

Accelerating Genome-Wide Association Studies Using

CUDA Compatible Graphics Processing Units

Rui Jiang*, Feng Zeng, Wangshu Zhang, Xuebing Wu

MOE Key Laboratory of Bioinformatics
Bioinformatics Division, TNLIST/Dept. of Automation

Tsinghua University, Beijing, China

Zhihong Yu

Intel China Research Center

Beijing, China

Abstract — Recent advances in highly parallel, multithreaded,
manycore Graphics Processing Units (GPUs) have been enabl-
ing massive parallel implementations of many applications in
bioinformatics. In this paper, we describe a parallel implemen-
tation of genome-wide association studies (GWAS) using Com-
pute Unified Device Architecture (CUDA). Using a single
NVIDIA GTX 280 graphics card, we achieve speedups of about
15 times over Intel Xeon E5420. We also implement a highly
scalable, massive parallel, GWAS system using the Message
Passing Interface (MPI) and show that a single GTX 280 can
have similar performance as a 16-node cluster. We further
apply the GPU program to two real genome-wide case-control
data sets. The results show that the GPU program is 17.7 times
as fast as the CPU version for an Age-related Macular Degene-
ration (AMD) data set and 25.7 times as fast as the CPU ver-
sion for a Parkinson’s disease data set.

Keywords — Genome-wide association studies (GWAS); epistatic
interactions; Compute Unified Device Architecture (CUDA);
Graphics processing units; Message passing interface

I. INTRODUCTION
Recent developments in medical genetics suggest that

genetic variation plays an important role in the pathogenesis
of human inherited diseases [1]. It is therefore of great im-
portance to detect causative genetic variants, for the purpose
of understanding generic principles underlying these diseas-
es. Human inherited diseases are typically classified into
Mendelian diseases and complex diseases. Studies have
shown that Mendelian diseases are relatively rare, and an
individual genetic variant in a single gene is both sufficient
and necessary to cause such a disease. This type of disease is
therefore referred to as monogenic disease. In contrast, com-
plex diseases are more common and are often referred to as
polygenic diseases, because they are supposed to be caused
by multiple genetic variants, their interactive effects, and/or
their interaction with environment factors [2].

The interactive effect between two or more genetic va-
riants is often referred to as the epistatic interaction or epi-
stasis. Recent studies in medical genetics have suggested that
epistatic interactions may contribute to the pathogenesis of
complex diseases ubiquitously through sophisticated regula-
tory mechanisms in the molecular level of human genetics
[3]. Examples of epistatis include synergistic effects of angi-
otensin-converting enzyme and angiotensin-II type 1 recep-
tor gene on the risk of myocardial infarction [4], hyperten-

sion susceptibility through the interaction of angiotensin
converting enzyme and G protein-coupled receptor kinase
[5], association of a two-locus interaction between an un-
coupling protein gene and a peroxisome proliferator-
activated receptor gamma gene with type 2 diabetes mellitus
[6], the influence of an interaction of KIR3DL1 and HLA-B
loci on both AIDS progression and plasma HIV RNA abun-
dance [7], and many others. With these examples, research-
ers now believe that epistatic interactions are the major caus-
ative patterns of complex diseases. The detection of epistatic
interactions therefore plays a key role in the understanding of
the pathogenesis of complex diseases.

Traditional statistical approaches such as family-based
linkage analysis and population-based association studies
have shown remarkable successes in the detection of indi-
vidual causative genetic variants underlying Mendelian dis-
eases, but they encounter difficulties in detecting epistatic
interactions. For example, linkage analysis that uses a trans-
mission model to explain the pattern of inheritance of pheno-
types and genotypes exhibited in a pedigree is ineffective
when a single locus fails to explain a significant fraction of a
disease, though it works well for Mendelian diseases [2].

On the other hand, with the accumulation of well-
phenotyped cases and carefully selected controls, as well as
the emergence of high-throughput genotyping techniques,
great opportunities and challenges are being presented for
uncovering the genetic basis of complex diseases [8, 9]. Ge-
netic variation occurring in the single basis of DNA se-
quences is referred to as single nucleotide polymorphism
(SNP) and is the major form of genetic variation. The latest
biotechnology has been able to detect several hundred thou-
sand SNPs using a single chip. With such a huge number of
genetic variants available for a large number of cases and
controls, it becomes urgent to develop effective methods to
detect epistatic interactions for genome-wide association
studies (GWAS).

