
Neural Network Implementation using CUDA and OpenMP

Honghoon Jang, Anjin Park, Keechul Jung
Department of Digital Media, College of Information Science, Soongsil University

{rollco82,Anjin,kcjung}@ssu.ac.kr

Abstract

Many algorithms for image processing and pattern

recognition have recently been implemented on GPU
(graphic processing unit) for faster computational
times. However, the implementation using GPU
encounters two problems. First, the programmer
should master the fundamentals of the graphics
shading languages that require the prior knowledge on
computer graphics. Second, in a job which needs much
cooperation between CPU and GPU, which is usual in
image processings and pattern recognitions contrary
to the graphics area, CPU should generate raw feature
data for GPU processing as much as possible to
effectively utilize GPU performance. This paper
proposes more quick and efficient implementation of
neural networks on both GPU and multi-core CPU.
We use CUDA (compute unified device architecture)
that can be easily programmed due to its simple C
language-like style instead of GPGPU to solve the first
problem. Moreover, OpenMP (Open Multi-Processing)
is used to concurrently process multiple data with
single instruction on multi-core CPU, which results in
effectively utilizing the memories of GPU. In the
experiments, we implemented neural networks-based
text detection system using the proposed architecture,
and the computational times showed about 15 times
faster than implementation using CPU and about 4
times faster than implementation on only GPU without
OpenMP.

1. Introduction

GPUs (graphic processing units) are much more
effective in utilizing parallelism and pipelining than
general purpose CPUs, as they are designed for high-
performance rendering where repeated operations are
common. In result, the GPUs have recently attracted a
lot of attention in the field of computer vision and
image processing with many repeated operations. For
example, since there are many repeated operations in

implementing NNs (neural networks), it can be quickly
and effectively performed in GPU. Moreover, GPUs
have recently became increasingly competitive as
regards speed, programmability, and price. Therefore,
many algorithms used in the fields of computer vision
and image processing are translated into
implementation on GPU [1-5].

Moreland and Angel [2] implemented FFT (fast
Fourier transform) on GPU, and performed the FFT by
executing a fragment program on every pixel at each
step in a SIMD (single instruction, multiple data)-like
fashion. Mairal et al. [3] implemented stereo matching
algorithm on GPU. Geys and Gool [4] implemented
view synthesis, and the efficiency was accomplished
by the parallel use of the CPU and the GPU. The input
images were projected on a plane sweeping through 3D
space, using the hardware accelerated transformations
available on the GPU and a max-flow algorithm on a
graph was implemented on the CPU to ameliorate the
result by a global optimization. Yang and Welch [5]
implemented image segmentation and smoothing that
is basic arithmetic of computer vision on GPU taking
advantage of register combiner and blending
technology. Moreover, Oh and Jung [1] implemented
neural networks on GPU, which is one of popular
algorithm of pattern recognition algorithm, and the
GPU was used to implement the matrix multiplication
of a neural network to enhance the time performance.

Above mentioned papers [1-5] showed faster
computational performances compared with the
implementations on CPU. However, implementation
on GPU encounters two main problems.

First, the programmer should master the
fundamentals of graphics shading languages that
require the prior knowledge on computer graphics, as
the implementation should be programmed using the
shading languages, such as HLSL included in Direct X
[6], Cg included in nVIDIA [7], and GLSL included in
OpenGL 2.0 [8]. Although languages that can program
on GPU more easily, such as Brook [9], are recently
announced, these languages showed a slower execution
time than previous shading languages [6-8]. Moreover,
the shading languages on the GPU cannot easily access

Digital Image Computing: Techniques and Applications

978-0-7695-3456-5/08 $25.00 © 2008 IEEE

DOI 10.1109/DICTA.2008.82

155

general memories involved in GPU, as they should
access through only texture memory [10].

