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Abstract—Heat equation has been widely used in engineering, 
such as numerical simulation of groundwater flow. The parallelism 
of heat equation is an important means of accelerating the 
simulation process. In order to solve the three-dimensional heat 
equation problem more rapidly, the OpenMP was adopted to 
parallelize the preconditioned conjugate gradient (PCG) algorithm 
in this paper. A  numerical experiment on the three-dimensional 
heat equation model was carried out on a computer with four cores. 
Based on the test results, it is found that the execution time of the 
original serial PCG program is about 1.61 to 2.53 times of the 
parallel PCG program executed with different number of threads. 
The experiment results also demonstrate that using OpenMP to 
parallelize the PCG algorithm is an effective way for solving the 
three-dimensional heat equation.  

Keywords- three-dimensional heat equation; precondintioned 
conjugate gradient; compiler directives; OpenMP 

I.  INTRODUCTION  
Heat equation is one of the most important mathematic 

equations, which is widely applied in engineering application. 
However, traditional serial programs take large 
computational efforts when they are applied to solve the heat 
equation problems with massive grids or three-dimensional. 
For instance, adopting traditional serial programs are quite 
difficult to solve large-scale three-dimensional ground water 
flow models. Thus, the parallel solution of the three-
dimensional heat equation is extremely important. 
Meanwhile, preconditioned iterative methods and parallel 
computing methods have been proved to be two efficient 
ways to shorten execution time. For this reason, considerable 
effort is being expanded into parallel computing and 
preconditioned iterative methods for heat equation[1-7]. 
Although much research has been undertaken on increasing 
the stability and convergent rate of iterative methods, less 
work has focused on adopting high performance 
parallelization toolkits to parallelize the preconditioned 
iterative methods for solving the three-dimensional heat 
equation.  

Nowadays, OpenMP, one of the most well-known 
application programming interfaces is increasingly adopted 
as a high performance parallelization toolkit. The OpenMP 
can deliver good parallel performance for small number of 
threads. And with the OpenMP compiler directives, the 
parallelization is divided among multiple threads without 
changing the rest of the serial program. Thus, the main goal 
of this paper is to present the OpenMP parallelization toolkit 

to parallelize the preconditioned conjugate gradient (PCG) 
algorithm. Based on the three-dimensional heat equation 
model, experiment results show that the execution time for 
solving the large-scale heat equation is remarkably shortened 
by applying parallel PCG algorithm. 

II. THREE-DIMENSIONAL HEAT EQUATION MODEL  

In general, the three-dimensional heat equation can be  

expressed as 
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on the domain = ×Ω . 

Finite difference method is used for discretizing the 
three-dimensional heat equation. For space discretization, we 
apply the seven-point stencil finite difference method. For 
time discretization, the heat equation is handled by the 
backward Euler method which is a fully implicit method. 
Consequently, we obtain a sparse linear algebraic system 

bAx = , in which A  is symmetric positive definite. For 
details about the deduction, readers can refer to our previous 
work[8]. 

III. OPENMP MULTIPLE THREADS PROGRAMS 

OpenMP is a standard and portable application 
programming interface (API) for writing multiple threads 
programs on a shared memory computer. It is comprised of 
three primary API components: compiler directives, runtime 
library routines and environment variables. OpenMP is 
supported by Fortran and C/C++ compilers and is available 
for a variety of platforms, from PCs to high performance 
computers[9].  

As described in Fig.1, OpenMP provides the fork-and-
join execution model. At the beginning of a program 
execution, only a single thread is active. This thread executes 
sequentially unless a parallel construct is found. At the 
moment, the thread creates a team of threads and it becomes 
the master thread. During the parallel region, the master 

*Corresponding author Tel:+8601082322116 
Email address: qunw@cugb.edu.cn  

2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science

978-0-7695-4110-5/10 $26.00 © 2010 IEEE

DOI 10.1109/DCABES.2010.40

172



thread and derived threads will work together. Upon 
completion of the parallel region, those derived threads will 
quit or hang up, and only the master thread continues, which 
is called a join. 

