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Abstract 
Certain aspects of a computer-generated world have 
always been difficult to simulate. Cloth is one such 
example since, unlike a rigid object, it is flexible and 
subject to many internal and external forces which drive 
the fabric into a natural form. As a consequence of these 
difficulties, realistic simulations demand a significant 
computational cost, which makes parallel computing 
highly advantageous [1]. In this paper we analyze the 
OpenMP-based parallelization of a virtual cloth simulator 
based on multilevel techniques that attempts to simulate 
the manner in which cloth drapes. OpenMP not only 
offers a fast and direct way to treat the hierarchy of data 
structures employed in our simulator, but also achieves 
satisfactory efficiencies on the three different platforms 
studied: a SGI Origin 2000, a SUN HPC 6500 and an 
IBM SP2. 
 
Keywords— Cloth modeling, parallel multilevel 
techniques, OpenMP, MPI. 

 
1 Introduction 

 
The goal of this paper is to analyze the OpenMP-based 
parallelization of a cloth simulator that attempts to 
reproduce the manner in which cloth drapes. Cloth 
modeling has received considerable attention in the 
computer graphics community over the last few years. 
The reasons are numerous, but just to cite a few examples 
(for an extensive survey of the current state of cloth 
modeling and its applications see reference [2]) we can 
mention the appearance of clothing worn by virtual actors, 
which is of considerable interest in the animation-
entertainment industry. The need is even greater within 
the fashion industry, where computer-aided design tools 
have to generate (as accurately as possible) the forms of 
cloth objects so that the designer can easily experiment 
with a variety of fabrics and patterns (on a 3D virtual 
mannequin) before the garment is actually manufactured. 

Modeling realistic clothes can be divided into two 
separate problems; cloth motion modeling and collision 
detection to stop cloth from penetrating into other 
neighboring objects and to prevent collisions between 
different parts of the cloth itself [1,2]. Although our long-

term goal is to study the whole process, in this paper we 
have not considered any collision detection algorithm, our 
analysis being limited to the first stage of the problem.  

Among the different approaches to simulating flexible 
materials we have chosen a physical-based method that 
was first introduced by C. Feymann [3] and subsequently 
improved by H. Ng et al [4,5]. From a numerical point of 
view, this model involves the solution of an optimization 
problem. The simulator has to minimize an energy 
function, which depending on the configuration chosen, 
has to satisfy certain constraints. Following [5], the 
minimization technique we have employed is based on a 
standard Polak-Ribiere method that is accelerated with a 
multilevel scheme [6]. Our algorithm is presented in 
section 2, along with a comparison with the H. Ng 
approach.  

The idea of applying parallel computing to reduce the 
expensive computational cost of cloth simulators and to 
deal with more realistic scenarios is not new [1,5]. In 
section 3 we discuss some key factors that have been 
necessary to consider in order to achieve an efficient 
parallel implementation of our simulator. The main 
difficulties are caused by the multilevel treatment of the 
cloth, which accelerates the convergence of the 
optimization process but which limits the achievable 
parallel efficiency. 

In section 4 we have investigated the performance of 
our simulator on a SGI Origin 2000 (O2K) equipped with 
400 MHz MIPS R12000 processors and 8 Mbytes of L2 
cache, and two different UMA architectures: a SUN HPC 
6500 SMP system (equipped with 400 MHz UltraSPARC-
II processors and 8 Mbytes of L2 cache) and one 16-way 
SMP node of an IBM SP2 system based on the Nighthawk 
Power3 processor (running at 375 MHz and equipped with 
8 Mbytes of L2 cache). Compared to the message-passing 
paradigm, OpenMP not only provides a straightforward 
way to deal with the hierarchy of grid levels, but also 
achieves satisfactory efficiencies. This paper ends with 
some conclusions and hints about future research. 

