
Space Surveillance Network and Analysis Model (SSNAM) Performance
Improvements

Albert Butkus
Master Solutions, LLC, Torrence, CA

Kevin Roe
Maui High Performance Computing Center

(MHPCC), Kihei, HI
Kevin.Roe.ctr@mhpcc.hpc.mil

Barbara L. Mitchell
Lockheed Martin, IS&S, Colorado Springs, CO

Timothy Payne
US Air Force Space Command, Space Analysis

(AFSPC), Peterson AFB, CO

Abstract

 The Space Surveillance Network and Analysis Model
(SSNAM) is an Air Force Space Command (AFSPC)
model, which provides the capability to analyze and
architect Space Surveillance Network (SSN) Force
Structure. To provide these capabilities SSNAM supports
two types of simulations: Catalog Maintenance, and
Special Events (Launch, On-Orbit Events, and Breakup).
There are many configuration options available with
SSNAM: models for all the sensors currently in the SSN to
include space based and ground based sensors, hours of
operation by sensor, track capacity by sensor, models for
sensors yet to be created, user defined weather
conditions, National Aeronautical and Space
Administration catalog growth model including space
debris, and solar flux just to name a few.
 SSNAM is a large software system. It is written in
Java, C/C++, and FORTRAN (77 & 95), represents over
a million lines of code, and employs a web-based, load-
sharing architecture to decrease simulation runtime.
Catalog Maintenance simulations are both
computationally and input/output (I/O) intensive. A
typical Catalog Maintenance simulation (10K to 35K
satellites simulated over a 90 day period) will generate
over a terabyte of data, during the course of a simulation,
which is reduced down to approximately 1.5 gigabytes.
Depending on simulation configuration, runtimes can
range from 12 to 48 hours on a 16 node, PC network
cluster.
 Because of the high computational demands of
SSNAM Catalog Maintenance simulations and the
anticipation of transitioning SSNAM to model the
maintenance of an special perturbation (SP) catalog, the

SSNAM system was ported to run on Maui High
Performance Computing Center (MHPCC) platforms.
This port resulted in at least a three-fold increase in
performance for all currently parallelized processing in
SSNAM. This paper provides an overview of the SSNAM
application, its web based, load sharing architecture, the
effort involved with porting Java and FORTRAN to
MHPCC platforms, the approach and implementation for
parallelizing the SP Tasker, and the resulting
performance gains.

1. Background

 SSNAM is a networked computer simulation model
developed under the sponsorship of AFSPC. The
purpose of SSNAM is to provide an analysis model to
perform “end-to-end” simulations, re-enactments, and
studies of space surveillance events and missions to aid in
understanding the performance, response, and processing
characteristics of the SSN. SSNAM provides a capability
to evaluate changes to the SSN relative to upgrades to
sensors, down time of sensors, deletion of sensors, or
addition of new sensors. SSNAM also provides the
capability to assess the impact of catalog growth. Impact
is evaluated relative to Catalog Maintenance and Special
Event (Launch, Breakup, and On-Orbit) processing
missions. The performance of the current system is
measured via a set of recognized parameters routinely
taken from daily operations.
 SSNAM is specifically designed to answer the
following kinds of questions:

a. What If I Shut Down a Sensor?
b. What If I Add a New Sensor or Modify an

Existing Sensor?

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

c. What If I Add a Space-Based Constellation Or
Change Constellation Configuration?

d. What If I Move a Sensor?
e. What If I Grow the Satellite Catalog to a Future

Configuration? What If I Add a Debris Catalog?
f. What If I Change Sensor Operating Hours?
g. What If I Change Tasking?
h. What If I Change Sensor Responses?

 Thus, the object of the catalog maintenance
simulations is to assess the quality of the satellite catalog
resulting from various proposed changes to the SSN
and/or catalog population. Prior to the creation of
SSNAM, AFSPC manually assessed changes as a result
of SSN impacts simply by subtracting benefit from
contribution.