A vital advantage of the OpenMP is the parallelization 
can be done incrementally, that is, the majority of the serial 
code is not changed and the user only needs to identify and 
parallelize just the most time-consuming parts of the code, 
which are usually loops[9]. This feature is very helpful for 
parallelizing the PCG algorithm[10]. As the OpenMP 
supports the incremental parallelization, it has been widely 
adopted in the scientific computing community.  

 
Figure 1.  Fork-Join Model in OpenMP 

IV. PARALLELIZATION OF THE PCG ALGORITHM 

As stated in sectionⅡ, the heat equation is discretized to 
a linear algebraic system , where bAx = A  is a symmetric 
positive definite matrix. For solving the positive definite 
linear algebraic system bAx = , the conjugate gradient (CG) 
method is an effective iterative method[11]. Meanwhile, 
both the roubustness and efficiency of the CG can be 
improved by empolying preconditoning techniques. Thus, 
the conjugate gradient combined with a preconditoner has 
proved to be one of the most efficient ways among the 
simple iterative methods[11]. 

A. Preconditioned Conjugate Gradient Algorithm 
The main operation for PCG is loop iterations. Specific 

calculation steps of the PCG are as follows. 
STEP1. Choose an arbitrary , set  

, where 

0x ，00 Axbr −=
0100 rPzp −== P  is a preconditioner. In our study, 

the P is obtained by adopting Cholesky factorization 
method. 

STEP 2. Iterate  i ----0,1,2,.., until convergence for
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B. Parallelization of Serial PCG Program 
The time of solving the linear algebraic system bAx =  

with PCG algothrim occupies most of execution time. 
Hence, in this paper, our parallel work mainly focus on 
parallelizing PCG algorithm. 

By analyzing the PCG algorithm, the most time- 
consuming are three parts: matrix-vector multiplication, 
vector inner product and solving preconditoned equations. 
Hence, the OpenMP is applied to parallelize the three parts 
in order to improve the computational efficiency.  
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1) Parallelization of Matrix-vector Multiplication 
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Figure 2.  The Code of Matrix-vector Multiplication 

In order to save memory overhead, we adopt the 
compressed sparse row (CSR) format to store the matrix. In 
this CSR format, we need to create three arrays. The first 
array stores the values of all nonzero elements of the matrix. 
The second array stores the column indexes of the elements 
in the first array. The third array stores the locations in the 
first array that start a row. In the block code shown in Fig.2, 
the array Arow  is the third array. The value of n  is the 
dimensions of the vector. The variable is an array 
which is used to store the results of multiplying matrix by 
vector.  

Ax

As shown in Fig.2, there are two level loops in the code 
of matrix-vector multiplication. In order to improve the 
computational efficiency, simply direct the compiler to 
execute the iterations of the loop indexed by i . However, 
extra attention should be paid to the variables. All variables 
except the loop index variables are shared by default. That 
makes it easy for threads to communicate with each other, 
but it also cause data race problems. We add the private() 
clause to OpenMP compiler directives for avoiding  
problems of data race. Besides, we adopt the firstprivate() 
clause to state those temporary private variables whose 
values are initialized by using their original values in the 
master thread.  
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2) Parallelization of Vector Inner Product 
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Figure 3.  The Code of Vector Inner Product 

The code of vector inner product is shown in Fig.3. In 
the block code, array x  and y  are used to indicate vectors. 
The value of n  is the dimensions of the two vectors. The 
result of computing vector inner product is stored in the 
variable answer . To parallelize the code, we use the 
OpenMP compiler directives to parallelize the iterations of 
loop. When parallelizing the code, we encounter a problem 
that the variable answer  must be both private and shared 
for avoiding data race and ensuring the proper 
implementation of multiple threads. This problem can be 
solved by employing the OpenMP reduction() clause to 
declare the variable answer . The OpenMP reduction() 
clause creates a private copy of the variable answer  for 
each thread. At the end of the reduction, the variable 
answer  is applied to all private copies of the shared 
variable, and the final result is written to the global shared 
variable.  

