2010 39th International Conference on Parallel Processing Workshops

Implementation and Performance Evaluation of
XcalableMP: A Parallel Programming Language for
Distributed Memory Systems

Jinpil Lee
Graduate School of Systems
and Information Engineering
University of Tsukuba
Tsukuba, Japan
Email: jinpil@hpcs.cs.tsukuba.ac.jp

Abstract—Although MPI is a de-facto standard for parallel
programming on distributed memory systems, writing MPI
programs is often a time-consuming and complicated process.
XcalableMP is a language extension of C and Fortran for
parallel programming on distributed memory systems that helps
users to reduce those programming efforts. XcalableMP pro-
vides two programming models. The first one is the global
view model, which supports typical parallelization based on
the data and task parallel paradigm, and enables parallelizing
the original sequential code using minimal modification with
simple, OpenMP-like directives. The other one is the local view
model, which allows using CAF-like expressions to describe inter-
node communication. Users can even use MPI and OpenMP
explicitly in our language to optimize performance explicitly.
In this paper, we introduce XcalableMP, the implementation of
the compiler, and the performance evaluation result. For the
performance evaluation, we parallelized HPCC Benchmark in
XcalableMP. It shows that users can describe the parallelization
for distributed memory system with a small modification to the
original sequential code.

Keywords-High Performance Computing, Parallel Program-
ming Language

I. INTRODUCTION

Distributed memory systems such as PC clusters are typical
platform for high performance computing, and most users
write their programs using MPI(Message Passing Interface).
Although MPI is a de-facto standard for parallel programming
for distributed memory systems, writing MPI programs is often
a cumbersome process because it forces users to describe data
distributions and inter-node communication with primitive API
functions.

On the other hand, OpenMP has been very successful in
providing a simple parallel programming model for shared
memory systems such as multi-core, many-core CPUs. In
OpenMP’s directive-based programming model, users add
directives to their serial source code to describe data/task par-
allelism. This type of programming model allows incremental
parallelization from a serial code with small programming
effort.

1530-2016/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPPW.2010.62

413

Mitsuhisa Sato
Center for Computational Sciences
University of Tsukuba
Tsukuba, Japan
Email: msato@hpcs.cs.tsukuba.ac.jp

The directive-based approach can be taken for distributed
memory systems. XcalableMP[1], XMP in short, is a directive-
based language extension which allows users to develop par-
allel programs for distributed memory systems easily and tune
performance with minimal and simple notations.

In XMP, all kinds of parallelism including data distributions,
inter-node communication should be written by users explic-
itly. XMP extends C and Fortran with OpenMP-like directives
to describe data/task parallelism, inter-node communication
and language extensions for one-sided communication. The
explicit parallelism concept in XMP increases programming
cost slightly. But users can control over the parallel execution
and optimize their applications using XMP language features,
or you can even use MPI functions with XMP.

In section II, we compare XMP with other parallel pro-
gramming models for distributed memory systems. Section
I shows the design concept of XMP and how to write
parallel programs in our language. Section IV describes the
implementation of the XMP compiler, and section V has
performance measurements of the prototype compiler using
HPC Challenge Benchmark. Section VI discusses future work
related to hybrid parallel programming for SMP clusters, and
we conclude the paper in section VIL

II. RELATED WORK

There has been a lot of work to provide a simple, efficient
parallel programming model for distributed memory systems.
But none of them has become a de-facto standard except MPI.

The PGAS(Partitioned Global Address Space) model has
become a hot topic recently. The PGAS model assumes a
global shared memory space which can be referred by any
threads, and a portion of it is local to each thread. PGAS
shared memory space is distributed to each thread. Users can
exploit the data locality to optimize their applications.

UPC(Unified Parallel C)[2] and CAF(Co-Array Fortran)[3]
are major languages based on the PGAS model. UPC global
shared memory hides inter-node communication under local
memory access. While it reduces programming effort, the

@) CO‘ pute
1(!) I
& SOCIety



User applications

Global view Directives

*Support common pattern
(communication and work-
sharing) for data parallel

Array section
in C/Fortran

programming i

*Reduction and scatter/gather L9C3| YIeW

sCommunication of shadow area tune Directives
et sLike OpenMPD, HPF/JA, XFP (CAF/PGAS)

Interface

XMP parallel execution model
Two-sided comm. (MPI) One-sided comm.

(remote memory access)
Parallel platform (hardware+0S)

Fig. 1. Overview of XcalableMP API

performance is not always optimum. And it is often difficult
to tune performance with the automatic inter-node communi-
cation.

