Parallel Software for Inductance Extraction*

Hemant Mahawar' and Vivek Sarin
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

Abstract

The next generation VLSI circuits will be designed with
millions of densely packed interconnect segments on a sin-
gle chip. Inductive effects between these segments begin to
dominate signal delay as the clock frequency is increased.
Modern parasitic extraction tools to estimate the on-chip in-
ductive effects with high accuracy have had limited impact
due to large computational and storage requirements. This
paper describes a parallel software package for inductance
extraction called ParlS, which is capable of analyzing inter-
connect configurations involving several conductors within
reasonable time. The main component of the software is a
novel preconditioned iterative method that is used to solve
a dense complex linear system of equations. The linear sys-
tem represents the inductive coupling between filaments that
are used to discretize the conductors. A variant of the Fast
Multipole Method is used to compute dense matrix-vector
products with the coefficient matrix. ParlS uses a two-tier
parallel formulation that allows mixed mode parallelization
using both MPI and OpenMP. An MPI process is associated
with each conductor. The computation within a conductor
is parallelized using OpenMP. The parallel efficiency and
scalability of the software is demonstrated through experi-
ments on the IBM p690 and Intel and AMD Linux clusters.
These experiments highlight the portability and efficiency
of the software on multiprocessors with shared, distributed,
and distributed-shared memory architectures.

Keywords. Inductance extraction, Parallel computing, It-
erative methods, Preconditioning, Mixed mode paralleliza-
tion.

*This work has been supported in part by NSF under the grants NSF-
CCR 9984400 and NSF-CCR 0113668, and by the Texas Advanced Tech-
nology Program grant 000512-0266-2001. The AMD Linux cluster at
Texas A&M University was acquired through the MRI grant NSF-DMS
0216275. Access to the IBM p690 and Intel Linux clusters was provided
by the NCSA, University of Illinois at Urbana-Champaign.

fCorresponding author: mahawarh@cs.tamu.edu.

1 Introduction

The design and testing phases in the development of
VLSI chips rely on accurate estimation of the signal delay.
Signal delay in a VLSI chip is due to the parasitic resis-
tance (R), capacitance (C), and inductance (L) of the inter-
connect segments. As a result of newer technology, which
uses thicker copper wires, the influence of parasitic resis-
tance has decreased. On the other hand, clock rates in the
GHz range have increased the effect of the parasitic induc-
tance on signal delay. Fast and accurate inductance extrac-
tion techniques are needed for signal delay estimation in the
next-generation microprocessors with millions of intercon-
nect segments.

At high frequencies, the physical proximity of intercon-
nect segments leads to strong inductive coupling between
neighboring conductors. This coupling arises due to a mag-
netic field that is created when current flows through a con-
ductor. This magnetic field opposes any change in the cur-
rent flow within the conductor as well as in the neighbor-
ing conductors. Self-inductance is the resistance offered to
change in current within a conductor. Mutual inductance
refers to the resistance offered to change in current in a
neighboring conductor. Inductance extraction refers to the
process of estimating self and mutual inductance between
interconnect segments of a chip.

To estimate inductance between a set of conductors in a
particular configuration, one needs to determine current in
each conductor under appropriate equilibrium conditions.
The surface of each conductor is discretized by a uni-
form two-dimensional grid whose edges represent current-
carrying filaments. The potential drop across a filament is
due to its own resistance and due to the inductive effect of
other filaments. Kirchoff’s current law is enforced at the
grid nodes. This results in a large dense system of equa-
tions that is solved by iterative methods such as the gener-
alized minimum residual method (GMRES) [7]. Each iter-
ation requires a matrix-vector product with the coefficient
matrix that can be computed without explicitly forming the
matrix itself. Matrix-vector products with the dense ma-

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04) nn

COMPUTER
0190-3918/04 $20.00 © 2004 IEEE SOCIETY

trix are computed approximately via hierarchical methods
such as the Fast Multipole Method (FMM) [3]. The task
of developing preconditioners, which accelerate the rate of
convergence of the iterative method, is complicated by the
unavailability of the coefficient matrix.

FastHenry [4] is a commonly available software package
that uses the above approach for accurate inductance extrac-
tion. Matrix-vector products are computed efficiently by us-
ing FMM. Preconditioners are obtained by approximating
the dense matrix with a sparse matrix that is derived from
the FMM hierarchical structure. Since the process of con-
structing and applying these preconditioners requires large
amount of memory and time, the software has found limited
use.

