
Massively LDPC Decoding on
Multicore Architectures

Gabriel Falcao, Student Member, IEEE, Leonel Sousa, Senior Member, IEEE, and Vitor Silva

Abstract—Unlike usual VLSI approaches necessary for the computation of intensive Low-Density Parity-Check (LDPC) code

decoders, this paper presents flexible software-based LDPC decoders. Algorithms and data structures suitable for parallel computing

are proposed in this paper to perform LDPC decoding on multicore architectures. To evaluate the efficiency of the proposed parallel

algorithms, LDPC decoders were developed on recent multicores, such as off-the-shelf general-purpose x86 processors, Graphics

Processing Units (GPUs), and the CELL Broadband Engine (CELL/B.E.). Challenging restrictions, such as memory access conflicts,

latency, coalescence, or unknown behavior of thread and block schedulers, were unraveled and worked out. Experimental results for

different code lengths show throughputs in the order of 1 � 2 Mbps on the general-purpose multicores, and ranging from 40 Mbps on

the GPU to nearly 70 Mbps on the CELL/B.E. The analysis of the obtained results allows to conclude that the CELL/B.E. performs

better for short to medium length codes, while the GPU achieves superior throughputs with larger codes. They achieve throughputs

that in some cases approach very well those obtained with VLSI decoders. From the analysis of the results, we can predict a

throughput increase with the rise of the number of cores.

Index Terms—LDPC, data-parallel computing, multicore, graphics processing units, GPU, CUDA, CELL, OpenMP.

Ç

1 INTRODUCTION

ORIGINALLY proposed by Robert Gallager in 1962 [1] and
rediscovered by Mackay and Neal in 1996 [2], Low-

Density Parity-Check (LDPC) codes have recently been
adopted by new emerging standards for digital communica-
tion and storage applications, such as the DVB-S2 standard,
WiMAX (802.16e), Wifi (802.11n), 10 Gbit Ethernet (802.3an),
and others. LDPCs are linear ðN;KÞ block codes defined by
parity-check sparse binary H matrices of dimension M �N ,
with M ¼ N �K. They are usually represented by bipartite
graphs formed by Bit Nodes (BNs) and Check Nodes (CNs)
and linked by bidirectional edges, also called Tanner graph
[3]. LDPC decoding is based on the belief propagation of
messages between connected nodes as indicated by the
Tanner graph, which demands very intensive computation
running the Sum-Product Algorithm (SPA), or its simplified
variants, namely the Logarithmic-SPA (LSPA) and the Min-
Sum Algorithm [4].

Therefore, to achieve real-time processing, VLSI hard-

ware processors are used, which usually apply the algo-

rithm based on integer arithmetic operations [5]. In one of

the first publications in the area [6], Blanksby and Howland

describe a VLSI full-parallel architecture that achieves

LDPC decoding with excellent throughput, which compares

favorably against LDPC competitors, namely the Turbo

code decoders. However, hardware represents nonflexible
and nonscalable dedicated solutions [7], [8], which may
involve many resources and require long and expensive
development. More flexible solutions for LDPC decoding
using Digital Signal Processors (DSPs) or Software Defined
Radio (SDR) programmable hardware platforms [9] have
already been proposed.

The integration of multiple cores into a single chip has
become the new trend to increase processor performance.
Multicore architectures [10] have evolved from dual- or
quad-core to many-core systems, supporting multithread-
ing, a powerful technique to hide memory latency, while at
the same time provide larger Single Instruction Multiple
Data (SIMD) units for vector processing. The general-
purpose multicore processors replicate a single core in a
homogeneous way, typically with a x86 instruction set, and
provide shared memory hardware mechanisms. They
support multithreading and share data at a certain level
of the memory hierarchy, and can be programmed at a high
level by using different software technologies [11]. OpenMP
[12] provides an effective and relatively straightforward
approach for programming general-purpose multicores and
was selected under the context of this work.

Mainly due to the demands for visualization technology in
the games industry, the performance of graphics processing
units (GPUs) has undergone increasing performances over
the last decade. With many cores driven by a considerable
memory bandwidth, recent GPUs are targeted for computa-
tionally intensive, multithreaded, highly parallel computa-
tion, and researchers in high-performance computing fields
are applying GPUs to general-purpose applications (GPGPU)
[13], [14], [15], [16]. However, to apply GPUs to general-
purpose applications, we need to manage very detailed code
to control the GPU’s hardware. To hide this complexity from
the programmer, several programming interface tools [17],
such as the Compute Unified Device Architecture (CUDA)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011 309

. G. Falcao and V. Silva are with the Instituto de Telecomunicações and the
Department of Electrical and Computer Engineering, University of
Coimbra, 3030-290 Coimbra, Portugal. E-mail: {gff, vitor}@co.it.pt.

. L. Sousa is with the Department of Electrical and Computer Engineering,
Instituto Superior Técnico, Technical University of Lisbon, and INESC-ID,
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal. E-mail: las@inesc-id.pt.

Manuscript received 26 Nov. 2008; revised 28 Dec. 2009; accepted 15 Feb.
2010; published online 31 Mar. 2010.
Recommended for acceptance by H. Jiang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-11-0466.
Digital Object Identifier no. 10.1109/TPDS.2010.66.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

from NVIDIA [18], or the Close to the Metal (CTM) interface
(replaced by the ATI Stream SDK) from AMD/ATI [19], or
even the Caravela platform [20], have been developed. CUDA
provides a new hardware and software architecture for
managing computations on NVIDIA Tesla series’ GPUs, and
was selected as the programming interface in the work
reported in this paper.

Also pushed by audiovisual needs in the industry of
games emerged the Sony, Toshiba, and IBM (STI) CELL
Broadband Engine (CELL/B.E.) Architecture (CBEA) [21],
[22]. It is characterized by a heterogeneous vectorized SIMD
multicore architecture composed by one main PowerPC
Processor Element (PPE) that communicates very efficiently
with eight Synergistic Processor Elements (SPEs).

Motivated by the evolution of these multicore architec-
tures, we propose novel approaches for the computationally
intensive processing of LDPC decoding. The main objec-
tives of this paper are the investigation of efficient parallel
algorithms for LDPC decoding, namely the intensive SPA;
the development of compact and regular data structures to
represent the Tanner graph, which are suitable for parallel
computing; and the assessment of the performance of
distinct multicore architectures for real-time LDPC decod-
ing, namely by considering the obtained throughputs.

In this work, the proposed parallel algorithms, based on
the multicodeword decoding principle, were programmed
in different architectures, such as x86 general-purpose
multicores, GPUs, and the CELL/B.E. Experimental results
show interesting throughputs, namely for short and
medium length codes on the CELL/B.E., which are
comparable with VLSI-dedicated solutions [23]. By using
the multithreaded data-parallel processing units of GPUs
[13], software LDPC decoders can be expected to achieve a
performance more than an order of magnitude higher than
modern multicore CPUs. Moreover, since general-purpose
multicores, GPUs, and the CELL/B.E. are able to perform
floating-point arithmetic operations, better accuracy and a
lower Bit Error Rate (BER) can be expected regarding to
VLSI LDPC decoders [5].

This paper is organized into six sections. Section 2
describes belief propagation and a case study: the SPA used
in LDPC decoding. Section 3 describes the parallel features of
the architectures used and how to exploit data parallelism for
LDPC decoding. Section 4 shows details of the parallelization
approaches for the considered architectures and Section 5
reports experimental results and compares their perfor-
mances. Finally, Section 6 concludes the paper.

2 BELIEF PROPAGATION

Belief propagation, also known as the SPA, is an iterative
algorithm [24] for the computation of joint probabilities on
graphs commonly used in information theory (e.g., channel
coding), artificial intelligence, and computer vision (e.g.,
stereo vision). It has proved to be an efficient algorithm for
inference calculation and it is used in numerous applica-
tions including Low-Density Parity-Check codes, Turbo
codes, stereo vision applied to robotics, or in Bayesian
networks such as the QMR-DT (a decision-theoretic
reformulation of the Quick Medical Reference (QMR) model
[25]) depicted in Fig. 1.

