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Abstract

Immersive-Audio technologies are widely used to build experimental and commercial audio systems. However,
most of them are based on standard PCs, which introduce performance limitations and excessive power consumption.
To address these drawbacks, we explore the implementation prospectives of two Immersive-Audio technologies; the
beamforming (BF) and the Wave Field Synthesis (WFS). We target two popular multi-core platforms, namely Graphic
Processor Units (GPUs) and Field Programmable Gate Arrays (FPGAs). We identify the most computationally
intensive parts of both applications and employ the CUDA environment to map them onto a Quadro FX1700,
a GeForce 8600GT, a GTX275 and a GTX460 GPU. Furthermore, we design our custom multi-core hardware
accelerators for both algorithms and map them onto Virtex6 FPGAs. Both GPU and FPGA implementations are
compared against OpenMP-annotated software running on a Core2 Duo at 3.0 GHz. Experimental results suggest
that middle-range GPUs process data equally well as the Core2 Duo for the BF, and approximately two times
faster for the WFS. However, high-end GPU and FPGA solutions provide an order of magnitude better performance
for BF, and approximately two orders of magnitude better performance for WFS than the Core2 Duo. Ultimately,
single-chip GPU and FPGA implementations can provide more power-effective solutions, since they can drive more
complex microphone and loudspeaker setups than PC-based approaches.

I. INTRODUCTION

Various advanced audio systems have been proposed by researchers from the acoustic data processing domain.
The majority of such systems are based on Immersive-Audio algorithms that significantly enhance the sound
realism. Normally, a high-end Immersive-Audio rendering system consists of a sound rendering module, which
utilizes Immersive-Audio algorithms, like the Wave Field Synthesis (WFS) [1] or Ambisonics [2], to render all
audio sources through a loudspeaker array. Furthermore, there are cases where real-time acoustic sources from a
remote location need to be rendered through the loudspeaker array (e.g. teleconferences). For that reason, sound
acquisition modules apply spatial filtering techniques, such as BF [3], to record and extract all sources by utilizing
a microphone array.

The majority of the experimental systems reported in literature up to date are implemented using standard
desktop PCs. The primary reason is because a General Purpose Processor (GPP) can be easily programmed to
execute Immersive-Audio applications, thus considerably shortening the development time. However, this approach
introduces processing bottlenecks and excessive power consumption. In order to alleviate these problems, in our
work we investigate the potentials of other off-the-shelf hardware platforms, such as Graphic Processor Units
(GPUs) and Field Programmable Gate Arrays (FPGAs) to build Immersive-Audio systems. More specifically, the
contributions of this paper are the following:

∙ We analyze the potentials of BF and WFS for multi-core implementations;
∙ We specify parallel algorithms to map BF and WFS onto GPUs;
∙ We improve previously proposed hardware accelerators of BF and WFS and map them onto Virtex6 FPGAs;
∙ We provide an extensive design space exploration on BF and WFS with respect to three multi-core platforms

- GPUs, FPGAs and GPPs, under different I/O setups;
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Fig. 1. A filter-and-sum beamformer.

∙ Experimental results for each targeted platform suggest that high-end GPUs and FPGA-based solutions provide
an order of magnitude better performance for BF and approximately two orders of magnitude better performance
for WFS than OpenMP-annotated software executed at a Core2 Duo at 3.0 GHz;

∙ Preliminary power estimations indicate that a GPU implementation is more power efficient compared to a GPP
approach. Furthermore, an FPGA solution consumes an order of magnitude less power than contemporary
GPUs.

The rest of the paper is organized as follows: Section II provides a brief theoretical background of the two
Immersive-Audio algorithms that were used. Furthermore, various systems that utilize these algorithms are presented.
In Section III and Section IV, we describe the GPU and FPGA implementations of the BF and WFS algorithms
respectively. Section V compares the performance of the Immersive-Audio algorithms when mapped onto the three
different platforms. Finally, in Section VI we conclude this paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly present the theoretical background on BF and WFS, and provide a few references to
related state-of-the-art.

A. Theoretical Background

Beamforming: BF is used to perform spatial filtering over a certain area, in order to estimate the direction
of arrival of a signal. This technique allows to distinguish two signals with overlapping frequencies as long as
they originate from different locations. Although there are different approaches to perform BF [3], many systems
utilize a filter-and-sum approach, as illustrated in Figure 1. A microphone array samples the propagating wavefronts
and each microphone is connected to an Hi(z) Finite Impulse Response (FIR) filter, where i=0...IN CHAN-1 and
IN CHAN is the number of input channels. All filtered signals are accumulated, in order to strengthen the primary
audio source and attenuate any ambient noise. The FIR filters are essentially utilized as delay lines that compensate
for the introduced delay of the wavefront arrival at all microphones [4]. However, in order to effectively extract a
sound source, it is mandatory to reconfigure the FIR filter coefficients according to the source location. For example,
as it is illustrated in Figure 1, a source is recorded for a certain amount of time inside the aperture defined by the
µ2 − µ1 angle. A source tracking device is employed to follow the source trajectory and based on its coordinates,
the FIR filters are configured with the proper coefficients set. As soon as the source moves inside the aperture
defined by the µ3− µ2 angle, the source tracking device will provide the new coordinates, thus the FIR coefficients
will be updated with a new set. The latter process is normally referred to as ”beamsteering”.

Wave Field Synthesis: The WFS acoustic algorithm was initially proposed by Berkhout [1]. It is essentially
based on Huygens’ principle, which is applied by stating that a primary source wavefront can be created by the
superposition of secondary audio sources, i.e. plane of speakers, that emit secondary wavefronts. However, in real
world systems a plane of loudspeakers is not practical, so a linear loudspeaker array is used instead. As a result,
the finite distance between the loudspeakers introduces artifacts such as spatial aliasing, truncation effects, and
amplitude and spectral errors [5]. However, the WFS algorithm alleviates many problems that are inherent to other
audio systems, like stereophony. Its most important advantage is that there is no ”sweet spot” area restriction.
In contrast to stereophonic systems that require the listeners to remain at the center of the listening area, WFS
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Fig. 2. Linear interpolation of a moving sound source.

allows people to move freely inside the entire acoustic area and still experience an outstanding audio environment
perception [6].