 
2 Model Problem 

 
The starting-point for our cloth simulator is an energy-
based physical model that describes a piece of cloth as a 
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2D grid in a 3D space. Every grid point C is characterized 
by an individual energy related to certain physical 
parameters (elasticity, bending and density) that can be 
evaluated as a function of the relative position of each grid 
point with its eight surrounding neighbors [2,3,4,5] as 
described by the following equations: 

distance mequilibriu

)
)pppp(

)p(p)p(p
(),p,pangle(p

CzCdensityCGravity

,SE))angle(C,NW(,SW))angle(C,NE(             

S))angle(C,N,(  W))angle(C,E,((C)Bending

))SEC()SWC(                  

)NWC()NEC(r(                 

)SC()NC(                  

)WC()EC((C)Strain

GravityKgBendingKbStrainKsEnergy

=

−⋅−
−⋅−

=

⋅⋅=

−+−+

−+−=

−−+−−

+−−+−−

+−−+−−

+−−+−−=

⋅+⋅+⋅=

σ

σ

ππ

ππ

σσ

σσ

σσ

σσ

0201

0201
arccos210

)()()(

22

22

2

22

22

22

22

22

22

 

 

i 

j 
NE 

SW 

NW 

SE 

N 

W 

S 

E 

C=Center 

 
Fig 1. Surrounding neighbors of a central point. 

 
The final equilibrium form of the cloth can be obtained by 
finding its energy minimum. As in [4], the core of the 
simulator is a point-by-point minimization algorithm that 
modifies (relaxes) one grid point at a time to minimize its 
energy as much as possible. The localness of this 
relaxation process allows an efficient parallelization of the 
algorithm, but from a numerical point of view it may 
present (in general) two important difficulties  [6]:  

1. Slow convergence: in general, point-by-point 
minimization does not handle large-scale features well. 

2. Local minimum: instead of converging to the true 
global minimum. 

Fortunately, we have only observed the first of these in 
our particular problem. The minimization technique 
proposed in [4] copes with this first issue by combining a 
standard Polak-Ribiere method with a multilevel scheme. 
The intuitive idea is to employ coarse grids to determine 
the overall form of the draped cloth, while the finest grid 
or target grid is only necessary to obtain small-scale 
details in the form. Quoting A. Brandt, "the multilevel 
technique supplements the local processing with 
increasingly larger scale processing" [6]. 

The combined algorithm, which we have denoted as 
MPR (Multilevel Polak-Ribiere) can be define as: 

Algorithm 1 MPR (ν1, ν2, γ): Multilevel Polack-Ribiere 
V-cycle for a given target grid, where ν1 and ν2 denote the 
number of iterations of the Polack-Ribiere method on the 
descendant and ascendant parts of the cycle and γ denotes 
the number of iterations on the coarsest grid. 

 
 /* down */ 
for L=0..( num_levels-2) 

relaxation Energy of grid[L] with Polak-
Ribiere Method (ν1  times) 

restrict grid[L] to grid[L+1] 
copy  grid[L] to grid_old[L] 

/* coarsest level */ 
L = num_levels-1 
store grid[L] in grid_old[L] 
relaxation Energy of grid[L] with Polak-Ribiere 

Method (γ  times) 

/* up */ 
for L=(num_levels-2)..0 

difference diff[L+1]=grid[L+1]–grid_old[L+1] 
prolong    diff[L+1] to diff[L] 
update     grid[L] = grid_old[L] + diff[L] 
relax    Energy of grid[L] with Polak-

Ribiere Method (ν2  times) 
 

The transfer operators are used to connect the grid 
levels. The restriction operator transfers values from a 
finer to a coarser level while the prolongation operator 
maps data from a coarser to a finer level. 
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Fig 2. Benefits of the multilevel technique using a 
MPR(1,1,5) cycle. ∆Ε/τ denotes the reduction of 
energy obtained per second on a SGI O2.  

 
Figure 2 shows the benefits of the multilevel technique 

using the average energy reduction per unit time (in 
seconds) as a metric. The results have been obtained with 
a MPR(1,1,5) cycle using a 1282 grid simulation. The 
execution time measurements have been made on a SGI 
O2 workstation equipped with a MIPS R10000 
microprocessor running at 250 MHz. As can be observed, 
going down to the coarsest grid dramatically improves the 
performance of the algorithm. 