Graphs are often used to denote the interrelationships
among elements in a set, and in particular, bipartite graphs,
can apply probabilistic techniques to bound the deviation of
a random variable from its expected value. Given a
probability graph, the belief propagation algorithm is based
on the fact that vertices Yj and Ui need to pass between
them the messages �X;YjðxÞ and �Ui;XðxÞ, respectively, for
vertex X, so that it has enough information to calculate the
belief �ðxÞ of X. These messages can be recursively
calculated from messages Yj and Ui received from their
neighboring nodes, where a neighbor denotes a node
connected to another node by an edge. All vertices in the
graph make a contribution passing messages to their
neighbors, to update the beliefs in the graph, iteration after
iteration. This message passing is also called propagation of
evidence, a synonym of belief propagation.

2.1 LDPC Decoding

By considering a set of bits, or codeword, that we wish to
transmit over a noisy channel, the theory of graphs applied to
error correcting codes has fostered codes to performances
extremely close of the Shannon limit [26]. In bipartite graphs
with a large number of neighbors, the certainty of an
information bit can be spread over several bits of a
codeword, allowing in certain circumstances, in the presence
of noise, to recover the correct value of a bit on the decoder
side. In a graph representing a linear block error correcting
code, reasoning algorithms exploit probabilistic relation-
ships between nodes imposed by parity-check conditions
that allow inferring the most likely transmitted codeword.
One such algorithm is the belief propagation or SPA
mentioned before, which finds the maximum a posteriori
probability (MAP) of vertices in a graph [24].

In this paper, we parallelize the belief propagation
algorithm applied to LDPC decoding of regular codes. In
particular, the computationally demanding SPA is used for
LDPC decoding. A bipartite Tanner graph represents
adjacent connections between N BNs and M CNs (see
Fig. 2 with N ¼ 8 and M ¼ 4) and is defined by a parity-
check sparse binary H matrix of dimensionM �N . The SPA
applied to LDPC decoding operates in the probabilistic
domain [1], exchanging and updating messages between
neighbors over successive iterations, until stop conditions
occur. Given an ðN;KÞ binary LDPC code, we assume BPSK
modulation which maps a codeword c ¼ ðc0; c1; c2; . . . ; cn�1Þ
into a sequence x ¼ ðx0; x1; x2; . . . ; xn�1Þ, according to xi ¼
ð�1Þci . Then, x is transmitted through an additive white

310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

Fig. 1. A QMR-DT example showing the use of inference to obtain the
maximum a posteriori probability (MAP) of a disease given all known
symptoms [25].

Gaussian noise (AWGN) channel, producing a received
sequence y ¼ ðy0; y1; y2; . . . ; yn�1Þ with yi ¼ xi þ ni, and
where ni represents AWGN with zero mean and variance
�2. The SPA applied to LDPC decoding is illustrated in
Algorithm 1 and is mainly composed of two different
horizontal and vertical intensive processing blocks defined,
respectively, by (1), (2), and (3), (4). Equations (1) and (2)
calculate the message update fromCNm toBNn, considering
accesses to H in a row-major basis—the horizontal proces-
sing—and indicate the probability of BNn being 0 or 1. In
Fig. 2, BN0, BN1, and BN2 are updated by CN0 as indicated
in the first row of H. From the second until the fourth row of
H, it can be seen that the subsequent BNs are updated by
their neighboring CNs. For each iteration, rðitÞmn values are
updated according to (1) and (2), as defined by the Tanner
graph [27] illustrated in Fig. 2. Similarly, the latter pair of
equations (3) and (4) computes messages sent from BNn to
CNm, assuming accesses to H in a column-major basis—the
vertical processing. In this case, qðitÞnm values are updated
according to (3) and (4) and the edges connectivity indicated
in the Tanner graph.

Finally, (5) and (6) compute the a posteriori pseudo-
probabilities, and in (7), the hard decoding is performed at
the end of an iteration. The iterative procedure is stopped if
the decoded word ĉ verifies all parity-check equations of the
code ðĉ HT ¼ 0Þ, or if the maximum number of iterations ðIÞ
is reached.

Let us consider an H matrix with M CNs (rows) and N
BNs (columns), a mean row weight wc and a mean column
weight wb of H, with wc � 2 and wb � 2 (the weight

represents the number of nonnull elements of H). Depend-
ing on the size of the codeword and channel conditions
(SNR), the minimal throughput necessary for an LDPC
decoder to accommodate an application’s requirements can
imply a substantial number of (arithmetic and memory
access) operations per second, which justifies the investiga-
tion of new parallelism strategies for LDPC decoding.

In Table 1, we present the computational complexity in
terms of the number of floating-point add, multiply, and
division operations required for both the horizontal and
vertical steps in the SPA LDPC decoding algorithm. We
also present the number of memory accesses required. For
both cases, the complexity expressed as a function of wc
and wb is quadratic.

The decoding complexity can, however, be significantly
reduced by using the efficient Forward and Backward
recursions [28] that minimize the number of memory
accesses and operations necessary to update (1) to (4) in
Algorithm 1. In Table 2, the number of operations required
by the Forward and Backward algorithm adopted in this
work shows linear complexity (as a function of wc and wb)
with a significant reduction in the number of arithmetic
operations. An even more significant decrease in memory
access operations is registered, which contributes to in-
crease the ratio of arithmetic operations per memory access,
defined as arithmetic intensity. This property suits multi-
core architectures conveniently, which often have their
performance limited by memory accesses. For a regular
code with rate ¼ 1

2 , where N ¼ 2M, wc ¼ 2wb, wc � 2, and
wb � 2, the arithmetic intensity �SPA for the SPA is

�SPA ¼
�
3w2

c � wc
�
M þ

�
2w2

b þ 4wb þ 1
�
N�

w2
c þ wc

�
M þ

�
2w2

b þ 2
�
N

� 2; ð8Þ

while the arithmetic intensity �FBA for the Forward and
Backward algorithm can be obtained by

�FBA ¼
ð9wc � 8ÞM þ ð9wb � 4ÞN

3wcM þ ð3wb þ 1ÞN � 3: ð9Þ

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 311

Fig. 2. An example of the Tanner graph and some messages being
exchanged between nodes CNm and BNn.

3 DATA STRUCTURES AND PARALLEL COMPUTING

MODELS

This section proposes compact data structures to represent
the H matrix that are adequate to design new parallel
algorithms suiting the considered data parallelism and the
stream processing model. It also addresses the main
features of the parallel architectures selected to support
this work.

3.1 Data Structures

The H matrix of an LDPC code defines the Tanner graph,
whose edges represent the bidirectional flow of messages
exchanged between BNs and CNs. We propose to sepa-
rately code the information about H in two independent
data streams, HBN and HCN, suitable for processing kernel 1
(horizontal processing) and kernel 2 (vertical processing),
respectively, in the SPA described in Algorithm 1.

The example in Fig. 2 translated into the edge connec-
tions shown in Fig. 3 can be used to describe the
transformation performed to H in order to produce the
compact stream data structures. HBN codes information

about edge connections used in each parity-check equation
(horizontal processing). This data structure is generated by
scanning the H matrix in a row-major order and by
sequentially mapping only the BN edges associated with
non-null elements in H used by each CN equation (in the
same row). These edges are collected and stored in
consecutive memory positions inside HBN. Each element
of the data structure records the address of the correspond-
ing value of rmn obtained from (1) and (2). By grouping
related data into consecutive memory positions and using
the Forward and Backward algorithm, it is possible to
efficiently update all the BNs connected to a single CN with
a higher level of parallelism.

