
Fast Parallel Markov Clustering in Bioinformatics using Massively Parallel Graphics
Processing Unit Computing

Alhadi Bustamam∗†, Kevin Burrage∗‡ and Nicholas A. Hamilton∗
∗Institute for Molecular Bioscience, The University of Queensland, Australia

† Department of Mathematics, University of Indonesia
‡COMLAB, Oxford University, UK

Email: alhadi.bustamam@uqconnect.edu.au, kevin.burrage@comlab.ox.ac.uk,
n.hamilton@imb.uq.edu.au,

Abstract

Markov clustering is becoming a key algorithm within
bioinformatics for determining clusters in networks. For
instance, clustering protein interaction networks is helping
find genes implicated in diseases such as cancer. However,
with fast sequencing and other technologies generating vast
amounts of data on biological networks, performance and
scalability issues are becoming a critical limiting factor
in applications. Meanwhile, Graphics Processing (GPU)
computing, which uses a massively parallel computing en-
vironment in the GPU card, is becoming a very powerful,
efficient and low cost option to achieve substantial perfor-
mance gains over CPU approaches. This paper introduces
a very fast Markov clustering algorithm (MCL) based on
massive parallel computing in GPU. We use the Compute
Unified Device Architecture (CUDA) to allow the GPU
to perform parallel sparse matrix-matrix computations and
parallel sparse Markov matrix normalizations, which are at
the heart of the clustering algorithm. The key to optimizing
our CUDA Markov Clustering (CUDAMCL) was utilising
ELLACK-R sparse data format to allow the effective and
fine-grain massively parallel processing to cope with the
sparse nature of interaction networks datasets in bioinfor-
matics applications. CUDA also allows us to use on-chip
memory on the GPU efficiently, to lower the latency time
thus circumventing a major issue in other parallel computing
environments, such as Message Passing Interface (MPI).

Here we describe the GPU algorithm and its application
to several real world problems as well as to artificial
datasets. We find that the principle factor causing vari-
ation in performance of the GPU approach is the rela-
tive sparseness of networks. Comparing GPU computation
times against a modern quad-core CPU on the published
(relatively sparse) standard BIOGRID protein interaction
networks with 5156 and 23175 nodes, speed factors of 4
times and 9 were obtained, respectively. On the Human
Protein Reference Database, the speed of clustering of
19599 proteins was improved by a factor of 7 by the

GPU algorithm. However, on artificially generated densely
connected networks with 1600 to 4800 nodes, speedups by
a factor in the range 40 to 120 times were readily obtained.
As the results show, in all cases the GPU implementation
is significantly faster than the original MCL running on
CPU. Such approaches are allowing large-scale parallel
computation on off-the-shelf desktop machines that were
previously only possible on super-computing architectures,
and have the potential to significantly change the way
bioinformaticians and biologists compute and interact with
their data.

1. Introduction

Recently, the Markov clustering algorithm (MCL) [1],
which originally was developed for the general problem
of graph clustering, has been adopted in a wide range of
applications including in bioinformatics applications [2]–[4].
The algorithm has also been reviewed intensively [5]–[7]
and has been shown to be robust and reliable compared to
some other clustering algorithms. As applications of MCL
expand and the size of datasets increase, there is a strong
need for a fast and reliable implementation of MCL. Hence,
the parallel implementation of the MCL algorithm is now
an important challenge in order that MCL performance may
be improved.

Previously, we developed a parallel MCL implementation
in an MPI environment with preliminary results showing a
good performance improvement [8]. However, the increasing
popularity of massive parallel implementation using many
cores graphic cards processors (GPUs) has created a new
efficient and effective way to do massive parallel comput-
ing. Recent publications in bioinformatics applications have
shown large performance improvements when using GPUs.
A 5- to 6-fold of GPU speedup over a general-purpose CPU
is often attained, while in several cases a more than 100-fold
speed up is reported by authors (see CUDA Zone websites
[9] for examples).

2010 Second International Workshop on High Performance Computational Systems Biology and Parallel and Distributed Methods

of verifiCation

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/HiBi.2010.8

107

2010 Second International Workshop on High Performance Computational Systems Biology and Parallel and Distributed Methods

of verifiCation

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/HiBi.2010.8

115

2010 Second International Workshop on High Performance Computational Systems Biology and Parallel and Distributed Methods

of verifiCation

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/HiBi.2010.8

115

2010 Second International Workshop on High Performance Computational Systems Biology

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/HiBi.2010.8

115

2010 Second International Workshop on High Performance Computational Systems Biology

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/HiBi.2010.8

115

Ninth International Workshop on Parallel and Distributed Methods in Verification/Second International Workshop on High

Performance Computational Systems Biology

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/PDMC-HiBi.2010.23

116

2010 Ninth International Workshop on Parallel and Distributed Methods in Verification/2010 Second International Workshop

on High Performance Computational Systems Biology

978-0-7695-4265-2/10 $26.00 © 2010 IEEE

DOI 10.1109/PDMC-HiBi.2010.23

116

Table 1: Feature Comparison of the NVIDIA GPUs

Feature 9800GTX GTX260M GTX285

#Streaming Processors 128 cores 112 cores 240 cores

Processor Clock 1688 MHz 1375 MHz 1476 MHz

Off-chips Memory Size 512 MB 1 GB 2 GB

Memory Bandwidth 70.4 GBps 61 GBps 159 GBps

Peak Performance 648 GFLOPS 462 GFLOPS 1063 GFLOPS

There are many important bioinformatics applications that
have been developed using GPU such as parallel sequence
alignment [10] [11], biosequence database scanning [12],
phylogenetics [13], features detection in proteomics [14],
and molecular dynamic simulation [15]. An extensive re-
view, especially with regard to drug discovery applications
recently appeared in [16]. In the current paper we present
a GPU implementation of MCL. We benchmark the imple-
mentation on a number of problems and show significant
speed-ups over CPU computing in all cases. Thus, we
believe GPU implementations of MCL will significantly
improve performance over CPU implementations and hence
will extend the range of applications of MCL.