To reduce progressive asymmetry errors the point-by-
point minimization employed in [4] was based on a 
Jacobi-like approach for the update of the grid point 
coordinates (following the analogy with the well-known 
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Jacobi iterative method for solving linear systems of 
equations): it used two grids, one for the previous position 
and another for the new one, so that all the new positions 
were computed taking only the original ones into account.  

We have improved the H. Ng approach by overwriting 
the point coordinates as soon as new positions are 
calculated. In this way, not only are the memory 
requirements of the optimization process reduced but so 
too is the execution time to find the solution. However, we 
should remark the order in which points are selected for 
relaxation has to be chosen carefully to avoid asymmetric 
errors. Among the different ordering strategies we have 
investigated, the best results have been obtained using a 
four-color interleaved update and an alternating zebra-like 
ordering (red and black rows are not only interleaved but 
also processed in opposite directions). 

 Figure 3 compares the three different update strategies 
using a MPR(1,1,5) cycle for different grid sizes. Both, 
the zebra and the four-color updates outperform Jacobi, 
the former being the best choice in most cases. Compared 
to Jacobi, the improvement varies from around 40% for a 
1282 cloth to more than 50% for a 10242 size. 
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Fig 3. Performance of three different update 
strategies using as a metric the reduction of 
energy obtained per second (∆Ε/τ) on a SGI O2. 
 

Finally, and just to give an example of the simulator 
capability, figure 4 shows cloth with three fixed points. 
The appearance of the cloth is satisfactory. 

 
Fig 4. Cloth with three fixed points. 

3 Parallel Implementation 
 

One of the main advantages of the point-by-point 
minimization technique lies on its inherent degree of 
parallelism, which can be easily expressed using either 
OpenMP directives (distributing the iterations of the for 
loop that sweeps the different elements of the cloth across 
threads) or the message passing paradigm (applying the 
general principles of domain decomposition). Indeed, the 
relaxation process on the finest level, i.e. without 
considering the multilevel strategy, scales almost linearly 
on the investigated systems using both OpenMP and MPI. 
The contribution of the other components of the MPR 
algorithm (copy, update, difference and grid transfer 
operators) to the execution time are less significant than 
the minimization cost. But in any case, they are also 
parallel by nature and like the relaxation on the finest grid, 
they do not present any kind of complications either.  

 However, given a certain number of processors the 
parallel version is only worthwhile beyond a certain cloth 
size. Due to the multilevel treatment of the cloth, this 
means that from some MPR level, which we have denoted 
as the critical level (to be precise, in our code the critical 
level is the level in which all processes/threads have to 
process two lines), a parallel implementation cannot 
improve the execution time of its sequential counterpart. 
Indeed, it can deteriorate the performance due to an 
unsatisfactory communication- to-computation ratio (from 
a message-passing point of view) or the overheads 
associated with short loops (from an OpenMP point of 
view). This problem, which is very common in other 
multi-level algorithms [7,8], may be alleviated in some 
cases by setting the number of grid levels such that the 
maximum level is the critical one. However, for the MPR 
algorithm, the execution time improvement of this 
approach does not compensate for the numerical 
deterioration of the algorithm (note that, as we have 
shown above, from a numerical point of view by far the 
most efficient strategy is to choose the coarsest level as 
coarse as possible).  
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Fig 5. Time spent by the MPR algorithm on each 
grid level for different grid sizes on a SGI O2. 

 
Fortunately, as figure 5 shows, the time spent by the 

MPR algorithm on the very coarse levels (below the 
critical one) is only a small fraction of the total execution 
time which makes the implementation of an 

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



 
 

agglomeration strategy attractive [7], i. e. adjusting the 
number of processors/threads as the problem size 
decreases and even using only one single processor/thread 
on very coarse levels.  

