
The Parallelization of Three-Dimensional Electro-Magnetic Particle Model
Using Both MPI and OPENMP

Xiaoyang Yan
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

yxycary@gmail.com

Huifang Deng
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

hdeng2008@gmail.com

Weiwen Zhang
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

gavincheungcn@gmail.com

Shehui Bu
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

bushehui@gmail.com

Abstract—Three-Dimensional Electro-Magnetic Particle Model
(3DEMPM), based on the equations of Maxwell and Newton-
Lorentz, takes advantages of the Finite-Difference Time-
Domain (FDTD) and Particle-In-Cell (PIC) to trace a large
quantity of particles in order to gain insight into the physics of
them. Although MPI alone can be used to parallelize with 1D
decomposition along x-direction, the efficiency decreases with
increase of CPUs because there are more communications
involved. We combine MPI and OPENMP to reduce the
communications in the PC cluster, one node of which shares
memory with duel-core. The whole domain is decomposed into
several sub-domains, the same number as the nodes. Between
the nodes we use MPI to realize the communications, and
inside each node the OPENMP is applied to do the parallel
computing with no communication. In this way, the higher
speed-up is achieved while the communication is reduced.

Keywords-3DEMPM; Parallel computing; MPI; OPENMP

I. INTRODUCTION
Computer simulation of plasma mainly comprises two

numerical methods: magneto hydro-dynamic (MHD)[1] and
particle-in-cell (PIC)[1]. MHD regards the plasma as fluid
and makes a statistical analysis on the particles. Using MHD
simulation, a good result could be achieved for the macro-
scale, but the micro features of the plasma are neglected.
Unlike MHD, the ions and electrons are treated as the
relativistic and collision-less particles in particle simulation,
thus we can get the micro features of plasma completely[1].
Hence it is an advanced model to study the micro
phenomena of magnetic reconnection, magnetic storm, etc..

Based on PIC, the whole simulation grid is decomposed
with the YEE lattice[2] and the electric and magnetic field
both scatter discretely on the grids in 3DEMPM. Given the
initial position and velocity of the particles as well as the
fields, we could get the force on every particle using Lorentz
equation before we calculate the new velocity and position of

particles with Newton equations. Then we get the current
density distribution by averaging statistic method and solve
the Maxwell equations to update the electric and magnetic
fields on every grid, so the particles move forward in the grid
in turn. Thus a recursive procedure is formed. Usually, we
run this code for thousands of loops which takes a long time
and cannot be probably accomplished by just one computer.
Parallel computing is an effective way to reduce the
computing time [3].

3DEMPM can be parallelized with MPI and OPENMP.
The OPENMP, a shared-memory standard of multithreads,
allows large numbers of CPUs to have access to a single
memory space. And MPI is based on message passing,
running on a distributed memory system. It is essential to
explore our parallelization of 3DEMPM with these two
models. In addition, we can further parallelize 3DEMPM
with the combination of MPI and OPENMP.

II. DESIGN OF PARALLEL ALGORITHM WITH MPI

A. Some Ideas of Parallelism
Basically, there are two solutions for the parallelized

3DEMPM.
The first one is to distribute the particles on average to

each process, and magnetic and electric fields are assigned to
all. In this way, the calculation of particles movement and
current contribution can be parallelized. The current on each
process are summed up to get the final update of electric
field, and we can solve the Maxwell equations on each
process respectively. The merit of this solution is load
balance. But as the size of the grid becomes larger and
larger, the communication between processes will increase
dramatically, which is a great challenge of the switch and
may lead to the problem of communication obstacles.

The second one is to decompose the domain into several
sub-domains so that the physical value of fields and particles
corresponding to the sub-domain are stored on each process.

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.58

214

In this methodology, each process just needs to exchange the
fields on the boundaries of sub-domain with its neighboring
process for the calculation of electric and magnetic fields,
and also the particles that will move to neighboring process.
But as time goes by, particles are no longer equally
distributed on the sub-domain, causing the problem of load
imbalance, which means some sub-domains have to
manipulate more particles while others do not.

The second solution is applied in this paper. On x axis,
the domain is decomposed on average as shown in Fig. 1.

Figure 1 Decomposition with MPI plus OpenMP

Figure 2 Flow chart for parallelized 3DEMPM

Fig. 2 shows the process of the parallelism, in which the

subroutines with solid boarder are parallelized, while the
ones with bold boarder are communications between
processes, and the others with dashed lines work in the same
way as the serial program.

