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Abstract
Most current shared{memory parallel programming

environments are based on thread packages that al-
low the exploitation of a single level of parallelism.
These thread packages do not enable the spawning of
new parallelism from a previously activated parallel re-
gion. Current initiatives (like OpenMP) include in
their de�nition the exploitation of multiple levels of
parallelism through the nesting of parallel constructs.
This paper analyzes the requirements towards an e�-
cient multi{level parallelization and reports some con-
clusions gathered from the experience in the paralleliza-
tion of two benchmark applications. The underlying
system is based on: i) an OpenMP compiler which ac-
cepts some extensions to the original de�nition and ii)
a user-level threads library that supports the exploita-
tion of both �ne{grain and multi{level parallelism.

1. Introduction

Parallel processing is being accepted by the com-
puter industry as the path to increase the computa-
tional power of low{end workstations and even per-
sonal computers. Parallel architectures, ranging from
multiprocessor workstations (with 2 to 4 processors) to
medium scale shared{memory systems (up to 64 pro-
cessors) are becoming more and more a�ordable and
common. However, making these parallel machines
truly usable requires easy{to{understand and portable
programmingmodels that allow the exploitation of par-
allelism out of applications written in standard high{
level languages. They usually o�er new mechanisms
or extensions to the language to express the available
parallelism of the application.

These extensions are usually o�ered by means of
high{level directives and language constructs (the ef-
fort done within the OpenMP initiative [13] or the HPF
High Performance Fortran Forum [9]) or by a set of
services o�ered by a user{level thread package. Pro-

gramming models in the �rst group o�er a loosely syn-
chronous programming model in which parallel jobs
can be executed fully in parallel and synchronize at
global points (by means of barriers or critical sections).
Services included in most user{level thread packages al-
low a more general exploitation of parallelism (either
at subroutine call level and at loop level) but at the
expenses of higher programming e�ort.

Most current systems (compilers and run{time
threads support) are based upon the exploitation of
a single level of parallelism around loops (for example,
the current version of the SGI MP library, the SUIF
compiler infrastructure [6] or the MOERAE portable
thread{based interface for the Polaris compiler [8]).
Exploiting a single level of parallelism means that there
is a single thread (master) that produces work for other
processors (slaves). Once parallelism is activated, new
opportunities for parallel work creation are ignored by
the execution environment. Exploiting this parallelism
may incur in low performance returns as one increases
the number of processors to run the application.

Multi{level parallelism enables the generation of
work from di�erent simultaneously executing threads.
Once parallelism is activated, new opportunities for
parallel work creation result in the generation of work
for all or a restricted set of processors. We believe that
multi{level parallelization will play an important role
in new scalable programming and execution models.
Nested parallelism may provide further opportunities
for work distribution, both around loops and sections;
however, new issues may arise in order to attain high
performance. OpenMP [13], jointly de�ned by a group
of major computer hardware and software vendors, in-
cludes in its de�nition the exploitation of multi{level
parallelism through the nesting of parallel constructs.

Previous work on supporting multi{level parallelism
focused on providing some kind of coordination support
to allow the interaction of a set of program modules in
the framework of data parallel programs for distributed
memory architectures. Some of them combine the use
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of two programming models and interfaces. For ex-
ample, [3] proposes a library{based approach that pro-
vides a set of functions for coupling multiple HPF tasks
to form task{parallel computations. Other alternatives
[2, 5, 16] proposed a small set of Fortran directives to
integrate task and data parallelism parallelism also in
an HPF framework.

The Illinois{Intel Multithreading library [4] targets
shared{memory systems. It also supports multiple lev-
els of general (unstructured) parallelism. Application
tasks are inserted into work queues before execution,
allowing several task descriptions to be active at the
same time. Kuck and Associates, Inc. has made pro-
posals to OpenMP to support multi-level parallelism
through the WorkQueue mechanism [10], in which work
can be created dynamically, even recursively, and put
into queues. Within the WorkQueue model, nested
queuing permits a hierarchy of queues to arise, mirror-
ing recursion and linked data structures. These pro-
posals o�er multiple levels of parallelism but do not
support the logical clustering of processors in the mul-
tilevel structure, which may lead to better work distri-
bution and data locality exploitation.