A similar principle can be applied to code the informa-
tion necessary for kernel 2 (vertical processing). HCN can be
defined as a sequential representation of the edges
associated with non-null elements in H connecting every
BN to all its neighboring CNs (in the same column). Each
element of the HCN data structure records the address of
the corresponding qnm value.

3.2 Parallel Computational Models

General-purpose x86 microprocessors support the Multiple
Program Multiple Data (MPMD) programming model. At
hardware level, these systems have a relatively reduced
number of cores that are able to exploit the instruction-level
parallelism (ILP) for efficient single thread execution. This
can be exploited to either parallelize the processing of a
single kernel, or in alternative, to simultaneously launch the
execution of distinct kernels.

The Single Program Multiple Data (SPMD) and/or SIMD
approaches exploit data parallelism to achieve parallel
processing. This data-parallel processing can be applied to
multicodeword LDPC decoding, where multiple code-
words are decoded simultaneously. In fact, this is possible
because the Tanner graph structure is common to all data
under parallel decoding. Also, intrinsic instructions for
operating in the SIMD-within-a-register (SWAR) mode, an
extension of SIMD where several data elements are kept
and operated in parallel inside special registers (typically in
the order of 128-bit), support additional parallelism. Within

312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

TABLE 2
Number of Arithmetic and Memory Access Operations per

Iteration for the Optimized Forward and Backward Algorithm

Fig. 3. Data stream structures representing the example in Fig. 2. Due to
the random nature of LDPC codes, BN and CN messages associated
with the same rmn or qnm equation are read from contiguous blocks in
memory and stored in noncontiguous positions.

TABLE 1
Number of Arithmetic and Memory Access Operations per

Iteration for the SPA

a 128-bit register, depending on the resolution adopted,
several codewords can be packed and processed together,
which increases the arithmetic intensity of the program.

In vector processing, SIMD parallelism is applied to data
elements, but the memory bandwidth is exploited in a
relatively inefficient way. Stream processing minimizes this
inefficiency by increasing the arithmetic intensity. In fact,
the stream processing model applies kernels rather than
single instructions to a collection of data. A kernel can have
many instructions and perform a large number of opera-
tions per memory access. As the evolution of processing
speed has been much superior to the increase of memory
bandwidth, the stream programming model suits better
modern architectures, such as GPUs.

Multithreading is the parallel programming paradigm
used for multicore systems. The scheduling of multiple
threads can be done by software or hardware, but
scheduling is not usually under the control of the
programmer. Kernel 1, kernel 2, and the data structures
that represent the Tanner graph were carefully designed in
order to minimize the workload unbalancing. For this
reason, we investigated regular codes. Although the stream-
based data structures here developed also support irregular
codes, their adoption would be possible at the expense of
unbalancing the workload.

3.3 Parallel Features of the General-Purpose
Multicores

The reduced number of cores of general-purpose multicores
typically ranges from 2 to 16 and includes different levels of
hardware-managed cache memory [29]. In this memory
hierarchy, the last cache level on the chip is in most cases
shared by all the cores, and cache coherency is provided to
support the shared-memory parallel programming model.
Moreover, the internal cache shared by all cores allows
efficient data transfers and synchronization between them.
For these processors, parallel programming can be achieved
using POSIX Threads (pthreads) or, at a higher level, by
using the OpenMP programming interface [12].

Parallelizing an application by using OpenMP resources
often consists in identifying the most costly loops, and
provided that the loop iterations are independent, paralle-
lize them via the #pragma omp parallel for directive. Based on
a profile analysis, it is relatively straightforward to
parallelize a sequential code, since LDPC decoding com-
putes intensive loop-based kernels. Another possibility for
OpenMP consists of using the #pragma omp parallel section
launching the execution of independent kernels into distinct
cores. This different approach suits simultaneous multi-
codeword decoding in all cores.

3.4 Parallel Features of the GPU

The GPU used in this work is based on a CUDA [18], (a
streaming computing platform from NVIDIA, where
geometry, pixel, and vertex programs share common
stream processors (SPs). The GPU has 16 multiprocessors,
each one consisting of eight processors, which makes a total
of 128 stream processors available, with 8,192 dedicated
registers per multiprocessor [18] as depicted in Fig. 4. Also,
the complexity involved in controlling all the GPU hard-
ware resources has been masked by modern programming
interfaces [18], [19], [20]. The GPU platform used provides

shared memory that also allows to efficiently exploit data
parallelism. Data-parallel processing is exploited with the
CUDA by executing in parallel multiple threads.

The execution of a kernel on CUDA is distributed
according to a grid of thread blocks with adjustable
dimensions. In this platform, each multiprocessor has
several cores as depicted in Fig. 4, and can control more
than one block of threads. Each block controls a maximum of
512 threads that execute the kernel synchronously with
threads organized in warps: the warp size is 32 threads and
each multiprocessor time-slices the threads in a warp among
its eight stream processors. The number of threads per block
has to be programmed according to the specificities of the
algorithm and the number of registers available on the GPU.
Moreover, to achieve efficient execution on the GPU, the
programmer has to be aware of the memory hierarchy in
order to avoid the slow accesses to global memory and to
take advantage of the faster coalesced accesses to memory.

A model to predict the throughput T of the parallel LDPC
decoder on the GPU is presented in (11), where Th denotes
the total number of threads running on the GPU, MP the
number of multiprocessors, and SP the corresponding
number of stream processors per multiprocessor. Each thread
is expected to access memory with latency L per memory
access, with a total of Mop memory accesses. NDop=iter

represents the number of cycles for nondivergent instructions
performed per iteration within a kernel, while Dop=iter

represents divergent instructions. Finally, Niter defines the
number of iterations,N is the size of the codeword, and fop the
frequency of operation of a stream processor. The processing
Tproc time is

Tproc ¼ Niter

Th
MP �

NDop=iter

SP þDop=iter

� �
þ Th�Mop� L

fop
:

ð10Þ

Then, the global throughput can be obtained by

T ¼ P �N
Thost!gpu þ Tproc þ Tgpu!host

½bps�; ð11Þ

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 313

Fig. 4. The compute unified 8800 GTX GPU architecture and its
128 SPs.

where P defines the parallelism (number of codewords
being simultaneously decoded). Thost!gpu and Tgpu!host
represent data transfer times between host and device.

3.5 Parallel Features of the CELL/B.E.

The heterogeneous nature of the CELL/B.E. is composed by
a 64-bit PPE that communicates with eight SPEs, as depicted
in Fig. 5. An SPE has 256 Kbytes of local storage (LS) memory
for data and source code, and a 128-bit wide vectorized
SWAR-oriented architecture. Data transfers between the PPE
(that accesses main memory) and SPE are performed by
programming efficient Direct Memory Accesses (DMAs) that
relieve the processors of the time-consuming task of moving
data. In the CELL/B.E., data are loaded from the main
memory into the LS of each SPE, and each SPE must
efficiently exploit data locality.

The parallel LDPC decoder explores SPMD and SIMD
data-parallel approaches, by also applying the same
algorithm to different codewords on each SPE. When data
and code environments do not fit completely into the LS of
a single SPE, the processing has to be performed in
successive partitions of the Tanner graph, which causes
the number of data communications between the PPE and
SPEs to rise significantly. The DMA latency can have a
critical role in the performance, and a possible solution to
reduce the impact of this problem in the performance
consists of using a double buffering technique. In the
CELL/B.E., each SPE has two pipelines executing indepen-
dently, one for arithmetic and the other for load and store
operations. The parallel algorithm for LDPC decoding
implemented herein exploits this double buffering property
by overlapping processing and data accesses.