2. The rise of multi-core CPUs and many-core
GPUs computing

A new era of computing power is now arising due to
advances in multi-core CPUs and many-core GPUs. In the
90s, the rate of processor-performance grew exponentially
due to the improvement in gates-per-die, clock speed and
instruction-level parallelism (ILP). However, around 2003,
the improvement in clock speed started to hit physical limits
due to power consumption and heat effects, and the increas-
ing of demand for sophisticated ILP also became restrictive.
This left the gate count remaining as the major basis for
performance improvement. As a result, many manufacturers
have reconfigured their improvement strategy to focus on
gate count instead of pushing clock rate, in particular to
making more cores [17] [18].

The new direction of developing multi-core CPUs and
many-core GPUs brings the processor chips into being
parallel systems. Higher performance can be achieved by
populating the cores with multiple floating-point arithmetic
logic units (ALUs) where each ALU performs the same
operation on distinct pieces of data. This process can be done
efficiently using a single instruction, multiple data (SIMD)
approach. The common implementation of SIMD processing
uses explicit short-vector instruction, that provided a SIMD
width of four, with the instructions that control the operation
of four ALUs. This SIMD width of four model is commonly
used in multi-core CPU design as a balance between provid-
ing increasing throughput and retaining high-single threaded

performance [19].
The modern many core GPUs’ design employs both multi-

threaded and SIMD to maintain high efficiency. The GPU
from NVIDA’s 8-series, for example, uses implicit sharing
and instructions across multiple threads with identical pro-
gram counters (PCs). The GPU then employs significantly
wider SIMD processing (widths ranging from 32 to 64) that
support a rich set of operations. The wider SIMD processing
enables a GPU to pack many cores densely with ALUs.
For example, the NVIDA GeForce 8800 Ultra contains 128
single precision ALUs operating at 1.5GHz. These ALUs are
organized into 16 processors (each ALU performs one-32 bit
multiply-add per clock) and yield a peak rate of 384 GFlops,
compared to a high-end 3-GHz Intel Core 2 CPU contains
four cores (two 4-width vector instruction per clock) that is
capable of 96 Gflops of peak performance [19]. The more
recent GPU cards from NVIDIA we use here give an even
greater peak performance (see Table 1).

3. CUDA programming model on GPU

Traditional methods of parallel programming such as
message passing interface (MPI) often have limited scaling
ability due to serialization and synchronization phases that
increase with core count. Hence there is the need for an
approach to scale up with core-count without the need to
restructure the application architecture every time a new core
count is targeted [17] [18].

With the advance of GPU architecture, several major
graphics card manufactures have develop language tools
to make sophisticated parallel programs in many-cores
GPU readily expressible with a few abstractions. In 2007,
NVIDIA released a scalable parallel programming model
using the C language on NVIDA’s GPU cards called com-
pute unified device architecture (CUDA). CUDA provides
a set of extensions to the standard ANSI C programming
language which enable the programmer to do heterogeneous
computation using both CPU and GPU. The serial portions
of applications can be run on the CPU (called host) and
the parallel portions can be massively executed on the GPU
(called device/kernel) [20].

Since that release, commodity graphics hardware have
become a cost-effective parallel platform to solve many

108116116116116117117

general problems [21]. In particular, the economical man-
ufacture of GPUs in large numbers with broad availability
in the personal computer market today gives the benefit of
GPU accelerators for both general and specific programming
purposes [16] [22]. Recently, GPUs specifically for scientific
applications became available with the release of GPUs
for supercomputing systems such as TESLA from NVIDIA
[23]. Hence CUDA is now emerging as a new development
platform for general purpose high performance computing
on GPUs.

4. Markov clustering algorithm and CUDA
implementation

Markov clustering [1] is an important bioinformatics algo-
rithm for determining cluster information in graph networks.
Recently MCL, which originally was developed for general
graph clustering, has been adapted to a wide range of bioin-
formatics applications, such as protein-protein interaction
networks [4] [8]. That MCL is effective, fast, and often
more tolerant and robust to noise, has made it an attractive
algorithm in the extraction of complexes from interaction
networks [5] [7].

4.1. MCL algorithm

MCL uses two simple algebraic operations, expansion and
inflation, on the stochastic (Markov) matrix associated with
a graph. The Markov matrix M associated with a graph
G is defined by normalizing all columns of the adjacency
matrix of G. The clustering process simulates random walks
(or flow) within the graph using expansion operations, and
then strengthens the flow where it is already strong and
weakens it where it is weak using inflation operations. By
continuously alternating these two processes the underlying
structure of the graph gradually becomes apparent, and there
is convergence to a result with regions with strong internal
flow (clusters) separated by boundaries within which flow is
absent [1].