The approach presented in this paper takes Fortran
applications fully annotated with directives to be par-
allelized by the compiler targeted to shared{memory
architectures. Some extensions have been included in
the OpenMP de�nition to enable an e�cient exploita-
tion of multiple levels of parallelism in numerical appli-
cations. Although the compiler may identify additional
parallelism in the application through data and control
dependence analysis, this aspect is out of scope for this
paper. From the analysis of the program, the compiler
generates an intermediate representation of the paral-
lel application taking the form of a Hierarchical Task
Graph (HTG [15]). The HTG representation captures
parallelism information at di�erent levels of granular-
ity. An e�cient user{level threads library allows the
compiler to map the parallelism structure of the ap-
plication into a Fortran code with calls to the services
o�ered by the library.

The rest of the paper is organized as follows: Sec-
tion 2 briey describes the applications used along the
paper as a case study. Section 3 presents the OpenMP
programming model used in our environment and the
thread{level support currently provided by run{time
libraries. Section 4 presents some extensions proposed
towards a more exible and e�cient multi{level paral-
lelization and the thread{level support that is required.
Section 5 analyzes the multi{level parallelization for
both applications (running on top of an SGI Origin2000
platform). Finally, Section 6 concludes the paper.

2. Two SPEC95FP applications

In this paper two di�erent applications have been
selected from the SPEC95 benchmark set: Hydro2D,
which computes the movement of galactical jets us-
ing Navier Stokes' equations for a variable number
of points in the space; and Turb3D, which simulates
isotropic homogeneous turbulences in a cube with pe-
riodic boundary conditions.

2.1. Hydro2D

Hydro2D works primarily with four di�erent two{
dimensional matrices (RO, EN, GR and GZ) of 402x160
elements. The main work of the application is done in
function advnce, called directly from a timestep loop.
This loop is repeated 200 times when the reference in-
put is used. Each call to this function performs two
steps over these four matrices.

In the �rst step, these matrices are used to calcu-
late three sets of new matrices. The latter ones are
combined, producing four intermediate matrices, onto
which the fct is computed. The results of the four fct
are the new versions of matrices RO, EN, GR and GZ,
which are then used to perform the second step. The
structure of the second step is very similar to that of
the �rst one, calculating the �nal values for the matri-
ces.

The central part in Figure 1 shows the parallelism
structure for one of the two steps in function advnce.
First of all, the computation of the three sets of ma-
trices from the primary matrices can be done in par-
allel (nodes 2, 3 and 4). The functions involved in
these computations are corix, stagx1 and stagx2, where
x stands for f or g, depending on the step. They con-
tain both section and loop{level parallelism inside, as
shown in the right part of Figure 1. After that, func-
tions trans1 and trans2 are invoked (nodes 5 and 6),
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Figure 1. Parallelism structure for the SPEC95
Hydro2D application.
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with the parallelism structure shown in the left part
Figure 1. Again, they contain parallelism at the level
of sections and loops. The computation of the four fct
that follows trans2 (nodes 7{10) can also be performed
in parallel. Each fct contains function calls and nested
loops with loop{level parallelism inside.

The application structure and data used in each
node of the task graph enables the de�nition of pro-
cessor groups. Each of the four sections that appear in
di�erent parts of the application is devoted to the com-
putation of one of the above mentioned matrices. If one
ensures that the same processors are always used for
the execution of related sections, locality exploitation
will be improved. This is the purpose of the extensions
to OpenMP that we present in Section 4.

For this application, current parallelizing compil-
ers, like PFA for the SGI Origin 2000 architecture [17]
or SUIF [6] only detect the loop{level parallelism de-
scribed above. In particular, the performance reported
in the SPEC CFP95 summaries [18] for this program
(using PFA) shows an speed{up of 3.93 and 4.28 for 8
and 16 processors1, respectively.

