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Abstract—Nowadays, NVIDIA’s CUDA is a general purpose 
scalable parallel programming model for writing highly parallel 
applications. It provides several key abstractions – a hierarchy of 
thread blocks, shared memory, and barrier synchronization. This 
model has proven quite successful at programming 
multithreaded many core GPUs and scales transparently to 
hundreds of cores: scientists throughout industry and academia 
are already using CUDA to achieve dramatic speedups on 
production and research codes. In this paper, we propose a 
hybrid parallel programming approach using hybrid CUDA and 
MPI programming, which partition loop iterations according to 
the number of C1060 GPU nodes in a GPU cluster which consists 
of one C1060 and one S1070. Loop iterations assigned to one MPI 
process are processed in parallel by CUDA run by the processor 
cores in the same computational node. 

Keywords: CUDA, GPU, MPI, OpenMP, hybrid, parallel 
programming 

I.  INTRODUCTION  
Nowadays, NVIDIA’s CUDA [1, 16] is a general purpose 

scalable parallel programming model for writing highly 
parallel applications. It provides several key abstractions – a 
hierarchy of thread blocks, shared memory, and barrier 
synchronization. This model has proven quite successful at 
programming multithreaded many core GPUs and scales 
transparently to hundreds of cores: scientists throughout 
industry and academia are already using CUDA [1, 16] to 
achieve dramatic speedups on production and research codes. 
In NVDIA the CUDA chip, all to the core of hundreds of ways 
to construct their chips, in here we will try to use NVIDIA to 
provide computing equipment for parallel computing. 

This paper proposes a solution to not only simplify the use 
of hardware acceleration in conventional general purpose 
applications, but also to keep the application code portable. In 
this paper, we propose a parallel programming approach using 
hybrid CUDA, OpenMP and MPI [3] programming, which 
partition loop iterations according to the performance 
weighting of multi-core [4] nodes in a cluster. Because 
iterations assigned to one MPI process are processed in 
parallel by OpenMP threads run by the processor cores in the 
same computational node, the number of loop iterations 
allocated to one computational node at each scheduling step 
depends on the number of processor cores in that node. 

In this paper, we propose a general approach that uses 
performance functions to estimate performance weights for 
each node. To verify the proposed approach, a heterogeneous 
cluster and a homogeneous cluster were built. In our 

implementation, the master node also participates in 
computation, whereas in previous schemes, only slave nodes 
do computation work. Empirical results show that in 
heterogeneous and homogeneous clusters environments, the 
proposed approach improved performance over all previous 
schemes. 

The rest of this paper is organized as follows. In Section 2, 
we introduce several typical and well-known self-scheduling 
schemes, and a famous benchmark used to analyze computer 
system performance. In Section 3, we define our model and 
describe our approach. Our system configuration is then 
specified in Section 4, and experimental results for three types 
of application program are presented. Concluding remarks and 
future work are given in Section 5. 

II. BACKGROUND REVIEW  

A. History of  GPU and CUDA 
In the past, we have to use more than one computer to 

multiple CPU parallel computing, as shown in the last chip in 
the history of the beginning of the show does not need a lot of 
computation, then gradually the need for the game and even 
the graphics were and the need for 3D, 3D accelerator card 
appeared, and gradually we began to display chip for 
processing, began to show separate chips, and even made a 
similar in their CPU chips, that is GPU.  

We know that GPU computing could be used to get the 
answers we want, but why do we choose to use the GPU? This 
slide shows the current CPU and GPU comparison. First, we 
can see only a maximum of eight core CPU now, but the GPU 
has grown to 260 core, the core number, we'll know a lot of 
parallel programs for GPU computing, despite his relatively 
low frequency of core, we I believe a large number of parallel 
computing power could be weaker than a single issue. Next, 
we know that there are within the GPU memory, and more 
access to main memory and GPU CPU GPU access on the 
memory capacity, we find that the speed of accessing GPU 
faster than CPU by 10 times, a whole worse 90GB / s, This is 
quite alarming gap, of course, this also means that when 
computing the time required to access large amounts of data 
can have a good GPU to improve. 

CPU using advanced flow control such as branch predict or 
delay branch and a large cache to reduce memory access 
latency, and GPU's cache and a relatively small number of 
flow control nor his simple, so the method is to use a lot of 
GPU computing devices to cover up the problem of memory 
latency, that is, assuming an access memory GPU takes 5 
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seconds of the time, but if there are 100 thread simultaneous 
access to, the time is 5 seconds, but the assumption that CPU 
time memory access time is 0.1 seconds, if the 100 thread 
access, the time is 10 seconds, therefore, GPU parallel 
processing can be used to hide even in access memory than 
CPU speed. GPU is designed such that more transistors are 
devoted to data processing rather than data caching and flow 
control, as schematically illustrated by Figure 1.   