This paper presents an object-oriented parallel induc-
tance extraction software package called ParlS. The soft-
ware uses a different formulation in which the current is
restricted to the subspace satisfying Kirchoff’s law through
the use of solenoidal basis functions. The reduced system of
equations is solved by a preconditioned iterative solver that
uses FMM to compute products with the dense coefficient
matrix and the preconditioner. Improved formulation and
the associated preconditioning is responsible for significant
reduction in computational and storage requirements.

This paper describes a parallel formulation of the algo-
rithm and the performance of the parallel code on a variety
of multiprocessors. Section 2 presents the inductance ex-
traction problem and outlines the solenoidal basis method.
Section 3 describes the parallel formulation of the algorithm
and implementation of the software. Section 4 presents a set
of experiments that show the parallel efficiency and scala-
bility of the software on a variety of architectures. The ex-
periments have been conducted on IBM p690, 64-bit Intel
Linux cluster, and 64-bit AMD Linux cluster. Conclusions
are presented in Section 5.

2 Background

For a set of s conductors, we need to determine an 8 X §
impedance matrix that represents pair-wise mutual induc-
tance among the conductors at a given frequency. The el-
ement (I, k) of the matrix equals the potential drop across
conductor [when there is zero current in all conductors, ex-
cept conductor k that carries unit current. The kth column is
computed by solving an instance of the inductance extrac-
tion problem with the right hand side denoting unit current
flow through conductor k. The impedance matrix can be
computed by solving s instances of this problem with dif-
ferent right hand sides.

The current density J at a point r is related to potential
¢ by the following equation [4]

pJ(r)+jw/ m I

47 ||r — /||

dv'=-V¢(r), (1)

where p is magnetic permeability of the material, p is the re-
sistivity, 7 is position vector, w is frequency, ||r — r'|| is the
Euclidean distance between r and r/, and j = /—1. The
volume of the conductor is denoted by V' and incremen-
tal volume with respect to 7' is denoted by dV'. Equation
(1) can be derived from Maxwell’s equations that define the
fundamental laws of electrodynamics.

To obtain a numerical solution for (1), each conductor is
discretized into a mesh of n filaments f1, fa,..., f,. Cur-
rent is assumed to flow along the filament length. The cur-
rent density within a filament is assumed to be constant.
Filament currents are related to the potential drop across
the filaments according to the linear system

R+ jwL]ly = Vy, @)

where R is an n x n diagonal matrix of filament resistances,
L is a dense inductance matrix denoting the inductive cou-
pling between current carrying filaments, I¢ is the vector of
filament currents, and V7 is the vector of potential differ-
ence between the ends of each filament. The kth diagonal
element of R is given by Ry, = pli/ay, where I}, and ay,
are the length and cross-sectional area of the filament fy,
respectively. Let ux denote the unit vector along the kth fil-
ament. The elements of the inductance matrix L are given
by

Ly = / / W gvdv.
4:71'0/]9(1[TeEfr JTIES ||I'k—1'l||

Kirchoff’s current law states that the net current flow into
a mesh node must be zero. These constraints on current lead
to additional equations

B'1; =1,, 3)

where B” is a sparse m x n branch index matrix and I, is
the known branch current vector of length m with non-zero
values for source currents only. The branch index matrix
defines the connectivity among filaments and nodes. The
(k,1) entry of the matrix is —1 if filament / originates at
node k, 1 if filament [/ terminates at node k, and O other-
wise. Since the unknown filament potential drop V can be
represented in terms of node potential V,, by the relation
BV, = Vy, one needs to solve the following system of
equations to determine the unknown filament current Iy and
node potential V,,

R+jwL -B|[1I;] [0
il I A F A

For systems involving a large number of filaments, it
is not feasible to compute and store the dense matrix L.
These linear systems are typically solved by iterative tech-
niques such as GMRES. The matrix-vector products with

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04) nn

COMPUTER
0190-3918/04 $20.00 © 2004 IEEE SOCIETY

———

Node

Filament

Current
Source

o

[I Y -dimension filament

|:' X — dimension filament

Figure 1. Discretization of a ground plane with a mesh of filaments (left) and solenoidal current flows

in each mesh cell (right). (Reproduced from [6].)

L are computed using fast hierarchical methods such as the
FMM. The main hurdle in this matrix-free approach is the
construction of effective preconditioners for the coefficient
matrix.