Second, it is essential to avoid data transfer between
the CPU and GPU as much as possible to take
advantage of efficiency of GPU. Almost all
applications or algorithms used in computer vision and
image processing, which involve a high capacity of
data, cannot be completed in one step on GPU due to
the limited memory of the GPU. Due to this reason,
Fung and Mann [11] explored the creation of a parallel
computer architecture consisting of multiple GPU built
entirely from commodity hardware to simultaneously
process all the data on multiple memories of GPUs.
However, the architecture is not general, as almost all
computers have only one graphics hardware. As an
another approach, the algorithms implemented on CPU
and GPU can be executed in parallel by using a multi-
threaded implementation, which means the next
operation can be processed while the previous one is
still processed [4]. However, it also has a significant
problem that the computational time on GPU is much
faster than on CPU, and thus the GPU waits for
completing the process on CPU. Therefore, it is
essential to transfer data as much as possible from
CPU to GPU to take advantage of efficiency of GPU.
However, in this case, many overheads should be
occurred when the CPU generates the data as much as
possible.

This paper proposes more quick and efficient
implementation on both commodity graphics hardware

and multi-core CPU. We use a new GPU language
CUDA (compute unified device architecture) recently
released from NVIDIA, as the CUDA code is C
language style and has less computational restriction,
while the traditional GPGPU could be programmed
through only a graphics API that requires much special
knowledge on computer graphics. Moreover, we
design the NN using inner product operation in parallel
to be suitable to the CUDA. To reduce the
computational time on CPU, which generates data as
much as possible that will be performed in GPU, we
implement feature extraction module for the NNs using
OpenMP (Open Multi-Processing), which can help to
concurrently process multiple data with single
instruction on multi-core CPU while processing only
one data on GPU. Therefore, the proposed method
minimizes differentiation between two computational
times on only one graphics hardware.

Based on the proposed architecture, we implement a
NN, involving the main problem that is the
computational complexity in the testing stage. Fig. 1
shows an overall flow chart. Given input image, the
function GetConfiguration() extracts features. Here,
feature extraction is processed on the multi-core CPU,
which is performed in parallel to reduce the
computational time on CPU, and the set of extracted
features is transferred to the CUDA. CUDA performs
main operations of NN composed of inner-product
operations and an active function, and we design two
operations using multi-thread and shared memories to

Fig. 1. Overall flow of neural networks using CUDA and Open MP.

156

be suitable to the CUDA. In the experiments, we
implemented NN-based text detection using the
proposed architecture, and the computational times
showed about 20 times faster than implementation
using CPU and about 5 times faster than on only GPU.

The remainder of this paper is organized as follows.
The brief introductions of CUDA and OpenMP are
described in section 2, and implementation of NN on
the proposed architecture is described in section 3.
Some experimental results are presented in section 4,
and the final conclusions are given in section 5.

2. Proposed Architecture

The proposed architecture mainly consists of CUDA
that allows us to program an algorithm executed on
GPU in a C programming language style and OpenMP
that concurrently processes multiple data with single
instruction. Therefore, brief introductions of CUDA
and OpenMP are described in section 2.1 and 2.2,
respectively.

2.1. CUDA

The mechanism of general computation using a
GPU is as follows. The input data is transferred to the
GPU as textures or vertex values. The computation is
then performed by the vertex shader and pixel shader
during a number of rendering passes. The vertex shader
performs a routine for every vertex that involves
computing its position, color, and texture coordinates,
while the pixel shader is performed for every pixel
covered by polygons and outputs the color of the pixel.
The reason why the programmer used texture or vertex
values and vertex or pixel shader is the GPU could
only be programmed through a graphics API, imposing
complex knowledge on computer graphics and the
overhead of an inadequate API to the non-graphics
application.

A CUDA is a new GPU programming language
recently released from NVIDA [10]. The CUDA code
is written in the standard C language with some
extensions related to GPU computation, and thus it can
help to easily program the general computation on
GPU if a programmer has basic knowledge on the
standard C language. Moreover, since the CUDA do
not use the graphics API generally, the overhead for
the non-graphics application, such as basic operations,
should also be reduced.