CAF has a more explicit model. The reference of the global
memory space should be done by using language extensions.
The global memory is distributed to each process, and the
user should use an extended assignment statement with target
process’s number which contains the data. Programming with
CAF is very similar to MPI, in that it provides primitive
functions for parallel programming. Since inter-node commu-
nication is clear to the users, performance tuning can easily
be done. However, CAF requires a large amount of learning
to code an efficient parallel program.

HPF(High Performance Fortran)[4] takes the directive-based
approach similar to OpenMP and XMP. The user can describe
data distribution using HPF directives. However, inter-node
communication is automatically inserted by the compiler.
This makes it difficult for the users to efficiently describe
communication and optimize performance.

We proposed OpenMPD[5] which has a close programming
model to XMP; it has directives to describe data parallelism
and communication is explicit. But the language function is
not enough for real applications, for example, it supports only
1-dimensional array distribution.

XMP has a directive-based language model. Many of the
language features are inherited from the previous work, in-
cluding HPF, CAF, OpenMPD and so on. Previous directive-
based languages provide a simple programming model. But the
performance is not always optimum, and difficult to tune it. To
solve this problem, XMP takes totally explicit approach, which
enables the user to control over the application’s behavior and
tune it.

III. OVERVIEW OF XCALALBLEMP

Figure 1 shows the overview of XcalableMP Application
Program Interface. XcalableMP API is a collection of compiler
directives, runtime library routines which can be used to
describe data/task parallelism in C and Fortran programs. This
specification provides a model of parallel programming for
distributed memory systems.

XMP supports typical parallelization methods based on the
data/task parallel paradigm under the “global view” model,

414

int array[YMAX][XMAX]; #pragma xmp nodes p(4)

#pragma xmp nodes p(4) #pragma xmp template t(0:YMAX-1)

#pragma xmp template t(0:YMAX-1) ‘
#pragma xmp distribute t(BLOCK) onto p
#pragma xmp align array[i][*] with t(i)

template t ‘

#pragma xmp distribute t(BLOCK) onto p

main() {
intij,res =0;
#pragma xmp loop on t(i)
for(i = 0; i < YMAX; i++) {
for(j = 0; j < XMAX; j++) {
arrayl[i][j] = func(i,j);
res += array[i][j;

} UV node 1 [node 2 node 4

: . #pragma xmp loop on t(i)
;tpragma xmp reduction (+:res) for(i = 0; 1 < YMAX: i++) { ..}

‘ node 1 ‘ node 2 ‘ node 3 ‘ node4‘

#pragma xmp align array[i][*] with t(i)

node 1| node 2 | node 3 | node 4

Fig. 2. Data Parallelization in Global View Model

and enables parallelizing the original sequential code using
minimal modification with simple description, like OpenMP.
It also includes CAF-like PGAS features as the “local view”
model. Users can describe their own parallel algorithms and
optimize their applications using more explicit and primi-
tive language features for inter-node communication in the
local view model. The important design principle of XMP
is “performance-awareness”. All actions for parallelization
such as inter-node communication and work-sharing for loop
are taken explicitly by user description; it is different from
other automatic parallelizing programming models. The user
should be aware of what happens by XMP description in the
execution model on the distributed memory systems. This is
very important for being “easy-to-understand” in performance
tuning.

A. Execution Model

The basic execution model of XMP is the SPMD(Single
Program Multiple Data) model, like MPI. As default, data de-
clared in the program(without any XMP directives) is allocated
on each node, and can only be referred by the allocated node.
An XMP process begins its execution with a single thread
on each node, which is equivalent to a single-threaded MPI
process. Because of its design concept, explicit parallelism,
memory access is always local, which means there is no
automatic communication inserted by compilers. To access
correct data in the parallel execution, users should synchronize
the local buffer with inter-node communication. It can be
described by XMP directives, and other language extensions.

B. Global View Programming Model

The global view programming model provides a simple
way to describe a parallel program starting from a sequential
version; the user parallelizes it by adding directives incremen-
tally. Because these directives can be ignored as comments by
sequential compilers of the base languages(C and Fortran), an
XMP program derived from a sequential program can preserve
the integrity of the original program when it is run sequentially.