2.1 The Solenoidal Basis Method

We present a brief overview of the solenoidal basis
method for solving (4) (see, e.g., [6] for details). Con-
sider the discretization of a ground plane in Fig. 1. Current
flowing through the filaments must satisfy Kirchoff’s law at
each node in the mesh. Current can be decomposed into two
components: constant current along the bold line shown on
the left and a linear combination of mesh currents as shown
in the partial mesh on the right. This decomposition con-
verts the system in (4) into the following system:

R+jwL -B I F
I FARH A
The main difference between matrix representations in (4)
and (5) is that the former uses current boundary conditions
and the later uses potential boundary conditions.

Solenoidal functions are a set of basis functions that sat-
isfy conservation laws automatically. As shown in the par-
tial mesh in Fig. 1, unit circular flows defined on mesh
cells automatically satisfy Kirchoff’s law at the grid nodes.
The unknown filament currents can be expressed in the
solenoidal basis: Iy = Pz, where z is a vector of unknown

mesh currents and P is a sparse matrix whose columns de-

note filament current in each mesh. A column of P consists

of four non-zero entries that have the value 1 or —1 depend-

ing on the direction of current in the filaments of the cell.
The system (5) is converted to a reduced system

P?[R + jwL)Pz = PTF, (6)

which is solved by a preconditioned iterative method. The
preconditioning step involves product with a dense matrix
that represents inductive coupling between filaments placed
at the cell centers. This scheme can be implemented using
FMM as well, and leads to rapid convergence of the itera-
tive method. On a set of benchmark problems, serial imple-
mentation of this software is up to 5 times faster than Fas-
tHenry [4], with only one-fifth of memory requirements [6].

3 ParlS: Parallel Inductance Extraction Soft-
ware

We have developed an object oriented parallel imple-
mentation of the solenoidal basis algorithm for inductance
extraction. This software combines the advantages of the
solenoidal basis method, fast hierarchical methods for dense
matrix-vector products, and highly effective precondition-
ing scheme to provide a powerful package for inductance
extraction. In addition, the software includes an effi-
cient parallel implementation to reduce overall computation
time [5] on parallel architectures.

Proceedings of the 2004 International Conference on Parallel Processiné (ICPP’04) nn@
0190-3918/04 $20.00 © 2004 1EEE Cg)(rs/lcl’llggll

Conductor 2

Conductor 1

MPI Communication

1

Conductor k Conductor n

Figure 2. Two-tier parallelization scheme implemented in PariS.

The building blocks of ParlS are conductor elements.
Each conductor is uniformly discretized with a mesh of fil-
aments. The most time-consuming step in the solution of
the reduced system involves matrix-vector products with the
impedance matrix. This matrix is the sum of a diagonal ma-
trix R and a dense inductance matrix L. Since the precon-
ditioning step also involves matrix-vector products with a
dense matrix that is similar to L, it is worthwhile to reduce
the cost of the matrix-vector product with L.

3.1 Parallel Dense Matrix Vector Product

The computational complexity of a matrix-vector prod-
uct with a dense n X n matrix is O(n?). This complexity
can be reduced significantly through the use of hierarchi-
cal approximation techniques. These algorithms exploit the
decaying nature of the % kernel for the matrix entries to
compute approximate matrix-vector products with bounded
error. Higher accuracy can be achieved at the expense of
more computation. For instance, the Barnes-Hut [1] method
computes particle-cluster interactions to achieve O(n logn)
complexity, while the Fast Multipole Method (FMM) [3]
computes cluster-cluster interactions to achieve O(n) com-
plexity. ParlS uses a variant of FMM to compute approxi-
mate matrix-vector products.

FMM is used to compute the potential at each filament
due to current flowing in all the filaments. The algorithm
divides the domain into eight non-overlapping subdomains,
and continues the process recursively until each subdomain
has at most & filaments, where k is a parameter that is cho-
sen to maximize computational efficiency. A subdomain is
represented by a subtree whose leaf nodes contain the fila-
ments in the subdomain. These subdomains are distributed
across processors. The potential evaluation phase consists
of two traversals of the tree. During the up-traversal, mul-
tipole coefficients are computed at each node. These co-
efficients can be used to compute potential due to all the
filaments within the node’s subdomain at a far away point.

These multipole computations do not require any communi-
cation between processors. During the down-traversal, lo-
cal coefficients are computed at each node from the multi-
pole coefficients. The local coefficients can be used to com-
pute potential due to far away filaments at a point within
the node’s subdomain. Potential due to near by filaments is
computed directly.