2.2. Turb3D

The structure of the main loop in the application
is shown in the left part of Figure 2: it consists of
an iterative loop that alternates a series of Fourier{
to{physical space and physical{to{Fourier space FFTs
over six three{dimensional arrays (U, V, W, OX, OY and
OZ of size 66x64x64) with the computation of a non{
linear term on the physical space in between, and a
time stepping phase before the end of each iteration.
Each node is a loop or nested loop that iterates over one
or several dimensions of the above mentioned arrays.

For instance, nodes 1, 7, 13, 20 and 26 perform dif-
ferent parts of the computation over matrix U. From
the point of view of parallelization, nodes 7 and 26
may be parallelized in the loops that access the sec-
ond dimension of array U while nodes 13 and 20 in the
loops that access the third dimension of the same ar-
ray. Node 1 can be parallelized in any of the loops that
access the three di�erent dimensions. These compu-
tations for each array can run completely in parallel.
However, nodes 19 and 32 update some of the pre-
viously computed arrays with contributions from the
rest of the arrays; for instance, node 19 updates arrays
OX, OY and OZ with contributions from U, V, W, OX, OY
and OZ. Deeper in the hierarchy of tasks (and through
and intricate set of procedure invocations), nodes 7{

1These speed{ups are for a SGI Origin2000 system with R10k

processors at 250 MHz, 4 Mb of secondary cache and 2 or 4 Gb

of main memory, respectively.
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ncpus = nthf_cpus_actual()
nsect = min(6, ncpus)
C$OMP PARALLEL GROUPS(nsect)
C$OMP SECTIONS
C$OMP SECTION ONTO(0)
C$OMP PARALLEL DO SCHEDULE(STATIC)
      DO  K=1,NZ
         CALL XYFFT(K,1,1,-1)
      ENDDO
...
C$OMP SECTION ONTO(5)
C$OMP PARALLEL DO SCHEDULE(STATIC)
      DO  K=1,NZ
         CALL XYFFT(K,1,6,-1)
      ENDDO
C$OMP END SECTIONS
...
C$OMP SECTIONS GROUPS(nsect)
C$OMP SECTION ONTO(0)
C$OMP PARALLEL DO SCHEDULE(STATIC)
      DO  J=1,NY
         CALL ZFFT(J,1,1,-1)
      ENDDO
...
C$OMP SECTION ONTO(5)
C$OMP PARALLEL DO SCHEDULE(STATIC)
      DO  J=1,NY
         CALL ZFFT(J,1,6,-1)
      ENDDO
C$OMP END SECTIONS
C$OMP END PARALLEL

Figure 2. Parallelism structure for the SPEC95
Turb3D application.

18 and 20{31 contain calls to direct and reverse two{
dimensional FFTs.

The application presents multiple levels of paral-
lelism. On the one side, the application o�ers paral-
lelism at the level of sections that perform the same
computation over 6 di�erent arrays. On the other
side, each section reveals two nested levels of loop par-
allelism (through several procedure invocations) and
other nodes reveal loop{level parallelism. Some com-
pilers, like PFA only detect the innermost level of par-
allel loops; this parallelization strategy does not report
any speed{up, even for a small number of processors.
In particular, the performance reported in the SPEC
CFP95 summaries shows an slow{down of 0.8 and 0.75
for 8 and 16 processors1, respectively. Other compilers,
like SUIF are able to detect the outermost level of par-
allel loops; as we will report at the end of the next sec-
tion, this parallelization strategy performs much better
than the previous one.

3. OpenMP and thread{level support

The programming model used in this paper is based
on OpenMP [13], the application program interface
proposed to o�er a programming model for portable
parallel programming across shared memory architec-
tures from di�erent vendors. Fortran directives are
translated by a compiler to code (based on a highly
optimized thread interface) directly injected into the
high{level Fortran code.