Figure 2 shows a global view style code in XMP. The global
view model shares major concepts with HPF. The programmer
describes the data distribution of data shared among nodes by
data distribution directives. The node directive declares a node



9 10 11 12 13 14 15

01 23 4 5 8 7 8
rayr1o) [N [ [ [ [TTT]

pragma xmp shadow array[1:1] // declare shadow

pragma xmp reflect array

// sync shadow

10odel
1ode2
1ode3
[
10de4 U—I—u,“—ish—at;a;al—‘-l:aﬂ—l—l—lJ

Fig. 3. Shadow Synchronization

set executing a XMP program, so the sample code would be
executed on 4 nodes.

1) Data Distribution Using Templates: a template, a
dummy array indicating data index space is declared(template
directive) and distributed onto nodes(distribute directive).
Block, cyclic, block-cyclic and gen-block distribution types
are supported in the distribute directive. In the sample code, 1-
dimensional template ¢ is block distributed onto 4 nodes. Array
distribution is declared by aligning the array to a template
using the align directive. In the sample code, array array[i] is
aligned to template #(i), that is, array[i] will be allocated on
the owner node of (7).

2) Work-Sharing: The loop directive splits up loop itera-
tions among the executed nodes. The data accessed in a loop
statement should be allocated in the local memory, because
communication is explicit in XMP, that is, work-sharing and
data distribution should be done in the same way. A template
can be used in the loop directive to specify the data allocation.
In the sample code, template 7 is used for parallelizing the loop
statement. Consequently, the local part of the distributed array
would be processed on each node.

When a function has no dependency with other ones, it
can be executed in any order, and independent functions can
even be executed in parallel. The fask directive is used to
execute a block of code on the specified node. For example,
the following code execute the block statement on node p(1).

#pragma xmp task on p(1l)
{ code block ... }

The task directive describes task parallelization when inde-
pendent tasks are executed on different nodes simultaneously.

3) Directives for Communication: The XMP compiler
guarantees that communication takes place only when com-
munication is explicitly specified. In global view model,
communication directives are used to synchronize and keep
the data consistency among the executed nodes.

When an array is distributed, the reference to the neighbor
elements of the local block is a very typical access pattern
causing inter-node communication. To access the neighbor
elements, we need to extend the local block because all
memory access is local in XMP. We call the extended area
as a shadow of the array. Figure 3 shows the shadow area of

415

array array. The shadow directive describes that the size(the
number of elements) of shadow area on the array is 1 at both
of the lower and upper side. A shadow is just a local memory
buffer. To get the correct value of the neighbor elements, the
data must be synchronized among the executed nodes. The
reflect directive invokes inter-node communication copying the
original data to the shadow area.

The gmove directive is a powerful operation in global view
model; it copies a data block of a distributed array to another
array in global view model. This directive is followed by an
assignment statement with scalar variables, array references
and array sections (In XMP, the C base language is extended to
support array section notation). The assignment statement may
require communication between nodes. The XMP compiler
calculates element sets to be copied other nodes, and invoke
proper communication. Figure 4 shows a sample code of the
gmove directive. In this example, the first row of array A,
A[O][:] is copied to array L. Without the gmove directive, the
XMP compiler would try to copy the entire area of the first
row of array A to array L. This will cause an error because
array A is distributed onto 4 nodes. In this case, we should
collect the array elements by communication. The compiler
generates collective communication to collect the elements
with the gmove directive; the owner node of A[i] sends the
data to L[i] (This is a broadcast because array L is a local
array).

Some typical type of collective communication can be
implemented effectively. XMP provides communication direc-
tives for barrier, reduction and broadcast communication.

C. Local View Programming Model

The local view programming model provides language
features describing remote memory access using one-sided
communication extending the base languages. XMP adopts
co-array notations compatible with CAF language ' as an
extension of the base languages. Figure 5 shows how to declare
and use co-array in the C and Fortran version of XMP. Co-

array A is declared using language extensions. Consequently,

#pragma xmp distribute t(block) onto p
#pragma xmp align A[*][i] with t(i)

#pragma xmp gmove
L[0:N-1] = A[0][O:N-1];

¢ L[N] is a local array

A[N][N]

Fig. 4. Global Move Communication

'We extended C language to use co-array notations in XMP, but the syntax
is slightly different with Fortran



<Fortran version>
real dimension A(N)[*]
B(1:N) = A(1:N)[1]

<C version>

double A[N];

#pragma xmp coarray A[N]:(*)
B[O:N-1] = A[0:N-1]:(1);

I declare co-array
I get A(1:N) from node1

Fig. 5. Co-Array in XcalableMP

an array of size N is allocated on each node, and extended
array dimension from the base language called co-array di-
mension, which indicates a node set where the co-array is
declared. Only co-array data can be remotely accessed in XMP.
Extended assign statement specifying the target node number
in co-array dimension is used for the remote memory access.
In the sample code, every node gets the entire data of co-array
A on node 1.

