
Towards a Very High Bandwidth Wireless Battery Powered Device

John Glossner, David Routenberg,
Erdem Hokenek, and Mayan Moudgill

Brewster, NY 10509

Michael J. Schulte and Pablo I. Balzola
EECS Department

Sandbridge Technologies Lehigh University
Bethlehem, PA 18015

Stamatis Vassiliadis
Computer Engineering Laboratory

Delft University of Technology
Delft, The Netherlands

Abstract

We discuss the hardware and software challenges in
building a 2 Mbit per second wireless battery powered com-
munications device. Of primary importance is power dissi-
pation. To achieve aggressive power targets, a host of new
techniques are required at all levels of the design hierarchy.
Techniques for parallelizing saturating arithmetic will be-
come important because of the software optimizations they
enable. Highly configurable programmable structures will
enable multiprotocol SOC solutions. To program complex
SOCs, new compiler techniques will be required. Hardware
implementations will need to be intimately aware of these
software techniques. In particular, both signal processing
code written in C and control code written in Java will drive
new compilation techniques to enable broadband 3G wire-
less systems.

Figure 1. DSP Performance vs. Power

1. Introduction

High-speed communications are proliferating[101 and
digital signal processors (DSPs) are accelerating this trend.
DSPs have become a ubiquitous enabler for integration of
audio, video, and communications[9]. Furthennore, DSPs
are the driving force accelerating wireless communications.

Figure 1 shows DSP performance in Millions of Multi-
ply Accumulates per Second (MMACs) vs. Power in mil-
liwatts (mW). It is evident that most DSPs fall below the
1 MMAC/mW line. A few recent DSP announcements
have pushed the power/performance limits to nearly 50 M-
MAC/mW.

Tremendous hardware and software challenges exist to
realize a 2Mbps wireless battery powered device. First,

power dissipation constraints are requiring new techniques
at every stage of design - architecture, microarchitecture,
software, algorithm design, logic design, circuit design, and
process design. With performance requirements exploding
as bandwidth demand increases, power conscious design
becomes more difficult. SOC integration and low voltage
process technologies will contribute to lower power system-
on-a-chip (SOC) integrated circuits (ICs) but are insuffi-
cient as the only solution for streaming multimedia.

Second, DSP applications are becoming more complex.
In wireless communications, GSM and IS-54 data rates
were limited to less than 15 Kbps. Future third-generation
(3G) systems may provide data rates more than 100 times
the previous rates. Higher communication rates are accel-
erating higher DSP processing requirements. Complexity is
driving the need to program applications in high-level lan-
guages. In the past, when only small kernels were required

3
0-7695-1056-6/01 $10.00 0 2001 IEEE

to execute on a DSP, it was acceptable to program in as-
sembly language. Today, resource constraints prohibit these
practices.

Third, Java may become the dominant programming
paradigm for 3G systems. NTT DoCoMo recently rolled
out Java-based services for its cellular subscribers and
hardware solutions for efficient Java execution are being
proposed[37].

Fourth, unlike many past developments, hardware de-
signers will need to understand the complexities of software
systems so that compilation techniques can be effective.
With a large number of standards both existing and pro-
posed for wireless communications, a programmable plat-
form will be required for timely implementation.

Fifth, embedded and DSP wireless applications have dis-
tinct requirements when compared with general purpose
processors [22]. The predominant algorithmic difference
is that inner loops are easily described as vectors of moder-
ate length. A key point is that the native datatype is often
fixed-point fraction. This is in distinct contrast to general
purpose processors (and most high-level languages) which
operate on integer datatypes.

Finally, in addition to algorithmic differences, most D-
SPs are deployed in embedded environments where real-
time constraints are prevalent. Real-time behavior has a
dominant influence in the design of DSPs [28]. Whereas
general-purpose applications can often manage with vari-
able latency response, DSP applications, in contrast, should
be able to precisely guarantee the latencies within the sys-
tem.