OpenMP o�ers a set of parallel, work{sharing and
synchronization constructs to specify the parallelism
structure of the application. It allows the de�ni-
tion of multi{level parallelism through the nesting of
PARALLEL constructs. However, most current execu-
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tion environments serialize inner parallel constructs be-
cause the supporting threads implementation does not
support nested parallelism. For instance, the current
implementation of the SGI MP library provides a very
e�cient mechanism based on a unique work descrip-
tor, located at a �xed memory location, from where all
processors determine the work to be executed. The de-
scriptor contains, among other information, the pointer
to the procedure that encapsulates the work to be done.
This descriptor cannot be reused until all processors
�nish the work assigned.

In OpenMP, the static iteration scheduling policies
speci�ed in the parallel DO work{sharing directive do
not assume any speci�c assignment of chunks of itera-
tions to processors. In general, chunks are assigned to
processors following their lexicographical order, start-
ing from the chunk that contains the lower bound of the
iteration space which is assigned to the �rst processor
in the group of processors involved in the parallel exe-
cution. This assignment is a consequence of the unique
work descriptor mechanism used to generate work. The
descriptor contains the lower and upper bounds and
step of the whole iteration space; each thread de-
termines from its own thread identi�er the chunk or
chunks of iterations that has to execute. Similarly, in
the SECTIONS work{sharing construct, the assignment
of code segments parceled out by each SECTION direc-
tive is not prede�ned by the OpenMP model. However,
its usual conversion to a parallel loop that condition-
ally branches to each part also establishes a default
lexicographical order.

In order to conclude this section, we summarize the
performance results for both applications when a sin-
gle level of loop parallelism is exploited; Section 5 per-
forms the complete evaluation for several paralleliza-
tion strategies. In order to generate these results, we
have generated an OpenMP version of the paralleliza-
tion strategies proposed by the SUIF compiler, as in-
cluded in the SUIF{SPEC95 distribution [18]. The
strategy corresponds to the parallelization of the out-
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Figure 3. Speed{up for the loop parallelization
in Hydro2D and Turb3D.

ermost loops. Figure 3 shows the speed{up obtained
for this parallelization. Notice that in both cases this
parallelization provides a relatively good performance
up to a certain number of processors (between 16 and
32). Since the parallelization e�ciency decreases as
the number of processors is increased (diminishing re-
turns are obtained as the number of processors is in-
creased), one may argue if using a small degree of task
parallelism (if exists) together with the loop parallelism
above would contribute to get higher returns when the
number of processors is increased.

4. E�cient multi{level parallelization

In this section we describe the set of extensions to
the OpenMP programming model oriented towards the
de�nition of processor groups. In addition to that,
we will also analyze the functionalities needed at the
thread{level library.

4.1 Extensions to OpenMP

A group of processors is de�ned by a 'master' thread
and a number of 'slave' threads. The de�nition of
groups may be originated in any parallel construct.
Once de�ned, work{sharing constructs inside the par-
allel construct will assign work to the master threads
(instead of assigning the work to all the threads avail-
able). The slave threads will cooperate with the master
in the exploitation of any additional parallelism inside
these work{sharing constructs.

The extensions proposed allow the de�nition of the
groups (i.e. the number of master threads and the num-
ber of slave threads assigned to each master). Once de-
�ned, other extensions allow the particular assignment
of work to the groups. This allows the user to con-
trol the allocation of work and may result in a more
e�cient exploitation of multi{level parallelism; the ap-
propriate assignment of work to groups may improve
data locality and reduce load unbalance.

4.1.1 GROUPS clause

The GROUPS clause can be applied to any parallel con-
struct. It establishes the groups of processors that will
execute any work{sharing construct inside and nested
parallel constructs:

C$OMP PARALLEL [DO|SECTIONS] [GROUPS(gdef[,gdef])]

...

C$OMP END PARALLEL [DO|SECTIONS]

where each group de�ner gdef has the following form:

[name:]ncpus
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The name attribute is optional and is used to identify
the group. The ncpus attribute is used to determine,
from the number of currently available processors, the
number of processors that will be assigned to the group.
By default, groups are numbered from 0 to an upper
value; this upper value is the number of groups de�ned
within the clause GROUPS minus one.