From a message-passing point of view, this scheme 
makes implementation laborious since at sub-critical 
levels it is necessary to dynamically rearrange the 
communication patterns and grid distributions. However, 
it can be implemented easily with OpenMP, just by 
changing the number of threads below the critical level. 
Our first attempt consisted in controlling the number of 
threads with the omp_set_num_threads function, 
which seems to fit perfectly with this kind of hierarchical 
applications, but the experimental results have been 
disappointing so far. In this work, the agglomeration has 
been implemented through the #pragma omp master 
directive, i.e. from the critical level, only the master 
thread does the calculations.  
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boundaries 
exchange

Global 
all-to-all

communication

Replication 

Sequential 
Processing 

critical level

boundaries 
exchange

Global 
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communication
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Fig 6.  MPR replication-based simulator. 

 
As a reference, we have compared the performance of 

the OMP version with a MPI implementation based on a 
1-D decomposition and a data replication operation (see 
figure 6), so that from the critical level all the processes 
can independently perform the rest of the computation. 
Although it could be argued that a better MPI 
implementation may be obtained by adjusting the number 
of processors as the cloth size decreases, this 
implementation is conceptually more similar to the 
investigated OpenMP version.  

 
4 Experimental Results 

 
4.1 SGI Origin 2000 

 
Figure 7 shows the parallel efficiencies achieved with 

the OpenMP and the MPI simulators in the SGI O2K. As 
can be seen, its NUMA architecture does not impose any 
important performance degradation in the OpenMP 
version, whose efficiencies can be even better than those 
obtained with MPI. Focusing on the OpenMP simulator, 

data distribution can be effectively done when data are 
initiated through the Origin first-touch policy using an 
appropriate parallel loop whose iterations are distributed 
conveniently among the processors. However, we should 
remark this technique only allows a page-based 
distribution (there is not element granularity but page 
granularity), which may be inadequate, especially when 
coarse levels are processed. Obviously, instead of forcing 
a reduction in the degree of parallelism with the master 
directive in order to steer clear from this problem, it can 
be avoided by padding the array to separate data blocks by 
at least one page of memory. However, it is our personal 
opinion that this technique requires a level of manual 
tuning not easily justifiable with the easy-to-parallelize 
principles of OpenMP.  
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Fig 7. Parallel efficiency obtained by the OpenMP 
and MPI simulators on the SGI O2K. 
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Fig 8. Execution time profile obtained with the 
MPI simulator on the SGI O2K. 
 

Figure 8 shows an execution time profile of the MPI-
based simulator for the 1282 cloth size (the smallest size 
considered). The communication cost shown in this figure 
only accounts for the boundary exchange up to the critical 
level, while the replication cost accounts for the global 
communications required to replicate data and the 
computations below the critical level (i.e. computations 
that cannot be done in parallel). As can be seen, 
replication cost is the main reason behind the poor 
performance exhibited in the sixteen-processor case. This 
measure explains why the OpenMP version achieves 
better performance in this case, despite the problems 
mentioned above. For larger cloth sizes, the impact of the 
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data replication is not so important since its overhead (in 
absolute values) is independent of the cloth size (note that 
the size of the critical level only depends on the number of 
processors). For the sixteen-processor simulation for 
example, replication cost ranges from the significant 45% 
illustrated in figure 5 to a mere 5% for the 5122 cloth size.  

Finally, it is also interesting to note that the boundary-
exchange related cost is not an important issue in this 
case. For small problem sizes, it is insignificant compared 
to the replication cost (for the 1282 case, it just represents 
a mere 7% in the sixteen-processor simulation), while for 
large problem sizes they are of the same order.  

 
4.2 Sun HPC 6500 

 
Figure 9 shows the efficiency data obtained in the SUN 
HPC 6500 system.  Results are (qualitatively) very similar 
to those obtained in the SGI O2K, i.e. for small problem 
sizes OpenMP outperforms MPI due to the replication 
cost (see figure 10), while for large problem sizes, the 
overhead associated with data replication becomes 
insignificant and the MPI simulator achieves better 
performance. 
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Fig 9. Parallel efficiency obtained by the OpenMP 
and MPI simulators on the SUN HPC 6500. 
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Fig 10. Execution time profile obtained with the 
MPI simulator on the SUN HPC 6500. 