B. The Parallel Computing of Electric and Magnetic Field
By YEE lattice and centre-difference, the magnetic field

on the (i,j,k) grid depends on the electric field on (i+1,j,k),
(i,j+1,k), (i,j,k+1); the electric field on the (i,j,k) grid is
coupled with the magnetic field on (i-1,j,k), (i,j-1,k), (i,j,k-1).

In addition, when computing the position and velocity of
particles, the particles on the x axis depends on the grid of
x=i-1 and x=i+1; when calculating the charge and current
for the update of electric field, the electric field on the (i,j,k)
grid relies on the grids (i,j-1,k-1),(i,j-1,k),(i,j,k-1),(i-1,j,k-
1),(i-1,j,k), (i-1,j-1,k) where particles are located at. To
realize the data exchange between processes, the concept of
Guard Cell[7] is introduced: for each process, on x axis, two
grids are added to the front and three grids are added to the
end. With such a scheme of expanding the grids, each
process can obtain the field from its neighboring process.

Each process calculates the fields on [FBDL，FBDR],
and [FBDL，FBDR] of all processes make up a whole

domain, where FBDL=3, FBDR=nFx+2 and nFx=(mx-
5)/Nproc except for the last process with FBDR = mx-2-
(Nproc-1)*nFx. And PBDL and PBDR referring to the
boundaries for particles are also defined: PBDL = (np-
1)*nFx+3.0, PBDR = np*nFx+3.0.

After the calculation of FIELD_PUSH, the boundaries of
fields should be transferred to the neighboring process for
communication. This is done by the subroutine
FIELD_COPY. Process N-1 delivers the field value on
FBDR to process N on FBDL-1, meanwhile, process N
passes the field value on FBDL to process N-1 on FBDR+1,
with the result that both processes get the field value on the
boundaries from neighbors, as it is shown in Fig. 3(a).

bzbybxezeyexf
mzkmyj

kjFBDRfkjFBDLf
kjFBDLfkjFBDRf

NN

NN

,,,,,:
1,1

),,1(),,(
),,1(),,(

1

1

≤≤≤≤
+→
−→

−

−

N-1

N

FBDL FBDR

FBDL FBDR

N-1

N

FBDL FBDR

FBDL FBDR

Figure 3 Field communication

Here comes the pseudo code of MPI in FORTRAN that

sends x-component of the field to the process on the right.
The similar approach is followed for y and z.

if(myid.ne.0)then
 call MPI_IRECV(fxr,my*mz, MPI_REAL,myid-1)
else
 call MPI_IRECV(fxr,my*mz,MPI_REAL,Nproc-1)
end if
……
if(myid.ne.(Nproc-1))then
 call MPI_SEND(fxs,my*mz, MPI_REAL, myid+1)
else
 call MPI_SEND(fxs,my*mz,MPI_REAL,0)
end if
call MPI_WAIT

Upon updating the electric field, SPLIT calculates not
only the particles on [PBDL, PBDR), but also the ones on
the Guard Cell. Firstly, we set the electric fields on the
Guard Cell of each process to be zero before computing
the current contributed by the particles in the sub-domain
of each process. Then, after SPLIT, the electric fields on
the Guard Cell of each process are the current
contribution to the boundaries of the neighboring
processes. Finally, these electric fields will be passed to
neighboring processes and then be added to the originally
computed values to obtain the corresponding electric
fields on the boundaries, as it is shown in Fig. 3(b).

3,2,1;2,1;,,:
1,1

),,1(),,1(),,1(
),,3(),,2(),,2(

1

11

==
≤≤≤≤

−++−+=−+
−++−+=−+

−

−−

nmezeyexf
mzkmyj

kjnFBDRfkjnFBDLfkjnFBDLf
kjmFBDLfkjmFBDRfkjmFBDRf

NNN

NNN

215215215215215215

C. The Parallel Procession of Particles
The calculation of particles’ velocity and displacement is

done by the subroutine MOVER. Each process manipulates
the particles whose x-coordinates are within [PBDL, PBDR).

DHD =PBDL-3.0
i= xi(n)-DHD
With the definition of DHD, i is the relative coordinate

value of nth particle for the sub-domain of a process, hence
the field position where the particle stands is found.

Besides, PARTICLE_SORTING uses some middle
variables to store the position and velocity of particles whose
x position is beyond the range of [PBDL, PBDR). And then
these variables of one process will be passed to the
neighboring process by PARTICLE_PASSING so that each
process receives the corresponding particles.