The number of SPEs available NSPEs and the number of
instructions per iteration Nop=iter have a major impact on the
overall performance of the decoder on the CELL/B.E., where
the throughput performance can be described according to
the model defined in (12) for an LDPC code that fits on the
LS. Different from what happens in the GPU, where a thread
is responsible for decoding only a part of the Tanner graph,
in the CELL/B.E. approach, each SPE performs the complete
processing of the Tanner graph, as described in Algorithm 1,
independently from the other SPEs. Each SPE processes in
the SWAR mode 4 codewords in parallel. The LDPC decoder
supports peak data transfers between the SPE and main
memory of approximately 4 GB/s [30], and consequently, its
performance is limited by the number of SPEs that are
simultaneously trying to access the main memory. Tppe!spe

and Tspe!ppe represent data transfer times between PPE
and SPE:

T ¼ NSPEs� 4�N
Tppe!spe þ Nop=iter�Niter

fop
þ Tspe!ppe

½bps�: ð12Þ

4 PARALLELIZING THE KERNELS EXECUTION

The parallelization approach proposed for the LDPC
decoder is explained first in a context that suits processing
on general-purpose x86 architectures exploiting OpenMP
pragmas. Then, it is given the perspective of a multi-
threaded-based approach for GPUs using CUDA that hides
latency problems, and finally, we address parallelism in the
context of a heterogeneous CELL/B.E. architecture that
exploits data locality and also SIMD.

Data structures rmn and qnm from Fig. 3 hold the
messages exchanged between BNs and CNs. As mentioned
before, BNs update CNs and vice versa. Each data structure
possesses an array with the corresponding addresses (or
indices) of the elements in the other array that it is going to
update (here, represented by HBN and HCN). A detailed
view of their common dependencies can be found in Fig. 3.
In each kernel, data elements can be read sequentially but
have to be stored in nonconsecutive positions, which
defines expensive random memory accesses. These costly
write operations demand special efforts to the programmer
in order to efficiently accommodate them in parallel
architectures with distinct levels of memory hierarchy.

4.1 The Multicores Using OpenMP

Operations (1)-(4) in Algorithm 1 represent the most
intensive processing in the SPA, which ideally should be
performed in parallel. For programming general-purpose
x86 multicores, an initial approach consists of exploiting
OpenMP directives. Both horizontal and vertical kernels are
based on nested loops. Considering the parallel resources
allowed in the OpenMP execution, the selected approach
consisted of parallelizing the outermost loop of the costly
operations defined in (1)-(4), thus, reducing the paralleliza-
tion overheads, as depicted in Algorithm 2. The loop data
accesses were analyzed in order to identify shared and
private variables in each iteration. This approach uses the
#pragma omp parallel for directive to separately parallelize
the processing of kernels 1 and 2 from Algorithm 1. An
alternative approach uses the #pragma omp parallel section
directive to launch several decoders in parallel, which
allows to achieve multicodeword LDPC decoding, as
represented in Algorithm 3. In this case, the different cores
do not need to share data, but they must be synchronized
upon completion of the execution of all kernels.

Algorithm 2. SPA kernels executing on general-purpose

x86 multicores using OpenMP

1: {Initialization.}

2: while (ĉ HT 6¼ 0 ^ it < I) {c-decoded word; I-Max.

no. of iterations.}
do

3: {Compute all the messages associated to all CNs.}

4: #pragma omp parallel for

5: sharedð. . .Þprivateð. . .Þ
6: Processing kernel 1

7: {Compute all the messages associated to all BNs.}

314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

Fig. 5. Parallelization model for an LDPC decoder on the CELL/B.E.
architecture.

8: #pragma omp parallel for
9: sharedð. . .Þprivateð. . .Þ

10: Processing kernel 2

11: end while

Algorithm 3. Multicodeword LDPC decoding on general-

purpose x86 multicores using OpenMP

1: {launch decoder #1.}
2: #pragma omp parallel section

3: LDPC_decoder#1();

4: . . .

5: {launch decoder #N.}

6: #pragma omp parallel section

7: LDPC_decoder#N();

4.2 The GPU Using CUDA

The computationally intensive two kernels in Algorithm 1
justify the usage of a high-performance specific computing
engine, preferably a highly parallel programmable device.
This approach is followed by considering a many-core system
with a programming model based on multithreads, as the one
supported by the NVIDIA 8 series’ GPUs using CUDA.

4.2.1 Programming the Grid Using a Thread per Node

Approach

In the beginning of a new computation, data to be processed
(HBN;HCN; rmn, and qnm data structures) are distributed
over a predefined number of blocks on a grid. Each block
contains tx� ty elements that represent threads, which are
independent of the threads in other blocks, as shown in Fig. 6.
Threads are grouped in warps and dispatched by blocks in
one of the 16 multiprocessors according to the structure of
the algorithm and the thread scheduler, as mentioned before.
In the horizontal processing step, each thread updates all the
BNs associated with a CN (an entire row of H). Rather than
moving data from global to fast (but complex) shared
memory, an efficient processing strategy can also be obtained
by moving data directly to the registers of the core. The
number of registers available on the GPU is sufficiently high
to accommodate all the input data and corresponding data
structures, as long as we keep enough registers per thread to
compile. Fig. 6 depicts the internal processing inside a block
for a random example. The update of every BN message

represented by rmn inside of the block is calculated according
to the structure previously identified in HBN.

A similar principle applies to the update of qnm
messages, or vertical processing. Here, each thread updates
all the CNs associated with a BN (an entire column of H).

4.2.2 Coalesced Memory Accesses

In the 8 series GPUs from NVIDIA, the global memory is
not cached. The latency can be up to 400-600 cycles and is
likely to become a performance bottleneck. One way to turn
around this problem and increase performance significantly
entails the use of coalescence. Instead of performing 16
individual memory accesses, all the 16 threads of a half-
warp (maximum fine-grain level of parallelism on the G80x
family) can access the global memory of the GPU in a single
coalesced read or write access, but elements have to lie on a
contiguous memory block, where the kth thread accesses
the kth data element, and data and addresses have to obey,
respectively, to specific size and alignment requirements.
Fig. 7 shows the activity of half-warps 0 and 1 captured at
two different instants, where 16 threads (t0-t15) read data on
a single coalesced memory transaction from the GPU’s slow
global memory. However, HBN, HCN, rmn, and qnm data
structures shown in Fig. 3 have to be properly disposed in a
contiguous mode (from a thread perspective) in order to
allow the coalesced accesses to be performed in a single
operation as shown in Fig. 7. A permutation has to be
previously applied to data elements in order to allow such

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 315

Fig. 6. Detail of tx� ty threads executing on the GPU grid inside a block
for kernel 1 (three examples shown in Fig. 3 update all the BNs
associated with CN0, CN1, and CN2).

Fig. 7. Transformations applied to data structures to support coalesced memory read operations performed by the 16 threads of a half-warp on a
single memory access.

procedure. For regular codes, (13)-(16) represent the
necessary transformation for kernel 1, where

newAddr ¼ j � pþ k div wc þ ðk mod wcÞ � 16; ð13Þ

with

p ¼ wc � 16; j ¼ i div p; k ¼ i mod p;

and 0 	 i 	 Edges� 1. Then,

�qcnmðiÞ ¼ qnmðnewAddrÞ; ð14Þ

and the new memory addresses become

e ¼ HCNðnewAddrÞ; ð15Þ
�H
c

CNðiÞ ¼ j � pþ k div wb þ ðk mod wbÞ � 16; ð16Þ

with p ¼ wb � 16, j ¼ e div p, and k ¼ e mod p. The permu-

tations necessary for kernel 2 are described from (17) to (20),

where

newAddr ¼ j � pþ k div wb þ ðk mod wbÞ � 16; ð17Þ

with p ¼ wb � 16, j ¼ i div p, k ¼ i mod p, and

�rcmnðiÞ ¼ rmnðnewAddrÞ: ð18Þ

The new permuted memory addresses become

e ¼ HBNðnewAddrÞ; ð19Þ
�H
c

BNðiÞ ¼ j � pþ k div wc þ ðk mod wcÞ � 16; ð20Þ

where p ¼ wc � 16, j ¼ e div p, and k ¼ e mod p.

