On Optimization and Parallelization of Fuzzy Connected Segmentation for
Medical Imaging

Christopher Gammage
Computer Science Dept.
Wayne State University, Detroit, MI
damage @wayne.edu

Abstract

Fuzzy Connectedness is an important image segmenta-
tion routine for image processing of medical images. It is
often used in preparation for surgery and sometimes dur-
ing surgery. It is important to have an algorithm which can
execute very fast, especially in the intra-operative environ-
ment. We have taken code from a popular image processing
toolkit called ITK and ported it to a C environment. We
optimized the implementation to give maximal performance
(giving speedup of 23 times). We attempted three different
levels of parallelization. We found that MPI was not an ef-
ficient method of parallelization as the algorithm is data
dependant and large amounts of communication must be
done. This communication overshadows the speed increase
from doing computation on multiple processors, or nodes
in a cluster. However, some limited speedup over the opti-
mizations was obtained using OpenMP on an SMP system
leading to a speedup of fifty using four processors over the
original ITK implementation.

1. Introduction

The goal of image segmentation is to seperate an image
into several different regions. Each region satisfies some
criterion. The criterion and method for finding features that
fit it are all dependant on the type of segmentation being
done. Segmentation of nontrivial images is one of the most
difficult tasks in image processing [3].

1.1. Segmentation in Medical Imaging

Segmentation is a very important factor in the medical
field [1]. In many medical applications it is important to

This research was supported in part by Michigan Life Science Corri-
dor Grant

Vipin Chaudhary
Institute for Scientific Computing
Wayne State University, Detroit, MI
vipin@wayne.edu

classify an image into different anatomical or pathologi-
cal regions. Usually, the modality of image data is either
MRI (Magnetic Resonance Imaging), CT (Computed To-
mography), PET (Positron Emission Tomography), SPECT
(Single Photon Emission Computed Tomography) or ultra-
sound. However, the quality of segmentation can be im-
proved by combining the images with multimodal registra-
tion [4] and doing multi-spectral segmentation [6, 8, 10].
In MRI and CT brain images, surgeons often want to divide
the image into gray matter, white matter, and CSF (Cerebral
Spinal Fluid).

The need for high speed segmentation plays a very im-
portant role in Computer Assisted surgery. It is important
to have a real-time robust method of segmentation avail-
able at the operation table. Segmentation allows for the fast
analysis of critical information. It also serves as an impor-
tant preprocessing step for the registration of Pre-Operative
MRI data to Intra-Operative MRI data.

2. Fuzzy Connectedness

Fuzzy connectedness is based on the notion of fuzzy
sets[13]. Fuzzy sets are a mathematical way to represent
the uncertainty that we encounter in everyday life [11]. It
was first proposed by Prewitt in [7] that fuzzy subsets are
useful for the segmentation of medical images. Many have
realized that the fuzzy subsets and object notions have sig-
nificant implications in image segmentation [12, 9]. Seg-
mentation using fuzzy subsets is categorized as a clustering
algorithm, which is automated and uses global methods. It
is said that fuzzy subsets represent the best hope for unsu-
pervised segmentation [2, 11].

Segmentation based on fuzzy subsets tries to find the
connectedness between a seed point and every other point
in the image. This connectedness is called the fuzzy con-
nectedness. The resulting set of values of connectivity is
called the fuzzy scene. As Udupa [12] puts it, “Fuzzy Con-
nectedness” captures the “Hanging Togetherness” of pixels.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

With the level of ‘Fuzziness’ in imaging devices, it is nat-
ural to think of segmentation in terms of fuzziness. Unfor-
tunately, the process of finding the fuzzy connectedness of
every pixel in the image with the seed point is not a fast
process [11]. Along each path p there is a “weakest link”
that determines the strength of the connectivity. The con-
nectivity between two pixels can be defined differently de-
pending on the type of data being segmented. The method
we used in our testing is shown in equation (1). Udupa de-
signed two algorithms to overcome the computation cost of
finding fuzzy connectedness. The first, k6, FOFE is based
on dynamic programming and takes a threshold 6, as a pa-
rameter. The second, kK FOFE, shown in Algorithm 1, does
not use a predetermined threshold. x6,FOF is faster be-
cause there is no need to find a best path, as it can terminate
upon reaching the threshold value. However, the second al-
gorithm does hold a powerful advantage. After the fuzzy
scene values have been computed, the 6, can interactively
be adjusted to fine tune the segmentation. We have found
that in computer assisted surgery, this sort of interactivity is
an absolute necessity.

—0.5%((atb)/2—3)2
fu'ZZy(av b) = MaTshort * € a2 (1)

Algorithm 1 kFOE

Input : A 3D Image and a 3D seedpoint
Output: A 3D Fuzzy Scene .S representing connectedness
of each arbitrary pixel to the seedpoint

1: Allocate a 3D image S the same size as the input

2: Set each image value to 0

3: Set the seedpoint voxel to the highest value possible
4: Create an empty queue @

5: Push indexes of the seed’s 6 neighbors to)

6: while () is not empty do

7: Pop an Index I from)

8 In Neighbors(I), find max in S such that ... |

9: if max > S(I) then

10: Set S(I) = max

11: for all Neighbors(I) do
12: Push to)

13: end for

14: end if

15: end while
T see udupa [12] for details

3. Optimizations

We have based our algorithm on the implementation of
kFOFE by the ITK Image Segmentation and Registration

Toolkit (Available at www.itk.org) [5]. Before parallelizing
any algorithm, it is alway best to first make that algorithm’s
implementation as efficient as possible.