Figure 2 illustrates an example of a linear loudspeaker array setup. Each speaker has its own coordinates (xli,
yli) inside the listening area.

−→
di1 and

−→
di2 are the initial and final source distances from a particular loudspeaker

respectively within a certain time frame, while −→n is a normal vector perpendicular to the loudspeaker array. In
order to drive each one of the loudspeakers so as the rendered sound source location is at A(x1, y1), the so called
Rayleigh 2.5D operator [7] has to be calculated:
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c is the wave number, c is the sound velocity, z is the inner product between −→n and

−→
di1, Dz is reference

distance, S(!) is the acoustic source,
√

jk
2¼ is a 3dB/octave correction filter,

√
Dz

z+Dz is the source amplitude decay
and e−jkr is a time delay that has to be applied to the particular loudspeaker.

When a sound source moves from point A(x1, y1) with distance ∣−→di1∣ from a given loudspeaker to point B(x2,
y2) with ∣−→di2∣ distance from the same loudspeaker, the WFS algorithm linearly interpolates the traversed trajectory,
as illustrated in Figure 2. Based on the calculated distance between A and B, it updates the source distance from
the particular loudspeaker for every audio sample rendered. Finally, the source amplitude decay is computed [7]
[8].

B. Related Work

Beamforming: Over the last years, various systems that utilize GPUs under different application domains have
been published in the literature. In [9] the authors describe a hybrid approach that utilizes 14 Virtex4 LX25 FPGAs
and a GPU connected to a desktop PC, to perform 3D-parallel BF and scan conversion for real-time ultrasonic
imaging using input from 288 channels. In [10], the authors utilize a GeForce 8800 to design a delay-and-sum
beamformer in the time and frequency domain, which according to the results, can achieve speedup up to 12x and
15x respectively, compared to a Xeon Quad-core processor. The authors of [11] present a hardware accelerator that
utilizes microphone array algorithms based on calibrated signals and subband processing. In [12], a real-time Virtex4
FPGA-based beamformer that utilizes the QR matrix decomposition is presented. A data driven beamformer for a
binaural headset is presented in [13]. The authors integrate two microphones to the headphones and employ a Head
and Torso Simulator to acquire the source signal for BF. Squarehead [14] develops the Audioscope, a dual core PC-
based system, that employs 300 omnidirectional microphones for audio capturing. Acoustic Camera [15], develops
PC-based BF systems, that utilize sound acquisition arrays ranging from few tens to more than hundred elements. In
[16], the authors utilize an Analog Devices Digital Signal Processor (DSP) to perform Calibrated Weighted Recursive
Least Squares-based BF over a two microphone array setup. An experimental video teleconferencing system based
on a Texas Instruments DSP processor is presented in [17]. Finally, there are many projects that utilize different
microphone array sizes and setups. One of the most famous implementations is the Large AcOUstic Data (LOUD)
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[18], developed in the Massachusetts Institute of Technology. The LOUD microphone array consist of 1020 elements
arranged into a 2D planar setup.

Wave Field Synthesis: In [19], the authors describe an Immersive-Audio system consisting of 12 linearly placed
microphones. The sound source is tracked, encoded and received from a second remote PC, which renders it using
WFS through a 10-loudspeaker array. A similar system is presented in [20], which transmits real-time extracted
audio sources to a remote location, and renders them using the WFS technology. An experimental PC-based WFS
system has been developed at the Delft University of Technology [21], which consists of 114 loudspeakers. Another
PC-based sound system that was built in IRT, Munich, called the Binaural Sky [22], actually combines both binaural
[23] and WFS technologies. The SonicEmotion company [24] deploys its unit on an Intel Core2 Duo-based setup,
which supports rendering up to 64 real-time sound sources, while driving a 24 loudspeaker array. Iosono [25] also
follows a standard PC approach that supports up to 32 real-time sources while driving 32 speakers. Six such Iosono
WFS systems were installed in 2003 in a cinema in Ilmenau, Germany to drive 192 loudspeakers. A GPU-based
WFS implementation that utilizes the NU-Tech software framework [26] is discussed in [27]. The authors have
developed a NU-Tech plug-in that uses the CUDA libraries for the required data calculations, and run it on a
GeForce GTX285 and a Tesla C1060 GPU.

Overall scientists from the audio domain society use primarily desktop PCs to build experimental and consumer
Immersive-Audio systems. However, these approaches introduce processing bottlenecks and excessive power con-
sumption. In order to alleviate these problems, we conduct various experiments of the widely used BF and WFS
applications to GPUs, FPGAs and GPPs regarding performance and power consumption.

III. ALGORITHMS PROPOSED FOR GPUS

In this section we describe how we mapped the two Immersive-Audio applications onto GPUs [28]. Both BF
and WFS applications can be considerably parallelized, thus making the GPUs a suitable target platform.

A. Beamforming

As indicated in Section II, BF is mainly based on FIR filters that compensate for the introduced delay of the
sound wavefront arrival at all microphones [4]. In the general case, it consists of the following four phases:

1) Resample the input signal sample rate by a certain factor.
2) FIR filtering of each input signal with a specific set of coefficients.
3) Accumulation of all filtered signals to strengthen the main sound source.
4) Restore the extracted source signal sampling frequency back to the original one.