The MCL expansion operator takes the pth power of the
matrix M as

Exp(M) = Mp. (1)

By default p = 2. For the MCL inflation operation: given a
matrix M ∈ R

m×n,M ≥ 0 and a number r ∈ R, r > 0, the
inflation operator Γr : Rm×n → R

m×n to M with power
coefficient r is defined by:

(ΓrM)ij = (Mij)
r/

m∑
k=1

(Mkj)
r; i = 1...m, j = 1...n. (2)

ΓrM is called the inflation matrix of M with a power
coefficient r. This inflation process automatically normalizes
and creates a new Markov matrix result [1].

The iteration of expansion and inflation processes results
in an idempotent matrix with clusters in blocks inside. This
final idempotent matrix is chosen when no more significant
changes occur in the values of the matrix elements on the
current expansion and inflation iteration compared to the
previous iteration. The idempotent condition is numerically
achieved when the global chaos, according to Equations 3
and 4, of the kth column of matrix M in the current iteration
is less then a minimum threshold value e (by default e =
10−3), for all k.

(chaos)k =
max((ΓrM)ik, i = 1...m)∑m

i=1(ΓrM)2ik
. (3)

glb chaos = max((chaos)k, k = 1...n). (4)

4.2. Sparse Matrix Representation for efficient
GPU processing

Network datasets were encoded using a sparse matrix
format, as follows, in the parallel Markov clustering im-
plementation using CUDA. There have been several paral-
lel sparse matrix-vector multiplication (SpMV) algorithms
mostly using Compressed Sparse Row (CSR) format [24]
and more recently using ELLPACK-R format [25] (described
below). In this paper we focused our implementation on
using ELLPACK-R format since the evaluation in [25] [26]
suggested that the ELLPACK-R structure should give several
advantages over the CSR structure when implemented in
CUDA. These advantages include coalesced global memory
access, non-synchronized execution between different blocks
of threads, the reduction of the waiting time or unbalance
between threads of one warps, and homogeneous computing
within the threads in the warps. However, the ELLPACK-
R format consumes more memory space compared to CSR
format. We leave a CUDA implementation of MCL in GPU
using CSR-format for further investigation in subsequent
research.

4.2.1. ELLPACK-R Sparse Matrix Format. Suppose n is
the total number of rows and L is the maximum number
of non-zero elements per row in a matrix. The ELLPACK-R
format requires two arrays of dimension n×L. One, denoted
val, to store non-zero array elements, and another, col, to
store column indices. An additional vector, rL, of dimension
n is used to store the actual length of each row [25] [26].
The vector rL is used here as an effective key factor for
searching and distributing each matrix column element in
SpMV with CUDA in GPU [25] [26]. For example, let the

109117117117117118118

matrix M with total nonzero elements NZ = 10 be

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 4 0 −1

−2 3 0 5 0

0 5 0 0 0

0 0 −5 0 2

1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The ELLPACK-R representation format of matrix M in
Equation 5 is:

val =

4 −1 0

−2 3 5

5 0 0

−5 2 0

1 −1 0

, col =

2 4 0

0 1 3

1 0 0

2 4 0

0 2 0

, rL =

2

3

1

2

2

.

Furthermore, for performance analysis in Section 5, the
sparse density (SpD) ratio is defined as the ratio of total
number of non-zero elements (NZ) in the sparse matrix M
compared to total number of elements of a fully dense matrix
with dimension n × n. Hence, in this example the SpD of
matrix M is 10

25 or 25%.

4.3. Parallel MCL Implementation with CUDA

4.3.1. CUDA Sparse Matrix-Matrix Multiplication.
CUDA sparse matrix-matrix multiplication (SpMM) is one
of the core modules at the heart of our CUDA-MCL im-
plementation (see more detail in Section 4.3.2). We adopted
CUDA sparse-vector multiplication (SpMV) implementation
using ELLPACK-R sparse format on GPU from [25] [26] to
perform massively parallel CUDA SpMM processes in our
CUDA-MCL implementation. To illustrate, suppose we have
matrix M with dimension of n × n. The parallelization of
the sparse matrix-matrix multiplication M2 = MM using
CUDA threads in GPU is described as follows. Firstly,
we assign each CUDA thread i to extract all non-zero
elements of column-k of sparse matrix M into column-
vector vk in parallel. Then we launch CUDA SpMV kernel
on matrix M against vector vk to produce vector u = Mvk.
The SpMV were performed in parallel by assigning each
thread i to compute scalar vector multiplication of row
i of matrix M against vector vk to find element i of
vector u independently. The resultant column vector u then
was transformed into column-k of ELLPACK-R format of
matrix M2. Furthermore, to completely execute SpMM for
M2 = MM in CUDA, we launch the CUDA SpMV kernel
from host program (CPU) for each column-k of matrix M
for all k = 1, ..., n.

Listing 1: CUDA-MCL algorithm

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/ / ∗ chaos = max energy on each i t e r a t i o n .
/ / ∗ energy = energy t o l e r a n t t o s t o p MCL.
/ / ∗ va l , co l , rL = t h e ELLPACK−R form o f M.
/ / ∗ maxL = max number o f e n t r i e s by rows
energy =ETOL; / / d e f a u l t =1e−3.
chaos =1 . 0
SH=1; / / SH=1 used shared memory
{copy s p a r s e m a t r i x M t o d e v i c e }
whi le (chaos>energy)
{ chaos =0 . 0 ;

f o r (i n t k =0; k<N; k ++)
{ CUDA expans ion kernel (k) ;

i f (SH==1)
{CUDA inf la t ion SH kerne l (k) ;

/ / ∗ compute chaos
CUDA chaos SH kernel ;}

e l s e
{CUDA inflat ion GB kernel (k) ;