To embrace the opportunities in genome-wide associa-
tion studies, several multi-locus approaches that follow a
“selection-testing-correction” scheme have been developed.
In this scheme, one selects a small number of SNPs using
statistical or machine learning methods, tests significance of
interactions between the selected SNPs, and then adjusts the
p-values to account for multiple-testing problem. For exam-
ple, the step-wise logistic regression method selects a small
fraction of ε% SNPs according to their marginal effects, uses

*: To whom correspondence should be addressed.
Email: ruijiang@tsinghua.edu.cn.

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

92

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

92

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

82

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

82

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

82

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

82

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

76

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

76

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

76

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

76

2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing

978-0-7695-3739-9/09 $25.00 © 2009 IEEE

DOI 10.1109/IJCBS.2009.32

70

logistic regression with likelihood ratio test to obtain p-
values of the pairwise interactions of the selected SNPs, and
then applies Bonferroni correction to adjust the p-values
[10]. BEAM selects a small number of SNPs using a Baye-
sian model with an MCMC sampling strategy, uses a B-
statistic to obtain p-values of up to three-way interactions of
the selected SNPs, and applies Bonferroni correction to ad-
just the p-values [11]. epiForest selects a small number of
SNPs using a machine learning method called random forest,
uses the B-statistic to obtain p-values of up to three-way inte-
ractions of the selected SNPs, and again applies Bonferroni
correction to adjust the p-values [12].

The principle of the selection-testing-correction scheme
is to reduce the number of statistical tests for interactions by
discarding SNPs that have weak marginal effects and thus
reduce the computational burden to a manageable level. For
example, in the step-wise logistic regression method, a SNP
needs to be ranked at the top ε% according to its marginal
effect in order to pass the initial screening. Obviously, with
the restriction of the computational power, one has to set this
ε% to a small number (e.g., 10%). As a result, a large propor-
tion of data is purely wasted.

A solution to avoid the waste of the data is to resort to the
massive parallel computing techniques to increase the com-
putational power. For example, with the use of a cluster that
has hundreds of nodes, exhaustively searching for all pair-
wise interactions can be done in reasonable time. With this
consideration, we implement a program called epiMPI for
genome-wide association studies using the Message Passing
Interface (MPI) [13]. This program can be scaled up to clus-
ters with hundreds of nodes and is capable of exhaustively
searching for pairwise interactions between hundreds of
thousands of SNPs in a large data set that contains thousands
of cases and controls.

We further explore the use of Graphics Processing Units
(GPU) for genome-wide association studies. As a proof of
concept, we implement the classical χ2 test for detecting
pairwise interactions with the use of the Compute Unified
Device Architecture (CUDA) [14] on the latest NVIDIA
GTX 280 graphics card and call this program epiCUDA.
Results show that a single GTX 280 can be about 15 times as
fast as an Intel Xeon E5420 CPU. Comparisons of the GPU
program versus the MPI version suggest that a single GTX
280 have similar performance as a 16-node cluster. We fur-
ther apply the GPU version of the program to two real ge-
nome-wide association studies data. For an Age-related Ma-
cular Degeneration (AMD) data set [8], the GPU program
finishes the exhaustive search in about 6 minutes and is 17.7
times as fast as the CPU version. For a Parkinson’s disease
data set [9], the GPU program finishes the exhaustive search
in about 2.8 hours and is 25.7 times as fast as the CPU ver-
sion.

II. METHODS

A. Genome-Wide Association Studies
A genome-wide case-control data set includes L SNP

markers genotyped for a number of cases and controls. Each
genotype may take three possible values, i.e., homozygosity

of major alleles, homozygosity of minor alleles, and hetero-
zygosity. In addition, a missing value may be placed if a
genotype is unavailable due to experimental failure.

Given such a data set, the classical approach to the detec-
tion of single-locus association fits a full logistic regression
model with a parameter for each observed genotype for each
SNP and then tests the significance of the fitted model via a
χ2 approximation of the likelihood ratio test statistic [10].
Alternatively, a χ2 test with up to 2 degrees of freedom can
be directly applied to the contingency table that records the
numbers of cases and controls for each genotype to test
whether the distributions of a SNP are significantly different
in the case and the control populations. Because a family of
L tests should be performed for a total of L SNPs, a Bonfer-
roni correction that multiplies the p-values with the number
of SNPs is typically applied to ensure the family-wise error
rate not exceeding a preset significance level α.