In the current BF application, we perform decimation and interpolation in phases 1 and 4 respectively. It is observed
that in three out of four of the above phases FIR filtering is required, thus it is the dominant operation of the BF
application. FIR filtering has the potential to be considerably accelerated when mapped onto GPUs, since the latter
provide hundreds of processing elements that can calculate data concurrently. Therefore, we decided to develop
a flexible computational kernel that could be reused with minor changes to efficiently map the decimation, FIR
filtering and interpolation processes onto the GPU. Furthermore, an additional GPU kernel was developed to perform
the accumulation of all filtered signals. Algorithm 1 illustrates how the BF application is mapped onto the GPU.
Variable IN CHAN represents the total number of input channels (microphones) available to the sound system, while
SOURCES is the number of present sources that need to be extracted. We use the GPU annotation to designate the
parts of the application that are executed by the GPU.

Input signal decimation: The initial sampling frequency fs in our BF application is 48 kHz and a downsampling
factor D of 4 is used to decimate the signal. However, before downsampling any signal, it is mandatory to filter it
in order to avoid any aliasing effects. Since D = 4, the resulting signal will have fs = 12 kHz, which is its new
sampling frequency. This means that if the applied filter before downsampling eliminates all components above
12
2 kHz = 6 kHz, which is the Nyquist frequency, then the final decimated signal will have no aliasing effects.

Therefore, a decimation FIR filter with size of 242 taps is applied to cut off any component above 6 kHz.
In order to efficiently filter and downsample a signal, the following formula is used:

y[k] =

ND−1∑

tx=0

c[tx] ⋅ x[k ⋅D − tx] (2)
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Fig. 3. Decimation, source extraction and interpolation filters onto GPU threads.

Algorithm 1 BF implementation to GPU
Require: Input signals from IN CHAN microphones
Ensure: Extracted SOURCES audio sources

1: Move input data to GPU main memory
2: Store H(z) filter coefficients to GPU main memory
3: for c = 0 to IN CHAN − 1 do
4: GPU: Decimate channel c
5: end for
6: for s = 0 to SOURCES − 1 do
7: for c = 0 to IN CHAN − 1 do
8: GPU: Extract source s from channel c
9: end for

10: GPU: Accumulate signals from all channels
11: GPU: Upsample source s signal
12: end for
13: Move all extracted sources signals to CPU memory

TABLE I
SAMPLE, COEFFICIENT AND OUTPUT INDICES FOR THE BF APPLICATION.

GPU kernel sample index coefficient index output index
decimation bx⋅D+by⋅gxdim-tx tx bx+by⋅gxdim
H(z) filter bx+by⋅gxdim-tx angle⋅NH ⋅IN CHAN+C cur⋅NH bx+by⋅gxdim

interpolation bx
L

+by⋅gxdim-tx tx bx+by⋅gxdim

where k is the current filter output sample, ND is the decimator filter size, tx=0...ND-1, c[] represents the filter
coefficients, x[] represents the current status of the filter delay line, and D is the downsampling factor. The first
row of Figure 3 illustrates how (2) is mapped onto different GPU threads, in order to calculate a single output
sample of the decimated signal. Each multiplication is mapped onto a different GPU thread and all of them are
concurrently executed. As soon as all multiplications are performed, all results are accumulated and stored back
to the GPU main memory. The second and third lines of Figure 3 are discussed in paragraphs ”Source extraction”
and ”Source signal interpolation” later on.

Figure 4 depicts the grid of thread blocks that was designed to efficiently map the calculation of all decimated
samples onto a GPU kernel. Input signals are divided into 1024-sample chunks. Since the decimator FIR filter
size is 242, we launch the same number of GPU threads per block, that is txdim = 242 in Figure 4. This way we
can map the calculation of each output sample of the decimated signal onto one thread block. Within each thread
block variable dOut is used to store the corresponding output sample. Each thread calculates a proper sample and
coefficient index to load the respective sample and filter coefficient from the GPU external memory to x[] and c[]
arrays inside the shared memory of a GPU multiprocessor. We use the variables bx and by as coordinates of every
thread block within the grid, thus bx=0...gxdim-1 and by=0...gydim-1. Since each thread block is responsible for
calculating a single sample of the decimated signal, the illustrated grid in Figure 4 can process up to gxdim⋅gydim
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Fig. 4. Grid of thread blocks that are dispatched during the FIR filter calculations onto the GPU.

samples. Based on these variables, each thread calculates the correct sample, coefficient and output indices that are
shown in the second row of Table I. As soon as the two values are multiplied, all threads are synchronized and
data are accumulated to the dOut variable. Threads are then again synchronized and the final result is stored to the
main GPU memory based on the output index that each thread calculates.

Source extraction: In order to efficiently map the FIR filter operations onto the GPU, we used the same approach
as in decimation. Each H(z) FIR filter is represented by:

y[k] =

NH−1∑

tx=0

c[tx] ⋅ x[k − tx] (3)

where k is the current filter output sample, NH is the H(z) filter size, tx=0...NH -1, c[] represents the filter coefficients,
and x[] represents the current status of the filter delay line. The second row in Figure 3 illustrates how (3) can be
separated into different GPU threads, where each thread block is responsible for calculating a single output sample.
Each multiplication is assigned to a unique GPU thread and all of them are executed concurrently. All results are
accumulated, and the final value is stored back to the GPU main memory.

We designed a gxdim by gydim grid of thread blocks, as illustrated in Figure 4, where bx and by are the coordinates
of each thread block within the grid. Each FIR filter is 128 taps long. Therefore, we use 128 GPU threads per
block, thus txdim = 128 in Figure 4 for the source extraction. Finally, the third row of Table I illustrates how the
new sample and coefficient indices are calculated within each GPU thread. The angle variable designates the source
aperture, IN CHAN is the total number of input channels, and C cur is the current channel that is being processed.

The considered BF application can recognize 19 source apertures. Furthermore, since each FIR filter consists
of 128 taps, we need to store 128 coefficients

aperture ⋅19apertures
cℎannel ⋅IN CHAN cℎannels = 2432⋅IN CHAN coefficients,

where each coefficient is in single precision floating point format. During our tests, we utilized from IN CHAN=8
to 212 input channels, thus the total amount of data was between 77824 and 2062336 bytes respectively. Since
current GPUs constant memory is not enough to fit all coefficients, we decided to store them to the GPU main
memory.