D. The Performance Analysis
In each loop, the computation functions include BPUSH,

MOVER, EPUSH, SPLIT and PARTICLE_ESCAPE, all of
which constitute the computing part. On the other hand,
BCOPY, ECOPY and PARTICLE_SORTING as well as
PARTICLE_PASSING are responsible for the
communicating. It is necessary to examine both computing
time and communicating time. Table I shows a comparison
between them in 10 loops for 245x145x145 with 8 pairs of
particles per cell.

TABLE I TIME FOR MPI IN 10 LOOPS

 Comp
(s)

Comm
(s)

Total
(s)

Ratio of Comp to
Comm

Speedup
(times)

1 282 - 282 - 1
2 161.52 6.48 168 24.93 1.68
4 83.5 8.5 92 9.82 3.07
8 43.61 9.39 53 4.64 5.32

16 25.25 9.15 34.4 2.76 8.20

With more processes involved, the computation time

decreases to a certain extent and meanwhile the
communication increases as there are more data exchanges
between processes. And the ratio of the computation time to
the communication time drops greatly. To sum up, MPI does
not work well with the increasing number of processes. A
shared memory model, such as OPENMP, may offer a more
efficient parallelization strategy.

III. THE OPTIMIZATION OF PARALLIZED MPI 3DEMPM
WITH OPENMP

Unlike MPI, the shared memory model of OPENMP
does not have to consider the communication any more.
$OMP PARALLEL and $OMP DO can be added outside the
loop in order to do the computation concurrently by threads.
The subroutines of MOVER and SPLIT are at the core of the
computation. Both of them have to access all of the ions and
electrons in order to update their new positions or compute
the current. So it is essential to parallelize these two
subroutines for optimization. The arrays of particles are
defined as the SHARED directives while other local
variables are defined as FIRSTPRIVATE or PRIVATE.

Each thread is responsible for manipulating the same number
of ions on average in terms of the total.

SUBROUTINE MOVER
!$OMP PARALLEL SHARED (ui,vi,wi,xi,yi,zi)
!$OMP+ FIRSTPRIVATE (ex,ey,ez,bx,by,bz ,ions,……)
!$OMP+ PRIVATE (n,ex0,ey0,ez0,bx0,by0,bz0,……)
!$OMP DO
 do n=1,ions
 ………….

end do
!$OMP END DO
!$OMP END PARALLE
END SUBROUTINE
In the SPLIT, the electric field is determined by the

surrounding particles not limited to the location of the field.
Hence, we need to make a reduction to sum up the current
contributed by particles for updating the electric field.

SUBROUTINE SPLIT
!$OMP PARALLEL SHARED (ui,vi,wi,xi,yi,zi)
!$OMP+FIRSTPRIVATE (mh, mx,my,mz ,ions, ……)
!$OMP+ PRIVATE (i,j,k,dx,dy,dz,cx,cy,cz,……)
!$OMP+ REDUCTION (+:ex,ey,ez)
!$OMP DO
 do m=1,ions
 ………….

end do
!$OMP END DO
!$OMP END PARALLE
END SUBROUTINE

TABLE II TIME FOR OPENMP IN 10 LOOPS
Threads Total time (s) Speed-up (times)

1 216 1.00
2 119 1.82
4 71 3.04
8 53 4.08

16 96 2.25

The OPENMP program runs on the hp server with 8

CPUs and can also be accelerated. The performance falls
when there are 16 threads as there are only 8 CPUs in each
machine. It is known that due to the limited memory of a
single machine, OPENMP works poorly when the grid
grows in size and more particles are involved. On the other
hand, MPI is an explicit control parallelism, with its
distributed memory on different nodes in the cluster, solving
problems with bigger scale. Hence, a better approach is to
take advantages of both MPI and OPENMP. Between the
nodes, MPI is applied to realize the communication while
OPENMP is responsible for conducting the parallel
computation with no communication inside the node.

Again, the MPI domain decomposition is carried out as
before with the 3D grid divided between each process on x
axis. The OPENMP can be added to the MPI within the
process as follows:

MPI_INIT
!$OMP PARALLEL
……
!$OMP END PARALLEL

216216216216216216

MPI_FINALIZE
MPI uses the MPI_INIT and MPI_FINALIZE calls to

initialize and finalize the process context as usual. In
addition, OPENMP PARALLEL DO directives are placed
around the loops, generating threads to calculate the position
and velocity of particles concurrently in each of the process.
The number of threads can be determined by the call of
OMP_SET_NUM_THREADS command.