In this paper we explore both hardware and software
challenges in designing a high performance ultra-low power
2 Mbps wireless battery operated device. In the first section
we explore hardware techniques for accelerating wireless
systems. In the second section we explore software tech-
niques for developing very complex applications. We then
conclude with some directions we anticipate to be important
for ubiquitous communications.

2. Hardware Productivity

Hardware advances for power efficient computing are
critical to realizing very high bandwidth battery operated
devices. The constraints on power consumption in these
systems place a heavy burden on hardware designers. Com-
pounding this difficulty is the fact the applications are be-
coming more complex and require sophisticated software
productivity. In this section we describe two hardware tech-
niques that enable higher software productivity.

2.1 Parallel Saturating Arithmetic Units

Many DSP applications, including GSM speech coder-
s, perform millions of saturating arithmetic operations per
second [20]. With saturating arithmetic, a result that is too
large or too small to represent is saturated to the most pos-
itive or most negative representable number, respectively
[22]. GSM speech coders and several other DSP applica-
tions have inner loops that perform saturating dot products
on long vectors, with saturation after each arithmetic oper-
ation.

The GSM standards require that the results produced
by GSM speech coders be identical to the results pro-
duced when the operations are performed serially [8]. Since
saturating arithmetic operations are not associative, high-
performance DSPs with several MAC units have to exe-
cute these operations sequentially to maintain GSM compli-
ance. This significantly degrades performance and energy
efficiency, since additional cycles are needed to guarantee
GSM compliant results [36].

Hardware support for parallel saturating arithmetic im-
proves the performance, energy efficiency, and numerical
integrity of many DSP applications, by giving DSP com-
pilers the opportunity to parallelize loops that contain sat-
urating arithmetic operations, while maintaining bit-exact
results. In [36] , designs are presented for a saturating adder,
multiplier, single MAC unit, and dual MAC unit. Since each
of these units has only one fast carry-propagate adder on the
critical path, they can execute in a single cycle.

The dual MAC unit presented in [36] performs two sat-
urating MAC operations in parallel and accumulates their
results with saturation. Saturation detection and selection
logic ensures that the output of the dual MAC unit is iden-
tical to the result of the operations performed serially with
saturation after each multiplication and each addition. Al-
though this approach works well for two parallel MAC unit-
s, increasing the number of parallel MAC units beyond two
significantly increases area, delay, and power dissipation.

In [29], an alternative approach is presented for design-
ing processors that perform saturating dot products. In the
first cycle, m saturating multipliers compute saturated prod-
ucts in parallel. In the next cycle, an (m + 1)-input saturat-
ing multioperand adder (SMA) combines the outputs from
each of the multiply units, and m new saturated products
are computed. By pipelining the design and adding a feed-
back path, m additional elements of a saturating dot product
can be generated and added every cycle. This approach is
shown in Figure 2. Each saturating multipliers computes

where < R > indicates that R is saturated. The SMA com-

4

Figure 2. Parallel Saturating Arithmetic Units.

putes

Zm+l =<< . . . < PI + P2 > +. . . + P, > +Pm+l >
(2)

When the first m saturated products are added, PI is set
to zero. In the remaining cycles, PI is set to Zm+l from
the previous computation. Thus, a p-element saturating dot
product completes in I + [p /ml cycles.

Figure 3 shows the design of an optimized n-bit, 5-input
SMA that uses the design methodology presented in [29].
The SMA is designed so that it has only one fast carry-
propagate adder (CPA) on its worst case delay path, yet pro-
duces the same results that would be obtained if saturation
were performed after each addition. An optimized m-input
SMA units, uses (m - 1) V-GEN units, (m2 - 37n + 2)/2
carry-save adders (CSAs), and (m - 1) CPAs to compute
the m temporary sums, TI to T,, as

m.