The implementation by ITK is a heavily templated C++
code. It was coded for flexibility and not for optimal perfor-
mance. Our first step in optimization was to port the code to
C. We compared the speeds of the C Code and ITK Code.
We chose a test seedpoint in the center of the 3D volume
to segment the white matter from gray matter. The volume
used was a 256 x 256 x 75 MRI brain image, shown in Fig.
1. The output fuzzy scene is shown in Fig. 4. The scene can
be used to very quickly generate binary images at different
threshold values, shown in Figs. 2 and 3.

Using the ITK code, in one case, we found it takes 251
seconds to compute the segmentation results. The C code
replaces the linked-list based queue with an array based
queue. The new code took 136 seconds to complete. This
resulted in a speedup of 1.77 times, where speedup is de-
fined in (2) with T' = execution time. The next step was
to remove the possibility of duplicate items in the Queue,
as suggested by Udupa [12]. This was achieved by creat-
ing a 3D array which represents whether a specific pixel is
in the queue already. Iterating the queue to check for du-
plicates proved to be very slow in comparison. Checking
the 3D array takes the same amount of time regardless of
the size of the queue. This modification allowed the algo-
rithm to complete in 72 seconds and yeilded the same result
as the original ITK results. To further speed the processing
when changed the exponent calculation in equation (1) to
use a lookup table. By changing the size of the lookup table
we get more accurate results. Through experimentation, we
found the correct size of the lookup table needed in order
to get results very similar to what would be givin without a
lookup table. This also gave a significance speedup. By us-
ing the duplicate protection on the queue, the lookup table
and compiler optimizations (loop unrolling and fast math)
we realised a total speedup of 21.47 times from ITK’s code
by without ever using any parallelization techniques (com-
pleting in 11.69 seconds). The speedup without using any
sort of parallelization seems good, however, the demands of
the medical field require real time results.

Tori ina
§ = el ©)

4. Parallelization

We looked at the kK FFOFE parallelization from three an-
gles. The first was from the distributed computing pre-
spective, using MPI. Then we looked at using SMP, with
OpenMP. Lastly, we looked at the hardware level using
SSE2. The first thing to notice about the kFOE algo-
rithm is that it is not data independent. In one example

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Figure 1. Slice 37 of a 256 x 256 x 75 post op- Figure 3. Binary Image, from threshold = 0.75
erative MRI of a brain

Figure 4. Fuzzy Scene after segmentation at
{128,128,37}
Figure 2. Binary Image, from threshold = 0.25

TEEE ':a

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06) COMPUTER
1550-445X/06 $20.00 © 2006 IEEE SOCIETY

Nodes Execution Time
1 (Serial) 27.62s
2 40.48s
3 44.18s
4 48.14s
5 55.19s
6 61.32s
7 68.17s
8 74.44s

Table 1. Execution time on MPI cluster

there were 31 million computations to be done, each taking
1us. Each one of these computations utilizes six unsigned
short values from the image Scene to determine the Fuzzy
Connectedness. It then changes the Scene value at that in-
dex. At each iteration, the Scene is changed, and the most
recent value of the scene neighbors is needed to have cor-
rect calculation. We modified the queue to be divided into
n different queues. Fig. 5 shows our method of splitting
the queues. Each node Py, P,P, gets an equal portion
of the queue, Q14, @24, -.--Qna- They then each process
the data of their assigned queue and output a new queue
Q1p, Q2p, -...Qnp and also a list of changes that needs to be
done to the scene S1, S2,S,. The Scene changes are ap-
plied, and the queues are combined for the next iteration’s
In Queue.

4.1. MPI

As a coarse grained parallelization, we chose to
implement xFOE using MPI for cluster communica-
tion. We implemented the xFOE algorithm on the ISC
cluster of the Wayne State University computing grid
(www.grid.wayne.edu). The WSU ISC Cluster consists
of 16 nodes, each a a dual 2.66 Ghz pentium IV proces-
sor, with 2.5GB RAM connected over a high speed low
latency myrinet network and private 100bit ethernet. We
tried implementing xFOFE on the cluster using different
parallelization methods, but none of them could overcome
the communication and synchronization overhead involved.
The best execution times for our MPI implementation are
shown in Table 1. We can see that as we increase the num-
ber of nodes, the execution time takes longer instead of tak-
ing less time like we would expect. The reason for this is
that the amount of time dedicated towards data transfer and
synchronization overpowers the speedup that we should be
getting. By analyzing the profiling data of a 2-node test
run, we found that on a typical cycle of the algorithm ap-
proximately 50% of the time was spent communicating and
synchronizing. On the first cycles and last, this ratio was
even higher. By increasing the number of nodes, we also
increase the ratio.