TABLE III TIME FOR MIXED MPI AND OPENMP IN 10 LOOPS

 Comp
(s)

Comm
(s)

Total
(s)

Ratio of Comp to
Comm

Speedup
(times)

1 282 - 282 - 1
2p1t 164.3 6.48 170.8 25.36 1.65
2p2t 81.52 6.48 88 12.58 3.2
2p4t 43.52 6.48 50 6.72 5.64
4p2t 41 8.5 49.5 4.82 5.7
2p8t 32.32 6.48 38.8 4.99 7.27
4p4t 26.7 8.5 35.2 3.14 8.01
8p2t 22.81 9.39 32.2 2.43 8.76

It is high time to make a comparison of MPI with the

mixed mode of MPI and OPENMP from TABLE I and
TABLE III.

Figure 4 Total time of MPI and MPI&OPENMP

As shown in Fig. 4, generally, the total time of mixed

mode drops slightly compared with that of pure MPI, except
for running 2p(p: process used by MPI) and 2p1t (t: thread
used by OPENMP) when we cannot draw benefits from
communication reduction and get overhead of thread context.
What’s more, when running 16p, we find another three
alternatives 2p8t, 4p4t and 8p2t working differently. It seems
that the performance is lower when there are more threads
involved, and 8p2t is the best among the three. We select the
best results, 4p2t and 8p2t, to get Fig. 5.

Figure 5 Speedup of MPI and MPI&OPENMP

It can be clearly seen from Fig. 5 that the combination of

MPI and OPENMP offers a higher speedup than the MPI
alone. The reason can be explained as below. When the

program runs with N processes on MPI and N/2 processes
with 2 threads on each for mixed MPI and OPENMP, there
are N-1 communications between processes in MPI while
only N/2-1 for the mixed, and meanwhile the computation
can also be accelerated by the 2 threads with OPENMP.
Therefore, in the mixed mode of MPI and OPENMP, the
communication time is reduced. It can also be estimated that
when the number of processes N increases, the benefits of
the combination are more obvious since there will be (N-1)-
(N/2-1)=N/2 of communication time that can be saved.

IV. THE EXPERIMENTAL RESULTS
All of the experiments are carried out on the Linux

cluster of 8 personal computers with 8G memory connected
by the network. Although MPI can accelerate the execution
of 3DEMPM, it involves large communication between each
node when many computing machines are added. And
OPENMP does not suffer from the load imbalance and there
are no explicit communications involved. As a result, when
an application needs good scalability, a mixed mode, with
MPI between the nodes and OPENMP within each node, can
have a better performance since we can reduce the number of
processes for less communication time and the load
imbalance is the only issue between the nodes.

V. CONCLUSIONS
Based on FDTD and PIC, we propose that the domain is

decomposed into several sub-domains and each process
calculates on its own sub-domain and communicates with its
neighbors to acquire the boundary data. With MPI,
3DEMPM is successfully parallelized on the distributed
cluster. Also, OPENMP and the mixed mode of MPI and
OPENMP are presented. This combination can reduce the
communication time and achieve a better efficiency and
speedup than the MPI alone. Further optimization, such as
load balancing, and communication reducing, should be
taken into account so as to achieve a better performance.

REFERENCES
[1] C K Birdsall, Plasma Physics Via Computer Simulation
[2] R.W Hockney, J.W Eastwood ,Computer Simulation Using Particles

(Taylor & Francis,1989)(ISBN 0852743920)
[3] C. Guiffaut and K. Mahdjoubi, France,A Parallel FDTD Algorithm

Using the MPI Library,2001.
[4] Dr Peter S. Pacheco,Woo Chat Ming,MPI User Guide in FORTRAN
[5] Louarn, P., A. Fedorov, E. Budnik, et al, Cluster observations of

complex 3D magnetic structures at the magnetopause, Geophys. Res.
Lett., 31, L19805, doi:10.1029/2004GL020625. 2004.

[6] WeiFeng Tao, DongSheng Cai, XiaoYang Yan, et al, Scalability
analysis of parallel PIC codes on computational grids，Computer
Physics Communications, 179, 2008

[7] Cai, D. S., Yaoting Li, Ken-lchi Nishikawa, Chijie Xiao, Xiaoyang
Yan and Zuying Pu, Parallel 3D Electromagnetic Particle code using
High Performance Fortran: Parallel TRISTAN, Space Plasma
Simulation, Springer, 25-53, 2003.

[8] Cai D., Li Y.T., Nishikawa K.. Xiao c.J. and Yan X.Y.: Three-
dimensional Electro-magnetic Particle-in-Cell code using High
Performance Fortran on PC Cluster, High Performance Computing,
Lecture Notes in Computer Science, LNCS 2327, 515-525, 2002.

217217217217217217