The local view model is suitable for the programs required
to describe the parallel algorithm and remote data reference
in more explicit way. As MPI is considered to have the local
view of the data, the local view model of XMP has high
interoperability with MPIL.

IV. COMPILER IMPLEMENTATION

We implemented a prototype compiler of XMP based on
C language. Basic directives for data parallelism such as
template, align and loop, and simple co-array notation which
can be translated to get and put one-sided communication
are supported in the prototype compiler. Figure 6 shows the
translated code of the sample code in Figure 2. Because
of its explicit parallelizing scheme, the compiler does not
translate code without user descriptions. The compiler trans-
lates directives and other language extensions including co-
array notations to runtime function calls. Distributed arrays
are reallocated as 1-dimensional arrays in the constructor

At **__array_addr;
_xmp_array_handle_t *__array_handle; array descriptor
_xmp_main() {

intijres=0,_ local_i lower, local_i_upper;

__local_i_lower = __xmp_get_lower(__array_handle, ...); // calc lower bound
__local_i_upper = __xmp_get_upper(__array_handle, ...); // calc upper bound
for(i=__local_i_lower;i<__local_i_upper; i++){ /I work—sharing
for(j = 0; j < XMAX; j++) {
* XMP_GET_ADDR_2(__array_addr, i, j, ...) = func(i, j);

res +=*__ XMP_GET_ADDR_2(__array_addr, i, j, ...);
}

__xmp_allreduce(&res, ...); /I reduction

_ attribute__ ((constuctor)) static void __xmp_consturtor() {
/I consturctor functions (nodes, templates, arrays, ...)

Fig. 6. Compiled Code of Figure 2

416

TABLE I
NODE CONFIGURATION

CPU AMD Opteron Quad-core 8000 series
2.3Ghz x 4 sockets (16 cores)
Memory | 32GB
Network | Infiniband DDR (4 rails)
OS Linux kernel 2.6.18 x86_64
MPI MVAPICH2 1.2

section using GCC’s __attribute__ extension. Reference to the
arrays is translated to pointer reference of reallocated arrays.
Information of array distribution is recorded in array, template
descriptors.

Translated codes are passed to the native compiler(GCC)
and linked with runtime library functions. Runtime library
functions initialize and finalize the parallel environment,
schedule loop iterations for work-sharing, invoke inter-node
communication for data synchronization. Current implementa-
tion uses MPI for communication. Co-array notations describ-
ing one-sided communication are translated to MPI_Get(),
MPI_Put() and MPI_Accumulate().

V. PERFORMANCE EVALUATION

We used the HPCC(High Performance Computing Chal-
lenge) Benchmark[7] to evaluate the performance of the imple-
mented compiler. HPCC Benchmark consists of 7 benchmarks,
STREAM, RandomAccess, HPL, FFT, DGEMM, PTRANS
and communication bandwidth/latency benchmark. We choose
4 benchmarks including STREAM, RandomAccess, HPL and
FFT.

We used T2K-Tsukuba system[6] for evaluation. Figure I
shows the node configuration of T2K-Tsukuba system. Each
benchmark used 2, 4, 8, 16 and 32 physical system nodes. In
this evaluation, we set up multiple XMP processes(equivalent
to MPI processes) inside a physical node to exploit multicore
architecture for STREAM and FFT. STREAM creates 15, HPL
creates 16 processes per a physical node, and each process is
assigned to a core. RandomAccess and FFT create one process
on each node.

A. STREAM Benchmark

STREAM benchmark is a synthetic benchmark measuring
memory bandwidth of target system. Vector a, b and c¢ are
accessed and modified by loop statements. Figure 7 shows the
parallel code of STREAM Triad calculating a = b+scalarxc.
The parallelization of STREAM Triad is straightforward; it is
a typical data-parallel program.

We describe the parallel version of STREAM Triad in the
global view model of XMP. The template directive is written
to declare data index space ¢ of size SIZE, and distributed onto
each node by block distribution. The align directive describes
the vectors should be distributed aligned with the template 7.
The loop directive is added to describe that the owner of (j)
should execute the iteration j. To get total (triad) bandwidth
of the system, reduce operation is invoked by the reduction
directive after the calculation. The Lines Of Code, LOC in



double a[SIZE], b[SIZE], c[SIZE];
#pragma xmp nodes p(¥)

#pragma xmp template t(0:SIZE-1)
#pragma xmp distribute t(BLOCK) onto p
#pragma xmp align [j] with t(j) :: a, b, c

# pragma xmp loop on t(j)
for (j = 0; j < SIZE; j++) a[j] = b[j] + scalar*c[j];

#pragma xmp reduction(+:triadGBs)

Fig. 7. Parallel Code of STREAM Triad

short, of STREAM Triad is 98 2, and 12 lines(directives) of
them are added to the sequential code to parallelize STREAM
Triad.