/ / ∗ compute chaos
CUDA chaos GB kernel ;}

/ / ∗∗ r e s t o r e r e s u l t i n t o column−k M2
C U D A e l l p a c k r r e s t o r e k e r n e l (k) ;

}
/ / ∗∗ copy g l o b a l chaos t o h o s t
c o p y c h a o s t o h o s t () ;
/ / ∗∗ copy m a t r i x M2 i n t o M i n d e v i c e
copy M2 to M ()
/ / ∗∗ s y n c h r o n i z e t h r e a t s
c u d a T h r e a d S y n c h r o n i z e () ;
i t e r s ++;
i f (i t e r s >=MAX ITERS) chaos = 0 . 0 ;

}
{ I n t e r p r e t M as c l u s t e r s }

4.3.2. CUDA-MCL implementation. The most demanding
computing time in original MCL algorithm are in the matrix-
matrix multiplication processes of the MCL Expansion mod-
ule (Equation 1), and also the vector reduction processes
both in the MCL Inflation module (to compute column-
vector sum for Markov matrix normalization – Equation
2) and in the MCL Chaos module (to compute local and
global chaos for MCL stopping criteria – Equation 3 and
Equation 4, respectively). So the key factor in improving the
original MCL algorithm is to exploit all of these MCL Ex-
pansion, Inflation and Chaos modules in parallel [8]. Hence,
the CUDA-MCL implementation consists of three main
massively parallel threads CUDA kernels: (1) Expansion
kernel to compute parallel MCL expansion processes; (2)
Inflation kernel to compute parallel MCL inflation processes;
and (3) Chaos kernel to compute parallel local and global
chaos. In Listing 1 we can see the CUDA-MCL algorithm,
which incorporates two different kernels for using GPU
memory (global or shared memory modules) for the Inflation
and Chaos kernels. As an illustration, to do the CUDA-
MCL process in GPU, the dataset which is stored in the
ELLPACK-R format including val, col, and rL values firstly
is copied from CPU (host) into GPU (device) and is stored
in the device global memory. The Expansion kernel uses
global memory to compute M2 = MM then the inflation

110118118118118119119

kernel stores the results into global or shared memory to do
parallel reduction and normalize the matrix resulting in a
new Markov matrix input. The Chaos kernel then computes
global chaos also using either global memory or shared
memory.

Listing 2: CUDA-MCL: Expansion Kernel to compute vec-
tor u = Mv

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
i n t t i d = t h r e a d I d x . x ;
i n t b i d = b l o c k I d x . x ;
i n t row=blockDim . x∗ b l o c k I d x . x+ t h r e a d I d x . x ;
i f (row<n c o l s)
{ / / ∗∗ e x t r a c t column−v e c t o r v from data

i n t max=rowL [row] ; i n t i =0 ;
whi le (i < max)
{ i n t pos= i ∗ n c o l s +row ;

i f (pos<m atS ize){
i f (column [pos]== c o l)
{ v [row]= d a t a [pos] ;

i =max ;}
e l s e
{ v [row] = 0 . 0 ; i +=1;}

}}
s y n c t h r e a d s () ;

/ / ∗∗∗EXPANSION OPERATION
/ / ∗∗∗SpMV w i t h ELLPACK−R s p a r s e f o r m a t
f l o a t s v a l u e = 0 . 0 ;
f l o a t t v a l u e = 0 . 0 ;
f o r (i n t i =0 ; i<max ; i ++)
{ f l o a t rowval = 0 . 0 ;

f l o a t c o l v a l = 0 . 0 ;
i n t i d x c o l =0 ;
i n t idxrow =0;
i n t pos= i ∗ n c o l s +row ;
i f (pos<m atS ize)

{ rowval = d a t a [pos] ;
i d x c o l =column [pos] ;
c o l v a l =v [i d x c o l] ;
s v a l u e += rowval∗ c o l v a l ;

}}
s y n c t h r e a d s () ;

/ / ∗∗∗ s t o r e e x p a n s i o n r e s u l t s i n v e c t o r u
u [row]= s v a l u e ;

}}

In the CUDA-MCL Expansion kernel, the CUDA SpMM
algorithm as described in Section 4.3.1 is used to perform the
CUDA-MCL expansion process (see Listing 2) using global
memory. Meanwhile, for the Inflation and Chaos kernels,
we adopted the parallel reduction type-5 algorithm from
NVIDIA SDK [9]. In both of the Inflation and Chaos kernel
with shared memory module, the partial sum on each block
is computed locally in each block using shared memory, then
the results are sent to global memory to find the global sum
over all blocks. Furthermore, to compute the final result,
the second reduction phase is done via global memory by
the last active block. Finally, the thread-0 of the last active
block stores the final result in global memory, to enable
this result for all others threads (see Listing 3 for MCL
Inflation kernel using shared memory). The results from
all blocks are synchronized using CUDA threadfence()

Table 2: Random Full Datasets

No Name #nodes #interactions

1. RFULL1 1600 2, 560, 000

2. RFULL2 3200 10, 240, 000

3. RFULL3 4800 23, 040, 000

Table 3: Random Sparse Datasets ∗

No Name #nodes #interactions

1. RSPARS1 1600 768, 000

2. RSPARS2 3200 3, 072, 000

3. RSPARS3 4800 6, 912, 000

{*} the sparse density ratio (SpD) is 30%

Table 4: PPI Datasets (from BioGRID [27], HPRD [28])

No Name Source #nodes #interactions

1. PPI1 BioGRID 5, 156 51, 050

2. PPI2 HPRD 19, 599 58, 450

3. PPI3 BioGRID 23, 175 137, 104

memory fence function (adopted from from CUDA 2.3
Threadfence SDK toolkit) and then the last active block
is determined using CUDA atomic inc() atomic function.
Meanwhile, in Inflation and Chaos kernels with the global
memory module, the partial sum on each block is computed
directly via global memory. The thread-0 in each block then
stores the partial sum results in an intermediate array (with
dimension the same as the total number of blocks in kernel).
The syncthreads() function is then used to synchronize
all the partial results. To find the final result, thread-0 in
each block then does the second reduction phase on the
intermediate array, so each block will have the same final
result independently.