A shortcut is available to specify the simplest group
de�nition: GROUPS(number). In this case, the user
speci�es the de�nition of number groups, each one re-
ceiving the same number of processors.

For instance, assume that the following de�ni-
tion of groups is provided in a PARALLEL construct:
GROUPS(a:2,b:3,one:1,two:2). In this case, four
groups are set. Processors 0{1 would constitute the
�rst group (a), processors 2{4 would constitute the sec-
ond group (b), processor 5 would constitute the third
group (one) and processors 6{7 would constitute the
fourth group (two).

If the number of processors available at the time of
reaching the parallel construct is di�erent than the sum
of processors speci�ed in the clause, the numbers spec-
i�ed are considered as proportions; the runtime system
has to be able to distribute (in the more fair way and
with minimum overhead) the total number of proces-
sors according to these proportions.

4.1.2 ONTO clause

The default assignment of iterations in a DO work{
sharing construct or individual sections in a SECTIONS

work{sharing construct to processors can be changed
by using the ONTO clause.

C$OMP DO [ONTO(expr)]

When this clause is used, expr speci�es the group of
processors that will execute a particular chunk of it-
erations (in fact, only the master of each group will
execute the work). If the expression contains the loop
control variable, then the chunk number (numbered
starting at 0) is used to perform the computation; oth-
erwise, all chunks are assigned to the same processor.
In all group computations, a 'modulo the number of
active groups' operation is applied. If not speci�ed,
the default clause is ONTO(i), being i the loop control
variable of the parallel loop.

For example, assume the previous de�nition of
groups and the following ONTO clause:

C$OMP DO SCHEDULE(STATIC,4) ONTO(2*i)

do i = 1, 1000

...

enddo

C$OMP END DO

In this case, only groups a and one will receive work
from this work{sharing construct. In particular, the
master of the �rst group (processor 0) will execute it-
erations 1:4,9:12, ... and the master of the third group
(processor 5) will execute iterations 5:8,13:16, ....

For example, for the same de�nition of groups, an
ONTO(2*k) clause would specify that the master pro-
cessor of the group 2*k (modulo the number of active
groups) would execute all the iterations of the loop.

For the SECTIONS work{sharing contruct, the
ONTO(expr) clause is attached to each SECTION direc-
tive to specify the group that would execute each sec-
tion. Each expression expr can be di�erent and is used
to compute the group that will execute the statements
parceled out by the corresponding SECTION directive.
If the ONTO clause is not speci�ed the compiler will as-
sume an assignment following the lexicographical order
of the sections.

For instance, when de�ning a SECTIONS work{
sharing construct with four SECTION inside, the pro-
grammer could specify that following clauses: ONTO(a)
in the �rst section, ONTO(one) in the second section,
ONTO(b) in the third section and ONTO(two) in the
fourth section. In this case, processors 0, 5, 2 and 6
would execute the code parceled out by the sections,
respectively.

For example, the right part of Figure 2 shows how
these clauses are used to specify the multi{level par-
allelization strategy and processor groups described in
Section 2 for the Turb3D application. Notice that the
user is de�ning nsect groups in the outer parallel con-
struct. This value is computed as the minimum be-
tween 6 and the number of currently available proces-
sors (returned by a service of the threads library). The
master of each group will execute one of the sections,
according to the number provided in the ONTO clause.
Each master will encounter the inner loop{level parallel
construct and spawn work for the processors available
in his team (for instance ncpus divided by nsect, as
indicated by the threads library through a speci�c call).

4.2. Supportive user{level threads library

In this section we briey describe the main services
required from the user{level threads library. Although
the library has been de�ned to directly support the
execution of the parallelism expressed by means of a
Hierarchical Task Graph [15], this paper only focuses
on the functionalities needed to support the OpenMP
programming model.

Each parallel construct expressed inside the appli-
cation is transformed in such a way that the original
code is encapsulated in a function. In its place, the
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compiler inserts the speci�c code to generate the par-
allelism. Generating parallelism consists on building
the description of the work to be executed and call-
ing the user-level threads library to supply work to the
participating processors.