 
However as could be expected, OpenMP scales better 

in this system than in SGI O2K due to the benefits of the 
UMA architecture: even for the 1282 problem, OpenMP 
achieves a satisfactory efficiency of about 0.67 in the 

sixteen-processor case. In addition, the benefits of the 
agglomeration technique (i.e. using the master directive) 
experienced in the SGI O2K are in this case almost 
negligible. 

Regarding the MPI version and compared to the SGI 
O2K, the communication and replication costs are slightly 
better in this system although we should note that the 
computation cost is around 50-70 % lower in the SGI 
O2K (see figure 13). 
 
4.3 IBM SP2 
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Fig 11. Parallel efficiency obtained by the 
OpenMP and MPI  simulators on the IBM SP2. 
 
Figure 11 shows the parallel efficiency obtained on a 16-
way SMP node of an IBM SP2 system. Unlike the other 
systems under study, OpenMP has always outperformed 
MPI, although the performance becomes similar as the 
problem size increases. The results for the OpenMP 
version are very similar to those obtained on the SUN 
HPC system, the benefits of the agglomeration technique 
also being negligible in this case.  
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Fig 12. Execution time profile obtained with the 
MPI simulator on a SMP node of an IBM SP2. 

 
Regarding the MPI version (see figure 12), replication 

also limits the performance for small cloth sizes. 
However, the communication cost of the MPI version is 
larger than in the other systems. For example, for the 5122 
size, the sixteen-processor simulation expends 20% of the 
execution time in communication above the critical level, 
while for other systems the percentage is only around 
10%. 
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4.4 Performance Comparison 
 

Finally, we have compared the results obtained from the 
three systems using as a metric the execution time gain 
with regard to the SUN HPC system. 
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Fig 13. Gains in the SGI O2K and the IBM SP2 
compared to the SUN HPC 6500 using OpenMP 
(on the left) and MPI (on the right). 
 

As figure 13 shows, the performance of the SP2 
system using OpenMP is qualitatively similar to the SUN 
HPC but with an improvement in the execution time of 
about 60-70%. In the SGI O2K, the gain also starts as 
70%, but it drops with the number of processors, reaching 
40% for the sixteen-processor case. 

For the MPI simulator (figure 13), the results are just 
the opposite. In the SGI system the gain remains above 
60%, while in the SP2 it drops linearly with the number of 
processors due to the communication cost. 
 
5 Conclusions and Future Research 

 
To sum up the previous sections, the overall objective of 
our research is to develop a realistic cloth simulator. 
Parallel computing is highly recommended for this 
problem in order to reduce the expensive computational 
cost and deal with more realistic scenarios. As other 
hierarchical applications, what limits the scalability of the 
MPR algorithm is the multilevel treatment of the cloth. In 
any case, for the model problem studied, OpenMP offers 
an effortless way to get a parallel version of the code and 
also achieves satisfactory efficiencies using up to 16 
processors in the three different investigated platforms.  

In the IBM SP2, the OpenMP version has always 
achieved better results than the MPI simulator. However, 
in the SGI O2K and the SUN HPC 6500, the message-
passing version of the simulator outperforms its OpenMP 
counterpart for large problem sizes. The page-based 
decomposition of the SGI O2K only limits its 
performance of the OpenMP version when the ratio 
between the cloth size and the number of threads is small. 
The main problem of the MPI version is the cost of data 
replication, but this cost only depends on the number of 
processors, which makes this overhead insignificant for 
large problem sizes.  

However we should remark that for moderate-size 
parallelism, which is the target of this research (the size of 
current departmental servers, which is the most common 
computing platform on CAD-CAM environments, ranges 
from 4-way to 16-way SMP system) the differences in 
performance do not justify the extra coding effort required 
by MPI.  

Finally, we should note that the algorithm presented in 
this paper has to be considered as the building block of a 
more general simulator that has to include collision 
detection and to allow multi-block simulations. Indeed, 
we are currently studying a multi-block MPR algorithm 
where the cloth is divided into a set of pieces that are 
treated by the MPR algorithm independently (apart from 
the block connections). In this way, the simulator can deal 
with geometric complexities and can be applied to more 
general cloth samples than rectangular grids.  
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