To find the best memory approach for the CUDA-MCL,
firstly we implemented both global and shared memory
kernel in both Inflation and Chaos kernel since in both
of them we massively used parallel reduction processes.
Basically, global memory kernels are easier to implement
and to synchronize compared to shared memory kernel.
However the global memory kernel has more latency time
than the shared memory kernels. On the other hand, the
shared memory kernel uses the very low latency on-chip
shared memory, but it has to be accessed, computed, and
synchronized locally on each thread-block and needs a sec-
ond parallel reduction step using global memory for global
synchronization of all blocks to get the final computation
results [20]. Moreover, to check the optimum numbers of
threads per block (TPB) (block size), in order to have the

111119119119119120120

most effective block size of each kernel to achieve the
scalable, fastest and most robust performance, we tested
three different sizes of TPB including 128 TPB, 256 TPB,
and the maximum one, 512 TPB. The NVIDIA GPUs used
here only allow the CUDA kernel to launch a maximum of
512 TPB. The outcome of this testing is described in Section
5.

Listing 3: CUDA-MCL: Inflation Kernel for column-vector
u using Shared Memory

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
shared f l o a t s d a t a [BLOCK SIZE] ;

i n t b l o c k S i z e =BLOCK SIZE ;
i n t t i d = t h r e a d I d x . x ;
i n t b i d = b l o c k I d x . x ;
i n t i = b l o c k I d x . x∗blockDim . x + t h r e a d I d x . x ;
/ / cached i n p u t da ta
f l o a t t o t a l =0 ;
f l o a t i n f v a l =pow (i n p u t [i] , r) ;
s d a t a [t i d] = (i<n c o l s) ? i n f v a l : 0 ;

s y n c t h r e a d s () ;

/ / do f i r s t r e d u c t i o n i n shared mem
i f (b l o c k S i z e >=512)

{ i f (t i d <256){ s d a t a [t i d]+= s d a t a [t i d +256] ;}
s y n c t h r e a d s () ; }

i f (b l o c k S i z e >=256)
{ i f (t i d <128){ s d a t a [t i d]+= s d a t a [t i d +128] ;}

s y n c t h r e a d s () ; }
i f (b l o c k S i z e >=128)

{ i f (t i d <64){ s d a t a [t i d]+= s d a t a [t i d +64] ;}
s y n c t h r e a d s () ; }

i f n d e f DEVICE EMULATION
i f (t i d < 32)
e n d i f
{ i f (b l o c k S i z e >=64){ s d a t a [t i d]+= s d a t a [t i d + 3 2] ;

EMUSYNC;}
i f (b l o c k S i z e >=32){ s d a t a [t i d]+= s d a t a [t i d + 1 6] ;

EMUSYNC;}
i f (b l o c k S i z e >=16){ s d a t a [t i d]+= s d a t a [t i d + 8] ;

EMUSYNC;}
i f (b l o c k S i z e >=8){ s d a t a [t i d]+= s d a t a [t i d + 4] ;

EMUSYNC;}
i f (b l o c k S i z e >=4){ s d a t a [t i d]+= s d a t a [t i d + 2] ;

EMUSYNC;}
i f (b l o c k S i z e >=2){ s d a t a [t i d]+= s d a t a [t i d + 1] ;

EMUSYNC;}
}
/ / w r i t e r e s u l t f o r t h i s b l o c k t o g l o b a l mem
i f (t i d == 0) s r d t n [b l o c k I d x . x] = s d a t a [0] ;

s y n c t h r e a d s () ;

/ / do second r e d u c t i o n
/ / t o have t h e same r e s u l t i n each b l o c k s
i f (t i d ==0){

t o t a l = 0 . 0 ;
f o r (i n t j j = t i d ; j j <n b l o c k s ; j j ++)

t o t a l += s r d t n [j j] ;
s d a t a [t i d]= t o t a l ;

}
s y n c t h r e a d s () ;

/ / n o r m a l i z e each column m a t r i x r e s u l t
/ / t o s e t u p new Markov f o r n e x t MCL i t e r a t i o n
i n p u t [i]= i n f v a l / s d a t a [0] ;
}

5. Performance comparison results and discus-
sion

5.1. Datasets

For performance testing, several random full network
datasets (RFULL) and random sparse network datasets
(RSPARS) were created (see Table 2 and Table3). The
RFULL and RSPARS were created using random matrix
generator rand() and sprand() functions in MATLAB, re-
spectively. Then, we add a loop at each of the network nodes
with as its weight a random permutation number generated
by randperm() function in MATLAB, in order to boost the
random walks or flows in the networks to make one node
(with higher loop weight) becomes more attractive than the
others. The higher its loop weight, the more attractive this
node is then to others. We select the 30% sparse density
ratio in RSPARS datasets to evaluate the behaviour of
CUDA-MCL performance in the sparse datasets compared
to RFULL datasets. We do the preliminary performance
test with a focus on random sparse network datasets before
moving to the real PPI datasets since the PPI datasets
structure are generally relatively sparse.