Similarly, in order to detect the epistatic interaction of a
pair of SNPs, a full logistic regression model with at most 9
parameters can be fitted and tested, and the p-values should
be multiplied by L(L−1) / 2 according to the Bonferroni cor-
rection [10]. As an alternative, a χ2 test with up to 8 degrees
of freedom can be applied. Note that the marginal effects of
individual SNPs should be subtract from the joint influence
for the pair of interacting SNPs in the χ2 test. Because the
number of SNPs is typically huge (e.g., several hundred
thousand), and the numbers of cases and controls are large
(e.g., several thousand) in genome-wide case-control data, an
exhaustive search for all possible combinations of two SNPs
is usually computationally impractical unless some massive
parallel computing techniques are used. To overcome this
limitation, the stepwise approach first selects a small fraction
of SNPs according to the significance of their single-locus
associations and then tests the interactions between the se-
lected SNPs [10].

B. Graphics Processing Units
Graphics Processing Units (GPUs) are traditionally used

as specialized accelerators for triangle rasterization. Because
a major application of GPUs is to service the large gaming
market, GPUs are ubiquitous and relatively inexpensive.
However, recent advances in the design of GPUs have also
enabling the transition of their traditional role to general pur-
pose computing such as performing intensive high through-
put floating-point computation. The latest GPU is designed
as a highly parallel, multithreaded, manycore processor,
which can perform single-precision floating-point calculation
at least one order of magnitude faster than the latest CPU.
For example, the NVIDIA GTX 280 GPU (GT200 architec-
ture) is designed to have 30 multiprocessors, each of which
has 8 processors. As a result, this GPU has 240 cores and can
offer about 1T FLOP/s (floating-point operations per second)
single-precision floating-point computational power. In addi-
tion, the memory subsystems for GPUs are typically en-
dowed with more than 10 times higher memory bandwidth
than that of CPUs [14].

With the manycore architecture, the performance of a
GPU is largely dependent on finding high degrees of paral-
lelism, that is, an application running on a GPU must express

9393838383837777777771

thousands of threads in order to effectively use the hardware
capabilities. It is therefore of great importance to find large
scale parallelism in order to fully utilize the computational
power of GPUs. Another major concern is that GPUs may
not be able to provide sufficient floating-point accuracy to be
generally useful, because in the previous design (e.g., the
NVIDIA G80 architecture) GPUs can only offer single-
precession floating-point operations. Nevertheless, the sup-
port for double-precision floating-point operations has been
incorporated into the latest GT200 architecture. As a result,
GPU computing is now more mature to handing general pur-
pose tasks.

C. Compute Unified Device Architecture
In order to help developers to harness the computational

power of GPUs, NVIDIA� offers� the� Compute� Unified�
Device� Architecture� (CUDA),� a� programming� environ-
ment� for� its� GPUs [14].� Using� CUDA,� software� engi-
neers�can�write�GPU�applications�using�the�C�program-
ming�language,�thus�greatly�shortening�the�development�
cycle.�Writing�codes� in�C�instead�of� low�level�program-
ming� languages� also� allows� researchers� to� focus� on� the�
scientific�problem�itself�instead�of�technique�details.�

As illustrated in Fig. 1, CUDA assumes that an applica-
tion may execute on a physically separate device (GPU) that
operates as a coprocessor to the host (CPU). A programmer
usually organizes the computation into many grids, each of
which is further organized as a set of thread blocks. Grids
run on the device in a sequential way. Therefore all computa-
tion in a grid must finish before another grid is invoked. A
thread block is composed of many threads that execute con-
currently on one multiprocessor. A multiprocessor contains
several processors, each of which can use a set of registers
and an amount of local memory. All processors in a multi-
processor share a small amount of shared memory and can
access the global memory of the device. There are in addi-
tion two types of specially designed caches: constant cache
and texture cache. Besides, a CUDA application can also use
the host memory. In the latest NVIDIA GTX 280, a device
has 1GB global memory and contains 30 multiprocessors,
each of which has 8 processors, 16K registers, and 16K
shared memory. A thread block can include at most 1024
active threads, which can be identified using a one-, two-, or
three-dimensional index.