Therefore, we in the arithmetic logic by GPU advantage, 
trying to use NVIDIA's multi-core available to help us a lot of 
computation, and we will provide NVIDIA with so many core 
programs, and NVIDIA Corporation to provide the API of 
parallel programming large number of operations to carry out.  

We must use the form provided by NVIDIA Corporation 
GPU computing to run it? Not really. We can use NVIDIA 
CUDA, ATI CTM and apple made OpenCL (Open Computing 
Language), is the development of CUDA is one of the earliest 
and most people at this stage in the language but with the 
NVIDIA CUDA only supports its own graphics card, from 
where we You can see at this stage to use GPU graphics card 
with the operator of almost all of NVIDIA, ATI also has 
developed its own language of CTM, APPLE also proposed 
OpenCL (Open Computing Language), which OpenCL has 
been supported by NVIDIA and ATI, but ATI CTM has also 
given up the language of another, by the use of the previous 
relationship between the GPU, usually only support single 
precision floating-point operations, and in science, precision is 
a very important indicator, therefore, introduced this year 
computing graphics card has to support a Double precision 
floating-point operations. 

  
Figure 1: The CPU Devotes More Transistors to Data Processing 

 

B.  CUDA Programming  
CUDA (an acronym for Compute Unified Device 

Architecture) is a parallel computing [2] architecture 
developed by NVIDIA. CUDA is the computing engine in 
NVIDIA graphics processing units or GPUs that is accessible 
to software developers through industry standard 
programming languages. The CUDA software stack is 
composed of several layers as illustrated in Figure 2: a 
hardware driver, an application programming interface (API) 
and its runtime, and two higher-level mathematical libraries of 
common usage, CUFFT [17] and CUBLAS [18]. The 
hardware has been designed to support lightweight driver and 
runtime layers, resulting in high performance. CUDA 
architecture supports a range of computational interfaces 
including OpenGL [9] and Direct Compute. CUDA’s parallel 
programming model is designed to overcome this challenge 
while maintaining a low learning curve for programmers 

familiar with standard programming languages such as C. At 
its core are three key abstractions – a hierarchy of thread 
groups, shared memories, and barrier synchronization – that 
are simply exposed to the programmer as a minimal set of 
language extensions. 

These abstractions provide fine-grained data parallelism 
and thread parallelism, nested within coarse-grained data 
parallelism and task parallelism. They guide the programmer 
to partition the problem into coarse sub-problems that can be 
solved independently in parallel, and then into finer pieces that 
can be solved cooperatively in parallel. Such a decomposition 
preserves language expressivity by allowing threads to 
cooperate when solving each sub-problem, and at the same 
time enables transparent scalability since each sub-problem 
can be scheduled to be solved on any of the available 
processor cores: A compiled CUDA program can therefore 
execute on any number of processor cores, and only the 
runtime system needs to know the physical processor count. 

 

 
Figure 2: Compute Unified Device Architecture Software Stack 

 

C. CUDA Processing  flow  
In follow illustration, CUDA processing flow is described 

as Figure 3 [16]. The first step: copy data from main memory 
to GPU memory, second: CPU instructs the process to GPU, 
third: GPU execute parallel in each core, finally: copy the 
result from GPU memory to main memory.  

D. Run and Build CUDA on Ubuntu  
In this session, we will describe how to build CUDA on 

Linux Ubuntu OS. 

• Go to NVIDIA official web site to download CUDA 
toolkit, CUDA SDK and CUDA SDK for Linux. 

• Exit X-Window and install NVIDIA Driver then 
execute CUDA toolkit and SDK install run files. 

$ sudo apt-get install libglu1-mesa-dev libxmu-dev libglui-dev 
libX11-dev libXi-dev build-essential gcc-4.1 g++-4.1 
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• Change directory to /usr/bin and remove gcc, g++, 
i486-linux-gnu-gcc-4.3, i486-linux-gnu-g++-4.3, and 
links simply because most of the sample codes do not 
support gcc 4.3, you can do this by execute the 
following commands. 

 

 
Figure 3: Processing flow on CUDA from Wiki [16] 

 
$ cd /usr/bin 

$ sudo rm gcc i486-linux-gnu-gcc g++ i486-linux-gnu-g++ 

$ sudo ln -s gcc-4.1 gcc;sudo ln -s g++-4.1 g++ 

$ sudo ln -s i486-linux-gnu-g++-4.1 i486-linux-gnu-g++ 

$ sudo ln -s i486-linux-gnu-gcc-4.1 i486-linux-gnu-gcc 

$ sudo echo /usr/local/cuda/lib >>/etc/ld.so.conf 

$ sudo ldconfig 

• Go to the directory which you choose cuda SDK to 
install to. Here use ~/NVIDIA_CUDA_SDK as 
example,then execute make to compile sample code, 
the executable file will leave in bin/linux/release/ 

$ cd ~/NVIDIA_CUDA_SDK;make 

$ cd bin/linux/release/ 

E. OpenMP Programming  
In contrast, Open Multi-Processing (OpenMP) [6], a kind of 

shared memory architecture API [35], provides a multi-
threaded capacity. A loop can be parallelized easily by 

invoking subroutine calls from OpenMP thread libraries and 
inserting the OpenMP compiler directives. In this way, the 
threads can obtain new tasks, the un-processed loop iterations, 
directly from local shared memory. 

