 2 3 

average average average average average average 
strategy (best) exec. (best) exec. (best) exec. 

CIR time CIR time CIR time 

exhaustive 
87.7% 

3378 
87.2% 

1563 
87.3% 

2163 
(88.1 %) (88.8%) (88.7%) 

PDGA 87.5% 
2315 

87.5% 
703 

87.0% 
1390 (88.1 %) (89.6%) (88.8%) 

exhaustive 87.8% 4931 87.5% 1623 87.5% 2521 +PDGA (88.4%) (89.6%) (88.7%) 

According to the results, PDGA approach performs much 
faster than the other two. For comparison, in an extreme 
scenario, the serial version of the two-stage exhaustive strategy 
(with depth equals 1) takes slightly more than 11,000 seconds 
on node 1. On the other hand, it is the combination of the 
exhaustive and PDGA approach that results in the best average 

CIR in all cases. However, for best CIR, it appears that PDGA 
won in most cases. The exhaustive + PDGA strategy, unlike its 
serial implementation that performs quite well in term of CIR 
[11], only achieves slightly better result in data set 1. However, 
it may take more than twice the execution time as compared to 
the PDGA approach. It appears that parallel processing may 
contribute to more randomized or diverse search space (since 
there are more distributed nodes involved) and thus has better 
chance in converging early and finding parameters that result in 
decent CIRs. 

In subsequent two experiments, our focus is on the genetic­
based ANN parameter search approaches. However, in the 
former (experiment 2), we port the code onto a single 
workstation equipped with a four-core CPU (the server in 
Table IV). OpenMP APIs are used to multi-thread the most 
time-consuming fitness function computation, which would be 
a five-fold cross validation involving numerous ANN model 
constructions and verifications in our case. A simple static 
scheduling that evenly assigns population to the available 
threads (cores) is adopted. In experiment 3, we further 
parallelize the multi-threaded genetic-based parameter search 
procedure with MPI and execute it on the mini-grid nodes (the 
ten computational nodes in Table IV). The objectives of the 
two experiments is to assess how the CPU-level and grid-level 
parallelism affect the performance, both in speeding up the 
process and improving the CIR, of the ANN-based LD 
classifier. The results of experiment 2 and 3 are shown in Table 
VI and VII respectively. All numbers in Table VI and VII are 
average of results from twenty consecutive runs on the 
parallelized codes. Note, "1(100)" in Table VII represents the 
genetic-based ANN procedure with population size equals 100 
is executed in 1 node, while "5(20)" represents that similar 
computation load is distributed among 5 nodes with each node 
being responsible for only twenty chromosomes. In other 
words, 5(20) is the parallelized counterpart of 1(100) with the 
same number of population and should be compared directly. 
The same applies to 1(200) and 10(20). 

TABLE VI. PERFORMANCE COMPARISON UNDER MULTI-CORE 
ENVIRONMENT (ALL TIME IN SECONDS) 

data set 2 3 

cores average average average average average average 
(threads) (best) exec. (best) exec. (best) exec. 

CIR time CIR time CIR time 
87.2% 1966 

83.8% 
430 

86.4% 
823 

(87.9%) (86.4%) (87.5%) 

2 
87.0% 

822 84.2% 211 
86.3% 

367 
(87.5%) (86.4%) (88.1%) 

3 
86.9% 

733 
84.1% 

159 
86.4% 

272 
(87.6%) (88.0%) (88.7%) 

4 
86.8% 

522 84.2% 124 86.8% 192 
(87.2%) (87.2%) (88.1%) 

Based upon the results shown in Table VI, the genetic-
based ANN LD classifier does improve in term of execution 
time through the use of current multi-core processor technology. 
However, it is not the case for CIR in LD identification. Either 
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the best or average CIR does not seem to relate to the number 
of threads (cores) used. The outcome appears to be reasonable 
since our code just distributes the overall populations onto 
available threads (cores) without affecting the random number 
seed at the initialization phase. Accordingly, it may worth 
trying to develop schemes so that each core executes the search 
procedure in quite different direction by modifYing the 
initialization step. 