 It should be noted that the shared memory can be as
faster as the registers, while the access to the local memory
and global memory is relatively slow. The access to the host
memory is even slower. Therefore, threads in a block should
always try to use the shared memory. A typical way is to
load data from hard drive to the host memory, copy them to
the global memory, and then transfer them to the shared
memory. It should also be noted that, although grids run se-
quentially on a device, enormous numbers of thread blocks
can be launched in parallel in one grid. As a result, the total
number of threads that can be launched in parallel is very
high. In practice, one needs a large number of thread blocks
to ensure that the computational power of the GPU can be
efficiently utilized.

D. GWAS using CUDA

CUDA requires large scale parallelism to fully utilize the
computational power of GPUs. For example, the calculation
of pairwise epistatic interactions between a large number of
L SNPs (e.g., L=500K) is analogous to fill an upper triangle
matrix that contains as many as L(L-1)/2 test statistics. To
implement large scale parallelism, we use one thread to cal-
culate the test statistic of a single interaction between two
SNPs. This idea suggests the following design of epiCUDA,
as illustrated in Fig. 2.

First, we divide the upper triangle matrix into many gr-
ids, each of which can be thought of as a small square matrix
with each dimension being GridSize (or GS for short). For
simplicity, we assume that #{SNPs}/GridSize is an integer,
and we call this number GridDim (or GD for short). In the
case that #{SNPs}/GridSize is not an integer, we can simply
add some pseudo-SNPs to make GridDim an integer. After
this step, we obtain GD(GD+1)/2 grids, which will be send
to the GPU in a sequential way.

Then, we divide each grid into many square blocks. The
size of a block (BlockSize of BS for short) should be chosen
so that the block can be fitted into a single multiprocessor of
the GPU (remember the limitation of 1024 threads per thread
block). For simplicity, we assume that GridSize/BlockSize is
an integer, and we call this number BlockDim (or BD for
short). After this step, we obtain BD×BD blocks, each of
which corresponds to a thread block and will be dealt with
by a single multiprocessor in the GPU.

Finally, each thread block contains BS×BS threads, each
of which is identified by a two-dimensional index and used
to calculate the test statistic or the p-value for a pair of two

Device (GPU)

Multiprocessor N
… …

Host (CPU)

Multiprocessor 1

Texture cache

Constant cache

Local
memory

Local
memory

Local
memory

Processor 2 Processor M

Registers

Processor 1

Registers Registers

Shared memory

Global memory

…

Host
memory

Figure 1. Illustration of the CUDA hardware model.

9494848484847878787872

Grid
(1, 1)

Grid
(2, 2)

Grid
(1, 2)

Grid
(1, GD)

Grid
(2, GD)

Case Control

Block
(1, 1)

Block
(1, 2)

Block
(1, BD)

Block
(BD, 1)

Block
(BD, 2)

Block
(BD, BD)

L=#{SNPs}

GridSize

GridSize (GS)

#{SNPs}GD=
GridSize

GridSizeBD=
BlockSize

Thread
(1, 1)

Thread
(1, 2)

Thread
(1, 3)

Thread
(1, BS)

Thread
(BS, 1)

Thread
(BS, 2)

Thread
(BS, 3)

Thread
(BS,BS)

Grid
(GD, GD)

Figure 2. Principles of epiCUDA (detecting pairwise epistatic interactions using CUDA).

SNPs. We use the first dimension (row) to index the first
SNP in a pair and the second dimension (column) to index
the second SNP in the pair. Consequently, each thread block
calculates BS×BS interactions between BS row SNPs and BS
column SNPs.

The selection of the parameters BS depends on the
CUDA specification. In our studies, we select BS=16 so that
each thread block contains 256 threads. After BS being de-
termined, we select BD=64 so that each grid contains 4096
thread blocks and corresponds to pairwise interactions be-
tween GS=1024 SNPs. This parameter setting enables us to
efficiently utilize the computational power of the latest GPU
and is scalable to several generations of future GPUs.

