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Abstract

In this paper we describe the parallelization of the 
multi-zone code versions of the NAS Parallel Benchmarks 
employing multi-level OpenMP parallelism. For our study 
we use the NanosCompiler, which supports nesting of 
OpenMP directives and provides clauses to control the 
grouping of threads, load balancing, and synchronization. 
We report the benchmark results, compare the timings 
with those of different hybrid parallelization paradigms 
and discuss OpenMP implementation issues which effect 
the performance of multi-level parallel applications. 

1.Introduction

Parallel architectures are an instrumental tool for the 
execution of compute intensive applications. Current pro-
gramming models support distributed memory, shared 
memory, and clusters of shared memory architectures. An 
example of the support of distributed memory program-
ming is MPI [12], which provides the functionality for 
process communication and synchronization. OpenMP 
[13] was introduced as an industrial standard for shared-
memory programming with directives. The directives sup-
port loop level parallelization. The OpenMP programming 
paradigm provides ease of programming when developing 
parallel applications. For applications exhibiting multiple 
levels of parallelism the current most common program-
ming paradigms are hybrid approaches such as the 
combination of MPI and OpenMP, or the MLP [15] model 
developed at NASA Ames. However, there is not much 
experience in the parallelization of applications with mul-
tiple levels of parallelism using OpenMP only. 

The lack of compilers that are able to exploit further 
parallelism inside a parallel region has been the main 

cause of this problem, which has favored the practice of 
combining several programming models to exploit multi-
ple levels of parallelism on a large number of processors. 
The nesting of parallel constructs in OpenMP is a feature 
that requires attention in future releases of OpenMP com-
pilers. Some research platforms, such as the OpenMP 
NanosCompiler [4], have been developed to show the fea-
sibility of exploiting nested parallelism in OpenMP and to 
serve as testbeds for new extensions in this direction. The 
OpenMP NanosCompiler accepts Fortran-77 code contain-
ing OpenMP directives and generates plain Fortran-77 
code with calls to the NthLib thread library [10]. NthLib 
allows for multilevel parallel execution such that inner 
parallel constructs are not being serialized. The 
NanosCompiler programming model supports several ex-
tensions to the OpenMP standard allowing the user to 
control the allocation of work to the participating threads. 
By supporting nested OpenMP directives the NanosCom-
piler offers a convenient path to multilevel parallelism.  

Multi-zone codes are a class of applications featuring 
multiple levels of parallelism. They are commonly used in 
large scale Computational Fluid Dynamics (CFD) applica-
tions. A single mesh is often not sufficient to describe a 
complex domain and multiple meshes are used to cover it. 
These meshes are referred to as zones which yield the 
name multi-zone code. It is common to solve the flow 
equations independently within each zone. After each it-
eration boundary values are exchanged between 
neighboring zones. Solutions within each zone can be 
computed independently, providing coarse grain parallel-
ism. Fine grain loop level parallelism can be exploited 
within each zone. A set of benchmarks has recently been 
released which captures this behavior and allows the 
analysis and evaluation of multi-level programming para-
digms. These benchmarks are multi-zone versions of the 
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well known NAS Parallel Benchmarks [2]. The NPB 
Multi-Zone (NPB-MZ) are described in [16]. A serial and 
two hybrid parallel reference implementations of the NPB-
MZ are available. We have developed a nested OpenMP 
version of the NPB-MZ and used the NanosCompiler to 
evaluate the efficiency on several hardware platforms.  

The rest of the paper is structured as follows: Section 2 
summarizes the NanosCompiler extensions to the 
OpenMP standard. Section 3 describes the implementation 
of the NPB-MZ.  Section 4 presents timing results for the 
benchmark codes. Related work is discussed in Section 5 
and the conclusions are presented in Section 6. 