OpenMP is an open specification for shared memory 
parallelism. The basic idea behind OpenMP is data-shared 
parallel execution. It consists of a set of compiler directives, 
callable runtime library routines and environment variables 
that extend FORTRAN, C and C++ programs. OpenMP is 
portable across the shared memory architecture. The unit of 
workers in OpenMP is threads. It works well, when accessing 
shared data costs you nothing. Every thread can access a 
variable in shared cache or RAM. 

The OpenMP (Open Multi-Processing) is an application 
programming interface (API) that supports multi-platform 
shared memory multiprocessing programming in C, C++ and 
FORTRAN on much architecture, including UNIX and 
Microsoft Windows platforms. It consists of a set of compiler 
directives, library routines, and environment variables that 
influence run-time behavior. 

F. Combining MPI and CUDA  
The simplest way forward is to use nvcc for everything. 

The nvcc compiler wrapper is somewhat more complex than 
the typical mpicc compiler wrapper, so it's easier to make MPI 
code into .cu and compile with nvcc than the other way 
around. A sample make file might resemble: 

[arnoldg@ac14 mpi-gpu]$  cat Makefile  

  MPICC      := nvcc -Xptxas -v  

  MPI_INCLUDES    := /usr/mpi/intel/mvapich2-1.2p1/include  

  MPI_LIBS   := /usr/mpi/intel/mvapich2-1.2p1/lib  

%.o : %.cu  

  $(MPICC) -I$(MPI_INCLUDES) -o $@ -c $<  

mpi_hello_gpu : vecadd.o  mpi_hello_gpu.o  

  $(MPICC) -L$(MPI_LIBS) -lmpich -o $@ *.o  

clean :  

  rm vecadd.o mpi_hello_gpu.o  

all : mpi_hello_gpu 

Source code files as follow: 
[arnoldg@ac14 mpi-gpu]$  cat mpi_hello_gpu.cu  

  #include <mpi.h>  

  #include <stdio.h>  

  #include <stdlib.h>  

  #define PPN 4  

  #define INTARRAYLEN 65535  

  #define BCASTREPS 1000  

int main(int argc, char  *argv[])  

  {  

  int bcastme[INTARRAYLEN], ranksum;  

  int rank, size, len;  

  int gpudevice;  

  int vecadd(int, int);  

  char name[MPI_MAX_PROCESSOR_NAME];  
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        MPI_Init(&argc, &argv);  

  MPI_Comm_rank(MPI_COMM_WORLD,  &rank);  

  MPI_Comm_size(MPI_COMM_WORLD,  &size);  

  MPI_Get_processor_name(name, &len);  

     // do some MPI work, showing MPI and CUDA being run 
from one  routine  

  if (rank == 0) { bcastme[3]=3; }  

  for (int i=0; i<BCASTREPS; i++)  

  {  

  MPI_Bcast(bcastme, INTARRAYLEN, MPI_INT, 0,  
MPI_COMM_WORLD);  

  }  

     // modulo is useful in determining unique gpu device 
ids if  ranks  

  // are packed into nodes and not assigned in round robin  
fashion  

   

  gpudevice= rank % PPN;  

  printf("rank %d of %d on %s received bcastme[3]=%d [gpu  
%d]\n", rank, size, name,bcastme[3], gpudevice);  

      

  vecadd(gpudevice, rank);  

     // more MPI work showing MPI is functional after CUDA  

  MPI_Reduce(&rank, &ranksum, 1,  MPI_INT, MPI_SUM, 0, 
MPI_COMM_WORLD);  

  if (rank == 0) { printf("ranksum= %d\n", ranksum); }  

     MPI_Finalize();  

  }  

  [arnoldg@ac14 mpi-gpu]$ 

Parameters for passing the MPI rank and selecting a gpu 
were added to vecadd. 