Source signal interpolation: Signal interpolation consists of two consecutive stages: signal upsampling and
filtering. Upsampling a signal by a factor L introduces undesired spectral images at multiples of the initial sampling
frequency, and for this reason, the upsampled signal needs to be filtered [29]. We upsampled the extracted source
signal by inserting L-1 zeros between its samples. Following a polyphase filter approach [29], we can use the
following equation to describe all L polyphase filters that are utilized to efficiently upsample and filter the input
signal:

y[k ⋅ L+ p] =

NL
L

−1∑

tx=0

c[tx ⋅ L+ p] ⋅ x[k − tx] (4)

where k is the current filter output sample, NL is the interpolator filter size, tx=0...NL

L -1, c[] represents the filter
coefficients, x[] represents the current status of the filter delay line, L is the upsampling factor, and p=0...L-1 is the
corresponding polyphase filter.



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, MONTH YEAR 7

...

threads block

...

...

0 1 511

0,0

...

threads block

0 1 511

1,0

...

threads block

0 1 511

SAMPLES/1024-1,0

...

threads block

...

0 1 511

0,1

...

threads block

0 1 511

1,1

...

threads block

0 1 511

SAMPLES/1024-1,1

...

...

...

threads block

...

0 1 511

0,SPEAKERS-1

...

threads block

0 1 511

1,SPEAKERS-1

...

threads block

0 1 511

SAMPLES/1024-1,SPEAKERS-1

copy filtered samples to 

shared memory;

copy previous output data

to shared memory;

synchronize threads;

calculate inner product and

velocity;

synchronize threads;

calculate delayed sample;

update output data with

delayed sample;

calculate delayed sample + 512;

update output data with

delayed sample + 512;

grid of thread blocks

 

Fig. 5. Grid of thread blocks dispatched during the GPU WFS calculations.

Algorithm 2 Wave Field Synthesis implementation to GPU
Require: SOURCES audio sources to be rendered to SPEAKERS loudspeakers
Ensure: SPEAKERS audio signals to drive all loudspeakers

1: Move input data to GPU main memory
2: for s = 0 to SOURCES − 1 do
3: GPU: Apply FIR filtering to source s
4: GPU: Calculate all SPEAKERS signals for source s and accumulate with previous ones
5: end for
6: Move all SPEAKERS signals back to CPU main memory

The third row in Figure 3 illustrates how (4) can be efficiently mapped to different GPU threads. Again, each
multiplication is assigned to a different GPU thread, while all threads are executed concurrently. Based on the
polyphase filter approach [29], the interpolation FIR filter length should be a multiple of L. The BF application
that we used during our experiments utilizes a FIR filter with NL=242 taps long, while the upsampling factor L
= D = 4. In order to make the FIR filter length multiple of 4 we added two more taps at the end of its delay
line with both coefficients being equal to 0, thus increasing the FIR filter to 244 taps. Since L = 4, we use p =
4 polyphase filters to upsample the extracted source signal, each one being 244

4 =61 taps long. The multiplication
results are accumulated, and the computed value is stored back to the GPU main memory. We designed a gxdim
by gydim grid of thread blocks, as depicted in Figure 4, to calculate gxdim⋅gydim output samples. We use again
the variables bx and by as coordinates of every thread block within the grid. Since each polyphase filter is 61 taps
long, we launch 61 GPU threads per block, thus txdim = 61. The fourth row of Table I suggests how the GPU
kernel for the signal interpolation calculates the corresponding sample, coefficient and output indices.

B. Wave Field Synthesis

We have already proposed a GPU implementation of the WFS acoustic algorithm in [30]. However, an improve-
ment of the current implementation compared to previous work is the execution of the FIR filtering on the GPU
and not on the CPU. We moved the FIR filter execution to the GPU because tests reported in the literature indicate
more than an order of magnitude performance improvement [31] against a CPU approach.

Algorithm 2 sketches how the WFS is mapped onto the GPU. The variable SPEAKERS represents the number of
loudspeakers of the audio system. The variable SOURCES is the number of audio sources that need to be rendered
through SPEAKERS loudspeakers. Again, we use the GPU annotation to designate the GPU kernels developed. In
order to filter all audio sources, we used the same FIR filter GPU kernel that was described in BF. However, in this
case, the FIR filter consists of 64 taps, so 64 threads are launched within each thread block. Figure 5 illustrates
the WFS implementation on the GPU. Input signals are divided into chunks of 1024 samples. We designed a
2D-grid of thread blocks, where each block consists of 512 GPU threads. Each thread within a block is responsible
for calculating 2 output samples, thus when a thread block is executed, 1024 samples are calculated. Assuming
there are SAMPLES input samples to be processed and rendered through SPEAKERS loudspeakers, we need



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, MONTH YEAR 8

Local

buffer

H(z)

FIR filter

FCM-BF

controller

Decimator Interpolator

Local BRAM interface

IN_CHAN input 

channels

APU interface

Fig. 6. Hardware implementation of the filter-and-sum beamformer.

SAMPLES
1024 ⋅SPEAKERS thread blocks for each loudspeaker. Therefore, we designed the 2D-grid with dimensions

SAMPLES
1024 by SPEAKERS.

IV. CUSTOM HARDWARE DESIGNS

In this section, we describe our custom implementations of BF and WFS applications in hardware. Initially,
the BF hardware accelerator was proposed in [32] and the WFS one in [33]. However, for the current paper both
hardware accelerators have been redesigned and tested on the newer Virtex6 family FPGAs.