2.The NanosCompiler 

OpenMP provides a fork-and-join execution model in 
which a program begins execution as a single process or 
thread. This thread executes sequentially until a 
PARALLEL construct is found. At this time, the thread 
creates a team of threads and it becomes its master thread. 
All threads execute the statements lexically enclosed by 
the parallel construct. Work-sharing constructs (DO,
SECTIONS and SINGLE) are provided to divide the exe-
cution of the enclosed code region among the members of 
a team. All threads are independent and may synchronize 
at the end of each work-sharing construct or at specific 
points (specified by the BARRIER directive). Exclusive 
execution mode is also possible through the definition of 
CRITICAL and ORDERED regions. If a thread in a team 
encounters a new PARALLEL construct, it creates a new 
team and it becomes its master thread. OpenMP v2.0 pro-
vides the NUM_THREADS clause to restrict the number of 
threads that compose the team.  

The NanosCompiler extension to OpenMP to support 
multilevel parallelization is based on the concept of thread 
groups. A group of threads is composed of a subset of the 
total number of threads available in the team to run a par-
allel construct. In a parallel construct, the programmer 
may define the number of groups and the composition of 
each one. When a PARALLEL construct defining groups is 
encountered, a new team of threads is created. The new 
team is composed of as many threads as the number of 
groups. The rest of the threads are used to support the exe-
cution of nested parallel constructs. In other words, the 
definition of groups establishes an allocation strategy for 
the inner levels of parallelism. To define groups of 
threads, the NanosCompiler supports the GROUPS clause 
extension to the PARALLEL directive.  

C$OMP PARALLEL GROUPS (gspec) 

Different formats for the GROUPS clause argument 
gspec are allowed [5].  The simplest specifies the num-
ber of groups and performs an equal partition of the total 
number of threads to the groups: 

gspec = ngroups 

The argument ngroups specifies the number of groups to 
be defined. This format assumes that work is well bal-
anced among groups and therefore all of them receive the 
same number of threads to exploit inner levels of parallel-
ism. At runtime, the composition of each group is 
determined by equally distributing the available threads 
among the groups.  Another possible format is: 

gspec = ngroups, weight 

In this case, the user specifies the number of groups 
(ngroups) and an integer vector (weight) indicating 
the relative weight of the computation that each group has 
to perform. From this information and the number of 
threads available in the team, the threads are allocated to 
the groups at runtime. The weight vector is allocated by 
the user and its values are computed from information 
available within the application itself (for instance itera-
tion space or computational complexity). 

3.The Multi-Zone Versions of the NAS Paral-
lel Benchmarks 

The purpose of the NPB-MZ is to capture the multiple 
levels of parallelism inherent in many full scale CFD ap-
plications. Multi-zone versions of the NAS Parallel 
Benchmarks LU, BT, and SP were developed by dividing 
the discretization mesh into a two-dimensional tiling of 
three-dimensional zones. Within all zones the LU, BT, and 
SP problems are solved to advance the time-dependent 
solution. The same kernel solvers are used in the multi-
zone codes as in the single-zone codes. Exchange of 
boundary values takes place after each time step. A de-
tailed discussion of the NPB-MZ can be found in [16]. 
Figure 1.a shows the general structure for all benchmarks. 
We will refer to the multi-zone versions of the LU, BT, 
and SP benchmarks as LU-MZ, BT-MZ, and SP-MZ. 

3.1. The Hybrid Implementations  

The source code distribution of the NPB-MZ includes 
two different hybrid implementations, as shown in Figure 
1.b. The first hybrid implementation is based on using 
MPI for the coarse grained parallelization on zone-level 
and OpenMP for fine grained loop level parallelism within 
each of the zones. The MPI programming paradigm as-
sumes a private address space for each process. Data is 
transferred by explicitly exchanging messages via calls to 
the MPI library. This model was originally designed for 
distributed memory architectures but is also suitable for 
shared memory systems.  In the NPB-MZ MPI/OpenMP 
implementation the number of processes is defined at 
compile time. Each process is assigned a number of zones 
and spawns a number of OpenMP threads in order to 
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achieve a balanced load. Data is communicated at the be-
ginning of the time step loop using MPI. There is no 
communication during the solution of the LU, BT, and SP 
problems within one zone. The OpenMP parallelization is 
similar to the single-zone versions as described in [6]. 