Moreover, GPU programs can gather data elements
from any part of DRAM, but could not be written in a
general way, which means GPU programs cannot
scatter information to any part of DRAM. It results in

removing a lot of the programming flexibility readily
available on the CPU[10].

The CUDA provides general DRAM memory
addressing for more programming flexibility: both
scatter and gather memory operations. From a
programming perspective, this translates into the
ability to read and write data at any location in DRAM,
like on a CPU. CUDA features a parallel data cache or
on-chip shared memories with very fast general read
and write access, that threads use to share data with
each other. Thus, applications can take advantage of it
by minimizing overfetch and round-trips to DRAM.

We explain basic terminologies to easily understand
the CUDA. As a thread is a basic execution unit, many
threads on GPU are created, and they execute a same
function in parallel. A thread block is a batch of
threads that can cooperate together by efficiently
sharing data through some fast shared memory and
synchronizing their execution to coordinate memory
accesses.

However, CUDA cannot share two memories of
CPU and GPU, which means GPU receives input data
from the CPU to implement operations. To take
advantage of efficiency of GPU, it is essential to avoid
data transmission between the CPU and GPU as much
as possible, and to do this, CPU should generate data
as much as possible. However, in this case, many
computation times to make maximum data in CPU are
required, and thus hinder the effective use of CPU and
GPU architecture. We solve this problem by using
OpenMP that performs the operations in parallel
implementation of CPU, which will be described in
section 2.2.

2.2. OpenMP

The OpenMP is a set of directives for C, C++, and

Fortan programs that make it easier to express shared-
memory parallelism, which was released in 2005 [12].
The advent of commodity inexpensive multi-core
processors and corresponding OpenMP-capable
complier has recently increased the popularity of
OpenMP. The OpenMP consists of two teams: Master
and Slave, and an implementation of multithreading
whereby the master “thread” forks a specified number
of slave “threads” and a task is divided among them.
The threads then run concurrently, with the runtime
environment allocating threads to different processors.
Fig. 2 shows an illustration of multithreading where
the master thread forks off a number of threads that
execute blocks of code in parallel.

The OpenMP indicates how to process the code
block by compiler indicators. The most basic indicator
is ‘#pragma omp parallel’ to indicate parallel regions.
The OpenMP uses a fork-join model as a parallel

157

operation model. The fork-join model starts with initial
single thread, and then two procedures are iteratively
performed; if the parallel regions are reached,
additional thread is constructed, and then operations
are performed on the thread, and if the parallel regions
are closed, the constructed thread are destroyed.
Moreover, the OpenMP provides several useful
routines for the thread: information of activated threads,
setting the number of threads to be used for
parallelization, and the number of maximum threads.
Above mentioned functionalities are collectively
defined in the specification of the OpenMP API. This
specification provides a model for parallel
programming that is portable across shared memory
architectures from different vendors. Compliers from
numerous vendors support the OpenMP API. More
information about OpenMP can be found at the
following web site: http://www.openmp.org/

Fig. 2. Architecture of OpenMP.

In the experiments, when using only CUDA without

OpenMP, computational times that gather data to be
transferred to the GPU take 4/5 of total computational
times. Therefore, the gathering times need to be
reduced as many as possible. The solution to do this is
the OpenMP, as it can help to process multiple data
with same operations in parallel, and thus it can reduce
the overhead for gathering times. In the case of NN,
one operation to extract features is concurrently run
with multiple input data using OpenMP, and then
extracted features are simultaneously sent to the
CUDA.