Beamforming: Figure 6 depicts the Fabric Coprocessor Module-BF (FCM-BF)1, which receives 16-bit signed
audio samples. All calculations are performed in a fixed-point arithmetic format. The accelerator utilizes the
Auxiliary Processor Unit (APU) interface to communicate with the host processor and can be customized according
to the number of system input channels, the decimation and interpolation factor, and the sampling frequency. The
gridded area in Figure 6 wraps all modules that have to be replicated for every input channel. A local buffer is
used to temporarily store 1024 16-bit audio samples for the particular channel before they are processed, which
are fetched through the local BRAM interface. As soon as all samples from all input channels are stored to their
corresponding local buffers, the FCM-BF controller initiates the samples processing.

All input channels are processed concurrently since there is no data dependency among them. The decimator
is used to downsample the input data. Every H(z) FIR filter includes a specific set of FIR filter beamsteering
coefficients banks. Based on the source aperture, the appropriate FIR coefficient set is selected to apply a certain
delay to the downsampled data. The output signals of all H(z) FIR filters are accumulated in order to strengthen
the source signal. The beamformed signal is upsampled by the interpolator to the initial sampling frequency. The
current FCM-BF implementation requires 68871 clock cycles to process all 1024 samples for all channels. It
employs an internal fixed point format [32], which provides data that are 99.6% accuracy compared to the software
implementation.

Wave Field Synthesis: Figure 7 illustrates the FCM-WFS. We consider 16-bit signed audio samples, while all
computations are performed in a fixed-point arithmetic format. The accelerator can be parameterized according
to the number of system output channels, i.e. loudspeakers, and is connected to the host processor via the APU
interface. As soon as the host processor invokes the WFS hardware accelerator, the FCM-WFS Controller accesses
a local memory module to fetch 1024 audio samples. These samples are processed from a 3dB/octave frequency
correction FIR filter and stored to the Samples buffer inside the WFS engine module. The WFS algorithm allows
parallel data processing for each individual loudspeaker. This fact is efficiently exploited by the FCM-WFS, since
it distributes the required processing tasks for a certain set of loudspeakers to different RUs (Rendering Units). For
example, if there is a loudspeaker array setup consisting of 32 elements, then two RUs could be employed to process
each one of the 16 elements, assuming enough hardware resources. However, if there is limited available area, then
the WFS hardware accelerator can be reconfigured to employ a single RU to process the entire loudspeaker array.

The gridded area in Figure 7 illustrates the RU internal modules. The Loudspeakers coordinates is a small ROM
that keeps the coordinates of all loudspeakers that will be processed from a particular RU. Within each RU, all
loudspeakers are processed iteratively, whereas in every iteration 1024 16-bit audio samples are computed. The
Preprocessor module calculates the initial and final source distances from a particular loudspeaker during a time
frame that is equal to render 1024 samples. For example, assuming a sampling frequency of 48000 Hz, the time

1The Xilinx terminology is employed.
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Fig. 7. Hardware implementation of the WFS rendering module.

TABLE II
VIRTEX6 FCM POST-PLACE-AND-ROUTE RESULTS

Slices DSP Slices BRAM (bytes) FCM Freq. (MHz)
BF (1 chan.) 174 2 23040 300
WFS (1 RU) 1232 26 92160 200

TABLE III
MAXIMUM NUMBER OF FCMS FOR BF AND WFS

FPGA FCM-WFS fit FCM-BF fit
6VLX75T 7 31
6VLX760 36 144

6VSX315T 35 140
6VSX475T 53 212
6VHX250T 24 100
6VHX565T 36 182
V4FX140 12 62

frame will be approximately 1024/48000 ≈ 21.33 msec. Furthermore, based on the initial and final source distances,
the Preprocessor calculates also the source velocity and amplitude decay within this particular time frame. The
Preprocessor requires 142 clock cycles to complete data processing. The WFS Engine module uses the source
velocity and amplitude decay to process all 1024 audio samples. In order to reduce the processing time, within the
WFS Engine there are two Samples Selection Cores (SSCs) submodules that process concurrently 2 samples per
clock cycle, requiring in total 531 cycles to process 1024 samples. An internal fixed point format [33] provides
data accuracy of 99.4% compared to the software implementation. All calculated audio samples are stored back to
the local BRAM.

A complete Immersive-Audio reconfigurable processor was designed and prototyped on a Xilinx Virtex4-based
ML410 board. The processor is separated into two parts, the Sound Acquisition and Sound Rendering. The Sound
Acquisition part utilizes a PowerPC as host processor and the BF hardware accelerator. The Sound Rendering part
utilizes the WFS hardware accelerator, which is connected to a second PowerPC. Further details can be found in
[34].

V. PERFORMANCE ANALYSIS

We used the Xilinx ISE 11.4 and EDK 11.4 CAD tools to develop our custom hardware accelerators. Table II
presents the resource distribution among different processor modules and the maximum operating frequency of the
complete FCM-BF and FCM-WFS accelerators. We should note that for all Virtex6 implementations, we considered
the measured bandwidth of 6400 MB/sec, reported in [35]. Based on these data, Table III suggests how many BF
channels and WFS RUs could fit in the Virtex4 FX140 chip, and the smallest and largest chip of each Virtex6
FPGA family.

Regarding the GPUs that were used during our experiments, we chose chips that would represent a wide range of
the market. For this reason, we used a middle-range Quadro FX1700, a slightly faster GeForce 8600GT, a high-end
GeForce GTX275, and the newest GTX460 that utilizes the Fermi architecture [28] with 2 levels of on-chip cache.
Table IV presents the specifications of the GPUs considered. It can be observed that the 8600GT has the same
number of CUDA cores compared to the FX1700 chip. However, the 8600GT has higher memory bandwidth (BW)
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TABLE IV
GPUS SPECIFICATIONS FOR ALL EXPERIMENTS.