In order to efficiently utilize the shared memory, we need
to first copy the case-control data from the global memory
into the shared memory. Since a thread block contains
BS×BS threads, an efficient way is to use one thread to copy
one case/control for a single SNP and synchronize the
threads after all data being copied. Considering the limited
size of the shared memory (16K), we compress the case-
control data to enable a 32-bit word store 16 SNPs (2 bits for
a SNP). With this design, we can deal with large scale case-
control data in which the total number of cases and controls
does not exceed 6000 in the current GPU. We can also re-
duce the parameter BS in the case that we need to deal with
larger case-control data.

In order to efficiently utilize the computational power of
the GPU, we use one thread to calculate the test statistic of a
pair of SNPs. For example, in order to calculate the pairwise
χ2 test statistic, we need to first count the numbers of combi-
natory genotypes to fill out a 2×9 contingency table, and then

calculate a 2×9 table for the expected numbers. Finally, the
χ2 test statistic is calculated as

22 9

2 ()ij ij

iji j

o e
e

χ
−

=∑∑ ,

where oij is the number of observed, and eij is the number of
expected. It should be noted that calculating p-values accord-
ing to the χ2 test statistics is straightforward in CPU, but not
computationally economy in GPU. Therefore, the GPU will
only report the calculated χ2 statistics back to the CPU, and
the calculation of the p-values using these statistics will be
done in CPU.

When the number of SNPs is huge, it is not feasible to
even store the calculated test statistics for all pairs of interac-
tions in memory. For example, for a case-control data set that
contains 500K SNPs, we need about 512G memory to store
all test statistics as single-precision floating-point numbers.
We therefore adopt a priority queue to store only a small
fraction of calculated test statistics. For example, we only
store #{SNPs} test statistics that can yield the smallest p-
values. This procedure is equivalent to perform a partial sort
routine on all pairwise interactions and report the most sig-
nificant #{SNPs} ones. Since grids are sent to the GPU in a
sequential way, we also sequentially insert the test statistics
calculated for a grid into the priority queue.

It should be noted that the partial sort routine is not com-
putational economy, because it runs on the CPU instead of
the GPU. To overcome this limitation, we maintain an array
of dynamic thresholds which corresponds to the minimum
test statistics for different degrees of freedom (corresponds to

9595858585857979797973

the maximum p-value) in the priority queue, and we use the
GPU to do the initial screening according to the thresholds.
With this technique, only interaction pairs that can pass the
thresholds will be inserted into the priority queue, and thus
the computation time can be reduced. After a grid being
computed and inserted into the priority queue, we update the
array of thresholds. Consequently, as the computation goes
on, thresholds for the test statistics increase, and the number
of interaction pairs that need to be inserted into the priority
queue decreases. We store this array of dynamic thresholds
in the constant cache of the GPU.

With the priority queue that stores the test statistics for
the most significant pairs, we can calculate their p-values,
apply the Bonferroni correction to account for the multiple-
testing problem, and report only significant pairs according
to a predefined significance level.

E. GWAS using MPI
The above design for detecting pairwise epistatic interac-

tions can be easily modified to run on a cluster following a
master-slave design with the use of message passing inter-
face (MPI) [13]. We refer to this design as epiMPI.

For a cluster has a number of N nodes, we use a node as
the master to assign tasks to slaves, and we use the rest nodes
as slaves, each of which deals with one grid. However, we
do not need to further partition the grid into blocks. After the
pairwise interactions for SNPs in a grid being calculated, we
store the results in a temporary file system and use the mas-
ter to insert the results into the priority queue, which is main-
tained by the master.

III. RESULTS

A. Performance of epiCUDA
In order to evaluate the performance of the CUDA im-

plementation for detecting pairwise epistatic interactions, we
simulate a number of case-control data sets on the basis of a
genome-wide case-control data set of the Parkinson’s dis-
ease, which contained 408,803 SNPs genotyped with 270
cases and 271 controls [9]. Briefly, we first add extra cases
and controls to the data set so that the extended data set con-
tains 1024 cases and 1024 controls. In this procedure, the
genotypes for the added cases or controls are sampled ac-
cording to the frequencies of the genotypes in the original
data of the Parkinson’s disease. Then, we extract from the
extended data set 1K, 2K, 4K, 8K, 16K, 32K, 64K, and

128K SNPs. Consequently, we obtain 8 data sets that contain
1K to 128K SNPs, and each of these data sets contains 1024
cases and 1024 controls.