The threads package has been designed to provide
di�erent mechanisms to spawn parallelism. Depend-
ing on the hierarchy level in which the application is
running, the requirements for creating work are dif-
ferent. When spawning the deepest (�ne grain) level
of parallelism, the application only creates a work de-
scriptor and supplies it to the participating processors.
The mechanism is implemented as e�ciently as the one
provided by most current systems [11]. However, the
design allows processors spawning parallelism to gen-
erate more than one descriptor and supply them to the
slaves before they terminate with previous parallelism,
thus supporting multiple levels of parallelism.

When the application knows that it is spawning
coarse grain parallelism, not at the deepest level, it can
pay the cost of supporting nested parallelism. Higher
levels of parallelism, containing other parallel regions,
are generated using a more costly interface that pro-
vides threads (called nanothreads) with a stack [12].
Owning a stack is necessary for the higher levels of
parallelism to spawn an inner level, because the stack
is used to maintain the context of the higher levels,
along with the data structures needed for joining the
parallelism, while executing the inner one. In addition,
nanothreads have been designed so that the compiler
can specify precedence relations among them.

An important aspect of the library design is the sup-
port for processor groups. This requires extra function-
alities to set the current groups de�nition (used when
clause GROUPS is found in a PARALLEL construct) and
to get to actual groups composition (used to decide the
subset of processors receiving work in each work shar-
ing construct). All this information is maintained by
the library in order to allow orphaned directives.

Processors waiting for work search �rst for work
descriptors and then for nanothreads. Each entity is
managed in a speci�c way: nanothreads are enqueued
in ready queues; work descriptors are supplied to lists
using a more e�cient mechanism. Two di�erent struc-
tures co{exist for holding these entities: global (ac-
cessed by all the processors) and local (per processor).
They enable the compiler to decide, for each work{
sharing construct, if locality or load balancing are the
issues that need to be considered in its parallel execu-
tion. Local structures are needed to allow the execution
model based on processor groups.

5. Experimental evaluation

This section evaluates the performance obtained for
the two applications described in Section 2. The ex-
perimental framework includes the following compo-
nents: i) an OpenMP compiler [1] developed on top
of Parafrase{2 [14]; ii) the user{level threads library
NthLib [12] developed on top of Quick{Threads [7];
iii) and a Silicon Graphics Origin2000 system with 64
R10k processors, running at 250 MHz with 4 Mb of
secondary cache each. For all compilations we use the
native f77 compiler with ags set to -64 -Ofast=ip27

-LNO:prefetch ahead=1:auto dist=on.

5.1. Hydro2D benchmark

Two di�erent versions of this benchmark have been
executed using the reference input �le, as provided by
the SPEC de�nition. The sequential execution time
is 154.7 seconds. The �rst one implements a single
level parallelization strategy around loops. Figure 4
shows the speed{up obtained when this parallelization
strategy is executed on top of NthLib, using up to 64
processors. Notice that the performance grows up to
16 processors and then declines. This is due to the fact
that the parallelism available in the loops is not enough
for such large number of processors.

The second parallel version implements the multi{
level parallelization described in Section 2. In partic-
ular, one of the levels of parallelism has been inten-
tionally omitted because it introduces an important
loss of locality: nodes 2{4 in Figure 1 are executed
sequentially. In addition to that, we de�ne 4 processor
groups. For instance, a group of processors is responsi-
ble for the execution of nodes b, f, k, o and 7; loop{level
parallelism inside these nodes is executed only by the
set of processors assigned to the group. All the pro-
cessors collaborate in the execution of nodes where a
single level of parallelism is available (like nodes a, 1,
and s). Notice that this parallelization strategy returns
better performance than the loop{level strategy when
more than 16 processors are used, reaching a maximum
speed{up of 9.1 with 48 processors.
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Figure 4. Speed{up for the Hydro2D program.
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Figure 5 shows the behavior of the parallelization
strategies in terms of secondary cache misses, which
in a NUMA architecture may require access to remote
memory, and external invalidations that occur per pro-
cessor, as reported by the perfex tool. Notice that in
general, the numbers for the multi{level strategy are
higher that for the loop{level strategy. This is due
to the data movement that happens when owing from
parts of the application where groups of processors con-
centrate in some nodes of the task graph to parts of the
application where all processors collaborate in the exe-
cution of the same loops. This justi�es the low speed{
up reported for the multi{level strategy when less than
16 processors are used. When more than 16 processors
are used, the additional overhead of the data move-
ment is counteracted by the gain produced by a better
distribution of work among groups of processors. Us-
ing more than 48 processors produces a decrease of
the speed-up because of the poor distribution of work
among processors within each group.
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Figure 5. Average number of secondary cache
misses and external invalidations (per proces-
sor) in Hydro2D.