For the real dataset tests, we extracted several protein-
protein interaction datasets from public domain websites,
including the BioGRID [27] and human protein reference
database (HPRD) [28]. BioGRID is one of the freely avail-
able online curated biological interaction datasets, compiled
comprehensively for protein-protein and genetic interaction
from major organism species and available in wide variety of
standardized formats. HPRD consists of a protein database
directed toward understanding human protein function. For
instance, HPRD has been used to develop a human protein
interaction networks based on protein-protein and subcellu-
lar localization data [29]. The HPRD datasets were manu-
ally curated from published literature using bioinformatics
analysis on protein sequences by biologist experts. HPRD
datasets are also available online with various standardized
data format as well. For our CUDA-MCL performance tests,
we use three PPI datasets (as shown in Table 4), including
the PPI1 and PPI3 datasets (from BioGRID) and the PPI2
dataset (from HPRD) with dataset size ranging from small
(PP1), medium (PPI2) and large (PPI3).

5.2. Testing

To test the CUDA-MCL performance we used a wide
range of CPU and GPU pair systems including desktop
and laptop computers. We employed three different CPU-
GPU pair machines: (1) SC-9800GTX, an unbranded desk-
top PC with a classical single core Intel Pentium 4 CPU
paired with 128-core NVIDA 9800GTX GPU; (2) ASUS-
GTX260M, a branded ASUS G51VX-RX05 laptop with a
modern dual-core Intel Centrino CPU paired with 112-core

112120120120120121121

Table 5: Feature Comparison of Testing Machines

Feature SC-9800GTX ASUS-GTX260M QC-GTX285

Computer System Desktop Laptop Desktop

GPU Model 9800GTX GTX260M GTX285

GPU Cores 128 cores 112 cores 240 cores

CPU Model Pentium 4 3.0 Ghz Centrino P7350 2.0 Ghz Phenom II 655 3.4 Ghz

CPU Cores Single-core Dual-core Quad-core

RAM Size 4 GB DDR2-667Mhz 4 GB DDR2-400Mhz 4 GB DDR3-1066Mhz GB

Operating System Windows XP 32 bit Windows Vista 64 bit Windows 7 64 bit

CUDA Version CUDA 2.3 CUDA 2.3 CUDA 2.3

NVIDIA GTX260M mobile GPU; and (3) QC-GTX285,
an unbranded desktop PC with a powerful modern AMD
Phenom II quad-core CPU paired with a powerful 240-
core NVIDA GTX285 GPU (see Table 5 for more detail).
Such machines represented the old and currently available
computer systems on the market and have been used here to
check the different and scalable CUDA-MCL performance
on different representatives of CPU-GPU pairs such as a
weak CPU against a strong GPU (SC-9800GTX), a strong
CPU against a less strong GPU (ASUS-GTX260M) and a
very strong CPU against a very strong GPU (QC-GTX285).

Firstly, we want to test the preliminary speed-up per-
formance of the CUDA implementation of MCL algorithm
between global memory and shared memory kernels using
three different numbers of TPB. This is in order to select the
best CUDA-MCL kernel model and the optimum number
of TPB for further performance tests. We conducted our
preliminary tests on the SC-9800GTX machine with 128-
core GPU using the random datasets in Table 2. The results
in Figure 1 show that up to 235× and more than 300×
speed-ups were achieved in the global and shared memory
kernels respectively, on the largest dataset. Hence, a 15-35%
speed-up in performance was produced by shared memory
kernel compare to global memory kernel. The shared mem-
ory kernel also gave a more stable speed-up trend and also
scalable performance improvement with increasing dataset
size, while the global memory kernel produced a more
fluctuating speed-up especially in the kernel with 512 TPB.
Moreover, among the three TPB implementations, the 256
TPB model always gave a consistent speed-up improvement
along with the highest speed-up gain, especially in the shared
memory kernel. Meanwhile, 128 TPB in most cases pro-
duced a lower speed-up compare to others. These tests led
us to select the shared memory kernel with 256 TPB model
as our core model for the CUDA-MCL implementation in
further tests.

Once the shared memory/256 TPB architecture was se-
lected, we conducted further performance test on the ASUS-
GTX2560 and QC-GTX285 machines. We wanted to check
possible CUDA-MCL speed-ups on the current representa-

Figure 1: Speed-up on Desktop SC-9800GTX Machine using
Global vs Shared Memory Kernel

tive laptop and desktop machines in the market today. Since
the ASUS-GTX260M machine consists of a less powerful
112-core GPU against a quite stronger new generation dual
core mobile CPU, we would expect that this system would
produce a quick simulation time on both GPU and CPU,
but give a moderate speed-up performance. Meanwhile, the
QC-GTX285 machine is actually our main focus test since it
has larger VRAM and closely represents the actual desktop
computer system in market today. With the most powerful
240-core GPU and quad-core CPU here, QC-GTX285 will
obviously produce fastest simulation times on both GPU and
CPU. The larger VRAM in this GPU should also benefit the
computing capacity.