The second hybrid implementation that is part of the 
NPB-MZ is based on the MLP programming model devel-
oped by Taft [15] at NASA Ames Research Center. The 
MLP programming model is similar to MPI/OpenMP, 
using a mix of coarse grain process level parallelization 
and loop level OpenMP parallelization. As it is the case 
with MPI, a private address space is assumed for each 
process. The MLP approach was developed for ccNUMA 
architectures and explicitly takes advantage of the avail-
ability of shared memory. A shared memory arena which 
is accessible by all processes is required. Communication 
is done by reading from and writing to the shared memory 
arena. Libraries supporting the MLP paradigm usually 
provide routines for process creation, shared memory allo-
cation, and process synchronization. Details about the 

process level parallelization in the MLP paradigm and 
corresponding library support can be found in [7]. The 
MLP implementation of the NPB-MZ is very similar to the 
MPI/OpenMP implementation. Communication is handled 
by copying the boundary values to and from the shared 
memory arena. The OpenMP parallelization is identical in 
both versions.  

Both hybrid implementations apply a load balancing 
algorithm to determine the number of threads that each 
process spawns. A detailed description of the reference 
implementations, which are part of the benchmark distri-
bution, can be found in [8]. 

3.2. The Nested OpenMP Implementations  

The nested OpenMP implementation is currently not 
part of the NPB-MZ distribution. It has been developed by 
the authors using the thread group extensions mentioned 
before. This implementation combines a coarse grained 
parallelization (inter-zone) and parallelization within the 
zones (intra-zone), but employing OpenMP on both levels. 
The intra-zone parallelization is identical in the hybrid and 
the nested OpenMP implementations. The inter-zone par-
allelism is implemented by creating groups of threads and 
by assigning one or more zones to a thread group. The 
whole address space is shared by default among the 
threads working at both levels of parallelism. Data ex-
change at the zone boundaries is done in parallel by 
reading from and writing to the original application data 
structures. There is no need for using any special primi-
tives such as MPI communication routines or MLP 
synchronization routines. This implementation just re-
quires the addition of less than half a dozen OpenMP 
directives in each application. The same function that 
maps zones to MPI or MLP processes is used to map 
zones to thread groups. The mapping function generates 
two vectors that indicate which group executes each zone 
(pzone_id) and how many threads are allocated to each 
group (pn_thr). Since zones are not mapped in a con-
secutive way and the number of zones assigned to each 
group may be different, a couple of statements in the par-
allel regions at the outer level to control the execution of 
zones had to be added. The number of groups 
(num_grps) is controlled by an environment variable. 
Figure 2 shows an excerpt of the parallelization for the 
LU-MZ benchmark. The first part shows the parallelism at 
the inter-zone level. The intra-zone parallelization occurs 
in routine ssor, which is identical to the parallelization 
used in the other two strategies (MPI+OpenMP and MLP). 

(a)

(b)
Figure 1: a) General structure for NPB-MZ and 
b) parallelization strategies 
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At this point the reader may want to know why there 
is a necessity for extending OpenMP to support thread 
groups. The current specification for OpenMP includes the 
NUM_THREADS clause which tells the runtime envi-
ronment the number of threads to be used in the execution 
of the PARALLEL region. With this extension it is possi-
ble to implement a nested parallel strategy similar to the 
one described above. However, it requires that the pro-
grammer explicitly controls the allocation of threads at 
each level of parallelism, as shown in Figure 3 (equivalent 
to Figure 2). This implies that the vectors that control the 
allocation of zones to groups are visible to the thread that 
is going to spawn the inner level of parallelism (common 
block inside routine ssor).

Two problems are worth mentioning about this im-
plementation. The first one is the lack of modularity of the 
approach. For example, now the programmer has coded in 
the application itself the fact that this routine is called 
from inside a parallel region; if called from a serial part of 

the application the behavior would not be appropriate. In 
addition, if more levels of parallelism were available, cod-
ing the allocation of threads would be painful using 
NUM_THREADS. The version employing the 
NanosCompiler GROUPS clause extension is more modu-
lar since the context is implicit in the OpenMP runtime 
support and the code is valid in all possible situations. The 
second problem is related to the usual implementation of 
nested parallelism in OpenMP. It is common practice to 
implement a pool of threads, so that when a thread arrives 
at a PARALLEL region the desired number of threads is 
taken from the pool. In the example depicted in Figure 3 
this would be the number specified by the 
NUM_THREADS clause. This is the case for example in 
the runtime system of the IBM XL compiler [17]. How-
ever, there is no guarantee that a particular thread is 
always executed on the same processor, so that data local-
ity is not necessarily exploited. The definition of thread 
groups establishes an allocation strategy for the inner lev-

  do step = 1, itmax 
  call exch_qbc(u, qbc, nx,…) 

