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Abstract—During the past fifteen years Lattice Boltzmann 
method has attracted much attention in the area of CFD, 
whereas it has also been recognized that it is both 
computationally demanding and memory intensive. In this 
paper we give a brief introduction to the equations for LBM 
and the basic features, describe the programming model in 
multicore computing environment, and outline the 
parallelization strategies. Moreover, we explore corresponding 
implementation on multicore platform. In order to 
demonstrate the efficiency, several benchmark steady fluid 
flow experiments have been performed. The results show that 
our approach achieves good performance. 
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I.  INTRODUCTION 
The Lattice Boltzmann method (LBM) has evolved to a 

promising alternative to the well-established mesoscopic 
approaches based on finite elements/ volumes for 
computational fluid dynamics (CFD) simulations. The basic 
idea behind is to develop a simplified kinetic model that 
incorporates the essential physics and reproduces correct 
macroscopic averaged properties. As a result it possesses 
some unique advantages, e.g., simplicity - simplicity in the 
mesh used (Cartesian mesh) and in the operations performed 
(collision, advection and boundary update), extensibility – 
can be easily extended to simulate a wide range of flow 
problems, flexibility – deal flexible with complex boundary 
conditions. These properties make LBM can be viewed as a 
new paradigm to solve numerically, and an efficient method 
to model complex fluid systems [1,2,3]. 

One of the challenges of LBM is the requirement of huge 
computer resources. Employing LBM you model flows on 
computer, it often involve many complex mathematics and 
physics problems such as anomalistic structures, non-linear 
dynamics systems, active boundary, and strict restrict 
conditions, etc. These produce numerical simulations with 
high demands for computational power in terms of memory 
and speed [4,5]. There is a strong need to develop techniques 
for improving the LBM performance. 

The appearance of multicore processors opens the doors 
of mainstream computing for parallel computing. Moore’s 
law due to ever increasing clock speeds has been subsumed 

by increasing members of cores per microchip. Multicore 
processors deliver significantly greater computing power 
through concurrency compared to conventional single core 
processor chips. Future high performance computing (HPC) 
machines will almost certainly contain multicore chips, 
likely tied together into shared memory nodes as the machine 
building block [6,7]. It provides a natural programming 
paradigm, and this shift leads the integration of parallel 
programming standards for high-end shard-memory machine 
architectures into desktop programming environments. 

It is therefore clear that multicore-based HPC 
environment is the possibility to fulfill the large 
computational requirements for simulating complex flows, 
and provides a reliable solver for LBM simulations. 
Williams et al. studied performance optimization of the LBM 
on multicore platforms [6]. Liu et al. presented a design of a 
unified parallel implementation of the LBM on several 
multicore platforms including a cluster of Cell-based 
PlayStation3 consoles and Compute Unified Device 
Architecture based implementations on GPUs [7]. Stuermer 
implemented the LBM on Cell [8]. Lacoursière described a 
hybrid block parallel method to approximately solve 
complementarity problems in real-time on multicore CPUs 
[9]. Donath comparison of different parallel lattice 
Boltzmann implementations on multi-core multi-socket 
systems [10]. 

In this paper, we present a parallel lattice-Boltzmann 
implementation for flow simulations. The code was designed 
to run on a multicore platform, which used MS Visual studio 
C++ 2005 and OpenMP as the develop tool. 

In the next section, we introduce the underlying LBM 
scheme, and describe the parallelization of the LBM 
algorithm. Section 3 covers the OpenMP programming 
model as well as the implementation of the standard LBM 
algorithm. Several benchmark steady fluid flow problems are 
presented in Section 4. Finally, some conclusions are drawn 
in Section 5. 

II. LATTICE BOLTZMANN METHOD AND ITS’ 
PARALLELIZATION 

A. Basics of the Lattice Boltzmann Method 
For two-dimensional incompressible flow, the 9-velocity 

BGK model (id2q9) is widely used. For this model, the 
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directions of the discrete velocity used in the model are 
given by 00 =e , ( )]2/)1sin[(],2/)1cos[( ππ −−= iiie  for 

i=1:4, )( ]42)5sin[(],4/2/)5cos[(2 ππππ +−+−= iiie  
for i=5:8. The evolution equation of the distribution 
function ),(g ti x  reads [11] 

)],(),([1),(),( )0( tgtgtgtttcg iiiii xxx ex −−=Δ+Δ+
τ

,    (1) 

where x is a point in the discretized physical space and 
txc ΔΔ=  is the particle speed, xΔ  and tΔ  are the lattice 

spacing and the time step, respectively. τ  is the 
dimensionless relaxation time. ),()0( tgi x  is the equilibrium 
distribution function defined by 
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with the weighting factors iω  are  4/9 for the rest particles (i 
= 0), 1/9 for i = 1, 2, 3, 4, and 1/36 for i = 5, 6, 7, 8. 