113121121121121122122

We ran the tests on both machines using both random full
datasets (Table 2) and random sparse datasets (Table 3).
Figure 2 shows the speed-up performance results of our
CUDA MCL implementation on ASUS-GTX260M and QC-
GTX285 machines, using shared memory kernel and 256
TPB model for the RFULL and RSPARS datasets. The
results show a very consistent and scalable speedup improve-
ment in all cases on both machines for both random full and
sparse network datasets. On the ASUS-GTX260M machine
we achieved speed-up by a factor of up to 31× and 22×,
while on the QC-GTX285 machine the speed-up increased
by a factor of up to 124× and 120×, for both RFULL
and RSPARS datasets, respectively. Interestingly, in Figure
2 we can see that the speedup over CPU for random sparse
datasets was about 75% of that for random full datasets on
ASUS-GTX260M machine, while on QC-GTX285 machine
this speed-up was more fluctuative between 70% to 95%.

Finally, to conclude our analysis, we applied the CUDA-
MCL implementation to real PPI datasets, with the dataset
sizes are ranging from a small (PPI1), medium (PPI2) and
large (PPI3) data sizes (see Table 4). In Figure 3 we can see
that with the dataset from BioGRID we achieved a speed
up by a factor of 4 on PPI1 and of 9 on PP3. Meanwhile,
a speed up of a factor of 7 was achieved on the HRPD
dataset, PPI2. On the real PPI datasets, we have a very
sparse networks in all cases. These very sparse conditions
give a drop on of CUDAMCL performance compared to the
random full dense or random sparse artificial datasets we
generated. Nevertheless, the speed-ups are still a significant
improvement in all real PPI dataset cases. As an illustration,
on PPI3 dataset we are able to do the clustering with
CUDA-MCL on NVIDIA GTX285 GPU within 10 minutes
compared to 1 hour and 23 minutes with the original MCL
algorithm on quad-core AMD Phenom II 655 3.4GHz CPU.

6. Conclusions and Future Work

In this paper, we proposed and evaluated a new approach
to the Markov clustering algorithm using GPU computing
with CUDA. We proposed our implementation based on an
available SpMV package using ELLPACK-R sparse matrix
format [25] to compute the parallel expansion processes.
We also integrated into our parallel inflation process the
parallel reduction method type-5 from NVIDIA. Our im-
plementations have been tested on a wide range of dataset
sizes showing that acceleration factors of up to 300× may
be obtained, with the sparseness of the networks being the
principle factor effecting the speed-up.

It was also shown that the shared memory implementation
increased the speed-up by around 15-35% compared to
the global memory implementation of parallel reduction in

Figure 2: Speed-up on Laptop ASUS-GTX260M and Desk-
top QC-GTX285 Machines for Artificial Network Datasets

Inflation and the Chaos kernel. Meanwhile, the 256 TPB
model produced more consistent and scalable performance
improvement when increasing datasets size. However, on
the real PPI datasets with a very sparse nature of the PPI
networks, the CUDA-MCL performance dropped but the
speed-up achieved were still very significant. Given the
general trend in our other tests of improved speed-up on
larger datasets we would expect improved performance in
larger real world problems.

Due to the relatively large memory usage of the CUDA-
MCL implementation using ELLPACK-R sparse data for-
mat, we plan to evaluate another approach of Parallel MCL
implementation on GPUs using CUDA with CSR sparse
matrix format, since the CSR format stores less array ele-
ments compared to ELLPACK-R one. However, the dynamic
structure on CSR format will likely increase the complexity
of parallelization in CUDA and perhaps will reduce the
speed-up. Hence, it will be an interesting research problem
to increase the CUDA-MCL capability using CSR format
without penalizing its speed-up.

As another extension of CUDA-MCL capability, we have
also considered hybrid CUDA and openMP implementations
(hybrid CUDA/OpenMP) which enable the exploitation of
multi-core CPU and many-core GPUs in multi-GPU cards
using OpenMP and CUDA, respectively. OpenMP might
be used to manage each thread in a multi-core CPU to
split the parallel task locally into each GPU unit in multi-
GPUs. Furthermore, CUDA could be employed in all GPU
units to exploit the power of their massively parallel threads
to do each local task in each GPU unit in parallel. This

114122122122122123123

Figure 3: Speed-up on Desktop QC-GTX285 Machine for
PPI datasets

approach will give us more accessibility, computing power
and capacity with more cores and more VRAM from all
of GPUs cards, all locally in a single desktop machine.
These CUDA/openMP approaches can be considered as a
cheaper, more scalable, efficient hybrid method to solve the
large dataset and memory problems of traditional hybrid
openMP/MPI in supercomputers or distributed computing
machines.

Acknowledgment

This work has been supported by AUSAID scholarship
and ARC Center of Excellence in Bioinformatics at IMB
the University of Queensland.

References

[1] S. V. Dongen, “Graph clustering via a discrete uncoupling
process,” SIAM J. Matrix Anal. Appl., vol. 30, no. 1, pp. 121–
141, 2008.

[2] A. Enright, S. van Dongen, and C. Ouzounis, “An efficient
algorithms for large scale protein families,” Nucleic Acids
Research, vol. 30, pp. 1575–1584, 2002.

[3] T. Harlow, J. Gogarten, and M. Ragan, “A hybrid clustering
approach to recognize of protein families in 114 microbial
genomes,” BMC Bioinformatics, vol. 5, p. 45, 2004.

[4] S. Wong and M. A. Ragan, “MACHOS: Markov clusters of
homologous subsequences,” Bioinformatics, vol. 24, no. 13,
pp. i77–i85, 2008.

