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Abstract

 The Space Surveillance Network and Analysis Model 
(SSNAM) is an Air Force Space Command (AFSPC) 
model, which provides the capability to analyze and 
architect Space Surveillance Network (SSN) Force 
Structure.  To provide these capabilities SSNAM supports 
two types of simulations: Catalog Maintenance, and 
Special Events (Launch, On-Orbit Events, and Breakup).  
There are many configuration options available with 
SSNAM: models for all the sensors currently in the SSN to 
include space based and ground based sensors, hours of 
operation by sensor, track capacity by sensor, models for 
sensors yet to be created, user defined weather 
conditions, National Aeronautical and Space 
Administration catalog growth model including space 
debris, and solar flux just to name a few.   
 SSNAM is a large software system.  It is written in 
Java, C/C++, and FORTRAN (77 & 95), represents over 
a million lines of code, and employs a web-based, load-
sharing architecture to decrease simulation runtime.  
Catalog Maintenance simulations are both 
computationally and input/output (I/O) intensive.  A 
typical Catalog Maintenance simulation (10K to 35K 
satellites simulated over a 90 day period) will generate 
over a terabyte of data, during the course of a simulation, 
which is reduced down to approximately 1.5 gigabytes.  
Depending on simulation configuration, runtimes can 
range from 12 to 48 hours on a 16 node, PC network 
cluster.
 Because of the high computational demands of 
SSNAM Catalog Maintenance simulations and the 
anticipation of transitioning SSNAM to model the 
maintenance of an special perturbation (SP) catalog, the 

SSNAM system was ported to run on Maui High 
Performance Computing Center (MHPCC) platforms.  
This port resulted in at least a three-fold increase in 
performance for all currently parallelized processing in 
SSNAM.  This paper provides an overview of the SSNAM 
application, its web based, load sharing architecture, the 
effort involved with porting Java and FORTRAN to 
MHPCC platforms, the approach and implementation for 
parallelizing the SP Tasker, and the resulting 
performance gains. 

1.  Background 

 SSNAM is a networked computer simulation model 
developed under the sponsorship of AFSPC.   The 
purpose of SSNAM is to provide an analysis model to 
perform “end-to-end” simulations, re-enactments, and 
studies of space surveillance events and missions to aid in 
understanding the performance, response, and processing 
characteristics of the SSN.  SSNAM provides a capability 
to evaluate changes to the SSN relative to upgrades to 
sensors, down time of sensors, deletion of sensors, or 
addition of new sensors.  SSNAM also provides the 
capability to assess the impact of catalog growth.  Impact 
is evaluated relative to Catalog Maintenance and Special 
Event (Launch, Breakup, and On-Orbit) processing 
missions.  The performance of the current system is 
measured via a set of recognized parameters routinely 
taken from daily operations.   
 SSNAM is specifically designed to answer the 
following kinds of questions:  

a. What If I Shut Down a Sensor? 
b. What If I Add a New Sensor or Modify an 

Existing Sensor? 
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c. What If I Add a Space-Based Constellation Or 
Change Constellation Configuration? 

d. What If I Move a Sensor? 
e. What If I Grow the Satellite Catalog to a Future 

Configuration?  What If I Add a Debris Catalog? 
f. What If I Change Sensor Operating Hours? 
g. What If I Change Tasking? 
h. What If I Change Sensor Responses? 

 Thus, the object of the catalog maintenance 
simulations is to assess the quality of the satellite catalog 
resulting from various proposed changes to the SSN 
and/or catalog population.  Prior to the creation of 
SSNAM, AFSPC manually assessed changes as a result 
of SSN impacts simply by subtracting benefit from 
contribution.   