4.3 The CELL/B.E.

Following an alternative parallel approach, the design of a
software LDPC decoder on the CELL/B.E. processor is
also proposed in this work. This approach is based on an
asymmetric threaded runtime programming model. The
PPE controls the main tasks, offloading the intensive
processing to the SPEs. Each SPE runs independently from
the other SPEs, executing a predefined task by reading
and writing data, respectively, from and to the main
memory, through DMA. Synchronization between the PPE
and the SPEs of the CELL/B.E. is performed using
mailboxes. This approach explores data parallelism and
data locality while performing the partitioning and
mapping of the algorithm and data structures over the
architecture, and at the same time, minimizes delays
caused by latency and synchronization.

4.3.1 Small Single-SPE Model

Depending on the algorithm and on the size of data to be
processed, some tasks are small enough to fit into a 256-Kbyte
LS of a single SPE. This single task environment is sufficient
for many dedicated workloads, as it is the case of LDPC
decoders processing matrices A, B, and C shown in Table 4.
Here, the DMA data transfers will take place only twice
during the entire computation: at the beginning, before the
processing starts; and after data decoding is concluded. In
the single-SPE model, the number of communications
between PPE and SPEs is minimum and the PPE is relieved
from the costly task of reorganizing data (sorting procedure
in Algorithm 4) between data transfers to the SPE.

4.3.2 Large Single-SPE Model

In some situations, however, data and code environments
do not fit completely into the LS inside a single SPE. This is
the case of the larger matrices under test, also detailed in
Table 4. The approach followed in this case is described in
Algorithms 4 and 5 and consists of having the PPE’s control
process managing the kernels execution and data transfers.
Communications mainly control DMA transfers, and as in
the previous case, are also set up using mailboxes.
However, the number of data transfers between the PPE
and SPEs is substantially higher in the large single-SPE
model because a complete iteration is processed sequen-
tially on partitions of the Tanner graph.

Algorithm 4. CELL/B.E. PPE side of the algorithm

1: Allocate rsbuff, rubuff, qsbuff and qubuff buffers
2: for th ctr ¼ 1 to NSPEs: do

3: Create th ctr thread

4: Send rsbuff, rubuff, qsbuff and qubuff addresses to the

thread

5: end for

6: repeat

7: work ¼ true

8: Receives yn from the channel and calculates
pn probabilities

9: Send msg NEW_WORD to all SPEs

10: Sort pn to buffer qsbuff

11: Send msg SYNC to all SPEs

12: while work do

13: for i ¼ 1 to NSPEs: do

Ensure: Wait until mail is received

(SPE[i].mailboxcount > 0)
14: msg ¼ SPE[i].mailbox

15: if msg ¼ CHECK_BLOCK then

16: Sort block rubuff to rsbuff

17: if buffer is sorted then

18: Send msg SYNC to SPE[i]

19: end if

20: end if

21: if msg ¼ BIT_BLOCK then

22: Sort block qubuff to qsbuff

23: if buffer is sorted then

24: Send msg SYNC to SPE[i]

25: end if

26: end if

27: if all msg ¼ END_DECODE then

28: work ¼ false

29: break for loop
30: end if

31: end for

32: end while

33: until true

Algorithm 5. CELL/B.E. SPE side of the algorithm
1: Allocate stdbyin, readbuf, writebuf and stdbyout buffers

2: repeat

Ensure: Read mailbox (waiting a NEW_WORD mail

from PPE)

3: Get pn probabilities

316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

4: for i ¼ 1 to N_Iter: do

Ensure: Read mailbox (waiting a SYNC from PPE)

5: Get qblock from qsbuff

Ensure: Wait until DMA transfer finalizes

6: Get qblock from qsbuff

7: for j ¼ 1 to N_CheckNodes_BLOCKS: do

8: Compute rmn
9: if is last CheckNode of block then

Ensure: Wait until all pending DMA transfers
finalize

10: Put stdbyout

11: if Not first block then

12: Send msg CHECK_BLOCK

13: end if

14: if Not last 2 blocks then

15: Get qsbuff to stdbyin

16: end if

17: end if

18: end for

Ensure: Wait until last DMA concludes

19: Send msg CHECK_BLOCK

Ensure: Read mailbox (waiting a SYNC from PPE)

20: Get rblock from rsbuff

Ensure: Wait until DMA transfer finalizes

21: Get rblock from rsbuff

22: for j ¼ 1 to N_BitNodes_BLOCKS: do

23: Compute qnm
24: if is last BitNode of block then

Ensure: Wait until all pending DMA transfers

finalize

25: Put stdbyout

26: if Not first block then

27: Send msg BIT_BLOCK

28: end if

29: if Not last 2 blocks then

30: Get rsbuff to stdbyin

31: end if

32: end if

33: end for

Ensure: Wait until last DMA concludes

34: Send msg BIT_BLOCK

35: end for

36: Send msg END_DECODE

37: until true

PPE. In the large model, the part of the algorithm that
executes on the PPE side is presented in Algorithm 4.
Mainly, it controls the overall execution mechanism on the
SPE as well as data sorting on the buffers to be transmitted
to the SPE. Four main buffers are used to manage the data
flow over the several steps of the algorithm: rsbuff, rubuff,
qsbuff, and qubuff. These buffers are used to manage the bit
streams received at the input of the LDPC decoder in order
to be sent to the SPE, and also the results received from each
SPE. rubuff and qubuff denote buffers with unsorted data
that, when sorted, are placed in rsbuff and qsbuff buffers,
respectively, before being sent to each SPE. The sorting
procedure consists of organizing BNs or CNs associated
with the same equation in contiguous data blocks of
memory, as shown in Fig. 3, to accelerate DMA data

transfers. When the buffers are created, a number of threads
equal to the number of SPEs are also created and the
addresses of the different locations to be copied are passed
to them. All the buffers to be transferred by DMA are
aligned in memory on a 128-bit boundary.

For every chunk of data to be processed, two actions
must be completed: 1) a subblock of the rmn or qnm data is
sorted and loaded into the buffers to be transmitted to the
SPE and 2) the processed data, BN or CN alternately
updated, are sent from the SPE back to the PPE. The actions
are synchronized on both sides of the PPE and SPE. After
completing action 1, mails are sent to signal the threads on
the SPEs, while after completing, confirmation mails are
awaited from the SPEs.

When data are loaded into the buffers, two types of mails
are used to start DMA transfers: for the first subblock of
data, a NEW_WORD mail is sent to the SPE to make the
thread start loading the qsbuff buffer, and when the transfer
is completed, to initiate the load of the next data buffer. A
SYNC mail informs the SPE to start transferring a new block
of data from the qsbuff or rsbuff buffer.

Algorithm 4 shows the synchronization point on the PPE
side after step 13, indicating that all the old information
present in the SPE buffers has already been loaded and
that it needs to sort a new subblock with rmn or qnm data.
Here, the PPE expects mails from the SPEs notifying it that
there are new data available in the rubuff or qubuff buffer to
be sorted.

Finally, when all the iterations are completed, the SPEs
send END_DECODE messages to the PPE to conclude the
current decoding process and get ready to start processing a
new word.

SPE. The SPEs are used for the intensive processing task
of updating all BNs and CNs by executing kernel 1 and
kernel 2 alternately, during each iteration of the LDPC
decoder. The SPE pseudocode is presented in Algorithm 5.
Get operations were adopted to represent a communication
PPE! SPE, while Put operations are used to communicate
in the opposite direction.