5.2. Turb3D benchmark

For this application, the following parallelization
strategies have been analyzed. The �rst one is the pro-
posed by the automatic parallelizer PFA for the SGI
Origin2000 architecture. In this case, the compiler sug-
gests the parallelization of the innermost loops in the
routines that compute the two{dimensional FFT; this
parallelization will be referred in the rest of this sec-
tion as 'inner'. The second parallelization analyzed is
the one suggested by the SUIF compiler, consisting on
the parallelization of the outer loops that compute 2D
FFTs over di�erent planes of three{dimensional ma-
trices; this parallelization strategy will be referred as
'outer'. Finally, the third and fourth strategies stud-
ied are multi{level parallelizations where we parallelize
the section{level parallelism described in section 2 and
either the inner or the outer loops mentioned above;
these two strategies will be named 'mlv{inner' and
'mlv{outer'.

We have conducted a set of experiments in order
to analyze the behavior of the di�erent parallelization
strategies and number of processors. For the multi{
level parallelizations, we �rst try to assign as many
processors as possible to the outermost level (sections
level) and the rest of processors to the innermost one;
in this case, groups of processors concentrate on the
execution of each individual section. Figure 6 summa-
rizes the performance results.
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Figure 6. Speed{up for the Turb3D program.

First of all, notice that the 'inner' parallelization
strategy fails for this application and that increasing
the number of processors to exploit this level of par-
allelism actually results in a reduction of parallel per-
formance. This is due to the small size of the two{
dimensional FFTs (64x64) that are computed at the
innermost level. Second, the 'mlv{inner' paralleliza-
tion performs better than the 'inner' parallelization.
The performance for this strategy increases when us-
ing up to six processors; this corresponds to exploiting
a single level of parallelism: sections for nodes 1{18
and 20{31, and loops for nodes 19 and 32. When more
than 6 processors are used (i.e. when processors are
allocated to the execution of the innermost FFTs in
nodes 1{18 and 20{31), the performance drops.

For this application, the 'outer' parallelization al-
ways outperforms the 'mlv{outer' parallelization. This
is due to the additional data movement among pro-
cessors that occur in the multi{level parallelization.
This data movement can be observed in the amount
of secondary cache misses and external invalidations
that each processor su�ers:

� The 'outer' strategy parallelizes the loops that tra-
verse the second dimension of the arrays in nodes
1{12 and 26{32; for the rest of nodes, the loops
that traverse the third dimension are parallelized.
This means that, at each iteration of the outer
loop, two transpositions of the six arrays occur.

� With up to six processors, in the 'mlv{outer' par-
allelization there is no data movement during the
execution of any sequence of nodes that use the
same array (for example nodes 1, 7 an 13). How-
ever, the averaging nodes (19 and 32) imply high
data movement.
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� When more than six processors are used in the
'mlv{outer' strategy, the additional transpositions
within each group of processors introduce addi-
tional overhead.