(3)
j=i+l

where Vi = spi spi spi . . . spi, spi is the sign-bit of Pi,
and VI = PI. It also uses (m2 - 3m + 2) / 2 sign-detection
circuits (SDCs), (m - 1) overflow detection logics (ODLs),
(m2 - 3 m + 2)/2 1-bit Muxes, and (m - 1) n-bit Muxes
to determine which saturated additions overflow and to se-
lect the correct temporary sum. The signal oi indicates that
overflow occurs after the i th saturated addition. The worst
case delay path is equal to the delay of (m - 2) CSAs, plus
one CPA, plus (71c - I) Muxes, plus one ODL.

To decrease the worst case delay of the SMA, the feed-
back value PI = &+I can be kept in carry-save format
until the entire dot product is computed. This approach is
shown in Figure 4, where the feedback value Z:, is repre-
sented using a sum vector ZSs, a carry vector ZCs, and
a sign-bit sz5. With this approach, the CPAs are changed
to SDCs, the feedback register and result selection Muxes

Figure 3. Optimized 5-Input Saturating Multi-
operand Adder.

grow from n bits to 2n + 1 bits, and an additional CSA and
CPA are required. Since the SDC plus the additional CSA
have less delay than a CPA, the overall delay is reduced.

Area and delay estimates were made for 32-bit versions
of the optimized 5-input SMA and the optimized 5-input S-
MA with carry-save feedback (SMA-WCSF) using VHDL
models, LSI Logic's 0.6 micron LCA300K gate amay li-
brary, and the Leonard0 synthesis tool from Exemplar Log-
ic. The optimized 5-input SMA requires 11,097 equivalent
gates and has a worst case delay of 12.76 ns. The optimized
5-input SMA-WCSF requires 12,578 equivalent gates and
has a worst case delay of 10.92 ns. A 16-bit saturating MAC
unit implemented in the same technology requires equiva-
lent 10,873 gates and has a worst case delay of 12.08 n-
s. Compared to the 5-input SMA, the 5-input SMA-WCSF
requires 13.3% more equivalent gates and has 14.48 less
delay.

Figure 4. Optimized 5-Input Saturating Multi-
operand Adder With Carry-Save Feedback.

2.2 Reconfigurable Computing

Diverse protocol requirements are driving the need for
flexibility in hardware. Such versatility is a necessary prop-
erty to accelerate communication and data transport proto-
cols. Future wireless systems will be required to execute
previous standards as well as multiple 3G standards. This
requires a programmable approach.

Various approaches to programmability include automat-
ic generation of processors and toolsets, hardware units that

5

can be reconfigured for a family of functions, and dynamic
FPGAs which can morph their functionality based on the
task being executed. Because of their flexibility, recon-
fgurable processors will be utilized where dynamic range
varies significantly and in applications where the precision
of operations is nonstandard. In the longer term, if com-
piler technology can be exploited, FPGA fabrics such as
PipeRench have an opportunity to significantly influence
present computing paradigms[lS].

3 Software Productivity

In the past, when only small kemels were required to
execute on a DSP, it was acceptable to program in assem-
bly language. Fifteen years ago, DSP applications only re-
quired about one thousand lines of C code. However, future
generations of DSP applications, particularly 3G wireless,
are anticipated to require one hundred thousand lines of C
code. The rate of complexity is increasing 10x every 10
years. If a particular DSP is 70% compilable, that implies
30,000 lines of C code must still be hand translated into
assembly code. Even at 90% compilability, the number of
lines of C code to be hand translated is still equivalent to
the complexity of DSP applications of just a few years ago.
In the future, when the first 1 million line DSP application
appears, it will no longer be feasible to consider any hand
programmed assembly language DSP.

3.1 DSP Compilation Issues

There are a number of issues that must be addressed in
designing a DSP compiler. First, there is a fundamental mis-
match between DSP datatypes and C language constructs.
A basic data-type in DSPs is a saturating fractional fixed-
point representation. C language constructs, however, de-
fine integer modulo arithmetic. This forces the programmer
to explicitly program saturation operations. The compiler
must then deconstruct these idioms to recognize the under-
lying fixed-point operations.