3. NN Implementation

NN is based on the concept of the workings of the
human brain. There are many different types of NN,
with the more popular being a multilayer perceptron

(MLP), learning vector quantization, radial basis
function, Hopfiled, and self-organizing map.
The current study focuses on implementing the test
stage of the MLP using a CUDA and OpenMP. The
MLP consists of one input layer, one output layer, and
one or more than hidden layer. Nodes of adjacent
layers are usually fully connected, and the mechanism
of general computation for adjacent two layers in the
testing stage consists of two steps: 1) inner-product
operation between weights and input vectors of each
layer (Eq. 1) and 2) then activate function (Eq. 2). ௝݉ ൌ ෍ ௜ݔ௜௝ݓ ൅ ௝ܾ ሺ1ሻ ݎ௝ ൌ ሺ1 ൅ ݁ି௠ೕሻିଵ ሺ2ሻ
In the Eq (1) and (2), the subscript j indexes nodes in
the current layer to be calculated, i indexes the node of
the lower layer connected with the jth node, and wij
denotes the weight at the connection between the ith
and jth nodes. xi is value inputted to ith node, bj the is
the bias term of the jth node, and rj is the output value
of the jth node. This general operation is continually
performed from the first hidden layer to the output
layer. Since another NN is also calculated by the
general operation, the inner-production operation and
activate function, this operation can be easily applied
to another NN.
Moreover, since many inner-product operations can be
replaced with a matrix multiplication, the MLP is more
appropriate for CUDA implementation. As such, the
computation-per-layer can be written as follows:

ࣱ ൌ ൦ इଵ଴ इଵଵ ڮ इଵேइଶ଴ इଶଵ ڮ इଶேڭ ڭ ڰ इெ଴ڭ इெଵ ڮ इெே൪ ൌ ൦ ଵࣱࣱଶࣱڭெ൪,
ࣲ ൌ ൦ 1 1 ڮ 1ईଵଵ ईଵଶ ڮ ईଵ௅ڭ ڭ ڰ ईேଵڭ ईேଶ ڮ ईே௅൪

 ൌ ሾ ଵࣲ ଶࣲ ڮ ௅ࣲሿ,
M ൌ ࣱ ൈ ࣲ

 ൌ ൦ ଵࣱ · ଵࣲ ଵࣱ · ଶࣲ ڮ ଵࣱ · ࣲேଶࣱ · ଵࣲ ଶࣱ · ଶࣲ ڮ ଶࣱ · ࣲேڭ ڭ ڰ ெࣱڭ · ଵࣲ ெࣱ · ଶࣲ ڮ ெࣱ · ࣲே൪

ൌ ൦ ݉ଵଵ ݉ଵଶ ڮ ݉ଵ௅݉ଶଵ ݉ଶଶ ڮ ݉ଶ௅ڭ ڭ ڰ ெଵ݉ڭ ݉ெଶ ڮ ݉ெ௅൪.

ܴ ൌ sigmoidሺܯሻ

 ൌ ൦ 1 ൅ ݁ି௠భభ 1 ൅ ݁ି௠భమ ڮ 1 ൅ ݁ି௠భಽ1 ൅ ݁ି௠మభ 1 ൅ ݁ି௠మమ ڮ 1 ൅ ݁ି௠మಽڭ ڭ ڰ 1ڭ ൅ ݁ି௠ಾభ 1 ൅ ݁ି௠ಾమ ڮ 1 ൅ ݁ି௠ಾಽ൪

where M is the number of nodes in the current layer, N
is the number of nodes in the lower layer, and xij is the

158

ith feature value of the jth input vector. The result Rij is
the output of the ith output node for the jth input vector.
Here, the subscript 0 means the bias term, and this is to
make one matrix multiplication without the summation
term in Eq 1.

When implementing the NN using CUDA, all input
feature data for the NN cannot be transferred into the
memories of the GPU, due to the limited memories of
the GPU. Therefore, the proposed architecture divides
the whole process into two parts. The first part is to
make a suitable size of feature data for the memory of
the GPU, and can also include a feature extraction step
to extract features for the NN. However, this part is
much slower than implementation on the GPU.
Therefore, the OpenMP is used for parallel
implementation of the first step, i.e. making feature
data is concurrently performed on the multi-core CPU.
The second step is to implement the NN using feature
data received from the CPU. Then computational times
of two parts are similar to each other, compared with
implementation without OpenMP. Therefore, the
efficiency of the proposed architecture is accomplished
by the parallel use of the CPU and GPU.

Fig. 3. Operations of NN using CUDA.