First, buffers stdbyin, readbuf, writebuf, and stdbyout are
allocated. All the corresponding DMA addresses for these
buffers are registered during this initial phase. Then,
we initialize the process and start an infinite loop, waiting
for communications to arrive from the PPE. The two types
of messages expected from the PPE are NEW_WORD and
SYNC mails. At first, when a NEW_WORD message is
received, the SPE loads the pn probabilities and waits for a
SYNC mail to arrive. After that, the first horizontal block of
qnm is read into the readbuf buffer. After the DMA transfer
completes, a new one is immediately started into the stdbyin
buffer. The next transfer of a vertical block of rmn, or a
horizontal block of qnm, will be performed in parallel with
the execution of data previously loaded on the SPE. When a
new SYNC mail is received, the SPE starts a new type of
processing, for either BN or CN updating. When it
completes, the SPE updates the buffers with the new data
and then starts a new transfer.

After completing the processing of a kernel, it waits for
the previous DMA transfer from rsbuff or qsbuff to complete
and then performs a new DMA transfer to send data in the
results buffer writebuf to main memory, placing it in rubuff

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 317

or qubuff. At this point, the next processing output can
already start being placed in stdbyout. When the transfer is
concluded, a confirmation mail is sent to the PPE indicating
that the new data in the rubuff or qubuff buffer are available
and can be sorted by the PPE in order to proceed with the
next processing.

The computation terminates when the number of
iterations is reached and an END_DECODE mail is sent
by all SPEs to the PPE.

5 EXPERIMENTAL RESULTS

The following parallel processing platforms were selected
to evaluate the performance of the proposed parallel
stream-based LDPC decoders: 1) 8 core Intel Xeon Nehalem
2x-Quad E5530 multiprocessor running at 2.4 GHz with
8 Mbytes of L2 cache memory; 2) NVIDIA 8800 GTX GPU
with 128 SPs each running at 1.35 GHz and 768 Mbytes of
VRAM memory; and 3) CELL/B.E., where the PPE and
each SPE run at 3.2 GHz and have 256 Mbytes and
256 Kbytes of main and fast local memory, respectively.
The CELL/B.E. is included in a PlayStation 3 (PS3)
platform, which restricts the number of SPEs available to
6 from a total of 8. The experimental setup is depicted in
Table 3 and matrices under test are presented in Table 4.
The general-purpose x86 multicores were programmed
using OpenMP 3.0 directives and compiled with the Intel
C++ Compiler (version 11.0). The GPU was programmed
using the C language and the CUDA programming inter-
face (version 2.0b). The CELL/B.E. was programmed also in
C using the CELL SDK compiler (version 2.1) running on a
Fedora Core release, in accordance with both the small and
large single-SPE models.

5.1 LDPC Decoding on the General-Purpose x86
Multicores Using OpenMP

The results presented in Table 5 were achieved using
Algorithm 2. However, it should be noticed that using
Algorithm 3 for multicodeword decoding only improves
the results, on average, 20 percent. From the analysis of the
results, it can be concluded that relatively low throughputs
are achieved regarding those obtained for the CELL/B.E.
and the GPU. The complex superscalar architecture of the
individual cores is not suitable to exploit conveniently the
data parallelism presented in the LPDC decoder.

However, it can be noticed that the proposed parallel
approach for implementing LDPC decoders on general-
purpose multicores with OpenMP shows to be scalable. For
example, for Matrix F shown in Table 5, by varying the
number of used cores in the range 2, 4, 6, and 8, we see the
speedups raising consistently. Changing the parallel execu-
tion of the LDPC decoder in two cores to a different level of
parallelism that uses four cores shows a speedup of 1.7.
Compared with the same two cores execution, the paralle-
lization with eight cores shows a speedup of approximately
3, but providing throughputs lower than a modest 2.6 Mbps
value for 10 iterations.

5.2 LDPC Decoding on the CELL/B.E.

The model proposed in (12) makes it difficult to predict the
execution time, not only because the number of instructions
Nop=iter generated by the CELL SDK 2.1 compiler is unknown,
but rather due to the dual pipeline that performs memory
accesses independently from arithmetic operations and
whose behavior cannot be accurately predicted, due to
branch misprediction penalties that force emptying the
pipeline. To show that this model is accurate, upper and
lower bounded processing times were considered, respec-
tively, for worst- and best case working conditions. The worst

318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

TABLE 3
Experimental Setup

TABLE 4
Parity-Check Matrices under Test

TABLE 5
LDPC Decoding Throughputs (Megabits per Second) for

OpenMP and x86 Multicores

scenario assumes processing and memory accesses being
performed without parallelism, and a misprediction branch
after every instruction (a very unrealistic condition). The best
case scenario (lower bound) assumes that no branch
mispredictions exist and that there is full parallelism between
memory accesses and computation. As expected, the paralle-
lism supported by the dual-pipeline CELL/B.E. architecture
exploited the LDPC decoder near the optimal case, as shown
in Fig. 8. In the small model, the measured experimental
values are, on average, only 6 percent worse than in the best
scenario and the algorithm executes very near the maximum
performance the CELL/B.E. can provide. Experimental
values and lower bound almost overlap in Fig. 8.

5.2.1 Small Single-SPE Model

Fig. 9 presents the decoding times of a codeword for
matrices A-C, under the small single-SPE model described
in Section 4.3.1. The sequential LDPC decoder was
programmed using only the PPE with SIMD and dual
thread execution (it decodes concurrently eight codewords).
In the parallel version, the CELL/B.E. performs concurrent
processing on the six SPEs, each using SIMD to process four

codewords simultaneously. The CELL/B.E. takes approxi-
mately 353:6 �s to decode 24 codewords on the six SPEs
(14:7 �s per codeword) for matrix C running 10 iterations,
against 244:9 �s per codeword on the serial version.
Observing Table 6, we conclude that the decoding capacity
per bit is high and approximately constant for all matrices
under test, providing throughputs as high as 69.5 Mbps.
Comparing this throughput with the one obtained in the
serial approach, the speedup achieved surpasses 16.
Experimental evaluation also shows that regarding the
same algorithm applied only to one SPE, decoding four
codewords, the full version that uses six SPEs, decoding 24
codewords, achieves a speedup only 14 percent below the
maximum (6). In fact, the number of data transfers is low in
this model, which means that the overhead in communica-
tions introduced by using a higher number of SPEs would
be marginal.

5.2.2 Large Single-SPE Model

In this case, the 256 Kbytes of LS memory in the SPE is not
enough to accommodate the complete data structures and
the program. Therefore, the processing is performed in
consecutive partitions of the Tanner graph, with the number
of data transfers and mailbox synchronizations degrading
the performance. Matrix C was also tested in this model
(described in Section 4.3.2) to allow relatively assessing the
two computational models. Since several data transactions
have to be performed during a single iteration, data
transfers between each SPE and the main memory suddenly
become the most significant part of the global processing
time. Also the intensive sorting procedure performed by the
PPE, and the large number of data transactions involving
the slow main memory, can cause some processors to
temporarily idle. This is the main reason why in this case the
throughput decreases to 9 Mbps for 10 iterations, which
represents a throughput seven times lower than the one
obtained using the small single-SPE model.

Matrices D-G are also too large to fit into a single SPE and
have to be processed on a subblock by subblock basis, using
this model. They all achieve throughputs inferior to 9 Mbps,
which led to the conclusion that the CELL processor is not
efficient for LDPC decoding with large H matrices.

Increasing the number of SPEs used in the architecture
would cause the throughput to rise, but not exactly by the
same percentage as in the small model. This is explained by
the fact that the use of more SPEs further increases data
communications and the effect of data sorting, which
clearly become the bottleneck in the large model.

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 319

Fig. 8. Model bounds for LDPC decoding execution times obtained on
the CELL/B.E. for the small model.

Fig. 9. LDPC decoding times on the sequential and parallel modes on
the CELL/B.E. for the small single-SPE model.