Figure 8 shows the performance of STREAM Triad.
STREAM Triad is embarrassingly parallel, every iteration can
be executed in parallel and there is no communication during
the vector access. Therefore, STREAM Triad shows good
scalability related to the number of nodes.

B. RandomAccess Benchmark

RandomAccess benchmark measures the performance of
random integer updates of memory. The measurement is Giga
UPdates per Second(GUPS). Figure 9 shows the parallel code
of RandomAccess. It updates arbitrary array elements for
each iteration. The array update is written like the following
statement in the sequential version.

1 Table[temp] temp;

When an element to update is allocated on a remote node,
the operation should be done using inter-node communication.
Message passing with send/recv is not suitable for describing
this kind of applications. The MPI version of RandomAccess

800

700 =
>
% 600
~ 500
8
< 400
g /
é 300
$ 200
o

100 //

0 .
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Nodes

Fig. 8. Performance of STREAM Triad

2Each XMP directive is counted as one line.

417

#define SIZE TABLE_SIZE/PROCS
u64int Table[SIZE] ;

#pragma xmp nodes p(PROCS)
#pragma xmp coarray Table [PROCS]

for (i=0; i < SIZE; i++) Table[i] =b +1i ;

for (i = 0; i < NUPDATE; i++) {
temp = (temp << 1) " ((s64Int)temp <0 ? POLY : 0);
Table[temp%SIZE]:[(temp%TABLE_SIZE)/SIZE] "= temp;
}

#pragma xmp barrier

Fig. 9. Parallel Code of RandomAccess

creates a message handler processing remote update requests
with long and complicated descriptions of MPI functions such
as MPI_Isend(), MPI_Irecv() and MPI_Test(). Fundamentally,
this is remote memory access. RandomAccess can be easily
described with one-sided communication support.

We parallelized RandomAccess in the local view model. In
the local view model, data distribution is more explicit than
the global view model. The updated array Table is divided
by the number of nodes. We manually redefined the size of
Table in the source code, and SIZE sized array is allocated on
each node. Only the local Table can be accessed using local
indices now. To enable remote memory access, we declared
Table as a co-array by describing the co-array directive.
RandomAccess create a random index temp(The range is from
0 to (TABLE_SIZE - 1)) on each iteration. The information for
remote memory access is manually calculated and used in the
co-array notation. ((temp%TABLE_SIZE)/SIZE) indicates the
node number to access, and (temp%SIZE) indicates the local
index of temp on the target node. Consequently, accumula-
tion(BIT XOR) to Table[temp] can be done remotely. Remote
memory access with co-array notation is asynchronous in
XMP. Barrier synchronization is taken to complete requested
remote memory access(barrier directive). This is for the
performance evaluation. The LOC of RandomAccess is 77. We
added 4 directives and modified 3 lines(array declaration and
update) to the sequential code to parallelize RandomAccess.

Figure 10 shows the performance of RandomAccess. We
couldn’t achieve good performance on RandomAccess, and it
shows bad scalability. The most of the overhead is barrier
of remote memory access processing a large number of
asynchronous messages. We are using MPI-2 functions such as
MPI_Get(), MPI_Put(), MPI_Accumulate() and MPI_Fence()
to implement one-sided communication; the co-array notations
and barriers are translated those function calls. This benchmark
shows the performance of remote memory access, and it
tells we need more efficient implementation of one-sided
communication.

C. Linpack Benchmark

Linpack benchmark measures the floating point rate of
execution for solving a dense system of linear equations.



Figure 11 shows the parallel code of Linpack. We parallelized
simple sequential Linpack routines(dgefa and dgesl) in global
view model. Matrix a is distributed along the first dimension
in a cyclic manner. Pivot vector pvt_v is an N sized local array
duplicated on each node.