Fig. 3 shows matrix multiplication and computation

of sigmoid function using CUDA. Since the CUDA
can effectively compute matrix multiplication by using

shared memories. In general operation in GPU, about
400-600 cycles are required to assess the global
memories, but in memory environment of CUDA, only
4 cycles is required to access the shared memories.
Therefore, the shared memories of the CUDA help to
effectively compute the operations. The sigmoid
function can be performed in parallel by allocating
thread equal to the number of elements of matrix and
then compute the operation in each thread
independently.

4. Experimental Results

All experiments were carried out on an Intel core 2
Quad Q6600 CPU (2.4 GHz) and GeForce 8800 GTX
graphics hardware. OpenMP help to process four sets
of data on CPU in parallel. We evaluated the proposed
method through the NN-based text detection
application, section 4.1 describes the text detection,
and section 4.2 shows result images and time
complexity.

4.1. NN-based Text Detection

Recently, researchers have attempted text-based

retrieval of image and video data using several image
processing techniques [13]. As such, an automatic text
detection algorithm for image data and video
documents is important as a preprocessing stage for
optical character recognition, and an NN-based text
detection method has several advantages over other
methods [13].

Therefore, this subsection briefly describes such a
text detection method, and readers are referred to the
author’s previous publication for more detail [13]. In
the proposed architecture, an NN is used to classify the
pixels of input images, whereby the feature extraction
and pattern recognition stage are integrated in the NN.
The NN then examines local regions looking for text
pixels that may be contained in a text region. Therefore,
1) gray values of the pixels at predefined positions
inside an M×M window over an input frame is
received as the input and 2) a classified image is
generated as the output. After the feature passes the
network, the value of the output node is compared with
a threshold value and the class of each pixel
determined, resulting in a classified image.
Experiments were conducted using an 11×11 input
window size, with the number of nodes in a hidden
layer set at 30.

In the proposed architecture, the first step of
previous sentence was performed on the multi-core
CPU using OpenMP for parallel implementation, and
Fig. 4 shows pseudo codes for the first step. The

159

second step was performed on the GPU, and Fig. 5
shows pseudo codes. In Fig. 5, two threads were
allocated to perform the first step, thus the pseudo code
including two indicators ‘#pragma omp section’ is to
allocate the thread.

for(check everyPixel of image)
{

//Parallel Implementation using OpenMP
 #pragma omp parallel section
 {
 #pragma omp section
 {
 //pixel check in window range
 GetConfigMatrix(cpuData1);

}
 #pragma omp section
 {
 //pixel check in window range
 GetConfigMatrix(cpuData2);
 }

}
//calculate neural net using CUDA

 ForwardCUDA(cpuData1,outputCUDAData);
SaveOutputData(outputCUDAData);
ForwardCUDA(cpuData2,outputCUDAData);
SaveOutputData(outputCUDAData);

}
Fig. 4. Pseudo code for OpenMP performed on
multi-core CPU.

//memory copy from CPU to GPU
cublasSetMatrix(CPUData, CUDAData);

//Result 0 = Weight0 * GPUData
//matrix multiplication of first layer
cublasSgemm(Weight0, CUDAData, Result0);
// sigmoid calculation of first layer
Sigmoid(Result0);

//Result1 = Weight1 * Result0;
// matrix multiplication of second layer
cublasSgemm(Weight1, Result0, Result1);
//sigmoid calculation of second layer
Sigmoid(Result1);

//memory copy from GPU to CPU
cublasGetMatrix(Result1, outputCPUData);

Fig. 5. Pseudo code for NN performed on GPU.

4.2. Result of Text Detection

Fig. 6 shows the result images according to the

image sizes: (a,b) 320×240, (c,d) 571×785, and (e,f)

1152×15466. Figs. 6(b,d,f) show the pixel
classification result for the input image Figs. 6(a,c,e),
where a black pixel denotes a text pixel. The
classification using a GPU produced almost the same
results as without a GPU.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Result images: (a,c,e) input images, and
(b,d,f) result images.