TABLE 6
LDPC Decoding Throughputs (Megabits per Second)

for a CELL/B.E. Programming Environment in the
Small Single-SPE Model

5.3 LDPC Decoding on the GPU Using CUDA

The model defined in (10) can be further detailed in order to
allow the prediction of numerical bounds that can help
describing the computational behavior of the LDPC decoder
on the CUDA. One iteration executes kernel 1 and kernel 2,
while memory accesses can be decomposed into coalesced
and noncoalesced read and write operations, each one
imposing different workloads. The CUDA Visual Profiler
tool was used in order to obtain the number of instructions
and memory accesses per kernel. Considering, for example,
the code for matrix G, which has a workload large enough to
fully occupy 157 blocks of the grid with a maximum of
128 threads per block (#Th ¼ 157� 128), an average number
of cycles per kernel (excluding load and store operations)
similar in both kernels and equal to NDop=iter ¼ 3867, and
having less than 0.5 percent of divergent threads which allow
us to approximate Dop=iter � 0, (10) can be rewritten as

Tproc ¼
2Niter � Th

MP �
NDop=iter

SP

fop
þ Th�Mop� L

fop|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
TMemAccess

: ð21Þ

TMemAccess defines all memory access operations and can be
decomposed in memory accesses to CNs and BNs,
respectively:

TMemAccess ¼ TMemAccBNs þ TMemAccCNs: ð22Þ

TMemAccBNs defines time spent doing memory access to
update CNs (accessing BNs):

TMemAccBNs ¼ Niter
M � wc � LþM � 2wc � L=16

fop
; ð23Þ

and TMemAccCNs represents the time necessary to update
BNs (accessing CNs):

TMemAccCNs ¼ Niter
N � wb � LþN � ð2wb þ 1Þ � L=16

fop
:

ð24Þ

The last partials in (23) and (24) show memory read
operations, which are divided by 16 to model the
parallelism obtained with the introduction of coalesced
reading operations. In spite of the latency L can be up to
400-600 cycles, we believe that the thread scheduler
operates very efficiently, producing effectively faster
memory accesses. Apparently, the scheduler is good
enough to maintain the cores occupied hiding the memory
latency because our model predicts the processing time
quite well, with an error inferior to 12.2 percent for L < 5
(L ¼ 4 in this case). Transferring data between host and
device, and transferring processed data back to the host,
represents an increase of 8.9 percent in the global
processing time. The accuracy of the proposed model best
fits programs with large workloads that completely occupy
the grid on the GPU.

5.3.1 Experimental Results on the CUDA

All matrices under test were run on blocks with a varying
number of threads ranging from 64 to 128. Only the best
results achieved are reported in Table 7. Matrix C was
programmed to use 16 blocks and 64 threads per block. Using

more threads per block would have been possible, but it
would lower the number of simultaneous active blocks
below 16, and in that case, the 16 multiprocessors wouldn’t
be fully occupied, decreasing parallelism and performance.
For matrix D, 128 threads per block and 39 blocks are
considered, while for matrix F, 63 blocks and 128 threads per
block, and for matrix G, 157 blocks and also 128 threads per
block are adopted. The number of blocks used is imposed by
the size of the LDPC code. At the same time, it also depends
on the number of threads per block, which are limited in the
LDPC decoder to 128 due to the high number of registers
required per multiprocessor. Table 7 presents the overall
measured decoding throughputs for execution on an 8800
GTX GPU from NVIDIA, considering 32 and 8-bit precision
data elements. Experimental results in the table show that the
GPU-based solution can be faster than the CELL-based one
for LDPC codes with dimensions above matrix C. For codes
above matrix C, the CELL/B.E. presents 9 Mbps or less,
against the values in Table 7. The GPU-based implementa-
tion shows significantly higher throughputs for intensive
computation on large quantities of data. It is, however, likely
that beyond a certain dimension of an LDPC code, the
bottleneck will lie in the memory bandwidth between the
host main memory and the VRAM on the GPU. A
throughput above 18.3 Mbps is achieved for matrix F
executing 10 iterations, while it decreases to 11.3 Mbps for
the larger matrix G. In the latter, the size of the data
structures does not fit into the 64 Kbytes of constant memory
used in smaller codes (F and below), which degrades the
performance. For small codes and small number of iterations,
better results are achieved with fewer threads per block,
although the decoding time difference is not significant.
However, when decoding larger codes with a higher number
of iterations, the reported speedups are higher when a larger
number of threads per block are used.

Fig. 10 shows the importance of memory accesses in the
overall processing time as the size of the LDPC code
increases. The random nature of LDPC codes does not allow
to simultaneously read and write contiguous data blocks in
memory; one of these two operations has to be performed
using noncontiguous accesses. We chose to perform
noncontiguous write operations. Reports obtained for
matrices C-G running on the GPU show that the time spent
in coalesced memory reads is approximately constant (in
percentage) for all matrices, while more expensive and
often conflicting noncoalesced memory write accesses can
represent a bottleneck after a certain dimension of the
LDPC code. For matrix G, noncoalesced write operations
occupy nearly 50 percent of the total decoding time, against
only 24 percent in the case of matrix C.

We also tested the LDPC decoder using data with only
8-bit precision, instead of the original 32-bit precision,

320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

TABLE 7
LDPC Decoding Throughputs (Megabits per Second) for a

CUDA Programming Environment

which allowed us to pack 16 elements into 128-bit data
elements. In this case, using an 8-bit precision solution, the
throughputs obtained for 10 iterations in matrices C-G
range from 14.6 Mbps up to 40.1 Mbps. The reason for this
improvement is mainly related with the reduction of
memory accesses performed per arithmetic operation. On
the GPU side, data are unpacked and processed, causing
one memory access to read/write 16 elements at a time.
Even considering the increase in arithmetic operations, the
GPU still performs faster. Here, the limitation in perfor-
mance is imposed mainly by memory accesses. The highest
throughput is achieved for matrices F and G, which
provide throughputs superior to 40 Mbps. Due to the use
of the efficient Forward and Backward algorithm [28] that
minimizes the number of memory accesses and the
number of add and multiply operations, the experimental
results here reported are much superior to the ones
obtained in [13].

5.4 Discussion

Even by exploiting fast cache memory shared by multiple
cores in parallel algorithms specifically developed for
computation on general-purpose x86 multicores, we realized
that the throughputs achieved are far from those requested
by real-time applications. By exploiting data locality to
minimize memory access conflicts and by using several
SPEs, which support SIMD and a dual pipelined architecture,
the CELL/B.E. performs better for small to medium LDPC
codes. Here, the limitation in performance is imposed by the
size of the LS memory on the SPEs. When decoding medium
to large LDPC codes, the GPU solution achieves better
results. In this case, the bottleneck is imposed by conflicting
memory accesses and it is minimized using coalesced read
operations that significantly improve the performance of the
algorithm. The adoption of specific parallelization techni-
ques for the last two platforms here described, produced
throughputs that approach well hardware solutions such as
the recent ones described in [9] and [31].

6 CONCLUSIONS

This paper proposes novel parallel algorithms for multicode-
word LDPC decoding on multicore architectures. Compact
and vectorized data structures were designed to represent the
exchanged messages between connected nodes on the Tanner

graph of an LDPC decoder. These data structures are suitable
for parallel computing and allow a significant reduction of
both the memory space and processing time necessary for
LDPC decoding. Parallel LDPC decoders were developed on
GPUs using CUDA and on the CELL/B.E., and significant
throughputs were achieved in both platforms. The CELL/
B.E. performed better than the GPU for small to medium
LDPC codes, reporting throughputs above 68 Mbps, while
the GPU deals better with larger codes, achieving through-
puts between 10 and 40 Mbps. LDPC decoders have also been
developed on general-purpose x86 multicores using
OpenMP, but experimental results show that the achieved
throughputs are low regarding the other considered multi-
core architectures. The solutions proposed in this paper seem
to be scalable to the next generations of these architectures,
regarding the increasing in the number of cores and the
resources in each core, namely the size of local memory. They
provide low-cost and flexible software-based multicore
alternatives with performances that compare well to the
expensive, long time-to-market, and hardware-dedicated
typical VLSI LDPC decoder approaches.