A second problem for compilers is that previous DSP ar-
chitectures were not designed with compilability as a goal.
Future hardware techniques will require intimate coupling
with software techniques to provide for efficient DSP com-
pilation.

3.2 DSP Compilation Techniques

A number of solutions have been proposed to amelio-
rate the DSP compilation problem. First, special language
extensions have been proposed [21. 231. Typical addition-
s may include special type support for 16-bit data types
(Q15 formats), saturation types, multiple memory spaces.
and SIMD parallel execution support. These additions often

imply a special compiler, and the code may not be emulated
easily on multiple platforms. As a result, special language
constructs have not been successful.

Second, due to the programming burden of traditional
DSPs, large libraries are typically built up over time. Of-
ten more than 1000 functions are provided, including FIR
filters, FFTs, convolutions, DCTs, and other computation-
ally intensive kernels. The software burden to generate li-
braries is high but they can be reused for many applications.
With this approach, control code can be programmed in C
and the computationally intensive signal processing func-
tions are called through these libraries. This methodology
breaks down when the number of lines of C code is large.

Third, when programming in a high-level language such
as C, a programmer would often like to take advantage of
a specific instruction available in an architecture. Intrinsics
were developed because C does not have a mechanism for
describing specific instructions. In their rudimentary form,
an intrinsic is an asm statement. It has the appearance of a
function call in C source code, but is replaced during com-
pilation by a programmer-specified sequence of lower-level
instructions [2].

Early intrinsic efforts, like inlined asm statements, inhib-
ited DSP compilers from optimizing code sequences [6]. A
DSP C compiler could not know the semantics and side ef-
fects of the assembly language constructs. Other solutions
which attempted to convey side-effect free instructions have
been proposed [2]. These solutions all introduced archi-
tecturally dependent modifications to the original C source.
Intrinsics which eliminated these barriers were explored in
[3]. This technique represented the operation in the inter-
mediate representation of the compiler. With the seman-
tics of each intrinsic well know to the intermediate format,
optimizations with the intrinsic functions were easily en-
abled. This provided speedups of more than 6x. The main
detractor of intrinsics is that it moves the assembly language
programming burden to the compiler writers. More impor-
tantly, each new application may still need a new intrinsic
library. This further constrains limited software resources.

3.3 Future DSP Compilation Directions

Future DSP compilers will use a technique called seman-
tic analysis. In semantic analysis, a sophisticated compiler
must search for the meaning of a sequence of C language
constructs. A programmer writes C code in an architecture
independent manner focusing primarily on the function to
be implemented. If DSP operations are required, the pro-
grammer implements them using standard modulo C arith-
metic. The compiler then analyzes the C code, automatical-
ly extracts the DSP operations and synthesizes optimized
DSP code without the excess operations required to specify
DSP arithmetic in C code. This technique has a significant

6

software productivity gain over intrinsic functions.
Another challenge DSP compiler writers face is paral-

lelism extraction. Early VLIW machines alleviated the bur-
den from the compiler by allowing full orthogonality of in-
struction selection. Unfortunately this led to code-bloat and
excess power consumption. SIMD execution units will be
used in modem architectures. However, a vectorizing com-
piler is required to extract this parallelism. Worse, outer
loops must often also be vectorized to allow inner loop vec-
torization.

3.4 Java

Future 3G wireless systems will make significant use of
Java. NTT DoCoMo is already providing Java-based ser-
vices and may require all 3G systems to support Java[37].

Java is a C++ like programming language designed for
general-purpose object-oriented programming[171. An ap-
peal for the usage of such a language is its “write once, run
anywhere” philosophy [18]. This is accomplished by pro-
viding a Java Virtual Machine (JVM) interpreter and run-
time support for each platform[24].