2.  Motivation 

 In order to achieve the required model fidelity for 
catalog maintenance simulation, SSNAM executes the 
entire catalog maintenance loop as it is run in Cheyenne 
Mountain - only daily SSN observation input is simulated.  
Actual operational software catalog maintenance routines 
are integrated into SSNAM.  These include: the daily 
Tasker and the Astro Standard algorithms required for 
catalog maintenance.  Astrodynamic Standard algorithms 
are also used for generation of simulated daily 
observations. 
 The Figure 1 depicts the high level control flow 
through a SSNAM Catalog Maintenance Simulation.  
Each SSNAM simulation is coordinated and controlled 
via the SSNAM Central Server Executive (EXEC).  On 
receipt of the Start Simulation request the EXEC first 
acquires and verifies the Starting Conditions for the 
simulation.  Then the EXEC allocates, activates, and 
populates the computational resources designated for the 
simulation.   
 Once the computational resources are ready the 
Tasker is initialized and invoked to generate the tasking 
request for the first simulation day.  This tasking request 
is then used by the Loop to simulate the Response to 
Tasking.  This is done by propagating each satellite 
through the geometric coverage of each tasked sensor 
(Perfect Observation Generation), simulating B3 
Observations from each pass through each sensor’s 
coverage (Observation Thinning and Noising), 
maintaining an Observation database for each satellite and 
updating the orbital elements (Sequential Differential 
Corrections), and then updating the Truth model (SP state 
vectors) and storing critical information for Simulation 
Evaluation (VMAG calculations, metrics, and stats).  The 
observations generated for each satellite are then returned 
to the Tasker for evaluation and for generating the 
Tasking Request for the next simulation day.  This 

process is then repeated for the number of simulation days 
requested by the user, typically 60 to 90 days.  After the 
simulation is completed the results from each simulation 
day are evaluated and then stored for later analysis. 
 This is a complicated problem.  As already 
mentioned, SSNAM Catalog Maintenance simulations are 
computationally and I/O intensive.  The goal is to reduce 
catalog maintenance simulation times so that 90 day 
simulations can be started at the end of a business day and 
complete over night for analysis the next business day.  
Porting SSNAM to the MHPCC supercomputing 
environment aids in this goal and will be required to 
model SP catalog maintenance. 
 The SSNAM architecture provided further motivation 
for SSNAM as a candidate to port to the MHPCC.  
SSNAM is architected using a simple web-based 
architecture framework—a web-based, open system 
design yields a programming language and platform 
independent system consisting of highly portable software 
that could be readily migrated to the MHPCC 
supercomputing environment. 

3.  Development 

 The initial SSNAM prototype was developed in the 
late 1990s and the very first execution of this model 
required 36 hours to simulate two days on a single, mid 
90s vintage SGI workstation.  With a performance ratio of 
18 hours per simulation day something had to change in 
order to evaluate SSN changes using SSNAM in a timely 
fashion.  Since this time, the computational and I/O 
demands of the SSNAM Model have increased, while at 
the same time, processor performance and throughput 
have increased.  At the writing of this paper, if one 
SSNAM simulation day was executed on a single Hoku 
CPU (3 GHZ, 64-bit OPERTON) it would take on 
average approximately 100 minutes to complete with a 
performance ratio of 1.67 hours per simulation day.  
Although today’s technology yields a significantly higher 
performance ratio over the original SGI workstation, it 
would still require over six days for a 90 day simulation 
to complete. 
 The architectural approach used within SSNAM to 
decrease runtime is Load Sharing.  The SSNAM Central 
Executive divides the satellite catalog across a collection 
of computational nodes dedicated for SSNAM simulation 
runs.  The Executive also level loads the distribution 
across the cluster by taking into account the performance 
characteristics of each node.  Although this approach 
involves a relatively straight forward implementation 
strategy, there are a number of performance 
considerations which must be addressed.  First, it is 
important to use an efficient, scalable messaging and 
control mechanism.  Without this, the performance cost of 
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managing a multi-node simulation can exceed the savings 
offered by the node cluster.  Secondly, it is important to 
design the software to be as platform independent as 
possible.  From a performance perspective there are a 
number of reasons for preferring platform independence: 
being able to assemble a cluster from whatever 
computational resources available (usually this is a 
heterogeneous collection), and to be able to upgrade 
cluster components individually as new/faster platforms 
become available.  The following list highlights several 
key design and development decisions made to achieve 
efficient messaging and platform independence: 

The Central and Distributed Executives 
communicate via a Servlet based, multi-threaded, 
HTTP(S)/HTML messaging application 
programming interface (API) 
Java is used for the framework and data 
management components  
FORTRAN is used for all the computationally 
intensive components 
Any operating system specific aspects are 
handled as either runtime settable parameters or 
via command procedures 

 These design and implementation choices have 
proved invaluable over the years.  The first Load Shared 
implementation of SSNAM ran on one SGI (from the 
original prototype), one Sun, and six PCs.  On later 
funding cycles sufficient resources were available to 
purchase additional PCs and now there are two SSNAM 
labs in Colorado Springs, each with 16 PC network 
clusters.  Early on, we phased out the SGI and the Sun 
platforms because they contributed very little to 
decreasing runtime when compared to the much faster 
PCs.