2. Motivation

 In order to achieve the required model fidelity for
catalog maintenance simulation, SSNAM executes the
entire catalog maintenance loop as it is run in Cheyenne
Mountain - only daily SSN observation input is simulated.
Actual operational software catalog maintenance routines
are integrated into SSNAM. These include: the daily
Tasker and the Astro Standard algorithms required for
catalog maintenance. Astrodynamic Standard algorithms
are also used for generation of simulated daily
observations.
 The Figure 1 depicts the high level control flow
through a SSNAM Catalog Maintenance Simulation.
Each SSNAM simulation is coordinated and controlled
via the SSNAM Central Server Executive (EXEC). On
receipt of the Start Simulation request the EXEC first
acquires and verifies the Starting Conditions for the
simulation. Then the EXEC allocates, activates, and
populates the computational resources designated for the
simulation.
 Once the computational resources are ready the
Tasker is initialized and invoked to generate the tasking
request for the first simulation day. This tasking request
is then used by the Loop to simulate the Response to
Tasking. This is done by propagating each satellite
through the geometric coverage of each tasked sensor
(Perfect Observation Generation), simulating B3
Observations from each pass through each sensor’s
coverage (Observation Thinning and Noising),
maintaining an Observation database for each satellite and
updating the orbital elements (Sequential Differential
Corrections), and then updating the Truth model (SP state
vectors) and storing critical information for Simulation
Evaluation (VMAG calculations, metrics, and stats). The
observations generated for each satellite are then returned
to the Tasker for evaluation and for generating the
Tasking Request for the next simulation day. This

process is then repeated for the number of simulation days
requested by the user, typically 60 to 90 days. After the
simulation is completed the results from each simulation
day are evaluated and then stored for later analysis.
 This is a complicated problem. As already
mentioned, SSNAM Catalog Maintenance simulations are
computationally and I/O intensive. The goal is to reduce
catalog maintenance simulation times so that 90 day
simulations can be started at the end of a business day and
complete over night for analysis the next business day.
Porting SSNAM to the MHPCC supercomputing
environment aids in this goal and will be required to
model SP catalog maintenance.
 The SSNAM architecture provided further motivation
for SSNAM as a candidate to port to the MHPCC.
SSNAM is architected using a simple web-based
architecture framework—a web-based, open system
design yields a programming language and platform
independent system consisting of highly portable software
that could be readily migrated to the MHPCC
supercomputing environment.

3. Development

 The initial SSNAM prototype was developed in the
late 1990s and the very first execution of this model
required 36 hours to simulate two days on a single, mid
90s vintage SGI workstation. With a performance ratio of
18 hours per simulation day something had to change in
order to evaluate SSN changes using SSNAM in a timely
fashion. Since this time, the computational and I/O
demands of the SSNAM Model have increased, while at
the same time, processor performance and throughput
have increased. At the writing of this paper, if one
SSNAM simulation day was executed on a single Hoku
CPU (3 GHZ, 64-bit OPERTON) it would take on
average approximately 100 minutes to complete with a
performance ratio of 1.67 hours per simulation day.
Although today’s technology yields a significantly higher
performance ratio over the original SGI workstation, it
would still require over six days for a 90 day simulation
to complete.
 The architectural approach used within SSNAM to
decrease runtime is Load Sharing. The SSNAM Central
Executive divides the satellite catalog across a collection
of computational nodes dedicated for SSNAM simulation
runs. The Executive also level loads the distribution
across the cluster by taking into account the performance
characteristics of each node. Although this approach
involves a relatively straight forward implementation
strategy, there are a number of performance
considerations which must be addressed. First, it is
important to use an efficient, scalable messaging and
control mechanism. Without this, the performance cost of

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

managing a multi-node simulation can exceed the savings
offered by the node cluster. Secondly, it is important to
design the software to be as platform independent as
possible. From a performance perspective there are a
number of reasons for preferring platform independence:
being able to assemble a cluster from whatever
computational resources available (usually this is a
heterogeneous collection), and to be able to upgrade
cluster components individually as new/faster platforms
become available. The following list highlights several
key design and development decisions made to achieve
efficient messaging and platform independence:

The Central and Distributed Executives
communicate via a Servlet based, multi-threaded,
HTTP(S)/HTML messaging application
programming interface (API)
Java is used for the framework and data
management components
FORTRAN is used for all the computationally
intensive components
Any operating system specific aspects are
handled as either runtime settable parameters or
via command procedures

 These design and implementation choices have
proved invaluable over the years. The first Load Shared
implementation of SSNAM ran on one SGI (from the
original prototype), one Sun, and six PCs. On later
funding cycles sufficient resources were available to
purchase additional PCs and now there are two SSNAM
labs in Colorado Springs, each with 16 PC network
clusters. Early on, we phased out the SGI and the Sun
platforms because they contributed very little to
decreasing runtime when compared to the much faster
PCs.

4. Porting SSNAM to the MHPCC

 While most of the work was accomplished in
Colorado Springs, the SSNAM team made two trips to
Maui to port SSNAM code to MHPCC platforms. The
first trip focused on porting the Distributed Server
components, with an emphasis on performance
characterization. The second trip focused on fully
installing SSNAM for usage from Colorado Springs and
the associated security setup for the HTTPS messaging.
 On the first trip, June 2005, members of the SSNAM
technical team traveled to Maui in order to conduct the
initial port of SSNAM to the MHPCC. The SSNAM
team and MHPCC personnel collaborated on porting
SSNAM to two platforms: IBM P3 and P4. The porting
effort was accomplished during the first two days with the
remaining time focused on optimizing and tuning
SSNAM to run on other MHPCC hardware. For the
initial effort only the Distributed Server components of

SSNAM were ported (indicated by the light yellow shapes
in Figure 2). The SSNAM Central server and SGP4
Tasker ran on a laptop brought from Colorado Springs.
The diagram in Figure 2 depicts the high level SSNAM
architecture and the components ported to the MHPCC
hardware.
 The porting effort was divided in two concurrent
paths and was completed in about 1.5 calendar days. The
first path focused on getting the Java Distributed Server
running on the target hardware. Since this code is written
in Java, and Java SE Development Kit (JDK) 1.4 was
available on the target platforms, the application ran with
little difficulty. An installation script was created to
support various re-configurations of SSNAM in order to
explore runtime optimizations.
 The second path focused on getting the FORTRAN
applications built, validated, and optimized on MHPCC’s
IBM Power4 platforms. Before the port to the MHPCC,
SSNAM simulations were conducted entirely on
Windows platforms. As such, the main problems
encountered during the two-day porting effort were all
related to the UNIX-based operating system differences
with Windows, mostly case sensitivity and file separator
characters. These problems manifested themselves in
three areas:

Inconsistent data file name case
Inconsistent FORTRAN include statement case
Java “public static final” qualifier for the file
separator character

 Because the primary focus was porting SSNAM
Distributed Server components to MHPCC hardware,
simulation runs were limited to single day tests. This
maximized the amount of time available for exploring
optimization approaches for full SSNAM simulation runs.
The following chart summarizes the results of the single
day runs.
 The Figure 3 clearly indicates that using a judicious1

number of Nodes (and CPUs per node) decreases the
amount of time required to conduct a SSNAM run, that is,
Load Sharing works for this type of application. One of
the limiting factors encountered while exploring various
approaches was the PC laptop used for hosting the
SSNAM Central Server. Because the laptop was not a
Windows server it was limited on the number of
concurrent network connections; hence, we never ran
more than 12 Distributed Server applications at one time.