2
0 4 cσλ −= , 2ci λλ =  for i=1:4, and 2ci γλ =  for 

i=5:8. σ, λ, and γ are parameters satisfying 
212, =+=+ γλσγλ  . 

The fluid kinematic viscosity υ is determined by 
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B. Parallelization of the LBM Algorithm 
Ease of implementation, parallelism, and computational 

efficiency are the major features of LBM. But, for realistic 
applications, the LBM is computationally very demanding, 
since it needs fine spatial resolution and small time steps. For 
example, three dimensional fluid flow simulations are known 
to be computationally extensive. In LBM, the evolution rule 
is the same for all cells and updating of the cells occurs 
simultaneously in discrete time steps. The core algorithm can 
be reduced to a few manageable subroutines, facilitating high 
performance computing. Thus, parallelization will be a 
suitable solver for flow LBM simulations [1,3]. 

The most natural approach to parallelize the LBM is by 
domain decomposition, where the computational domain is 
partitioned into smaller subdomains of desired size according 
to the specification of the available processors. Each 
processor performs computations on a certain subdomain and 
exchanges information with other nodes. 

In a standard LBM code with fused stream/collide step, a 
time step can be performed in a single sweep over the 
computational domain [3]. The LBM code break down into 
two separate pieces operating on a set of distribution 
functions, a non-linear collision operator and a linear 
propagation operator. The computer-intensive collision step, 

τ)),(),(( )0( tgtg ii xx − , relaxation towards local equilibrium, 
and involves data local only to that spatial lattice sites they 
do not need any communication, the scheme is the inherent 
spatial locality, and allows concurrent. For the propagation 
step, ),(),( tgtttcg iii x ex =Δ+Δ+ , which mainly deals 
with memory access, interaction between processors is 
necessary, i.e., at this step particle on a border node can 
move to a lattice point in the domain of a neighboring 
processor or vice versa. By using a ghost cell layer in the 
surrounding of the subdomain, the propagation step can be 
isolated from the data exchange step, and can perform in 
parallel. After the propagation step, the values in the ghost 
layer are sent to the neighboring processor. 

Hence, the computation is independently carried out 
point-by-point in the LBM. Due to the local character of the 
LBM, the parallelization by simple domain decomposition is 
straightforward and brings good results concerning the 
parallel speed-up. Parallelization can be based on one- or 
two-dimensional domain partitioning in equal size, namely 
slice, and box decompositions [12]. 

III. LATTICE BOLTZMANN SIMULATION ON MULTICORE 
PLATFORM 

A. Programming model in multicore computing 
environment 
High end distributed and distributed shared memory 

platforms with many cores will be deployed in the coming 
years to solve flow problems. Their individual nodes will be 
heterogeneous multithreading, multicore systems, capable of 
executing many threads of control. The multicore system 
presents applications developers with many challenges. For 
example, the code will need to expose a sufficient amount 
parallelism, additional resource sharing (and contention) 
between threads that run on the same core [13]. 

Fortunately, the integration of the OpenMP parallel 
programming model into Microsoft Visual C++ 2005 
provides possible way for multicore application that bring 
parallel computing to the desktop. OpenMP is essentially a 
comparatively recent standardization SMP  development and 
practice. By using OpenMP, it is relatively easy to create 
parallel applications in C, C++, and FORTRAN [14,15,16]. 
As a shared-memory programming paradigm, OpenMP is 
suitable for parallelizing applications on simultaneous 
multithreaded (SMT) and multicore processors. OpenMP 
helps developers to create multithreaded applications more 
easily while retaining the look and feel of serial 
programming. It consists of a set of compiler directives and 
library routines. The compiler generates a multi-threaded 
code based on the specified directives. It allows multilevel 
loop nest parallelism, enhances support for nested 
parallelism and introduces tasks, which are conceptually 
placed into a pool of tasks for subsequent execution by an 
arbitrary thread. 

B. Implementation of LBM 
From the perspective of the application programmer, a 

multicore processor is an SMP on a chip and OpenMP 
programs just run nicely. Of course there is a lot more 
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sharing of resources, which may heavily impact 
performance. Sharing of caches can be a major advantage 
[17]. 

For LBM code, there is no temporal coherence or space 
coherence data. We can take advantage of the tight coupling 
of multi-core processors to derive work estimates for tasks 
with very low overhead. Shared-memory parallel systems are 
not as restrictive in terms of communication costs such that 
using a higher number of partitions can be considered. 
Hence, operating on shared-memory reduces the complexity 
of cores and on-chip communication, allowing more cores 
per transistors. In fact, the implementation of the LBM code 
is parallelized using OpenMP, using loop scheduling and 
chunk decomposition scheme to partite the whole lattice onto 
a 1-dimensional or 2-dimensional processor grid. 