The language includes a number of useful programming
features including programmer defined parallelism support
in the form of threads with synchronization, strong typ-
ing, garbage collection, classes, inheritance, and dynam-
ic linking. The JVM is a stack-based instruction set de-
signed to efficiently transport programs across the Internet
and allow register poor processors to efficiently execute Ja-
va bytecode[l8]. Instructions are not confined to a fixed
length however all of the opcodes in the JVM are 8-bits[24].
This allows for efficient decoding of instructions while not
requiring all instructions to be 32-bits or longer.

The Java language supports many of the same basic
data representation types as the C language. Howev-
er, in contrast to C, their values are not implementation
dependent[161. In addition, the Java language also supports
char which is a 16-bit unsigned Unicode character and a
true boolean for relational and logical operators. While
Java does not allow operations on C-style pointers, it does
have the concept of a reference type. These objects are cre-
ated on a dynamically allocated heap. The distinction is that
a reference can not be operated on arithmetically as is often
done with C pointers. Operations in the JVM are strongly
typed and the 8-bit opcode imposes a constraint of only 256
operations. This results in the tradeoff that nearly all oper-
ations are performed as 32-bit integers or IEEE-754 float-
ing point. An interesting Java definition is that the JVM
does not indicate overflow or underflow during operations
on integer data types[24]. There are also load and store in-
structions which move values from memory locations to the
operand stack in a very RISC-like manner. In addition to
standard operations, there is direct support for method in-

vocation, synchronization, exceptions, and arrays. There
are two variable length instructions - tableswitch and
lookupswi t ch.

3.4.1 ,Java Software Execution

JVM translation designers have used both software and
hardware methods to execute Java bytecode. The advan-
tage of software execution is flexibility. The advantage of
hardware execution is performance.

Using interpretation, a software program emulates the
Java Virtual Machine. This requires software to execute
multiple instructions for each emulated instruction. This
provides cross-platform portability but poses a number of
performance issues. While this approach provides for m a -
imum flexibility, the performance achieved can be as low as
510% the performance of natively compiled code [191.

Just-in-time (JIT) compilation is an approach where
translation is performed just prior to executing the program.
JITs have demonstrated 5-lox performance improvemen-
t over interpretation[l9, 261. However, the compilation is
only resident for the current program invocation. Because
they utilize processor resources, the number of optimiza-
tions that can be performed prior to execution is restrict-
ed. Additionally, multiple instructions are required to im-
plement JVM instructions and there is memory overhead to
load the compiler into the runtime system.

Flash compihtion is a hybrid approach in that a high-
ly optimizing JIT compiler and a JVM are integrated into
a runtime environment[7, 32, 261. This allows code to be
loaded in an already compiled application. The compiler
only optimizes loops where a perfomance gain is likely to
be obtained. Performance improvements of 140x interpre-
tive approaches and 13x JIT compilers have been reported.

Off-line compilers, sometimes referred to as way-ahead-
of-time compilers, translate Java bytecode to machine code
prior to execution. This requires that programs be dis-
tributed and installed (e.g. compiled) prior to use. Ex-
cept for loop information, the Java bytecode contains n-
early the same amount of information as the source itself
[26]. Therefore, an off-line compiler should be nearly as
efficient as a native Java compiler. A restriction on off-
line compilers is that all of the class files must be present
(e.g. all superclasses) to perform the compilation[I]. Us-
ing the Toba compiler, performance improvements nearly
twice a standard interpreter have been reported for FFT sig-
nal processing functions[l2]. The Toba group found per-
formance improvements of 2 to 10 times versus a standard
interpreter[27].

Native conipilers use Java as a programming languagc
and generate native code directly from the high-level
source. A runtime system for linking the Java classes is stil-
l required and classes may potentially need to be resolved

each time a method is invoked. Additionally, multiple in-
structions are required to implement JVM instructions.