4.  Porting SSNAM to the MHPCC 

 While most of the work was accomplished in 
Colorado Springs, the SSNAM team made two trips to 
Maui to port SSNAM code to MHPCC platforms.  The 
first trip focused on porting the Distributed Server 
components, with an emphasis on performance 
characterization.  The second trip focused on fully 
installing SSNAM for usage from Colorado Springs and 
the associated security setup for the HTTPS messaging.   
 On the first trip, June 2005, members of the SSNAM 
technical team traveled to Maui in order to conduct the 
initial port of SSNAM to the MHPCC.  The SSNAM 
team and MHPCC personnel collaborated on porting 
SSNAM to two platforms:  IBM P3 and P4.  The porting 
effort was accomplished during the first two days with the 
remaining time focused on optimizing and tuning 
SSNAM to run on other MHPCC hardware.  For the 
initial effort only the Distributed Server components of 

SSNAM were ported (indicated by the light yellow shapes 
in Figure 2).  The SSNAM Central server and SGP4 
Tasker ran on a laptop brought from Colorado Springs.  
The diagram in Figure 2 depicts the high level SSNAM 
architecture and the components ported to the MHPCC 
hardware. 
 The porting effort was divided in two concurrent 
paths and was completed in about 1.5 calendar days.  The 
first path focused on getting the Java Distributed Server 
running on the target hardware.  Since this code is written 
in Java, and Java SE Development Kit (JDK) 1.4 was 
available on the target platforms, the application ran with 
little difficulty.  An installation script was created to 
support various re-configurations of SSNAM in order to 
explore runtime optimizations. 
 The second path focused on getting the FORTRAN 
applications built, validated, and optimized on MHPCC’s 
IBM Power4 platforms.  Before the port to the MHPCC, 
SSNAM simulations were conducted entirely on 
Windows platforms.  As such, the main problems 
encountered during the two-day porting effort were all 
related to the UNIX-based operating system differences 
with Windows, mostly case sensitivity and file separator 
characters.  These problems manifested themselves in 
three areas:  

Inconsistent data file name case 
Inconsistent FORTRAN include statement case 
Java “public static final” qualifier for the file 
separator character 

 Because the primary focus was porting SSNAM 
Distributed Server components to MHPCC hardware, 
simulation runs were limited to single day tests.  This 
maximized the amount of time available for exploring 
optimization approaches for full SSNAM simulation runs.  
The following chart summarizes the results of the single 
day runs. 
 The Figure 3 clearly indicates that using a judicious1

number of Nodes (and CPUs per node) decreases the 
amount of time required to conduct a SSNAM run, that is, 
Load Sharing works for this type of application.   One of 
the limiting factors encountered while exploring various 
approaches was the PC laptop used for hosting the 
SSNAM Central Server.  Because the laptop was not a 
Windows server it was limited on the number of 
concurrent network connections; hence, we never ran 
more than 12 Distributed Server applications at one time. 