[5] S. Brohée and J. van Helden, “Evaluation of clustering
algorithms for protein-protein interaction networks,” BMC
Bioinformatics, vol. 7, p. 488, 2006.

[6] R. Sharan, I. Ulitsky, and R. Shamir, “Network-based predic-
tion of protein function,” Molecular System Biology, vol. 3,
no. 88, 2007.

[7] J. Vlasblom and S. J. Wodak, “Markov clustering versus
affinity propagation for the partitioning of protein interaction
graphs,” BMC Bioinformatics, vol. 10, no. 99, September
2009. [Online]. Available: http://www.biomedcentral.com/
1471-2105/10/99

[8] A. Bustamam, M. S. Sehgal, N. Hamilton, S. Wong, M. A.
Ragan, and K. Burrage, “An efficient parallel implementation
of markov clustering algorithm for large-scale protein-protein
interaction networks that uses MPI,” in Proceeding of The 5th
IMT-GT International Conference on Mathematics, Statistics,
and their Applications (ICMSA), ser. Computational Math-
ematics, I. M. Arnawa, Muhafzan, Maiyastri, and S. Bahri,
Eds., June 2009, pp. 94–101.

[9] NVIDIA. (2009) CUDA zone. Online. [Online]. Available:
http://www.nvidia.com/object/cuda home.html

[10] S. A. Manavski and G. Valle, “CUDA compatible GPU
cards as efficient hardware accelerators for smith-waterman
sequence alignment,” BMC Bioinformatics, vol. 9 (Suppl 2),
p. S10, 2008. [Online]. Available: http://www.biomedcentral.
com/1471-2105/9/S2/S10

[11] S. Jung, “Parallelized pairwise sequence alignment using
CUDA on multiple GPUs,” BMC Bioinformatics, vol. 10,
no. Suppl. 7, p. A3, 2009. [Online]. Available: http:
//www.biomedcentral.com/1471-2105/10/S7/A3

[12] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-
Wittig, “Bio-sequence database scanning on a GPU,” in
Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, 2006. [Online]. Available:
http://www.hicomb.org/papers/HICOMB2006-01.pdf

[13] M. A. Suchard and A. Rambaut, “Many-core algorithms for
statistical phylogenetics,” Bioinformatics, vol. 15, no. 11, p.
13701376, April 2009.

[14] R. Hussong, B. Gregorius, A. Tholey, and A. Hildebrandt,
“Highly accelerated feature detection in proteomics data
sets using modern graphics processing units,” Bioinformatics,
vol. 25, no. 15, pp. 1937–1943, 2009.

[15] M. S. Friedrichs, P. Eastman, V. Vishal, M. Houston,
S. Legrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, and
V. S. Pande, “Accelerating molecular dynamic simulation
on graphics processing units,” Journal of Computational
Chemistry, vol. 30, no. 6, pp. 864–872, 2009.

[16] J. W. Pitera, “Current developments in and importance of
high-performance computing in drug discovery,” Current
Opinion in Drug Discovery & Development, vol. 12,
no. 3, pp. 388–396, 2009. [Online]. Available: http:
//www.biomedcentral.com/content/pdf/cd-1002727.pdf

115123123123123124124

[17] C. Boyd, “Data-parallel computing,” ACM Queue, vol. 6,
no. 2, pp. 30–39, 2008.

[18] T. P. Chen and Y.-K. Chen, “Challenges and opportunities
of obtaining performance from multi-core CPUs and many-
core GPUs,” Acoustics, Speech, and Signal Processing, IEEE
International Conference on, vol. 0, pp. 613–616, 2009.

[19] K. Fatahalian and M. Houston, “GPUs: A closer look,” ACM
Queue, vol. 6, no. 2, pp. 18–28, 2008.

[20] NVIDIA Coorporation, NVIDIA CUDA Programming Guide,
Version 2.3.1, August 2009.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” ACM Queue, vol. 6,
no. 2, pp. 40–53, 2008.

[22] Y. Liu, B. Schmidt, and D. L. Maskell, “MSA-CUDA: Mul-
tiple sequence alignment on graphics processing units with
CUDA,” in ASAP. IEEE, 2009, pp. 121–128.

[23] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, 2008.

[24] N. Bell and M. Garlandy, “Efficient sparse matrix-vector
multiplication on CUDA,” NVIDIA Coorporation, Tech. Rep.
NVR-2008-004, December 2008.

[25] F. Vázquez, E. Garzón, J. Martı́nez, and J. Fernández, “Accel-
erating sparse matrix vector product with GPUs,” in the 9th
International Conference on Computational and Mathemat-
ical Methods in Science and Engineering (CMMSE), Gijón,
Asturias, Spain, 2009.

[26] F. Vázquez, G. Ortega, J. Fernández, and E. Garzón, “Im-
proving the performance of the sparse matrix vector product
with GPUs,” in 10th IEEE International Conference on Com-
puter and Information Technology (CIT 2010), University of
Bradford, Bradford , United Kingdom, 2010.

[27] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Bre-
itkreutz, and M. Tyers, “Biogrid: a general repository for
interaction datasets,” Nucleic Acids Research, vol. 34, p.
D535, 2006.

[28] T. S. K. e. a. Prasad, “Human protein reference database -
2009 update,” Nucleic Acids Research, vol. 37, pp. D767–72,
2009.

[29] S. Peri, J. D. Navarro, R. Amanchy, and et al., “Development
of human protein reference database as an initial platform for
approaching systems biology in humans,” Genome Research,
vol. 13, pp. 2363–2371, 2003.

116124124124124125125