3.4.2 Java Hardware Execution

Direct execution is a hardware approach to accelerating Ja-
va execution. Sun's picoJava implementation directly exe-
cutes the JVM Instruction Set Architecture (ISA) but incor-
porates other facilities that improve the system level aspects
of Java program executionr25, 30, 341. Because the JVM
does not implement an entire processor, Sun added 115 ad-
ditional extended bytecodes to the picoJava core. These ex-
tended bytecode are not produced by Java compliant com-
pilers. Sun partitions the bytecode into simple instruction-
s which can be directly executed, CISC-like instructions
which are implemented in microcode and very complicat-
ed instructions which trap. Because a register-file stack
cache is used, the picoJava core has access to the top 64
entries in the stack. This allows them to fold (e.g. combine)
multiple stack-based operations into one execution packet.
On average, Sun found about 28% of instructions executed
get folded into other instructions. Researchers at National
Chiao Tung University in 1997 found that instruction fold-
ing can reduce up to 84% of all stack operations and a 4-
foldable Java core could improve overall program speedup
by 1.34[5,33]. Sun states that the picoJava core provides up
to 5x performance improvement over JIT compilers [31].

The Delft-Java architecture, designed in 1996, has two
logical views: 1) a JVM ISA and 2) a 32-bit RISC-based
ISA with both direct and indirect register file access[l4].
An important property of Java bytecode is that statically de-
terminable type state enables simple on-the-fly translation
of bytecodes into efficient machine code[l6]. The Delft-
Java processor utilizes this property to dynamically trans-
late Java bytecodes into Delft-Java instructions. Because all
bytecodes are stored as pure JVM instructions, JVM byte-
code generated by Java compilers executes on this machine
without modification. Other Java acceleration techniques
used in the Delft-Java processor include a Link Transla-
tion Buffer[131, garbage collection[4] and a multithreaded
organizatiodl 11. The processor also includes dependen-
cy collapsi..d units that provide facilities similar to instruc-
tion fold,,ig[35]. Some additional architectural features in
the Delft-Java processor which are not directly accessible
from JVM bytecode include pointer manipulation, multi-
mi 'M SIMD instructions. 1.iiisigned datatypes, and round-
ing/saturation modes for DSP algorithms. Speedups of
2x to 3x were realized for implementable machines. This
snet-dup is in addition to the speedup from direct execution.

4 Conclusions

In this paper we have identified some significant chal-
lenges facing very high bandwidth 3G cellular systems. The
challenge of streaming 2Mbps into a battery operated device
places severe constraints on power consumption. To assist
this, new hardware techniques using highly programmable
paradigms are emerging. The software complexity of SOC
systems is also challenging hardware designs. The large
signal processing component of communications devices
can no longer rely upon assembly language programming.
Compiler technology will be crucial to successful system
design. A key point of hardware saturating arithmetic u-
nits is not only improved performance but the dependen-
cy breaking parallel execution capabilities it enables for the
compiler. Finally, as Java-based services have already be-
come available for cellular systems, a renewed focus on Ja-
va hardware acceleration will become important. Proces-
sors that can integrate Java control code and DSP operations
will be well positioned for wireless acceptance.

References

A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth. Fast, effective code generation in a just-
in-time Java compiler. In Proceeding qfthe ACM SIGPLAN
'98 conference on Programming Language Design and Im-
plementation (PLDI'Y8), volume 33, pages 28fj290. Asso-
ciation for Computing Machinery, May 1998.
D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and
P. D'Arcy. A New Approach to DSP Intrinsic Functions.
In Proceedings of the Hawaii International Conference on
System Sciences, pages WX-YlX, January 2000.
D. Batten, S. Jinturkar, I. Glossner, M. Schulte, R. Pen, and
P. D'Arcy. Interaction Between Optimizations and a New
Type of DSP Intrinsic Function. In Proceedings (#the In-
ternational Conference on Signal Processing Applications
and Technology (ICSPAT 'SV), Orlando, Florida, November
1YYY.
A. Berlea, S. Cotofana, I. Athanasiu, J. Glossner, and S. Vas-
siliadis. Garbage Collection for the Delft-Java Processor. In
8th lASTED Intemationul Coizference on Applied Informat-
ics (AI-2000), pages 232-238, Innsbruck, Austria, February
2000.
L. C. Chang, L. R. Ton, M. E Kao, and C. P. Chung. S-
tack operations folding in Java processors. IEE Proceed-
ings - Computers and Digital Techniques, 145(5):333-343,
September 1998.
D. Chen, W. Zhao, and H. Ru. Design and implementation
issues of intrinsic functions for embedded DSP processors.
In Proceedings qf the ACM SIGPLAN Internutional Con-
fermcr on Siena1 ProcesJinn Applications and Technolony
(ICSPAT '97), pages 505-509, Septcmbcr 1997.