When a function processes distributed arrays(distributed
by the global view directives), the function should also be
parallelized. For example, A_daxpy in Figure 11 calculates
dy = dyda x dx. dx and dy are pointers referring arrays. When
the referred arrays are distributed, the loop statement should
be parallelized not to access unallocated area of the arrays.
The align directive is often used in global scope to describe
that the target (global) array is distributed. And the compiler
creates the array descriptor and reallocates the target array. In
a function’s local scope, the align directive can be used for the
function’s parameters. It tells that the target parameter array is
distributed in global scope (we assume that the target array is
already distributed by the align directive in global scope), and
creates the array descriptor which is used to parallelize the
function. In A_daxpy, the descriptor is used to parallelize the
loop. The size of parameter arrays should be written explicitly
to create the array descriptor. Current prototype compiler only
allows a constant number for the parameter size. We are fixing
this to allow variable length arrays as parameters.

The main issue on parallelizing Linpack is exchanging the
pivot vector. On iteration k, row [ is selected as a pivot
vector and row k is exchanged with row [. This is a typical
operation of Gaussian elimination with partial pivoting. The
problem is matrix a is distributed among nodes, that is, the
row exchange requires inter-node communication. We used
the gmove directive to describe the communication. The first
gmove directive copies the /-th row to pvt_v. Then, the owner
of row [ broadcasts row data to pvt_v. The second gmove
directive generates send/recv communication. The owner of
row [ receives row k from its owner. The third gmove directive
is a local memory copy operation. The owner of row k copies
pvt_t to row k. Consequently, row exchanging is completed
using the pivot buffer. Those communications are generated
by the compiler with the gmove directive descriptions, and
users do not need to consider the owner node of each data.

0.000045
0.00004
0.000035
0.00003
0.000025
0.00002
0.000015
0.00001
0.000005
0

GUP/s

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

Fig. 10. Performance of RandomAccess

418

#pragma xmp nodes p(*)

#pragma xmp template t(0:N-1)
#pragma xmp distribute t(CYCLIC) onto p
double a[N][N], pvt_v[N];

#pragma xmp align a[*][i] with t(i)

void dgefa(double a[N][N], int n, intipvt[N]) {
#pragma xmp align a[*][i] with t(i)

for (k =0; k< nm1; k++) {

#pragma xmp gmove
pvt_v[k:n-1] = a[k:n-1]{l];
if (I 1=k) {

#pragma xmp gmove

alk:n-1][I] = afk:n-1][k];

#pragma xmp gmove

alk:n-1][k] = pvt_v[k:n-1];
}

for (j =kpl;j<n;j++) {

t = pvt_v[j];

A_daxpy(k+1, n-(k+1), t, a[k], a[j]);
}

}
void A_daxpy(intb, intn, double da, double dx [N], double dy[N]) {
#pragma xmp align [i] with t(i) :: dx, dy

#pragma xmp loop on t(i)
for (i=b;i<b+n;i++)
dy[i] = dy[i] + da*dx[i];

}
Fig. 11. Parallel Code of Linpack
18
16 —
2
514
& 12
5]
g 10 —
s 8
£
s 6
54
a
2 -~
0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Nodes

Fig. 12. Performance of Linpack

The LOC of Linpack is 243. We added 35 directives to the
sequential code to parallelize.

Figure 12 shows the performance of Linpack. The perfor-
mance is not satisfying. One of the reasons is its simple par-
allelization scheme, 1-dimensional array distribution. Another
reason of bad scalability is communication in dges! function,
diagonal elements of matrix a should be broadcasted when



#pragma xmp nodes p(*)

#pragma xmp template t0(0:(N1*N2)-1)

#pragma xmp template t1(0:N1-1)

#pragma xmp template t2(0:N2-1)

#pragma xmp distribute (BLOCK) onto p :: t0, t1, t2
fftw_complex in[N1*N2], out[N1*N2], a_work[N2][N1];
#pragma xmp align [i] with tO(i) :: in, out

#pragma xmp align a_work[*][i] with t1(i)

int zfft1d (fftw_complex a[N], fftw_complex b[N], ...) {
#pragma xmp align [i] with t0(i) ::a, b

... zfft1dO((fftw_complex **)a, (fftw_complex **)b, ...); . ..
}

void zfft1dO(fftw_complex a[N2][N1], fftw_complex b[N1][N2], ...) {
#pragma xmp align a[i][*] with t2(i)
#pragma xmp align b[i][*] with t1(i)

#pragma xmp gmove

a_work[:][:] = a[:][:];
#pragma xmp loop on t1(i)

for (i=0; i< N1;i++)

for (j =0;j < N2; j++)
c_assgn(blil[j], a_work[j][i]);

#pragma xmp loop on t1(i)

for(i = 0; i < N1; i++) HPCC_fft235(b[i], work, w2, N2, ip2);

Fig. 13. Parallel Code of FFT

solving b. Although the performance is not that good, Linpack
can be described with a few directives and we can optimize
the performance based on this parallel code. 2-dimensional
array distribution and cache blocking will be the next step to
achieve better performance.