C$OMP  PARALLEL
C$OMP& PRIVATE(iam, zone,…) 
C$OMP& GROUPS(num_grps, pn_thr) 

  iam = omp_get_thread_num() 
  do zone = 1, num_zones 
    if (iam .eq. pzone_id(zone)) then 
        call ssor(u,rsd,…) 

      end if 
    end do 
C$OMP END PARALLEL 
  end do 
  ... 

  subroutine ssor(u, rsd,…) 
  ... 

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k,…) 

  do k = 2, nz-1 
!$OMP DO 
    do j = 2, ny-1 
      do i = 2, nx-1 
        do m = 1, 5 

        rsd(m,i,j,k)=dt*rsd(m,i,j,k) 
        end do 
      end do 
    end do 
!$OMP END DO nowait 
  end do 
  ... 
!$OMP END PARALLEL 
  ... 

Figure 2: Parallelization of LU-MZ using the 
Nanos GROUPS clause 

  do step = 1, itmax 
    call exch_qbc(u, qbc, nx,…) 
C$OMP  PARALLEL
C$OMP& PRIVATE(iam, zone,…) 
C$OMP NUM_THREADS (num_grps) 
    iam = omp_get_thread_num() 
    do zone = 1, num_zones 
      if (iam .eq. pzone_id(zone)) then 

       call ssor(u,rsd,…) 
      end if 
    end do 
C$OMP END PARALLEL 
  end do 
  ... 

  subroutine ssor(u, rsd,…) 
  ... 
integer pn_thr (num_zones) 

  common /thr_mapping/ pn_thr 

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k,…) 
!$OMP& NUM_THREADS(pn_thr 
                     (omp_get_thread_num())) 
  do k = 2, nz-1 
!$OMP DO 
    do j = 2, ny-1 
      do i = 2, nx-1 
        do m = 1, 5 
          rsd(m,i,j,k)=dt*rsd(m,i,j,k) 
        end do 
      end do 
    end do 
!$OMP END DO nowait 
  end do 
  ... 
!$OMP END PARALLEL 
  ...

Figure 3: Parallelization of LU-MZ using the 
NUM_THREADS clause. 
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els of parallelism, so that multiple instances of the same 
PARALLEL region or different regions with the same 
GROUPS definition will always use the same 
thread/processor mapping. In other words, the definition of 
GROUPS is more static than the definition of 
NUM_THREADS, which we consider more dynamic. 

4.Timing Results 

We ran the BT-MZ, LU-MZ, and SP-MZ benchmarks 
of problem classes W, A, and B. The aggregate sizes for 
all benchmarks are:  

• Class W: 64x64x8 grid points 
• Class A: 128x128x16 grid points 
• Class B: 304x208x17 grid points

Our tests were executed on two hardware platforms: an 
SGI Origin 3000 located at the NASA Ames Research 
Center and one frame of an IBM Regatta p690 located at 
the FZ Juelich Center in Germany. 

The SGI Origin 3000 is a ccNUMA architecture with 4 
CPUs per node. The CPUs are of type R12K with a clock 
rate of 400 MHz, 2 GB of local memory per node, and 8 
MB of L2 cache. The peak performance of each CPU is 
0.8 Gigaflops. The MLP implementations use the SMPlib 
library as described in [7]. The MIPSpro 7.4 Fortran Com-
piler [11] is used to compile the hybrid codes and the 
NanosCompiler for the nested OpenMP code. The com-
piler options –mp –O3 and –64 are set in both cases.  