With these data sets, we compare the running time of the
CUDA implementation for detecting pairwise epistatic inte-
ractions with that of the CPU counterpart. The computation
time for the CUDA version is obtained using the latest
NVIDIA GTX 280, and the time for the CPU version is ob-
tained using Intel Quad-Core Xeon E5420, which runs at
2.5GHz. Note that the CPU implementation is written the
using C programming language and is already dozens of
times faster than the Matlab or R implementation.

For each of the above simulated data set, we run the pro-
gram on GPU and CPU separately, and we record their run-
ning time. We further repeat the computation for every data
set 10 times to estimate the standard derivation. The results
are shown in Table 1. As we can see from the table, for the
smallest data set (1K), the CUDA version can be about 11
times as faster as the CPU version, while for larger data sets,
the acceleration rate can be about 15. The main reason that
the acceleration rates for small data sets is not as high as
those for large data sets is that the partial sort routine that is
maintained in CPU is not accelerated by the GPU. Conse-
quently, this part of computation time is the same for the
CUDA version and the CPU counterpart. When the data set
goes large, the cost for the partial sorting routine can almost
be ignored, due to the dynamic threshold.

We also observe that the computation time for the CUDA
program increases in a quadratic way with the increase of the
number of the SNPs. Simple linear regression using the
computation time as the response variable and the square of
the number of SNPs as the predictor variable yields a very
significant model (r2≈1, p-value < 2.2×10-16). With this mod-
el, we infer that the computation time for exhaustively
searching for pairwise epistatic interactions for a typical
500K data set that contains 1000 cases and 1000 controls
will be about 18 hours with the use of the CUDA program.
In contrast, the CPU version will use more than 11 days to
finish the same calculation.

We also evaluate the performance of the MPI implemen-
tation for detecting pairwise epistatic interactions. Taking the
64K data set as an example, with 16 slave nodes (each of
which has an Intel Quad-Core Xeon E5420), the acceleration
rate is 14.96, almost the same as the CUDA implementation.
This observation suggests that the CUDA program is compa-
rable to a cluster with 16 nodes.

TABLE 1. PERFORMANCE OF EPICUDA in terms of the computation time (standard derivation), in seconds, and acceleration rate.

#{SNPs} NVIDIA GTX 280 Intel Xeon E5420 Acceleration rate
1K 0.76 (0.01) 8.05 (0.02) 10.59
2K 1.82 (0.01) 23.63 (0.02) 12.98
4K 5.50 (0.01) 78.12 (0.03) 14.20
8K 19.14 (0.02) 280.57 (0.18) 14.66

16K 70.82 (0.64) 1058.88 (0.97) 14.95
32K 275.82 (1.56) 4115.95 (13.21) 14.92
64K 1091.41 (2.97) 16185.38 (28.36) 14.99

128K 4334.30 (11.33) 64189.48 (116.25) 14.81

9696868686868080808074

B. Accuracy of epiCUDA
To verify the accuracy of the CUDA program, we con-

sider three disease models with different characteristics (see
[10] for details). Model 1 contains two disease loci that con-
tribute to the disease risk independently. Model 2 is similar
to model 1, except that the disease risk is present only when
both loci have at least one disease allele. Model 3 is a thre-
shold model in which additional disease alleles at each locus
do not further increase the disease risk. Assuming the disease
prevalence to be 0.1, each model has three parameters asso-
ciated: the marginal effect of each disease locus (λ), the mi-
nor allele frequencies (MAF) of both disease loci, and the
strength of linkage disequilibrium (LD) between the unob-
served disease locus and a genotyped locus (r2). We select
only some typical values for each parameter. For λ, we set it
to 0.3, 0.5, and 1.0 for model 1, 2, and 3, respectively. For
MAF, we considered four values, 0.05, 0.1, 0.2, and 0.5, for
each model. For r2, we simulated for each model two values,
0.7 and 1.0. There were therefore 8 parameter settings for
each disease model and a total of 24 comparisons in our si-
mulation studies.