1 Judicious.  Since SSNAM is both CPU & I/O intensive it is beneficial 
to isolate SSNAM processing on a CPU/Disk pair.  However, when one 
node has multiple CPUs all sharing one disk a tradeoff decision emerges 
regarding the actual number of SSNAM Distributed Servers to install 
per node.  Using both CPUs per Hoku node increases runtime 
performance by less than a 10% over using only one CPU per node.  But 
remember that Hoku is shared by multiple users, so generally speaking, 
25 nodes can be allocated for use faster than 50 nodes. 
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 The second trip, Oct 2005, provided a full installation 
of SSNAM on the MHPCC supercomputer, Hoku.  This 
installation required the addition of two Windows PC 
servers to host two SSNAM Central Server applications.  
The second server acts as a backup to the primary server 
and allows for running concurrent SSNAM runs.  And to 
support the two Windows servers two Hoku nodes were 
reconfigured as dedicated SSNAM Central Server 
proxies, this done in support of MHPCC security 
requirements.  Finally, in order to meet the no-clear-text-
messages security requirement all SSNAM web protocols 
were augmented to use HTTPS (and Java Secure Socket 
Layer APIs) in order to encrypt the inter-server, clear text 
HTML messages.  It is now a runtime switch in SSNAM 
whether of not to use secure sockets for communication. 
 Figure 4 depicts the Primary processing components 
in SSNAM and their respective contribution to the overall 
time for a given simulation: the Tasker (in this case the 
GP Tasker), the Loop, and Evaluation.  The timing 
metrics for this chart are from a baseline SSNAM 
simulation designed specifically to compare the 
performance difference between Hoku and the PC Cluster 
in Colorado Springs.  This 60 day simulation consisted of 
the GP Tasker2, the Space Surveillance Network as it 
existed in 2005, and a 10k satellite catalog.     
 The Hoku 50 run only required allocating 25 nodes.  
The SSNAM Central Server installs one SSNAM 
Distributed Server on each of the two CPUs available per 
node.  Figure 4 shows that the Hoku 50 ran the Loop 
processing more than three times faster than the COS 16 
PCs.  This reveals good linear scaling with the Load 
Sharing framework.  However, the Figure 5 reveals that 
50 CPUs, for this particular SSNAM simulation, is the 
maximum number of CPUs which can be allocated before 
linear scaling begins to break down. 
 The reason for the breakdown in linear scaling is due 
to the technique used to manage the inter-server 
messaging: each server is commanded one at a time from 
a single thread.  A prototype was conducted on this year’s 
funding in which the inter-server messages were managed 
in separate threads thereby lowering the overhead 
substantially.  Initial results look promising in 
maintaining linear scaling if all the CPUs, on all the nodes 
on Hoku are used (over 250 CPUs).  This modification is 
planned for next year’s funding. 

2 The SP Tasker is being integrated in SSNAM under FY06 funding and 
as part of the integration effort it is being restructured to use the SSNAM 
Load Sharing framework.  We anticipate presenting the results of this 
effort at AMOS 2007.  At the time of writing this paper the only 
SSNAM component which is Load Shared is the Loop processing.

5.  Parallelizing the SP Tasker 

 For SSNAM to continue to model accurately the 
current operational environment, the SP Tasker was 
integrated into SSNAM on the 2006 funding cycle.  In the 
operational environment the SP Tasker is hosted on an 
SGI platform and requires between one to three hours of 
processing time to execute depending on various 
configuration options.  When the SP Tasker executes on 
the SSNAM Windows server it takes approximately 30 
minutes when run against a 10K satellite catalog.  At this 
rate it requires over 45 hours of processing time just for 
the SP Tasker.  Parallelizing the SP Tasker became 
necessary to keep catalog simulation times reasonable. 
 The SP Tasker software architecture is structured to 
readily facilitate parallelization of one its primary 
functional areas:  Probability of Detection (PoD), which 
takes well over 80% of the overall processing time.  Since 
the PoD calculations are generated for a predetermined set 
of sensors these calculations are independent can 
therefore be parallelized using the same load sharing 
technique as other parts of SSNAM.  The Figure 6 chart 
depicts the performance gains of load sharing the SP 
Tasker. 

6.  Summary 

 Porting SSNAM to run on MHPCC computational 
resources has proved beneficial for the SSNAM user 
community.  This effort allows SSNAM simulations to be 
completed in half3 the time required to run the same 
simulation on one of the Colorado Springs PC clusters.  
However, with the dual Central Server configuration two 
SSNAM simulations can be run concurrently.  Running 
concurrent SSNAM simulations on Hoku has the net 
effect of decreasing run times by 75%.   

3 Remember, as of the writing of this paper the only load shared 
SSNAM component is the Loop processing; the GP Tasker is single 
threaded and, as figure 4 indicates, requires about the same time in 
Colorado Springs as it does on Hoku.  The 16 CPU Loop in Colorado 
Springs runs about 3.5 times slower than the 50 CPU Loop on Hoku.   
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