The IBM Regatta frame has 32 processors of type 
Power4+, running at 1.7 GHz. The main memory is 64 
MB and the cache hierarchy has three levels: internal L1 
cache with 64 KB instruction and 32 KB data (per proces-
sor), shared L2 cache with 1.5 MB (per chip = 2 
processors), and shared L3 cache with 512 MB. The IBM 
XL Fortran compiler with the option -qsmp=omp is used 
to compile the hybrid MPI/OpenMP codes. The 
NanosCompiler supporting the GROUPS extension is used 
for the nested OpenMP codes. On the IBM platform there 
was no library support for the MLP programming model 
available. The native IBM compiler supports nested paral-
lelism. Some tests were run employing the native IBM 
compiler together with the NUM_THREADS clause (as 
shown in Figure 3) to achieve nested parallelism. The op-
tion -qsmp=omp:nested_par was set in this case to compile 
the nested OpenMP version. The option -O3 was used for 
all cases. In the charts we use the following notation to 
refer to the different versions: 

• MPI+OpenMP: Hybrid version implemented 
with MPI and OpenMP. 

• MLP: Hybrid version implemented using the 
MLP approach. 

• NTH: Nested OpenMP implementation using the 
NanosCompiler and the GROUPS clause. 

• IBM Nested: Nested OpenMP implementation us-
ing the native IBM compiler and the 
NUM_THREADS clause. 

• NPxNT: Number of CPUs expressed as number of 
processes (NP) times number of threads (NT). For 
the nested OpenMP code NP refers to the number 
of thread groups or threads used at the outer paral-
lel level. 

4.1. The BT-MZ Benchmark 

The number of zones grows with the problem size. The 
number of zones is 4x4 for Class W and A, and 8x8 for 
Class B. The sizes of the zones vary widely. The ratio of 
the largest to the smallest zone is approximately 20. In 
order to achieve a good load balance a different number of 
threads has to be assigned to each group in the nested 
OpenMP codes. The same is true for the number of threads 
that are spawned by the processes in the hybrid codes. 

Figure 4: Timings for 20 iterations of BT-MZ 

Figure 4 shows results for the hybrid MPI/OpenMP ver-
sion and the nested OpenMP version compiled with the 
IBM native compiler and runtime system on the IBM Re-
gatta. The timings show that the current implementation of 
nested parallelism in the native IBM system is not achiev-
ing the scalability of the hybrid version. We suspect that 
the implementation of nested parallelism using a pool of 
threads does not exploit data locality. Timings for different 
allocations of threads to the outer and inner levels are 
shown in Figure 5. Although the runtime environment may 
ensure that the outer level of parallelism always uses the 
same kernel thread to execute each OpenMP thread, this is 
not guaranteed at the inner level. At the inner level, the 
threads that compose each team are dynamically selected 
from the pool, so there is no guarantee that the same ker-
nel threads are used in all parallel regions. Notice that the 
performance of the IBM Nested implementation is best 
when all threads are used on the inner level because in this 
case the same threads are always used to execute the inner 
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level of parallelism. The hybrid MPI/OpenMP version 
behave better when nested parallelism is used, taking ad-
vantage of load balancing on the inner level of parallelism 
and data locality.  

Figure 5: Timings for 20 iterations of BT-MZ with 
16 processors

Figure 6 shows the speedup achieved by the hybrid 
MPI/OpenMP and the NTH versions for BT-MZ class A 
on the IBM Regatta system. Although the performance of 
the NTH version is slightly worse than the performance of 
the hybrid MPI/OpenMP version, the behavior is the same. 
The performance is worse due to the current implementa-
tion of the runtime system supporting the NanosCompiler. 

The MIPSpro compiler and runtime environment on 
the SGI Origin do not support nested parallelism. The exe-
cution times of the hybrid MPI/OpenMP and the NTH 
versions are shown in Figure 7.  Due to load balancing, the 
number of threads per process and the number of threads 
per group varies. We indicate the average number of 
threads per process or group in the timings charts. The 

performance of the nested OpenMP implementation is 
nearly identical to that of the hybrid codes. The thread 
groups implementation in the Nanos compiler and runtime 
environment guarantee the same mapping of kernel 
threads to OpenMP threads in all parallel regions, both at 
the outer and inner levels. This improves memory behav-
ior and results in performance levels that are comparable 
to the hybrid versions. This demonstrates the importance 
of having these extensions in OpenMP and provides an 
efficient implementation for nested parallelism in 
OpenMP.