Figure 7 shows the number of secondary cache misses
and external invalidations that occur in the application
per processor, as reported by the perfex tool. Notice
that in general, the number of external invalidations for
the 'mlv{outer' strategy are higher that for the 'outer'
strategy. Also, when more than 6 processors are used in
the application, the number of secondary cache misses
of the 'mlv{outer' strategy is higher than 'outer'; this
corresponds to the point where the performance of the
'mlv{outer' strategy saturates in Figure 6

In order to analyze the inuence of the averag-
ing computations in the 'mlv{outer' parallelization, we
have generated a synthetic benchmark from the orig-
inal SPEC application so that nodes 19 and 32 are
executed at each iteration, once every 2, 5, 10, 25 or 50
iterations, or never executed. In this case we are reduc-
ing the data movement overhead due to them. Figures
8 and 9 show the speed{up and number of secondary
cache misses and external invalidations, respectively,
for di�erent values of the NAVG variable. Notice that
for this application, it would be enough to keep data
locality inside the groups during two consecutive iter-
ations to have a higher speed{up in the 'mlv{outer'
parallelization. In particular, notice that in the 'never'
situation the number of secondary cache misses and in-
validations is always smaller in the 'mlv{outer' version
than in the 'outer' version. In the 'NAVG=2' situation,
this is also true when using less than 24 processors;
otherwise, the 'outer' version outperforms 'mlv{outer'.
Summary

In the Hydro2D benchmark, multi{level parallelism
boosts the performance of the parallel execution; the
comparison with the traditional loop{level parallelism
gives a 30% improvement on 32 processors. Although
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Figure 7. Average number of secondary cache
misses and external invalidations (per proces-
sor) for the 'outer' and 'mlv{outer' paralleliza-
tions in Turb3D.
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Figure 8. Speed{up for the synthetic Turb3D
program for the 'outer' (left) and 'mlv{outer'
(right) strategies.

the memory behavior is worse, the better work distri-
bution that is achieved in the multi-level version raises
the performance.

In the Turb3D benchmark the multi{level strategy
does not improve the performance. We have generated
a synthetic version in order to analyze the inuence
of having parts in the application that bene�t from
multiple levels of parallelism and parts that only have
one level of loop parallelism. For instance, for 12 pro-
cessors, the classical outer{level loop parallelizations
reports an speedup of 6.41 while a multi{level paral-
lelization obtains 5.68 when the degree of interaction
is high (each iteration of the outer loop). When this
degree of interaction decreases, the multi{level paral-
lelization starts to outperform the classical one. When
the interaction is performed half the number of times
in the original program, the performance increases by
6%; when this degree of interaction is reduced to a
minimum, the performance increases up to 36%.

Grouping of processors has also been proposed as
an extension in the context of OpenMP. In this case
we have proposed a clause in the directive to specify
these groups. If no groups are speci�ed, any additional
parallelism that is created inside an active parallel re-
gion involves all the processors allocated to the applica-
tion. For this application, the behavior of a 'mlv{outer'
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Figure 9. Average number of secondary cache
misses and external invalidations (per proces-
sor) for the synthetic Turb3D program for the
'outer' (left) and 'mlv{outer' (right) strategies.
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strategy without grouping is very close to the behavior
of the 'outer' one; in this case, the outer level is created
but then all processors are involved in the execution of
the inner level.

6. Conclusions

In this paper we have presented some extensions to
the current de�nition of OpenMP oriented towards the
de�nition of processor groups when multiple levels of
parallelism exist in the application. Most current com-
pilers and run{time systems only support the exploita-
tion of single{level parallelism around loops. In order
to exploit multiple levels of parallelism, several pro-
gramming models are combined (e.g. message passing
and OpenMP). We believe that a single programming
paradigm should be used and should provide similar
performance. The paper also discuses the requirements
and functionalities needed in the threads library.

The experimental evaluation shows that multi{level
parallelism may play its role in increasing performance.
We have analyzed a set of parallelization strategies for
two SPEC95FP applications. The purpose of the eval-
uation has been to �gure out situations in which multi-
ple levels of parallelism are worth to be exploited. The
two applications su�er from frequent patterns of inter-
action between parts of the application where multiple
or single levels of parallelism exist. Although this does
not bene�t the exploitation of the multiple levels of
parallelism, the results are encouraging and show some
of the key factors that need to be addressed.
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