REFERENCES

[1] R.G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans.
Information Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[2] D.J.C. Mackay and R.M. Neal, “Near Shannon Limit Performance
of Low Density Parity Check Codes,” IEE Electronics Letters,
vol. 32, no. 18, pp. 1645-1646, Aug. 1996.

[3] R. Tanner, “A Recursive Approach to Low Complexity Codes,”
IEEE Trans. Information Theory, vol. 27, no. 5, pp. 533-547, Sept.
1981.

[4] J. Chen and M.P.C. Fossorier, “Near Optimum Universal Belief
Propagation Based Decoding of Low-Density Parity Check
Codes,” IEEE Trans. Comm., vol. 50, no. 3, pp. 406-414, Mar. 2002.

[5] L. Ping and W.K. Leung, “Decoding Low Density Parity Check
Codes with Finite Quantization Bits,” IEEE Comm. Letters, vol. 4,
no. 2, pp. 62-64, Feb. 2000.

[6] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, Rate-
1/2 Low-Density Parity-Check Code Decoder,” IEEE J. Solid-State
Circuits, vol. 37, no. 3, pp. 404-412, Mar. 2002.

[7] T. Zhang and K. Parhi, “Joint (3,k)-Regular LDPC Code and
Decoder/Encoder Design,” IEEE Trans. Signal Processing, vol. 52,
no. 4, pp. 1065-1079, Apr. 2004.

[8] J. Dielissen, A. Hekstra, and V. Berg, “Low Cost LDPC Decoder
for DVB-S2,” Proc. Conf. Design, Automation and Test in Europe
(DATE ’06), Mar. 2006.

[9] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti, “Design and
Analysis of LDPC Decoders for Software Defined Radio,” Proc.
IEEE Workshop Signal Processing Systems, pp. 210-215, Oct. 2007.

[10] G. Blake, R.G. Dreslinski, and T. Mudge, “A Survey of Multicore
Processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 26-
37, Nov. 2009.

[11] H. Kim and R. Bond, “Multicore Software Technologies,” IEEE
Signal Processing Magazine, vol. 26, no. 6, pp. 1-10, Nov. 2009.

[12] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. The MIT Press, 2008.

[13] G. Falcao, L. Sousa, and V. Silva, “Massive Parallel LDPC
Decoding on GPU,” Proc. 13th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming (PPoPP ’08), pp. 83-90, Feb.
2008.

[14] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E.
Lefohn, and T.J. Purcell, “A Survey of General-Purpose Computa-
tion on Graphics Hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80-113, 2007.

[15] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream Computing on
Graphics Hardware,” ACM Trans. Graphics, vol. 23, no. 3,
pp. 777-786, 2004.

[16] N. Goodnight, R. Wang, and G. Humphreys, “Computation on
Programmable Graphics Hardware,” IEEE Computer Graphics and
Applications, vol. 25, no. 5, pp. 12-15, Sept. 2005.

FALCAO ET AL.: MASSIVELY LDPC DECODING ON MULTICORE ARCHITECTURES 321

Fig. 10. Thread execution times for LDPC decoding on the GPU.

[17] M. McCool, “Scalable Programming Models for Massively Multi-
core Processors,” Proc. IEEE, vol. 96, no. 5, pp. 816-831, May 2008.

[18] CUDA Homepage, http://developer.nvidia.com/object/cuda.
html, 2010.

[19] CTM Homepage, http://ati.amd.com/companyinfo/researcher,
2010.

[20] S. Yamagiwa and L. Sousa, “Caravela: A Novel Stream-Based
Distributed Computing Environment,” Computer, vol. 40, no. 5,
pp. 70-77, May 2007.

[21] Int’l Business Machines Corporation, “CELL Broadband Engine
Architecture,” 2006.

[22] H. Hofstee, “Power Efficient Processor Architecture and the Cell
Processor,” Proc. 11th Int’l Symp. High-Performance Computer
Architectures (HPCA), pp. 258-262, 2005.

[23] G. Falcao, V. Silva, and L. Sousa, “High Coded Data Rate and
Multicodeword WiMAX LDPC Decoding on Cell/BE,” IET
Electronics Letters, vol. 44, no. 24, pp. 1415-1417, Nov. 2008.

[24] S.B. Wicker and S. Kim, Fundamentals of Codes, Graphs, and Iterative
Decoding. Kluwer Academic Publishers, 2003.

[25] J.B. Lemaire, J.P. Schaefer, L.A. Martin, P. Faris, M.D. Ainslie, and
R.D. Hull, “Effectiveness of the Quick Medical Reference as a
Diagnostic Tool,” Canadian Medical Assoc. J. (CMAJ), vol. 161, no. 6,
pp. 725-728, 1999.

[26] S. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the
Design of Low-Density Parity-Check Codes within 0.0045 dB of
the Shannon Limit,” IEEE Comm. Letters, vol. 5, no. 2, pp. 58-60,
Feb. 2001.

[27] S. Lin and D.J. Costello, Error Control Coding, second ed. Prentice
Hall, 2004.

[28] D.J.C. Mackay, “Good Error-Correcting Codes Based on Very
Sparse Matrices,” IEEE Trans. Information Theory, vol. 45, no. 2,
pp. 399-431, Mar. 1999.

[29] S. Kumar, C.J. Hughes, and A. Nguyen, “Architectural Support for
Fine-Grained Parallelism on Multi-Core Architectures,” Intel
Technology J., vol. 11, no. 3, pp. 217-226, Aug. 2007.

[30] J. Abellán, J. Fernández, and M. Acacio, “CellStats: A Tool to
Evaluate the Basic Synchronization and Communication Opera-
tions of the Cell BE,” Proc. 16th Euromicro Int’l Conf. Parallel,
Distributed and Network-Based Processing (PDP ’08), Feb. 2008.

[31] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S.
Hsu, and S.-J. Jou, “An LDPC Decoder Chip Based on Self-Routing
Network for IEEE 802.16e Applications,” IEEE J. Solid-State
Circuits, vol. 43, no. 3, pp. 684-694, Mar. 2008.

Gabriel Falcao received the graduate degree
from the University of Porto (FEUP), Portugal, in
1997, where he also received the MSc degree in
the area of digital signal processing in 2002. He
is a researcher at the Instituto de Telecomuni-
cações and also performs a collaboration with
INESC-ID under his PhD research activities. In
2003, he became a teaching assistant in the
Department of Electrical and Computer Engi-
neering at the University of Coimbra (FCTUC),

Portugal. His scientific interests include parallel computing, VLSI
architectures, LDPC codes, and digital signal processing. He is a
student member of the IEEE.

Leonel Sousa received the PhD degree in
electrical and computer engineering from the
Instituto Superior Técnico (IST), Universidade
Técnica de Lisboa, Portugal, in 1996. He is
currently an associate professor in the Electrical
and Computer Engineering Department at IST
and a senior researcher at INESC-ID. His
research interests include VLSI architectures
and parallel and distributed computing. He
has contributed to more than 150 papers in

journals and international conferences. He is currently a member of the
HiPEAC and an associate editor of the Eurasip Journal on Embedded
Systems. He is a senior member of the IEEE and a member of the ACM.

Vitor Silva received the graduation diploma and
PhD degrees in electrical engineering from the
University of Coimbra, Portugal, in 1984 and
1996, respectively. He is currently an auxiliary
professor in the Department of Electrical and
Computer Engineering, University of Coimbra,
where he lectures digital signal processing and
information and coding theory. His research
activities in signal processing, image and video
compression, and coding theory are mainly

carried out at the Instituto de Telecomunicações, Coimbra, Portugal.
He published more than 70 papers and successfully supervised several
postgraduation theses.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

322 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2011