Figure 8 shows the impact of different combinations of 
processes or groups and threads. The timings are shown 
for the problem Class B and 128 CPUs. The problem Class 
B has 64 zones. Using 64 processes or 64 thread groups 
did not allow the most efficient load balancing. The best 
load balancing was achieved using 16 processes in the 
hybrid codes and 16 groups in the NanosCompiler nested 
OpenMP code. Since the number of threads per process or 
group varies, we report the average number of threads per 
process.

Figure 6: Timings for the complete execution of BT-MZ class A on the IBM Regatta system 
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Figure 8: Timings for 20 iterations of BT-MZ with 
128 processors 

 To demonstrate the scalability of the different imple-
mentations on the SGI Origin 3000 the Gigaflop rate as 
reported by the benchmark is shown in Figure 9. 

Figure 9: Performance of BT-MZ in Gigaflops 
when increasing the number of processors 

The Class B performance for the number of processes 
or thread groups that produced the best results is reported. 
This number was the same for all three implementations. 
This is not surprising since the load balancing issue is the 
same in all versions. The three implementations show al-
most identical scalability, achieving about 28 Gigaflops/s 
for 128 CPUs. 

To illustrate the load balancing issue in this bench-
mark, we show timeline views of time spent in useful 
calculations for different numbers of thread groups in Fig-
ure 10. 

4.2. The SP-MZ Benchmark  

        Here the mesh is partitioned such that zones are iden-
tical in size. The number of zones grows with the problem 
size. The number of zones is 4x4 for Class W and A, and 
8x8 for Class B. The computations are naturally load bal-
anced on the coarse level. Timings for the different 
implementations and different benchmark classes on the 
SGI Origin are shown in Figure 11.  As before, we report 
the timings for the best combinations of processes or 
groups and threads.  

Figure 11: Timings for 20 iterations of SP-MZ 

Figure 10: Timeline views of two BT-MZ Class B runs on 64 threads. Dark shading indicates useful 
computation time, light shading indicates idle time. The views show the timeline for 3 iterations. 
The left image results from a run using 64 thread groups, the right image from a run using 16 
thread groups. The large amount of useful computation time in the right image demonstrates a 
well balanced workload. The time scale in the right view is about 1/3 of the one in the left which 
demonstrates the high efficiency  
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The hybrid implementations achieve the best performance 
when employing a maximum number of processes on the 
coarse level. The use of multiple threads per process is 
only advantageous when the number of CPUs exceeds the 
number of zones. The situation is similar for the nested 
OpenMP code: It is best to employ groups consisting of 
only 1 thread, unless the number of CPUs exceeds the 
number of zones. As an example we show in Figure 12 the 
timings for problem Class B on different process or group 
and thread combinations.  

Figure 12: Timings for 20 iterations of SP-MZ 

On the IBM Regatta is was advantageous to use mul-
tiple threads per process or group for the Class A 
benchmark. The timings for both MPI/OpenMP and NTH 
are comparable, as shown in Figure 13.  

4.3. The LU-MZ Benchmark 

In this case the number of zones is 4x4 for all problem 
sizes. The overall mesh is partitioned such that the zones 
are identical in size. This makes load balancing easy. The 
coarse grain parallelism in the hybrid codes is limited to 

16 processes due to the structure of the benchmark. Paral-
lelism beyond that has to be obtained at the fine grained 
level. In the nested OpenMP code the number of thread 
groups is limited to 16.  

The timings for the SGI Origin are shown in Figure 14.
As before, we show the combinations of processes or 
groups and threads that yielded the best results for the hy-
brid codes and the NanosCompiler nested OpenMP code, 
respectively. The best timings were achieved by the same 
combinations in the hybrid and the nested OpenMP codes. 
In the case of LU-MZ the nested OpenMP code does not 
achieve the performance of the hybrid implementations. 
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Figure 14: Timings for 20 iterations of LU-MZ 

The major difference between LU-MZ and the two pre-
vious benchmark implementations is that both, BT-MZ 
and SP-MZ perform one time step before timing of the 
actual iteration loop. This ensures efficient data placement 
in case of a first touch data placement policy. For LU-MZ 
this is not the case. While it does not effect the hybrid 
codes, the lack of touching the data before the start of the 
iteration yields to a dramatic increase in time for the first 
iteration in the nested OpenMP code, which had a signifi-
cant impact due to the fact that we were only timing the 
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first 20 iterations. We have modified the nested OpenMP 
code to include an iteration to touch the data appropriately, 
analogous to BT-MZ and SP-MZ. Figure 15 shows the 
scalability of the nested OpenMP and the MPI/OpenMP 
code for problem size of Class B. The figure includes the 
performance achieved by the modified code that touches 
data before the start of the iteration: column NTH (touch 
data). 