The program begins with a single master thread of 
execution. The master thread spawns teams of threads in 
response to OpenMP directives, which perform work in 
parallel. That is, each thread read the values of the current 
time step from the shared-memory, execute the relaxation 
and write the results back to a global array, as this can be 
done independently for all cells. So, OpenMP directives are 
inserted at key locations in the source code. The compiler 
interprets the directives and creates the necessary code to 
parallelize the indicated regions. Global error estimate was 
computed in each iteration step and used as a stopping 
criterion for these runs. 

IV. EXPERIMENTS 
As test cases we consider two benchmark fluid flow 

problems: (i) incompressible flow over a backward-facing 
step, and (ii) lib driven cavity flow. We tested these flows on 
Quad-Core computers Dell PowerEdge 2950 based on Intel 
Xeon CPU E5405 2.00 GHz with 1.99 GB main memory, 
8.0 GB memory module support. On the software side we 
used the OpenMP, and all the benchmarks were also 
compiled by Microsoft Visual Studio .Net 2005. 

A. Backward-facing step flow 
The problem domain and boundary conditions of the 

incompressible backward-facing step flow considered in this 
study are summarized in Figure 1. The problem is 
geometrically defined by two infinite parallel plates between 
which a fluid flows with specified boundary conditions at the 
inlet and outlet of the channel, with a backward-facing step 
at the channel entrance. 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Computational domain configuration. 

A characteristic of this flow is that there is one eddy near 
the floor and the ceiling, respectively [18]. The Reynolds 
number is defined based on the height of the channel h and 
the average entrance velocity. The extent of the computation 
domain in the x direction is 15h. The lattice size was 600×40. 
Here, using the slice decomposition, the overall 
computational load was partitioned and assigned uniformly 
among 1, 2, and 4 cores, respectively. The streamlines for 
Re=800 are shown in Figure 2. The location of the 
recirculation regions near the floor and of the region near the 
ceiling is (3.25, 0.325) and (7.325, 0.850). The 
corresponding sizes of recirculation bubble are 5.775 and 
4.712. The data are in agreement with experiments [19]. The 
experiment indicates that the running time reduces as the 
number of cores increase and the efficiency increases with 
the problem size. 
 
 
 
 
 
 
 
 

Figure 2.  Contours of streamfunction for Re=800. 

B. Driven Cavity Flow 
As a benchmark, the configuration of lid driven cavity 

flow shown in Figure 3 considered here consists of a two-
dimensional square cavity whose top plate moves from left 
to right with constant velocity, while the other three 
boundaries are fixed. 

The simulation was carried out on a 256×256 lattice. In 
this example, using the box decomposition, the overall 
computational load was equipartitioned and assigned 
uniformly among 1, 2, and 4 cores, resulting in uniform 
balance of computational load. Figure 4 shows the contours 
of streamfunction at Re=3200.  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Configuration.              Figure 4. Contours of flow  

                                                                         Streamfunction at Re=3200 

The Reynolds number Re used in the problems is 
Re=LU/υ, where L is the height of the cavity, U is the 
velocity of the top plate. The result shows clearly the flow 
pattern, i.e. there are one center primary vortex and three 
first-class vortices, a pair of secondary ones of much smaller 
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strength develop in the lower corners of the cavity and a 
tertiary vortex appears in the lower right corner.  The 
locations of the vortex, (0.518, 0.535) for primary vortex, 
(0.059, 0.910) for top left vortex, (0.081, 0.131) for lower 
left vortex and (0.831, 0.087) for lower right vortex, agree 
well with those of previous work [19]. 

V. CONCLUSIONS 
Physically based simulation is an important component 

of many applications in current research areas of CFD. LBM 
is a remarkably effective computational tool for tackling 
complex fluid problems which can be extremely difficult via 
conventional methods. Multicore processors will dominate 
scientific computing in the near future. In this work we have 
presented techniques for LBM simulation for fluid flows on 
multi-core architectures. We applied domain partitioning to 
perform the computations in parallel, and introduced the 
implementation strategy on Intel quad-core machines using 
MS Visual studio C++ 2005 and OpenMP. 

Results show that this approach can offer significant 
performance benefits on real scientific applications, and the 
speed-up also increases with the problem size. We therefore 
believe that multicore-based HPC systems will be an 
important tool in modeling complex CFD problems in the 
future. Next work will continue exploring parallelization for 
3-dimensional flows on multicore systems.  
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