1 Judicious. Since SSNAM is both CPU & I/O intensive it is beneficial
to isolate SSNAM processing on a CPU/Disk pair. However, when one
node has multiple CPUs all sharing one disk a tradeoff decision emerges
regarding the actual number of SSNAM Distributed Servers to install
per node. Using both CPUs per Hoku node increases runtime
performance by less than a 10% over using only one CPU per node. But
remember that Hoku is shared by multiple users, so generally speaking,
25 nodes can be allocated for use faster than 50 nodes.

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

 The second trip, Oct 2005, provided a full installation
of SSNAM on the MHPCC supercomputer, Hoku. This
installation required the addition of two Windows PC
servers to host two SSNAM Central Server applications.
The second server acts as a backup to the primary server
and allows for running concurrent SSNAM runs. And to
support the two Windows servers two Hoku nodes were
reconfigured as dedicated SSNAM Central Server
proxies, this done in support of MHPCC security
requirements. Finally, in order to meet the no-clear-text-
messages security requirement all SSNAM web protocols
were augmented to use HTTPS (and Java Secure Socket
Layer APIs) in order to encrypt the inter-server, clear text
HTML messages. It is now a runtime switch in SSNAM
whether of not to use secure sockets for communication.
 Figure 4 depicts the Primary processing components
in SSNAM and their respective contribution to the overall
time for a given simulation: the Tasker (in this case the
GP Tasker), the Loop, and Evaluation. The timing
metrics for this chart are from a baseline SSNAM
simulation designed specifically to compare the
performance difference between Hoku and the PC Cluster
in Colorado Springs. This 60 day simulation consisted of
the GP Tasker2, the Space Surveillance Network as it
existed in 2005, and a 10k satellite catalog.
 The Hoku 50 run only required allocating 25 nodes.
The SSNAM Central Server installs one SSNAM
Distributed Server on each of the two CPUs available per
node. Figure 4 shows that the Hoku 50 ran the Loop
processing more than three times faster than the COS 16
PCs. This reveals good linear scaling with the Load
Sharing framework. However, the Figure 5 reveals that
50 CPUs, for this particular SSNAM simulation, is the
maximum number of CPUs which can be allocated before
linear scaling begins to break down.
 The reason for the breakdown in linear scaling is due
to the technique used to manage the inter-server
messaging: each server is commanded one at a time from
a single thread. A prototype was conducted on this year’s
funding in which the inter-server messages were managed
in separate threads thereby lowering the overhead
substantially. Initial results look promising in
maintaining linear scaling if all the CPUs, on all the nodes
on Hoku are used (over 250 CPUs). This modification is
planned for next year’s funding.

2 The SP Tasker is being integrated in SSNAM under FY06 funding and
as part of the integration effort it is being restructured to use the SSNAM
Load Sharing framework. We anticipate presenting the results of this
effort at AMOS 2007. At the time of writing this paper the only
SSNAM component which is Load Shared is the Loop processing.

5. Parallelizing the SP Tasker

 For SSNAM to continue to model accurately the
current operational environment, the SP Tasker was
integrated into SSNAM on the 2006 funding cycle. In the
operational environment the SP Tasker is hosted on an
SGI platform and requires between one to three hours of
processing time to execute depending on various
configuration options. When the SP Tasker executes on
the SSNAM Windows server it takes approximately 30
minutes when run against a 10K satellite catalog. At this
rate it requires over 45 hours of processing time just for
the SP Tasker. Parallelizing the SP Tasker became
necessary to keep catalog simulation times reasonable.
 The SP Tasker software architecture is structured to
readily facilitate parallelization of one its primary
functional areas: Probability of Detection (PoD), which
takes well over 80% of the overall processing time. Since
the PoD calculations are generated for a predetermined set
of sensors these calculations are independent can
therefore be parallelized using the same load sharing
technique as other parts of SSNAM. The Figure 6 chart
depicts the performance gains of load sharing the SP
Tasker.

6. Summary

 Porting SSNAM to run on MHPCC computational
resources has proved beneficial for the SSNAM user
community. This effort allows SSNAM simulations to be
completed in half3 the time required to run the same
simulation on one of the Colorado Springs PC clusters.
However, with the dual Central Server configuration two
SSNAM simulations can be run concurrently. Running
concurrent SSNAM simulations on Hoku has the net
effect of decreasing run times by 75%.