LU-MZ Class B Performance, 
SGI Origin 3000
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Figure 15: Performance of LU-MZ in Gigaflops

The timings for LU-MZ Class A on the IBM Regatta 
are shown in Figure 16. Due to the small number of CPUs 
on a single node, the scalability problem observed on the 
SGI Origin does not show. Hybrid and nested parallelism 
are advantageous for more than 16 CPUs. 

5. Related Work 

Most current commercial and research compilers 
mainly support the exploitation of a single level of paral-
lelism and special cases of nested parallelism (e.g. double 
perfectly nested loops as in the SGI MIPSpro compiler 
[11]). The KAI/Intel compiler offers, through a set of ex-

tensions to OpenMP, work queues and an interface for 
inserting application tasks before execution (WorkQueue 
proposal [14]). The KAI/Intel proposal mainly targets dy-
namic work generation schemes (recursions and loops 
with unknown loop bounds). In this proposal, there is no 
explicit (at the user or compiler level) control over the 
allocation of threads so they do not support the logical 
clustering of threads in the multilevel structure, which we 
think is necessary to allow good work distribution and data 
locality exploitation. The IBM XL [17] Fortran compiler 
supports nested parallelism. The execution environment 
provides a pool of threads from which any parallel region 
can take some for parallel execution. The user has the pos-
sibility to limit the number of threads on the outer level or 
parallelism by using the NUM_THREADS clause in the 
PARALLEL directive. We have discussed the problems 
that may result from this approach in subsection 3.2. 

There are a number of papers reporting experiences in 
combining multiple programming paradigms to exploit 
multiple levels of parallelism (e. g. [15]). Experiences on 
employing multiple level of parallelism in OpenMP are 
reported in [1]. Implementation of nested parallelism by 
means of controlling the allocation of processors to tasks 
in a single-level parallelism environment is discussed in 
[3]. The authors show the improvement due to nested par-
allelization. The performance of code containing 
automatically generated nested OpenMP directives is dis-
cussed in [9]. 

6. Conclusions and Future Work 

A nested OpenMP implementation of the multi-zone 
versions of the NAS Parallel Benchmarks was developed. 
The nested OpenMP code makes use of the NanosCom-
piler extensions to OpenMP, allowing the creation of 
thread groups and load-balancing among the thread 
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groups. The NanosCompiler was then used to evaluate the 
performance of the nested OpenMP code on two different 
hardware platforms. The performance was compared to 
corresponding hybrid implementations of the benchmarks 
using the MPI/OpenMP and the MLP programming para-
digms. For all three benchmarks the performance of the 
OpenMP code was comparable to that of the hybrid im-
plementations. On the SGI Origin the LU-MZ benchmark 
required touching the data before the start of the iteration 
in order to achieve the performance of the hybrid codes. 

The first conclusion of the study is that the OpenMP 
paradigm allowed a very rapid development of the parallel 
code. The second observation is that the thread groups 
implementation in the NanosCompiler and runtime system 
was crucial to obtaining good performance. The reason is 
that the implementation guarantees the same mapping of 
kernel threads to OpenMP threads in all parallel regions, 
both at the outer and inner levels. This improves memory 
access time and results in performance levels that are 
comparable to the hybrid versions. Another important fea-
ture of the NanosCompiler is the possibility to assign 
weights to the thread groups in order to achieve a well 
balanced work load distribution. 

We plan to conduct further case studies to compare the 
performance of parallelization based on nested OpenMP 
directives with hybrid and pure message passing parallel-
ism. We will consider other hardware platforms, larger 
benchmark classes, and full-scale applications. 
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