For each parameter setting of each model, we simulate
100 datasets, each containing 1,000 markers genotyped for
1,000 cases and 1,000 controls. The minor allele frequency
for each non-disease marker is randomly chosen from a uni-
form [0.0. 0.5] distribution. The power of a method on a spe-
cific parameter setting is defined as the fraction of simulated
datasets in which all disease loci are identified at the signi-
ficance level α = 0.05 after the Bonferroni correction.

In the comparison, epiCUDA performs exhaustive search
for pairwise interactions. The stepwise logistic regression
first selects the most significant ε% of SNPs according to

their marginal effects, and then tests all pairwise interactions
of these SNPs using logistic regressions with likelihood ratio
tests [10]. Here we use ε%=25% to ensure that the overall
computation time for this method is comparable to that of
epiCUDA, thus achieving a fair comparison. The classical
single-locus χ2test is used as a benchmark.

As shown in Fig. 3, epiCUDA achieve superior power
over the stepwise logistic regression, while both of them are
superior to the single-locus χ2 test. Specifically, all methods
have similar powers in model 1 regardless of the LD
strength. This observation is natural because model 1 is ac-
tually a non-epistasis model, in the sense that the two causa-
tive loci contribute to the disease independently. In models 2
and 3, epiCUDA show superior power, especially when the
minor allele frequencies of the disease markers are small.
This might be attributed to the benefit of using the exhaus-
tive search strategy. We also notice that the standard χ2 test,
as a single-locus method, performs poorly when the minor
allele frequencies of the disease markers are small, suggest-
ing the necessity of developing multi-locus approaches.

It is not surprising that epiCUDA can achieve the highest
power for all models over all parameter settings, because the
exhaustive search strategy, in nature, exams all possible
pairwise interactions. What we want to emphasize is that,
with similar computation time, epiCUDA can be more po-
werful. As the scale of case-control studies goes larger, the
benefit of using CUDA to accelerate the search for epistatic
interactions will become more obvious.

C. Applications to real data sets
We further apply the CUDA program to two real ge-

nome-wide case-control data sets. The first one is an Age-

Figure 3. Accuracy of epiCUDA. The power of epiCUDA is compared with that of the step-wise logistic regression and the single-
locus Chi-squared test.

9797878787878181818175

related Macular Degeneration (AMD) data set [8], which
contains 116,204 SNPs genotyped with 96 cases and 50 con-
trols. The second data set is about the Parkinson’s disease
and contains 408,803 SNPs genotyped with 270 cases and
271 controls [9].

For the AMD data, the CUDA program exams all pair-
wise interactions of these SNPs within 6 minutes and achieve
an acceleration rate of 17.1 over the CPU version. For the
Parkinson’s disease data, the CUDA program exhaustively
searches for all pairwise interactions in about 2.8 hours and
is 25.7 times as fast as the CPU counterpart.

Nevertheless, we do not find any pairwise epistatic inte-
ractions in these two data sets. The main reason might be the
small sample size is insufficient for detecting subtle epistatic
interactions [11]. Another reason may be the problem of ge-
notype missing which aggravates the insufficiency of sample
size in mapping epistatic effects.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we describe an approach that uses graphics
processing units (GPU) to accelerate the detection of pair-
wise epistatic interactions for genome-wide association stu-
dies. We implement the GPU program based on the compute
unified device architecture (CUDA), and we compare this
program against its CPU counterpart. Results show that the
GPU program running on NVIDIA GTX 280 can be 15
times as fast as the CPU version running on Intel Xeon
E5420 and is comparable to a cluster with 16 nodes. Appli-
cations to two real data sets of AMD and Parkinson’s disease
suggest even higher acceleration rate of 17.1, and 25.7, re-
spectively.

As a proof of concept implementation, we only report the
χ2 test results in this paper. An extension that uses the logis-
tic regression is under development. Besides, a step-wise
approach that can detect three-way interactions using CUDA
is also under development. We also plan to integrate other
methods in statistical genetics and release a CUDA package
to facilitate genome-wide association studies. Recently,
NVIDIA releases its personal super-computer that contains
four Tesla GPU cards, each with 240 processors and 4G
global memory. With the arrival of such a powerful product
that includes 960 processors and 16G memory, our CUDA
package could be widely used by many laboratories in their
genome-wide association studies.