GPU Core CUDA core Memory BW # of CUDA FF-XIV
chip (Mhz) (Mhz) (GB/s) cores Score

FX1700 207 414 12.8 32 694
8600GT 540 1190 22.4 32 898
GTX275 633 1404 127 240 3817
GTX460 675 1350 115.2 336 3716
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Fig. 8. BF execution times for 8 channels and speedup against Core2 Duo.

and faster Core and CUDA core clocks compared to the FX1700. Furthermore, the GTX275 and the GTX460
consist of 240 and 336 CUDA cores respectively, an order of magnitude higher memory bandwidth, and faster
clocks compared to the other two GPUs. In order to test the processing capabilities of each GPU, we installed each
one of them to our system and ran the official Final Fantasy XIV (FF-XIV) benchmark for NVidia GPUs2 on low
resolution. The achieved benchmark score of each GPU is shown to the rightmost column of Table IV. As we can
observe, the 8600GT scored ∼30% higher than the FX1700, while the GTX275 performed 2.7% better than the
GTX460. We should note that no over-clocking was applied to any of the GPUs considered.

In order to test the performance of all platforms, we provided source signals consisting of 540672 audio samples,
divided into 528 1024-sample chunks. Assuming a sampling frequency of 48000 kHz, each iteration should be
calculated in 1024

48000
samples

samples/sec ≈ 21.33 msec. Since there are in total 528 iterations, every hardware platform
that is considered for a real-time audio system must complete all data calculations within 528 iterations ⋅ 21.33

msec
iteration ≈ 11.264 sec.

A. Beamforming results

It was noted in Section II that there are many BF implementations that utilize relatively small microphone arrays.
To challenge our approach, we conducted experiments for all hardware platforms with 8 and 16 channels and up
to 16 sources. Figure 8 depicts the execution times for setups consisting of 8 input channels, mapped onto all
platforms considered. The secondary Y-axis of the same figure illustrates the obtained speedup against the Core2
Duo. It can be observed that all platforms considered can process all data in real time, thus within 11.264 sec, for
up to 8 sources. In the case of 12 sources, the Core2 Duo and the FX1700, which is the simplest of all GPUs,
fail to process data within the time constraint. The 8600GT cannot process all data fast enough when there are 16
sources. In contrast, the GTX275, the GTX460 and the FPGA implementations could be used to build a real-time
system that is capable to extract up to 16 sources. An interesting observation that can be made from the execution
times is that the GTX275 performs equally well to the GTX460.

Similar results were obtained when running the BF application with 16 input channels, as illustrated in Figure 9.
However, the FX1700 failed to process data in real-time for all cases, while the Core2 Duo and 8600GT could be

2http://www.finalfantasyxiv.com/media/benchmark/na/#1
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Fig. 9. BF execution times for 16 channels and speedup against Core2 Duo.

TABLE V
RATIO tGTX275/tFPGA BETWEEN GTX275 AND FPGA PROCESSING TIMES FOR BF AND WFS.

Sources Beamforming channels Sources WFS loudspeakers
↓ 8 8-opt 16 16-opt 32 32-opt 64 64-opt 128 128-opt 212 212-opt ↓ 32 32-opt 64 64-opt 96 96-opt
4 0.31 0.22 0.69 0.49 1.64 1.16 3.56 2.52 7.64 5.41 12.81 9.07 16 0.43 0.31 1.10 0.78 1.46 1.04
8 0.31 0.22 0.70 0.50 1.58 1.12 3.27 2.32 6.73 4.77 11.28 7.99 32 0.64 0.45 1.59 1.13 2.16 1.53

12 0.33 0.23 0.74 0.53 1.54 1.09 3.13 2.22 6.53 4.63 10.78 7.64 48 0.68 0.49 1.66 1.18 2.26 1.60
16 0.36 0.25 0.75 0.53 1.54 1.09 3.10 2.20 6.36 4.50 10.58 7.50 64 0.77 0.54 1.88 1.33 2.54 1.80

Column # → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

used for a real-time BF system when there are up to 4 sources. Again, the GTX275, the GTX460, and the FPGA
implementations were able to perform real-time processing in all cases.

All execution times reported above include the external memory access delays. Each platform has its own
memory hierarchy, which impacts the overall execution time differently. For example, the Core2 Duo has to
access the external memory through the Front Side Bus (FSB) and the motherboard chipset (usually referred
to as North Bridge), while GPUs and FPGAs have direct connection with their own external memory. Therefore,
we measured the memory impact, excluded it from the total execution time, and compared the best hardware
platforms in terms of processing speed. As indicated in the previous comparison, the GTX275, the GTX460 and
the FPGA implementations performed always an order of magnitude better than the other platforms. However, they
are fabricated using a different integration technology; the GTX275 uses an older 55 nm one, while the GTX460
and the FPGA are fabricated using a 40 nm technology. In order to normalize this technology factor, we referred to
the International Technology Roadmap for Semiconductors (ITRS) 2005 report [36] to calculate the percentage ratio
of the GTX275 processing time reduction, assuming that the chip would be fabricated using a 40 nm technology.
Throughout this paper, we refer to it as optimized GTX275. Based on the ITRS report and aware of all the odds
of such an estimation, we could safely assume that the 40 nm technology has potentials for 30% lower execution
time than the 55 nm one. Furthermore, we used the CUDA Visual Profiler 3.1 to measure the achieved memory
throughput, and subtracted it from the total execution time. We calculated that an average of 54.1% of the total
execution time throughout our experiments was spent on accessing the GPU external memory. The remaining time,
which is the actual GPU processing time, was multiplied by a factor of 0.7, in order to be normalized to the 40nm
hypothetical GPU fabrication. For the GTX460, the CUDA Profiler 3.1 does not provide the achieved memory
throughput. For this reason, it has been excluded from our comparison of the processing times.