D. FFT Benchmark

FFT benchmark measures the floating point rate of exe-
cution for double precision complex 1-dimensional Discrete
Fourier Transform. Figure 13 shows the parallel code of FFT.
The six-step FFT algorithm is used as in the MPI version. The
main function invokes zffld function. in and out are passed
to a and b. Those 1-dimensional vectors are accessed as 2-
dimensional matrices in zffId0 function. In zffId0 function,
1-dimensional FFT is performed on each dimension of the
matrix. Therefore, matrix transpose operations are required
during the calculation.

We parallelized zffld and zff1d0 function in global view
model. Local align directives are describing distribution of
parameter arrays. We distributed them along the second di-
mension in a block manner because FFT is done along the
first dimension. Two templates of different sizes are used to
distribute @ and b. Because the block size is same(((N1 x
N2) + p) (N2 = p) x N1) ((N1 = p) x N2)),
the original 1-dimensional vectors can be accessed as 2-
dimensional matrices in the parallel version. In six-step FFT,
matrix transpose operation is done before 1-dimensional FFT.

419

a[N2][N1]
b[N1][N2]

local copy

' a_work[N2][N1]

Fig. 14. Matrix Transpose in FFT

The matrix transpose is implemented by local memory copy
between a and b in the sequential code. In the parallel version,
the matrix transpose operation is implemented by the gmove
directive and local memory copy. Figure 14 shows how matrix
transpose a to b is processed on node 1. The number is the
node number where the block is allocated, and dotted lines
show how the matrices are distributed. Since the distribution
manner is different, node 1 does not have all the elements
of matrix a which are needed for the transpose. At first, a
gmove is written to collect those elements. A new array a_work
is declared to store the elements. a_work is distributed by
tI which was used to distribute b. Consequently, the local
block of a_work and b have the same shape. By the all-to-all
communication of the gmove directive, all elements needed
for transpose are stored in local buffer. So we can copy it to b
using the loop statement 3. And then, FFTE routine(FFT235)
is used for 1-dimensional FFT. The rest of the code is simple
work-sharing parallelizing loop statements. The LOC of FFT
is 217. We added 31 directives to parallelize FFT.

Figure 15 shows the performance of FFT. The most of
the overhead is all-to-all communication by the gmove di-
rective. We have to improve gmove runtime functions get
better performance. Or, users can describe overlapping gmove

25

P
//
1//

4

Performance (Gflop/s)

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

Fig. 15. Performance of FFT

3we cannot describe the transpose only by the gmove directive because of

the syntax of the array section statement



communication with local copy using co-array functions.

VI. FUTURE WORK

One of the most important issues is to support multicore
architecture, because a SMP cluster is now a standard platform
in High Performance Computing area. SMP clusters have one
or more multicore processor(s) sharing the local memory. To
exploit the performance, we need to use all the calculating
resources inside a node.

For example, MPI processes are parallelized in OpenMP(or
more explicit way using thread libraries) which is called hybrid
parallelization on SMP clusters. But hybrid programming of
MPI and OpenMP requires high programming cost because
MPI programming itself is a complicated job and the local
view programming model has a weak affinity for thread-level
parallelism. In this section, we discuss about language sup-
port for hybrid programming extending XMP. The language
features introduced in this section is under design now.

Firstly, we consider the automatic thread-level paralleliza-
tion. Figure 16 shows the image of hybrid parallelization in
XMP. The left side of Pattern 1 shows a typical type of loop
parallelization using the loop directive. We assume that each
iteration is independent when the loop directive is described.
This means the iterations are also executed independently
in thread-level 4. So we can translate the code to the right
one. The compiler inserts OpenMP directives before the loop
statement, which is already parallelized in XMP. Consequently,
all cores would process different iteration sets in parallel.

XMP has the similar programming model with OpenMP,
directive-based approach. So it has a strong affinity for
OpenMP directives. It is not difficult to allow OpenMP direc-
tives in XMP source codes. We show an example in Pattern
2 of Figure 16. The user describes the OpenMP parallel for
directive before the inner loop statement. And the XMP loop
directive is described to parallelize the outer loop statement.
This is a very typical example of hybrid programming. We
can exploit parallelism using the hybrid memory architecture.
The problem is explicit use of OpenMP directives cannot
be combined with the automatic thread-level parallelization
described in previous paragraph. To solve the problem, we
introduce a new clause of the loop directive. noOMP describes
that the target loop should not be parallelized in thread-level.