We have demonstrated that appropriate usage of GPU
can greatly reduce the computation time of bioinformatics
applications. The improvement in performance mainly de-
pends on the large scale parallelism of the applications. It is
therefore very important to divide an application into a large
number of independent units. These units should share iden-
tical codes and deal with different part of the data. This pro-
gramming model is called fine-grained data parallelism and
thread parallelism [14]. Nevertheless, the current CUDA
library still lacks sufficient support for functions in statistics,
e.g., the support for probability distribution functions that are
heavily used in Markov Chain Monte Carlo simulations. This
limitation has been restricting the application of the CUDA
programming model to many bioinformatics applications.

Recently, Intel announces its roadmap of the Larrabee GPU
architecture, which integrates dozens of simplified x86 pro-
cessors. Since each of the processors has much stronger con-
trol units over the multiprocessors in the current GPU, large-
scale parallel implementations of many sophisticated bioin-
formatics applications might become possible with the use of
this architecture.

ACKNOWLEDGMENTS

This work was partially supported by Natural Science
Foundation of China grant 60805010, Tsinghua National
Laboratory for Information Science and Technology
(TNLIST) Cross-discipline Foundation, Research Fund for
the Doctoral Program of Higher Education of China, Scien-
tific Research Foundation for Returned Overseas Chinese
Scholars, Research Fund from Intel China Research Center,
and a starting up supporting plan at Tsinghua University.

REFERENCES

[1] E. S. Lander, and N. J. Schork, “Genetic dissection of complex
traits,” Science, vol. 265, no. 5181, pp. 2037-48, Sep 30, 1994.

[2] A. M. Glazier, J. H. Nadeau, and T. J. Aitman, “Finding genes that
underlie complex traits,” Science, vol. 298, no. 5602, pp. 2345-9,
Dec 20, 2002.

[3] J. H. Moore, and S. M. Williams, “New strategies for identifying
gene-gene interactions in hypertension,” Ann Med, vol. 34, no. 2, pp.
88-95, 2002.

[4] L. Tiret, A. Bonnardeaux, O. Poirier et al., “Synergistic effects of
angiotensin-converting enzyme and angiotensin-II type 1 receptor
gene polymorphisms on risk of myocardial infarction,” Lancet, vol.
344, no. 8927, pp. 910-3, Oct 1, 1994.

[5] S. M. Williams, M. D. Ritchie, J. A. Phillips, 3rd et al., “Multilocus
analysis of hypertension: a hierarchical approach,” Hum Hered, vol.
57, no. 1, pp. 28-38, 2004.

[6] Y. M. Cho, M. D. Ritchie, J. H. Moore et al., “Multifactor-
dimensionality reduction shows a two-locus interaction associated
with Type 2 diabetes mellitus,” Diabetologia, vol. 47, no. 3, pp. 549-
54, Mar, 2004.

[7] M. P. Martin, Y. Qi, X. Gao et al., “Innate partnership of HLA-B
and KIR3DL1 subtypes against HIV-1,” Nat Genet, vol. 39, no. 6,
pp. 733-40, Jun, 2007.

[8] R. J. Klein, C. Zeiss, E. Y. Chew et al., “Complement factor H
polymorphism in age-related macular degeneration,” Science, vol.
308, no. 5720, pp. 385-9, Apr 15, 2005.

[9] H. C. Fung, S. Scholz, M. Matarin et al., “Genome-wide genotyping
in Parkinson's disease and neurologically normal controls: first stage
analysis and public release of data,” Lancet Neurol, vol. 5, no. 11,
pp. 911-6, Nov, 2006.

[10] J. Marchini, P. Donnelly, and L. R. Cardon, “Genome-wide
strategies for detecting multiple loci that influence complex
diseases,” Nat Genet, vol. 37, no. 4, pp. 413-7, Apr, 2005.

[11] Y. Zhang, and J. S. Liu, “Bayesian inference of epistatic interactions
in case-control studies,” Nat Genet, vol. 39, no. 9, pp. 1167-73, Sep,
2007.

[12] R. Jiang, W. Tang, X. Wu et al., “A random forest approach to the
detection of epistatic interactions in case-control studies,” BMC
Bioinformatics, vol. 10, no. Suppl 1, pp. S65, 2009.

[13] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface: MIT Press, 1994.

[14] NVIDIA, NVIDIA CUDA Programming guide (version 2.0):
NVIDIA, 2008.

9898888888888282828276