3) Parallelization of solving preconditioned equations 
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Figure 4.  The Code of Solving Preconditioned Equations 

In the original serial program, we adopt the Cholesky 
factorization method to construct the preconditioner. In the 
block code described in Fig.4, the value of  is the number 
of the equations. And the is a function which can 
solve the linear algebraic system  with a symmetric 
positive definite matrix

n
()dpotrs

bAx =
A using the Cholesky factorization. 

Obviously, the main time-consuming of the code is 
iterations of the loop indexed by k . Hence, for the sake of 
shortening the execution time of solving precondtioned 
equations, we resort to the OpenMP complier directives to 
execute interations of the loop in parallel. Similarly, we 
should pay attention to variables in order to avoid the data 
race problems. We employ private() clause to state those 
variables which occure in the k  loop. Other variables are 
shared except the loop index variable by default. 

V. NUMERICAL EXPERIMENT 
In this paper, we carried out a numerical experiment on 

the four cores computer with 8 Gb memory, 4 Intel(R) 
Xeon(R) 5110 1.6GHz cores and Windows 2003 Operating 
System. The experiment with discretization of 200*200*120 
spatial grids by finite difference method focused on 
investigating the execution time of the parallel program by 

using OpenMP to parallelize the PCG algorithm. Part of the 
test results are shown in TABLEⅠ.  

TABLE I.  EXECUTION TIME OF THE PARALLEL PROGRAM  WITH 
DIFFERENT NUMBER OF THREADS 

the number of threads 1 2 3 4 
execution time(s) 57.05 35.44 28.17 24.24
speedup 1.00 1.61 2.23 2.53
efficiency(%) 100% 80.5 74.3 63.3
According to the statistics provided by TABLEⅠ,it is 

easy to see that the parallel PCG can shorten the execution 
time for solving the large-scale three-dimensional heat 
equation problem. With the number of threads increases, the 
speedup increases while the execution time and the 
efficiency decline. Because the speedup is defined as the 
ratio of the serial PCG program execution time and the 
parallel PCG program execution time, the speedup increases 
with the number of threads. The efficiency declination 
mainly due to the system overhead brought by making the 
PCG paralleled increases with the number of threads. The 
system overhead involves the overhead of synchronization 
between threads, data race problems, creation threads as 
well as hang up threads.  

TABLE II.  THE SPEEDUP OF PARALLELIZING DIFFERENT PARTS OF  
PCG 

the number of threads 1 2 3 4 
Matrix-vector multiplication 1 1.98 2.95 3.60
Vector inner product 1 1.95 2.53 2.91
Solving preconditioned equations 1 1.31 1.54 1.72
The second line of data in the TABLEⅡ show the 

speedup of parallelizing matrix vector multiplication. From 
the test results it follows that the measuring speedup 
increases with the number of threads. Moreover, the 
measuring speedup is very close to the theoretical speedup. 
The parallelization of matrix-vector multiplication can 
achieve a desirable speedup mainly due to itself has a high 
level parallelism. And the reason measuring speedup can not 
reach the theoretical value is that making the code paralleled 
also brings some system overhead like the overhead of 
copying, creation threads and hang up threads. The test 
results indicate that the parallelization of matrix-vector 
multiplication is very effective. 

The third line of data in the TABLEⅡ  describe the 
speedup obtained by parallelizing vector inner product. 
According to the statistics provided by TABLEⅡ, it can be 
seen that the measuring speedup of parallelizing vector 
inner product increases with the number of threads. 
However, the implementation of parallelizing vector inner 
product does not achieve a desirable scalability of the 
speedup. One reason for the results is the data race problems. 
When the code of vector inner product is executed with 
multiple threads, the data race problems can be caused. As 
the number of threads increases, the data race problems 
occur more frequently. Another reason is that the reduction 
operation which causes the overhead of synchronization 
between threads. The synchronization overhead also 
increases with the number of threads. Besides, some system 
overhead like overhead of creation threads and hang up 

174



threads could also influence the scalability of the measuring 
speedup. The above mentioned factors has led to this 
performance degradation.  