[7] K. Ebcioglu, E. R. Altman, and E. Hokenek. A Java ILP
Machine Based on Fast Dynamic Compilation. In IEEE

8

MASCOTS International Workshop on Security and Efficien-
cy Aspects of Java, Eilat, Israel, January 9-10 1997. IEEE
Computer Society Press.

[8] European Telecommunication Standards Institute. Digital
Cellular Telecommunications System: ANSI-C Code for the
GSM Enhanced Full Rate (EFR) Speech Code (GSM 06.53),
March 1997. ETS 300 724.

191 J. Eyre and J. Bier. DSP Processors Hit the Mainstream.
IEEE Computer, pages 51-59, August 1998.

I 101 M. Gagnaire. An Overview of Broadband Access Technolo-
gies. In Proceedings ofthe IEEE, volume 85, pages 1958-
1972, December 1997.

11 11 C. J. Glossner and S. Vassiliadis. The Delft-Java Engine:
An Introduction. In Lecture Notes In Computer Science.
Third International Euro-Par Conference (Euro-Par’97 Par-
allel Processing), pages 766-770, Passau, Germany, Aug.
26 - 29 1YY7. Springer-Verlag.

[121 J. Glossner, J. Thilo, and S. Vassiliadis. Java Signal Pro-
cessing: m ’ s with bytecodes. Journal ofConcurrency and
Experience, IO(l1-13):1173-1178, 1998.

1131 J. Glossner and S. Vassiliadis. Delft-Java Link Translation
Buffer. In Proceedings of the 24th EUROMICRO confer-
ence, volume 1, pages 221-228, Vasteras, Sweden, August
25-27 1998.

[141 J. Glossner and S. Vassiliadis. Delft-Java Dynamic Transla-
tion. In Proceedings of the 25th EUROMICRO conference
(EUROMICRO ’99), volume 1, Milan, Italy, September 8-10
1999.

[IS] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. Taylor. Piperench A reconfigurable architecture and
compiler. IEEE Computer, 33(4), April 2000.

[16] J. Gosling. Java Intermediate Bytecodes. In ACM SIG-
PLAN Notices, pages 111-118, New York, NY, January
1995. Association for Computing Machinery. ACM SIG-
PLAN Workshop on Intermediate Representations (IR95).

[17] J. Gosling, B. Joy, and G. Steele, editors. The Java Language
Specification. The Java Series. Addison-Wesley, Reading,
MA, USA, 1996.

11x1 J. Gosling and H. McCilton. The Java Language Environ-
mcnt: A White Paper. Technical report, Sun Microsystems,
Mountain View, Califomia, October 1995. Available from
ftp.javasoft.com/docs.

1191 C.-H. A. Hsieh, J. C. Gyllenhaal, and W. mei W. Hwu. Java
Bytecode to Native Code Translation: The Caffeine Proto-
type and Preliminary Results. In Proceeding of the 29th An-
nual Internation Symposium on Microarchitecturz (MICRO-
291, pagcs 9&97, Los Alamitos, CA, USA, December 2-4
1996. IEEE Computer Society Press.

1201 K. Jarvinen et al. GSM Enhanced Full Rate Speech Codec.
In IEEE International Conference on Acoustics, Speech, and
Signal Processing, pages 77 1-774, 1997.