TABLE VII. PERFORMANCE COMPARISON BETWEEN SINGLE NODE AND 
GRID-BASED PARALLEL PROCESSING ENVIRONMENT (ALL TIME IN SECONDS) 

Data Set 2 3 

# of nodes average average average average average average 
(best) exec. (best) exec. (best) exec. (population) CIR time CIR time CIR time 

I (100) 
87.3% 

7194 
84.6% 

1984 
86.8% 3434 (87.7%) (87.2%) (88.6%) 

5 (20) 
87.5% 

1958 
85.4% 844 87.5% 1119 (87.8%) (86.4%) (89.3%) 

I (200) 
87.5% 

14172 
84.9% 3629 87.0% 6913 (88.0%) (86.4%) (88.7%) 

10 (20) 87.6% 1967 86.6% 701 87.5% 1228 (88.2%) (88.8%) (88.8%) 

On the other hand, results in Table VII show that both 
execution time and (best/average) CIR are improved under the 
grid-based parallel processing environment. It is not surprising 
that the parallelized version performs better in term of 
execution time. However, it is interesting that genetic-like 
optimization algorithms may seem to potentially benefit from 
parallelism (and diverseness in search space) provided by the 
distributed environment. To further verifY this point, a cross 
campus grid environment with more computing nodes is being 
built as a test-bed. Note that the performance in term of 
speedup of the gird-based parallel implementation does not 
seem to be good enough. The issue is related to the inconsistent 
computational power of the nodes and scheduling schemes for 
the computation load, which should be addressed in the future. 

Finally, in experiment 4 we parallelize the feature selection 
procedure described earlier using the asynchronous Parallel 
Distributed Genetic Algorithm (PDGA) (and thus named 
PDGA-SVM). Each selected feature set will then be validated 
multiple times (thirty times in our experiment) using PDGA­
ANN. Note, five-fold cross validation procedure with linear 
sampling is adopted in the PDGA-ANN phase (as opposed to a 
simple validation procedure, which depends merely on a single 
split of data, used in [5]). The above procedure is repeated 
twenty times. The objective of this experiment is to explore the 
potentially "best" CIR (without concerning the execution time) 
that may be achieved for LD identification. Table VIII presents 
the procedure in program-like format. The outcomes are shown 
in Table IX. 

Note that the best feature combination of data set 1 remains 
the 7 WISC-III IQs and indexes. Also note that the CIRs 
derived in Table IX are the best that we have got so far with 
any given data set (using 5-fold cross validation), which shows 

that the combined genetic-based distributed parallel computing 
procedure is indeed effective in finding the 
"optimal" parameters settings, which then achieves the better 
than ever results. The comparison bewteen this study and 
previous ones are depicted in figure 3. 

TABLE VIII. PARALLELIZED EXHAUSTIVE PARAMETERS SEARCH 
PROCEDURE 

For data-set = {data set I, data set 2, data set 3 } 
For i=1 to 20 

� 

Apply PDGA-SVM Feature Selection Algorithm on data-set and 
output the feature-set with best CIR 

Forj= I to 30 
Perform PDGA-ANN on data-set with feature-set and record 

the best CIR in each run; 

Output the best CIR 

TABLE IX. BEST CIRS IN THE TRHEE DATA SETS AND THE 
CORRESPONDING FEATURE SETS. 

data set bestCIR 

88.63% 

2 90.40% 

3 90.63% 

0.92 -.- data set I 
0.9\ -- data set 2 

�dataset3 
0.90 

0.89 

0.88 

ftatures 

VIQ, PIQ, FIQ, VCI, POI, FDI, PSI 

WR, Reading, Math, LCC-B, LCC-D, 
VIQ, PIQ, FSIQ, POI, PSI 

Math, LCC-A, VIQ, PIQ, VCI, POI, 
FDI, PSI 

U 0.87 

0.86 

0.85 

0.84 

0.83 +--r-�--.---�---'.--�---.--�--'-�---.-� 
3 4 

Reference Point 
6 

Figure 3. Comparison of results derived in this (reference point 6) and earlier 
studies (results in reference points 1-5 are published in [9], [10], [5], [ I I], and 
[12], respectively). All CIRs are results of five-fold cross validation with 
linear sampling. 

SUMMARY AND FUTURE WORK 

In this study, we keep working on improving the ANN 
classification model for diagnosing students with learning 
disabilities. We parallelize the genetic based feature selection 
procedures and ANN parameters optimization algorithms so 
that they can take full advantage of current multi-core 
processor technology and grid-based distributed computing 
environment. The outcomes show that parallel processing not 
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only reduce the ANN training time substantially, but may also 
improve the correct identification rate for the LD identification. 
As a matter of fact, the best CIRs (with 5-fold cross validation) 
we got on data set 2 and 3 in this study have exceeded 90%, 
which are the highest ever so far. 

In addition, it also appears that the number of computing 
nodes of a distributed parallel processing environment may 
have positive effect on the genetic-based optimization process. 
More experiments may be required to further verify this 
observation, which will be one of our future research topics. 

Finally, our grid-based parallelized codes have not yet 
taken into consideration the load balancing issue. As a result, 
the overall execution time may depend on some less capable 
machine or some slow converging process. Accordingly, 
addressing this load balancing issue should be our other 
concern in the future. 
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