Columns 1 to 12 in Table V summarize the ratio tGTX275/tFPGA between the GTX275 and the FPGA processing
times, where tGTX275 and tFPGA are the GTX275 and FPGA processing times respectively. In columns with the
opt suffix, the optimized GTX275 is used. If the ratio is smaller than 1.0, the GPU is faster, otherwise the FPGA
performs better. We performed additional experiments from 8 up to 212 channels, which is the maximum number
of FCM-BF channels the largest Virtex6 can fit. As it was already indicated in Table II, each FCM-BF channel
occupies only 2 XtremeDSP slices and 174 regular slices. In Table V, it can be observed that, when the input
channels are 32 or more, the FPGA processes data faster than the optimized GTX275, because all FCM-BFs work
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Fig. 10. WFS execution for 32 loudspeakers and speedup against Core2 Duo.
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Fig. 11. WFS execution for 96 loudspeakers and speedup against Core2 Duo.

concurrently on all input channels. For example, as it is also suggested in Table V, in the case of 212 input channels,
a Virtex6 implementation could process data up to 9 times faster, when 4 sources are extracted, compared to the
optimized GTX275 approach.

B. Wave Field Synthesis results

We conducted experiments with setups of 32 and 96 loudspeakers. Within each different setup, we measured
the performance of all platforms when rendering from 16 to 64 audio sources. For the FPGA implementation, we
consider the largest Virtex6 FPGA chip that can fit up to 53 Rendering Units (RUs) and each RU can drive one
loudspeaker. In cases of more loudspeakers than RUs, the loudspeaker array is processed concurrently in chunks
by 53 RUs.

Figure 10 provides the execution time of all platforms when driving a 32-loudspeaker array. The secondary Y-axis
of the same figure illustrates the achieved speedups for all platforms against the Core2 Duo at 3.0 GHz. For up
to 32 sources, all platforms considered could be employed in a real-time WFS audio system. The Core2 however
fails to meet the timing constraints when the number of audio sources increases to 48. When there are 64 sources,
the FX1700 GPU also processes data slower than the required audio rate. In contrast, the GTX275, GTX460 and
FPGA implementations can process the same data in real-time. Furthermore, Figure 10 suggests that the Virtex6
FPGA can achieve a speedup of more than an order of magnitude compared to the Core2 implementation. In this
case, the FPGA implementation consists of 32 RUs.

Similar results were obtained when running the WFS application under a 96-loudspeaker setup, as suggested in
Figure 11. The Core2 Duo implementation could be used for no more than 16 sources. Furthermore, the two middle-
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ranged GPUs could be used to build a real-time audio system when its specifications require less than 32 audio
sources. However, a GTX275, GTX460 or an FPGA solution could be used even when there are 96 loudspeakers.
Moreover, the GTX275 and GTX460 implementations could process data one order of magnitude faster than the
Core2 one, while the reconfigurable hardware solution achieved a speedup of two orders of magnitude.

From the above results, we can conclude that the latest generation GPUs, such as the GTX275 and the GTX460,
and the custom hardware solutions are the most suitable to build high-end Immersive-Audio real-time systems. In
order to have a better evaluation of the actual processing times, we measured the time spent on memory transactions
and subtract it from the total execution time. Using the CUDA Visual Profiler 3.1 to measure the actual memory
throughput of the WFS application when executed on the GTX275, we calculated that an average of 59.7% of
the total execution time throughout our experiments was spent on accessing the GPU external memory. In order
to normalize the performance of the GTX275 execution time by the technology scaling factor 0.7, as explained in
Section V-A.

Columns 14 to 19 in Table V summarize the ratio tGTX275/tFPGA between the GTX275 and the FPGA processing
times, where tGTX275 and tFPGA are the GTX275 and FPGA processing times respectively. In columns with the opt
suffix, the optimized GTX275 is used. We performed additional experiments with 32, 64 and 96 loudspeakers. It has
been observed that, in the case of a 32-element loudspeaker array the technology optimized GTX275 process data
almost two times faster than the Virtex6 design, even when rendering 64 sources. The FPGA performs poorer than
the GPU, because there are only 32 RUs, thus it is under-utilized. The GPU processes data faster than the FPGA also
when the loudspeaker array is increased to 64 elements and there are less than 26 sources to be rendered. However,
if the number of sources that have to be rendered in real-time is more than 26, then the hardware design processes
data faster. Finally, under the scenario of 96 loudspeakers and 64 real-time sources, the FPGA is approximately
80% faster than the optimized GTX275 GPU.

C. Discussion

In Table VI, we provide the specifications of various audio-system setups that can be found in the literature on
three competitive technologies - DSPs, FPGAs and GPPs. The first three rows refer to systems that utilize the BF
technology. The presented approaches calculate in real-time all filters coefficients and are based on FPGAs and
DSP processors, which require much lower power than a GPP approach. For example, in [11], the authors employ a
four-element microphone array and map their design onto a V4SX55 FPGA. According to the paper, every instance
of the proposed beamformer can process 43463 samples/sec and up to 7 instances can fit into the largest Virtex4 SX
family. Therefore, since the sampling frequency is 16 kHz, ⌊(43463⋅7)/16000⌋ = 19 sources can be extracted in real
time. In [16] the authors use an ADSP21262 processor, which does not consume more than 250 mA. Thus, since
the voltage supply of ADSP21262 is 3.3 V [37], we can assume that the design power requirement is approximately
3.3 V⋅0.25 A = 0.825 W. Furthermore, according to the paper, the DSP is 50% utilized when processing data from
two microphones at 48 kHz sampling rate, or alternatively 48000 samples/sec/input⋅2 inputs = 96000 samples/sec.
Thus, we can assume that 192000 samples/sec can be processed in real-time with 100% processor utilization, which
means ⌊192000/48000⌋ = 4 sources can be extracted in real-time. In [17], the authors present another low-power
solution based on a TMS320C6201 DSP that has a typical power requirement of 1.7 W [38]. Unfortunately, the
authors do not mention the processor utilization, thus we can not derive the maximum number of real-time sources
that could be extracted.