[21] B. Krepp. DSP-Oriented extensions to ANSI C. In Proceed-
ings of the International Conjerence on Signul Processing
Applicutions and Technology (ICSPAT ‘97), pages 658664.
DSP Associates, 1997.

[221 P. Lapley. DSP Processor Fundamentals. IEEE press, New
York, 1997.

[23] K. Leary and W. Waddington. DSP/C: A Standard High Lev-
el Language for DSP and Numeric Processing. In Proceed-
ings of the International Conference on Acoustics, Speech
and Signal Processing, pages 1065-1068. IEEE, 1YW.

[24] T. Lindholm and E Yellin. The Java Virtual Machine Spec-
ification. The Java Series. Addison-Wesley, Reading, MA,
USA, 1997.

[251 H. McGhan and M. O’Connor. PicoJava: A Direct Execu-
tion Engine For Java Bytecode. IEEE Computer, 3 1 (10):22-
30, October 1998.

[26] G. Muller, B. Moura, E Bellard, and C. Consel. JIT
vs. Offline Compilers: Limits and Benefits of Bytecode
Compilation. Technical Report 1063, IRISA, Campus de
Beaulieu, 35042 Rennes Ccdex, France, December 1996.
http://www.irisa.fr.

[271 T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman,
T. Newsham, and S. A. Watterson. Toba: Java For Applica-
tions - A Way Ahead of Time (WAT) Compiler. In Proceed-
ings Third Conference on Object-Oriented Technologies and
Systems (COOTS’97), 1997.

I281 M. Saghir, P. Chow, and C. G. Lee. Towards Better DSP
Architecture and Compilers. In Proceedings of the Inter-
national Conference on Signal Processing Applications and
Technology, pages 658-664, October 1994.

1291 M. J. Schulte, P. I. Balzola, J. Ruan, and J . Glossner. Paral-
lel Saturating Multioperand Adders. In Proceedings of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pages 172-179,2O00.

picoJava I Microprocessor Core
Architecture. Technical Report WPR-0014-01, Sun Mi-
crosystems, Mountain View, California, November 1996.
Available from http://www.sun.com/sparc/whitepapers/wpr-

[31] Sun Microelectronics. Sun Microelectronic’s pico-
Java I Posts Outstanding Performance. Technical
Report WPR-0015-01, Sun Microsystems, Mountain
View, California, November 1996. Available from
http://www.sun.com/sparc/whitepapers/wpr-0015-0 1.

1321 Sun Microsystems. The Java Hotspot Performance
Engine Architecture. Sun Microsystems, 1999.
http://java.sun.com/products/hotspot/whitepaper. html.

[33] L.-R. Ton, L.X. Chang, M.-E Kao, H.-M. Tseng, S.-S.
Shang, R.-L. Ma, D.-C. Wang, and C.-P. Chung. Instruction
Folding in Java Processor. In I997 International Confer-
ence on Parallel and Distributed Systems, pages 138-143,
Seoul, Korea, December 12-13 1997. IEEE Computer Soci-
ety Prcss.

1341 M. Tremblay and M. O’Connor. picoJava: A Hardware Im-
plementation of the Java Virtual Machine. In Hotchips Pre-
sentation, 1996.

iliadis, J. Phillips, and B. Blanar. Interlock Collaps-
ing ALU’s. IEEE Transactions on Computers, 42(7):825-
839, July 1993.

[361 N. Yadav, M. Schulte, and J. Glossner. Parallel Saturating
Fractional Arithmetic Units. In 9th Great Lakes Symposium
on VLSI, pages 21L217, March 1999.

[371 J. Yoshida. Java chip vendors set for cellular skirmish. EE
Times, January 30 200 1.

[30] Sun Microelectronics.

0014-01.

9

http://www.irisa.fr
http://www.sun.com/sparc/whitepapers/wpr
http://www.sun.com/sparc/whitepapers/wpr-0015-0
http://java.sun.com/products/hotspot/whitepaper