The last line of data in the TABLEⅡ  portray the 
measuring speedup achieved by parallelizing the sloving 
preconditioned equations. Although the measuring speedup 
increases with the number of threads, the performance of 
measuring speedup is deviation from the theoretical speedup. 
One reason for affecting the peformance of parallelizing the 
sloving preconditioned equations is the problems of data 
race. When the code of solving preconditioned equations is 
executed in parallel, it is easy to produce data race. And 
with the number of threads increases, the data race problems 
occur more frequently. Another reason is that making the 
code of solving preconditioned equations paralleled brings a 
lot of system overhead, such as the overhead of copying, 
creation threads and hang up threads. The system overhead 
could influence the parallel peformance.  

VI. CONCLUSION 

Preconditioned iterative methods and parallel computing 
methods are two efficient ways for accelerating the 
simulation process of the heat equation. This paper provides 
an approach using OpenMP to parallelize the PCG 
algorithm for solving the large-scale three-dimensional heat 
equation on a multi-core computer. The parallel approach 
produces an impressive reduction of the execution time and 
this approach achieves great improvement in computational 
efficiency. Based on the experimental results, it is evident to 
conclude that the parallel PCG solver based on the OpenMP 
parallelization toolkit is suitable for solving three-
dimensional heat equation problems with massive grids.  

 

 

REFERENCES 
[1] Jacques-Louis Lions, Yvon Maday, Gabriel Turinici, “A "parareal" in 

time discretization of PDE's”, Comptes Rendus de l’Académie des 
Sciences - Series I - Mathematics,  332(7), pp. 661-668, 2001. 

[2] S. Contassot-Vivier, R. Couturier, C. Denis, F. Je´ze´quel, 
“Efficiently solving large sparse linear systems on a distributed and 
heterogeneous grid by using the multisplitting-direct method”, Fourth 
International Workshop on Parallel Matrix Algorithms and 
Applications, PMAA’06, pp. 21-22, 2006. 

[3] P.R. Amestoy, I.S. Duff, S. Pralet, C. Vo¨mel, “Adapting a parallel 
sparse direct solver to architectures with clusters of SMPs”, Parallel 
Computing 29 (11-12), pp. 1645-1668, 2003. 

[4] Hasan Dağ, “An approximate inverse preconditioner and its 
implementation for conjugate gradient method”, Parallel Computing, 
vol. 33, pp. 83-91, March 2007. 

[5] Torsten Hoefler, Peter Gottschling, Andrew Lumsdaine, Wolfgang 
Rehm, “Optimizing a conjugate gradient solver with non-blocking 
collective operations”, Parallel Computing, vol. 33, pp. 624-633, 
September 2007. 

[6] V. Hernandez, J.E. Roman, A. Tomas, “Parallel Arnoldi eigensolvers 
with enhanced scalability via global communications rearrangement”, 
Parallel Computing, vol. 33 , pp. 521-540, August 2007. 

[7] Zeyao Mo, Xiaowen Xu, “Relaxed RS0 or CLJP coarsening strategy 
for parallel AMG”, Parallel Computing, vol. 33, pp. 174-185, April 
2007.  

[8] Tangpei Cheng, Qun Wang, “Parallel-Computing Strategy for Large-
scale Heat Equation based on PETSC”, Computer Science, vol. 36, pp. 
160-164, 2009. 

[9] M.T.F Cunha, J.C.F. Telles, A.L.G.A. Coutinho and J. Panetta, “On 
the parallelization of boundary element codes using standard and 
portable libraries,”  

[10] Yanhui Dong and Guoming Li, “A Parallel PCG Solver for 
MODFLOW,” GROUND WATER, vol. 47, pp. 845-850, November-
December 2009. 

[11] ARANY, “The Preconditioned Conjugate Gradient Method with 
Incomplete Factorization Preconditioners,” Computers Math. Applic., 
vol. 31, pp. 1-5, 1996. 

 

175