Parallel Portion

Out Queue Apply
Scene Changes

Figure 5. Parallelization Method

4.2. OpenMP

OpenMP is a directive based language that uses shared
memory communication. Because of this faster method of
communication we got better results than with MPI. We ran
the OpenMPI version of the algorithm on a sun multipro-
cessor system. we show the execution timings achieved and
the speedup in Fig 6. The speedups were non-linear be-
cause the ability to stop duplicate values from entering the
queue is lessened as we add more parallelism, as each node
is not up to date on the queue data in each other node. Other
performance reductions are due to communication and syn-
chronization overhead. The graphs show the actual speeds
and the ideal parallel performance (without communication
and synchronization overhead). We can see here that on
four nodes, there is a two fold speedup. However, it does
not scale much after that to 2.75 times speedup on eight
nodes.

4.3. SSE2

Our last approach to the parallelization of the kKFOE
Fuzzy Connectedness algorithm was to do more than one
computation at a time on each process. This involves intel’s
SSE2 technology. SSE2 is a set of SIMD (Single Instruc-
tion Multiple Data) instructions that adds support for 64-bit
double-precision floating points. It allows for 64, 32, 16
and 8-bit integer operations on eight 128-bit MMX regis-
ters. This means that multiple computations can be done
in one clock cylcle. Unfortunately, it takes time to pack
and unpack the values into the registers before and after the
processing is done. The amount of time it took for packing
each set was longer than the performance speedup obtained.
This led to no performance change at all.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

8 T T T T T T —) 130

4 120

7 Speedup % 1 110
Execution Time O

6 Ideal Speedup --------- 1 100

Ideal Time 4 90

Speedup

40

Number of CPUS

Figure 6. Execution Time vs. Num CPUS, us-
ing OpenMP

5. Conclusions

In conclusion, we have tried multiple levels of paral-
lelism on the kFFOE algorithm for fuzzy connectedness.
Using optimizations we were able to get 23 times speedup.
Using MPI, we were not able to increase the speed at all, be-
cause of large amounts of communication overhead. Using
openMP we were able to get a speedup of 2.75 on 8 nodes
over the serial version. We also found that using Intel’s
SSE architecture we could not increase the performance at
all. This was due to the overhead of packing and upack-
ing values into registers. We expect further improvement in
OpenMP performance using load balancing. In conclusion
we find that the xk FOFE algorithm is not very suitable for a
high increase in performance via parallelization. However,
we found that by making some simple coding changes to
the ITK implementation we can greatly increase the perfor-
mance to about fifty times using four processors.

Time (seconds)

6. Acknowledgements

We greatly appreciate the help of Dr. Joseph Landman
from Scalable Informatics, LLC from discussion on paral-
lelization to use of hardware.

References

[1] 1. N. Bankman, editor. Handbook of medical imaging. Aca-
demic Press, Inc., Orlando, FL, USA, 2000.

[2] M. Clark, L. Hall, D. Goldgof, R. Velthuizen, F. Murtagh,
and M. Silbiger. Automatic tumor segmentation using
knowledge-based techniques. IEEE Trans. on Medical
Imaging, 17(2):187-201, 1998.

[3] R. C. Gonzalez and R. E. Woods. Digital Image Pro-
cessing. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[4] L. Hill and D. Hawkes. Across-Modality Registration Using
Intensity-Based Cost Functions, chapter 34. In Bankman
[1], 2000.

[5] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The itk soft-
ware guid, 2003.

[6] F. Lucas-Quesada, U. Sinha, and S. Sinha. Segmentation
strategies for breast tumors from dynamic mr images. JMRI,
6:753-763, 1996.

[7] J. Prewitt. Object enhancement and extraction in picture
processing and psychopictorics, pages 75-149. Academic
Press, New York, 1970.

[8] J. Rogowska, K. Preston, G. Hunter, L. Hamberg,
K. Kwong, O. Salonen, and G. Wolf. Applications of simi-
larity mapping in dynamic mri. /[EEE Trans. on Med. Imag.,
14(3):480-486, 1995.

[9] A.Rosenfeld. Fuzzy digital topology. Information and Con-

trol, 40(1):76-87, Jan. 1979.

D. Spielman, M. Sidhu, R. Herfkens, and L. Shortlife. Cor-

relation imaging of the kidney. International SMRM Con-

ference, page 373, 1995.

M. Sutton, J. Bezdek, and T. Cahoon. Image Segmenta-

tion by Fuzzy Clustering: Methods and Issues, chapter 6.

In Bankman [1], 2000.

J. K. Udupa and S. Samarasekera. Fuzzy connectedness and

object definition: Theory, algorithms, and applications in

image segmentation. CVGIP: Graphical Model and Image

Processing, 58(3):246-261, 1996.

[13] L. Zadeh. Fuzzy sets. Inf. and Control, 8:338-353, 1965.

[10]

[11]

[12]

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