3 Remember, as of the writing of this paper the only load shared
SSNAM component is the Loop processing; the GP Tasker is single
threaded and, as figure 4 indicates, requires about the same time in
Colorado Springs as it does on Hoku. The 16 CPU Loop in Colorado
Springs runs about 3.5 times slower than the 50 CPU Loop on Hoku.

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

Tim es Per Activity

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

H
o

u
rs

Eval

Tasker

Loop

Eval 0.31 0.58 0.58

Tasker 3.62 4.23 4.23

Loop 1.33 9.27 4.63

Hoku 50 COS 8 COS 16

SSNAM code has 3 major sections: Tasker, Loop, and Evaluation

Major Processing Components

Hoku 50 Loop runs

3.48 times faster

than COS 16

The GP Tasker

runs only 15%

faster at MHPCC

Loop

Tasker

Perfect

Observation

Generation

Observation

Thinning &

Noising

Sequential

Differential

Corrections

Update Truth

VMAG Calcs

Metrics & Stats

Simulation Executive

Response to

Tasking

Evaluation

Simulation

Evaluation

Wrap-up

Starting

Conditions

Simulation

Results

SSNAM High Level Control Flow

Figure 1

Figure 4

SSNAM Web Based, Load Sharing
Architecture

…

GUIGUI

Central
Server

Central
Server

Web Based

Dist
Server

Dist
Server

Dist
Server

Dist
Server

Web Based

FORTRANFORTRANASCII
Data

ASCII
Data

Web Based

Key Standards
HTTP, HTTPS, HTML, and Servlets
Astro Standards & SGP4 Tasker
Standard data formats (ASCII, TLE,
B3, etc)

Platform Independent
Java & FORTRAN 77

Scalable
Load sharing

Modular
Encapsulation of data and FORTRAN
applications using Early Specification
for Servlets

Yellow components ported to Hoku,
blue components run on Windows
Server

Cost to Administer CPUs
Percent of Overhead vs. Tim e to Com plete Daily Sate llite Load

(Overhead increases as allocated nodes increase)

(SGP4 and 10k Satellites)

(For 100, 50, 25, 10, and 5 nodes)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 100 200 300 400 500 600 700 800 900 1000

Seconds to Com plete Daily Load

P
e

rc
e

n
t

o
f

O
v

e
rh

e
a

d

50 nodes

100 nodes

25 nodes 10 nodes 5 nodes

Figure 2

Figure 5

Four Initial SSNAM Runs on
MHPCC Platforms

Processing Time Per CPU

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1 2 3 4 5 6 7 8 9 10 11 12

CPU ID

T
im

e

P3 2 Nodes 3 CPUs
P4 1 Node 6 CPUs
P4 6 Nodes 1 CPU
P4 6 Nodes 2 CPUs

SP Tasker Performance
In the operational environment the SP Tasker requires approx. 3 hours per
actual day
In the SSNAM simulation environment (10k Satellite, 90 day simulation):

In the COS lab the SP Tasker requires 30 minutes per sim day or 45 hours for a 90
day sim
In the COS lab the SP Tasker (load shared) requires 4 minutes per sim day or 6
hours for a 90 day sim, or 5 hours when satellites are randomized
On Hoku (50 CPUs) we anticipate about 2:40 minutes per sim day or
approximately 4 hours for a 90 sim, or 3.4 hours when satellites are randomized

SP Tasker Time for 90 Day Sim

0 5 10 15 20 25 30 35 40 45

SPT Single Threaded

SPT Load Shared

Random Sat Distribution

Hoku 50 & Randomize

Hours/ 90 day sim 45 6 5 3.4

SPT Single Threaded SPT Load Shared Random Sat Distribution Hoku 50 & Randomize

Figure 3

Figure 6

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