For completeness reasons, in line 4 we provide the number of real-time sources that can be extracted under the
maximum number of input channels supported by the largest chip of an older V4FX FPGA family, considering
only the processing time. Under the same setup, in lines 5 and 6 we provide the number of sources that can be
extracted in real-time when using the largest FPGA from the 6VSX family and the GTX275. Furthermore, in lines
7 and 8 we show the number of supported sources when using the 6VSX and GTX275 respectively under a 212
input-channel setup.

Lines 9 through 11 of Table VI summarize three systems that utilize the WFS technology to render audio sources.
In [22], the authors employ an array of 22 loudspeakers and all data processing is done by a standard Linux PC. The
paper mostly focuses on experiments regarding the correct sound localization and does not provide data regarding
the maximum number of real-time sources that can be rendered. The next two systems are from the SonicEmotion
and Iosono companies and based also on GPPs. A single SonicEmotion system supports up to 64 sources when
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TABLE VI
RELATED WORK SUMMARY FOR BF AND WFS IMPLEMENTATIONS.

Line Reference Algorithms In-Chan Out-Chan Platform Sources
1 [11] BF 4 N/A V4SX55 19
2 [16] BF 2 N/A ADSP21262 4
3 [17] BF 16 N/A TMS320C6201 N/A
4 Virtex4 BF 62 N/A V4FX140 61
5 Virtex6 BF 62 N/A 6VSX475T 92
6 GTX275-40nm BF 62 N/A GPU 46
7 Virtex6 BF 212 N/A 6VSX475T 92
8 GTX275-40nm BF 212 N/A GPU 12
9 [22] WFS N/A 22 x86 N/A

10 [24] WFS N/A 24 x86 64
11 [25] WFS N/A 32 x86 32
12 Virtex4 WFS N/A 384 V4FX140 233
13 Virtex6 WFS N/A 384 6VSX475T 863
14 GTX275-40nm WFS N/A 384 GPU 98
15 [19] BF, WFS 12 10 x86 N/A
16 [20] BF, WFS 26 24 x86 N/A

driving 24 loudspeakers. A single Iosono system supports up to 32 sources when driving 32 loudspeakers. In case
a larger loudspeaker array is required, then additional such units must be cascaded, leading to excessive power
consumption. Again for completeness reasons, in line 12 we provide the number of real-time sources supported
when utilizing the maximum number of RUs that can fit to the largest FPGA of an older V4FX family, considering
only the processing time. Under the same scenario, in lines 13 and 14, we show the maximum number of real-time
sources that are supported using the 6VSX475T and the optimized GTX275.

Finally, the last two rows of Table VI present two academic systems that utilize both BF and WFS. Again,
these systems are based on GPPs and constrain the number of input and output channels to 26 and 24 respectively.
Furthermore, power consumption is again very high since multiple PCs are used to process all input and output
channels.

Based on the discussion above and the experimental results provided in Section V, we can conclude that
DSP approaches can provide a low power solution, however with limited processing power capabilities. GPP
implementations can support more channels than DSPs, however they still can not accommodate complex I/O
setups. Therefore, multi-core platforms that can process data concurrently are much more well-suited for advanced
Immersive-Audio systems. As it was mentioned in Section II-A, the BF is a parallelizable application. Multiple
instances of beamformers can process data under different source apertures and extract all audio sources concurrently.
Consequently, parallel multi-core architectures are well suited for the BF application, which was confirmed by the
results above. It has been shown that, a high-end GTX275, a GTX460 and a FPGA implementation that employs
parallel beamformers, can process data more than an order of magnitude faster compared to a Core2 Duo at 3.0 GHz,
even though the CUDA cores and the FCM-BF clocks are ∼2 and ∼10 times lower respectively. Even better results
were obtained when we conducted experiments with the WFS application mapped onto multi-core architectures.
From the results we observed that high-end GPUs can process WFS data more than an order of magnitude faster
than the Core2 Duo. Furthermore, a highly tiled reconfigurable FCM-WFS implementation consisting of many RUs,
improved performance by two orders of magnitude against the GPP.

We also considered power consumption and platform hardware cost. Power consumption increases dramatically
when the number of microphones or the loudspeaker array becomes very large. For example, as indicated in
Section II-B, in the cinema of Ilmenau, Germany, six desktop PCs are employed to drive a 192-loudspeaker array.
Since a Core2 Duo-based PC consumes approximately 65 Watts of power when fully utilized [39], a system with
6 such PCs would require approximately 6⋅65 = 390 Watts of power only for the processors. In contrast, a single
GTX460 GPU consumes a maximum of 160 Watts [40]. However, in this case, a less powerful host processor would
suffice, since it would not be used for data processing of the algorithms. Thus a GTX460-based platform has the
potential to reduce power consumption by ∼2.4 times. Furthermore, the entire system cost would be also reduced,
since it would substitute six PCs with one only GPU-based unit. Alternatively, employing a Virtex6 FPGA would
further reduce power consumption. Based on the Xilinx XPower utility, a 16-channel FCM-BF and a 1-RU FCM-
WFS prototypes would consume approximately 6 and 5.3 Watts when mapped onto a Virtex6 SX475T. Therefore, we
can conclude that an FPGA based Immersive-Audio design would provide the lowest power consumption solution
among all tested platforms at the price of higher system cost.
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VI. CONCLUSIONS

In this paper, we explored the architectural prospectives of the BF and the WFS technologies. We mapped
both of them onto GPUs, and also designed custom hardware accelerators. We compared the GPU approaches
against our Virtex6-based FPGA solutions and an OpenMP-annotated software run on a Core2 Duo. We also
explored the processing potential of high-end GPUs and FPGAs for BF and WFS. Based on the conducted
experiments, we concluded that high-end GPUs and FPGA solutions are the best choices to develop complex
Immersive-Audio systems utilizing tens of input and output channels. Besides high performance, single-chip GPU
and FPGA implementations can provide more power-effective solutions compared to traditional PC-based designs.
Ultimately, we believe that this work can serve as a guide for choosing the correct approach and hardware platform
to engineers, who consider designing high-end Immersive-Audio systems.
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