Fig. 7 shows the computational times of Fig. 6,

where x-axis indicates image sizes and y-axis indicates
computational times (sec). As shown in Fig. 7, the
proposed architecture showed about 20 times faster
than the CPU-only and about 5 times faster than the
GPU-only, and the computational times for pixel
classification were significantly reduced using the
proposed method. The reason why the proposed
method showed faster computational times than GPU-
only is we reduced the computational times to generate
the data, which will be processed in GPU, in multi-core

160

CPU using OpenMP. Therefore, we analyzed the
computational times when using OpenMP.

Fig. 8 shows effectiveness of using OpenMP, where
y-axis indicates computational times (msec). If only
CUDA without OpenMP were used to implement NN,
there is no little in differentiation of the computational
times between CPU and GPU, i.e. computational times
of GPU is 8 faster than CPU. The performance of GPU
is maximized by accumulating a large number of input
vectors that is dependent on the GPU configuration,
thus the CPU generates the input vectors as much as
possible, which will processed by GPU in one step.
The OpenMP helped to reduce computational times
processed in CPU, thus can reduce the differentiation
of the computation times. Consequently, the OpenMP
helped to reduce the bottleneck between the CPU and
GPU.

Fig. 7. Computational times of three
architectures.

Fig. 8. Differentiation of computational times
with and without OpenMP.

5. Conclusions

This paper proposed faster and more efficient multi-
threaded implementation on both commodity graphics
hardware and multi-core CPU. A CUDA was used, as
the CUDA code is C language style and has less
computational restriction while the traditional GPU
could be programmed though only a graphics API that
requires much special knowledge about computer
graphics. Moreover, OpenMP, which can help to
concurrently process more than two data with single
instruction on multi-core CPU while processing only
one data on GPU, was used to minimize difference
between two computational times on only one graphics
hardware. Based on the proposed architecture, we
implemented neural network, where feature extraction
is processed on multi-core CPU and main operation of
NN consisting of inner-product operations and a
activate function is processed on CUDA. The
experiments evaluated the proposed implementation
through NN-based text detection, and showed faster
computational times on the proposed architecture than
on only CUDA or CPU.

Acknowledgment: This work was supported by grant
No.(R01-2006-000-11214-0) from the Basic Research
Program of the Korea Science.

6. References

[1] K.S Kyong and K. Jung. “GPU Implementation of Neural
Network”, Pattern Recognition, Vol. 37, Issue 6, pp. 1311-1314,
2004.
[2] K. Moreland and E. Angel. “The FFT on a GPU”, Proceedings of
SIGGRAPH Conference on Graphics Hardware, pp. 112-119, 2003.
[3] J. Mairal, R. Keriven, and A. Chariot. “Fast and Efficient Dense
Variational Stereo on GPU”, Proceedings of International
Symposium on 3D Data Processing, Visualization, and Transmission,
pp. 97-704, 2006.
[4] R. Yang and G. Welch. “Fast Image Segmentation and
Smoothing using Commodity Graphics hardware”, Journal of
Graphics Tools, Vol. 17, issue 4, pp. 91-100, 2002.
[5] J. Fung and S. Man. “OpenVIDIA: Parallel GPU Computer
Vision”, Proceedings of ACM International Conference on
Multimedia, pp. 849-852, 2005.
[6] http://ati.amd.com/developer/
[7] http://developer.nvidia.com/object/cg_toolkit.html/
[8] http://www.opengl.org/documentation/glsl/
[9] http://graphics.stanford.edu/projects/brookgpu/
[10] http://www.nvidia.com/object/cuda_home.html/
[11] J. Fung and S. Mann. “OpenVIDIA: Parallel GPU Computer
Vision”, Proceedings of ACM International Conference on
Multimedia, pp. 849-852, (2001).
[12] http://www.openmp.org/
[13] K. Jung. “Neural Network-based Text Localization in Color
Images”, Pattern Recognition Letters, Vol. 22, issue 4, pp. 1503-
1515, (2001).

161