[arnoldg@ac14 mpi-gpu]$  cat vecadd.cu  

  // Kernel definition  

  __global__ void  vecAdd(float* A, float* B, float* C)  

  {  

  int i = threadIdx.x;  

  A[i]=0;  

  B[i]=i;  

  C[i] = A[i] + B[i];  

  }  

#include <stdio.h>  

  #define SIZE 10  

  #define KERNELINVOKES  5000000  

  int vecadd(int  gpudevice, int rank)  

  {  

  int devcheck(int, int);  

  devcheck(gpudevice, rank);  

    float A[SIZE], B[SIZE], C[SIZE];  

  // Kernel invocation  

    float *devPtrA;  

  float *devPtrB;  

  float *devPtrC;  

  int memsize= SIZE * sizeof(float);  

    cudaMalloc((void**)&devPtrA, memsize);  

  cudaMalloc((void**)&devPtrB, memsize);  

  cudaMalloc((void**)&devPtrC, memsize);  

  cudaMemcpy(devPtrA, A, memsize,  cudaMemcpyHostToDevice);  

  cudaMemcpy(devPtrB, B, memsize,  cudaMemcpyHostToDevice);  

  for (int i=0; i<KERNELINVOKES; i++)  

  {  

  vecAdd<<<1,  gpudevice>>>(devPtrA, devPtrB, devPtrC);  

  }  

  cudaMemcpy(C, devPtrC, memsize,  cudaMemcpyDeviceToHost);  

  // calculate only up to  gpudevice to show the unique 
output  

  // of each rank's kernel  launch  

  for (int i=0; i<gpudevice; i++)  

  printf("rank %d: C[%d]=%f\n",rank,i,C[i]);  

  cudaFree(devPtrA);  

  cudaFree(devPtrA);  

  cudaFree(devPtrA);  

  }  

int devcheck(int  gpudevice, int rank)  

  {  

  int device_count=0;  

  int device;   // used with cudaGetDevice() to verify 
cudaSetDevice()  

  cudaGetDeviceCount( &device_count);  

  if (gpudevice >= device_count)  

  {  

  printf("gpudevice >=  device_count ... exiting\n");  

  exit(1);  

  }  

  cudaError_t cudareturn;  

  cudaDeviceProp deviceProp;  

  cudaGetDeviceProperties(&deviceProp,  gpudevice);  

  if (deviceProp.warpSize <= 1)  

  {  

  printf("rank %d: warning, CUDA Device Emulation (CPU)  
detected, exiting\n", rank);  

  exit(1);  

  }  

  cudareturn=cudaSetDevice(gpudevice);  

  if (cudareturn == cudaErrorInvalidDevice)  

  {  

  perror("cudaSetDevice returned  cudaErrorInvalidDevice");  

  }  

  else  

  {  

  cudaGetDevice(&device);  

  printf("rank %d:  cudaGetDevice()=%d\n",rank,device);  

  }  

}  

  [arnoldg@ac14 mpi-gpu]$ 
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III. SYSTEM HARDWARE

A. Tesla C1060 GPU Computing Processor 
The NVIDIA® Tesla™ C1060 transfor

into a high-performance computer that out
cluster. This gives technical profession
computing resource at their desk-side that i
more energy-efficient than a shared cluster 
The NVIDIA® Tesla™ C1060 computing
which consists of 240 cores is a PCI Expre
computing add-in card based on the NV
graphics processing unit (GPU). This boa
high-performance computing (HPC) solution
systems. The Tesla C1060 [15] is capable 
[13] of processing performance and comes st
of GDDR3 memory at 102 GB/s bandwidth. 

A computer system with an available PCI
is required for the Tesla C1060. For the best 
between the host processor and the Te
recommended (but not required) that the 
installed in a PCI Express ×16 Gen2 slot. T
based on the massively parallel, many-core
which is coupled with the standard CUDA
[14] environment to simplify many-core prog

B. Tesla S1070 GPU Computing System  
The NVIDIA® Tesla™ S1070 [12] c

speeds the transition to energy-efficient p
[2]. With 960 processor cores and a standar
simplifies application development, Tesla 
solve the world’s most important compu
more quickly and accurately. The NVIDIA
Computing System is a 1U [12] rack-mount
Tesla T10 computing processors. This system
or two host systems via one or two PCI E
Host Interface Card (HIC) [5] is used to 
Express cable to a host. The host int
compatible with both PCI Express 1x and
systems. 

The Tesla S1070 GPU computing system
T10 GPU from NVIDIA. It can be connecte
system via two PCI Express connections
connected to two separate host systems via
connection to each host. Each NVID
corresponding PCI Express cable connects t
GPUs in the Tesla S1070. If only one PCI
connected to the Tesla S1070, only two of 
used. To connect all four GPUs in a Tesla 
host system, the host must have two avail
slots and be configured with two cables. 

IV. EXPERIMENTAL RESUL

We built a heterogeneous GPC cluster 
Tesla C1060 and a Tesla S1070, each with
NIC interconnected via a D-LINK DGS
switch. To verify our approach, illust
environment, and describe the terminology fo
we implemented programs with MPI/Open

E  
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for our application, 
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that the performance of GPU
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Figure 6: Sorting numbers 640 times from 65,536 to 16,777,216 floating point 

numbers. 
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