Pattern 1)
#pragma xmp loop on t(i)
for(i=0;i<N;i++){...}

xmp_sched(&Ib, &ub, &s, ...);
#pragma omp parallel for
for(i =Ib;i<ub;i+=s){...}
Pattern 2)

#tpragma xmp loop on t(j) noOMP

for(j =0;j<N; j++)

#pragma omp parallel for (USER)

for(i=0;i<N;i++){...}

xmp_sched(&Ib, &ub, &s, ...);

for(j = lb;j<ub;j+=5s)

#pragma omp parallel for (USER)
for(i=0;i<N;i++){...}

Fig. 16. Hybrid Parallelization for SMP clusters

“In the strict sense of the word, it is not automatic parallelization because
we use the loop directive to detect thread-level parallelism.

420

VII. CONCLUSIONS

In this paper, we introduced a data parallel language exten-
sion for distributed memory systems named XcalableMP. XMP
has two programming models. In global view model, various
typical parallelization methods including array distribution,
work sharing, and collective communication can be described
with simple and easily understandable directives. In local view,
one-sided communication is described using co-array nota-
tions. The performance evaluation using HPCC Benchmark
shows that XMP achieves good performance for the typical
type of data-parallel applications with small modifications to
sequential codes. But at the same time, the result tells that
one-sided communication should be enhanced. The current
implementation is preliminary, and further enhancement is
required. One of the interesting issues is hybrid programming
on SMP clusters. We consider that the XMP compiler can
generate OpenMP directives from the XMP directives.

ACKNOWLEDGMENT

The specification of XcalableMP has been being designed
by the XcalableMP Specification Working Group which con-
sists of members from academia, research labs and indus-
tries. This research is supported by “Seamless and Highly-
productive Parallel Programming Environment for High-
performance computing” project funded by Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan.

REFERENCES

[1]
[2]
[3]
[4]
[5]

XcalableMP, http://www.xcalablemp.org/

Unified Parallel C, http://upc.gwu.edu/

Co-Array Fortran, http://www.co-array.org/

High Performance Fortran, http://hpff.rice.edu/

Jinpil Lee, Mitsuhisa Sato and Taisuke Boku, "OpenMPD: A Direc-

tive Based Data Parallel Language Extensions for Distributed Memory

Systems”, Proceedings of the 37th International Conference on Parallel

Processing, pp.121-128, 2008.

T2K Open Supercomputer, http://www.open-supercomputer.org/

High Performance Computing Challenge Benchmark, http://icl.cs.utk.edu/

hpece/

David Callahan and Ken Kennedy, "Compiling programs for distributed-

memory multiprocessors”, The Journal of Supercomputing vol.2, pp.151-

169, 1988.

Jingke Li and Marina Chen, "Compiling Communication-Efficient Pro-

grams for Massively Parallel Machines”, IEEE Transactions on Parallel

and Distributed Systems vol.2, pp.361-376, 1991.

[10] Chau-Wen Tseng, "An Optimizing FORTRAN D Compiler for MIMD
Distributed Memory Machines”, Ph.D Thesis, Rice University,1993.
[11] Seema Hiranandani, Ken Kennedy, John Mellor-Crummey and Ajay
Sethi, ”Compilation Techniques for Block-Cyclic Distributions”, Proceed-
ings of the 8th international conference on Supercomputing, pp.392-304,

1994.

[12] Charles Koelbel, ”Compile-Time Generation of Regular Communica-
tions Patterns”, Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pp.101-110, 1991.

[13] Vikram Adve and John Mellor-Crummey, “Using Integer Sets for
Data-Parallel Program Analysis and Optimization”, Proceedings of the
ACM SIGPLAN 1998 conference on Programming language design and
implementation, pp.186-198, 1998.

[14] Hidetoshi Iwashita, Masaki Aoki, "Mapping Normalization Technique
on the HPF Compiler thpf”, Lecture Notes in Computer Science vol.4759,
pp.315-328, 2009.

[15] S. K. S. Gupta, S. D. Kaushik, C.-H. Huang and P. Sadayappan, ”Com-

piling array expressions for efficient execution on distributed-memory

machines”, Journal of Parallel and Distributed Computing vol.32, pp.155-

172, 1996.

[6]
[7]

[8]

[9]