One can also use other hierarchical multipole-based ap-
proximation techniques instead of FMM to compute the
dense matrix-vector products. Parallel formulations of
multipole-based techniques including the FMM have been
developed by several groups. The reader is referred to [2, 8,
9, 10] for a representative set of approaches.

3.2 Conductor Level Parallelism

To exploit parallelism at the conductor level, each con-
ductor is assigned to a different processor. The data struc-
tures native to a conductor are local to its processor. This in-
cludes the filaments in a conductor and the associated FMM
tree. With the exception of matrix-vector products, all other
computations are local to each conductor.

The matrix-vector product with the inductance matrix in-
volves two types of filament interactions. Interactions be-
tween the filaments of the same conductor are computed
locally by the associated processor. To get the effect of fil-
aments in other conductors, a processor needs to exchange
multipole coefficients with other processors. During a pre-
processing step, ParlS identifies the nodes in a conduc-
tor’s tree that are required by other conductors. The cost
of this step is amortized over the iterations of the solver.
While computing the dense matrix-vector product, commu-
nication is needed to translate the multipole coefficients of
these nodes to the nodes on other processors. Communica-
tion is also needed when computing direct interactions be-
tween adjacent nodes that belong to different subtrees. This
type of communication is proportional to the number of fil-
aments on the subdomain boundary.

un@

COMPUTER
SOCIETY

Proceedings of the 2004 International Conference on Parallel Processinﬂ (ICPP’04)
0190-3918/04 $20.00 © 2004 IEEE

Additional parallelism is available within each conduc-
tor. By assigning different processes or threads to all the
nodes at a specific level in the FMM tree, one can partition
the computation for subdomains between processes. Fewer
processes can be assigned to the top part of the FMM tree
to further improve parallel efficiency. With different sized
conductors, one can have more processes associated with
larger conductors. This scheme allows load balancing to a
certain extent.

A two-tier approach, as shown in Fig. 2, allows the al-
gorithm to be implemented in hybrid or mixed mode using
both MPI and OpenMP. The software can be executed on
a variety of platforms ranging from shared-memory multi-
processors to workstation clusters without any change.

4 Experimental Results

The software design of ParlS has the dual advantage of
portability and performance across a variety of platforms.
This is achieved through a two-tier parallelization approach
that uses MPI processes for conductor level parallelism
and OpenMP directives to exploit parallelism within a con-
ductor. This section presents experiments to demonstrate
the parallel performance of ParlS on multiprocessors with
shared, distributed, and distributed-shared memory archi-
tectures. Distributed memory platforms such as the 64-bit
Intel and AMD Linux clusters allow parallelism to be ex-
ploited via MPI processes only. Distributed-shared memory
platforms such as the IBM p690 allow mixed mode paral-
lelization with both MPI and OpenMP.

The performance of the code is measured by the effi-
ciency on a set of benchmark problems. In these experi-
ments, a generalized notion of efficiency is used to provide a
uniform basis to compare different experiments. Efficiency
is defined as follows:

_ BOPS

E ;
p

where p is the number of processors and BOPS is the av-
erage number of base operations executed per second. A
base operation involves computing an interaction between
a pair of filaments. In general, BOPS should remain un-
changed when the number of conductors and the filaments
per conductor are varied. With this definition of efficiency,
it is possible to compare the performance of the code on
different benchmarks that require unequal number of mu-
tual inductance interactions.

Since the multipole degree, d, influences the accuracy of
the approximate dense matrix-vector product, a fair compar-
ison is possible only when the impedance error is bounded.
It was seen that for d = 4, the impedance error was al-
ways within 1% of a reference value that was calculated
using FMM with d = 8. The parallel performance of the

Proceedings of the 2004 International Conference on Parallel Processiné (ICPP’04)
0190-3918/04 $20.00 © 2004 IEEE

algorithm is reported for a fixed number of GMRES iter-
ations. The results are identical to the case when the full
inductance extraction problem is solved because the dense
matrix-vector products account for over 98% of the execu-
tion time. It may be noted that the use of higher multi-
pole degree increases the fraction of time spent in the dense
matrix-vector product, which in turn improves the parallel
effficiency (see, e.g., [5] for details).

The symbols used for the experiments are summarized
below.

T Execution time (seconds)

E Parallel efficiency (%)

p Number of processors

Povp Number of OpenMP processes

Pypr Number of MPI processes
4.1 Shared Memory Parallelization

The benchmark problem presented in this section illus-
trates the parallel performance of the code on a shared mem-
ory multiprocessor. These experiments were conducted on
a 32-processor IBM p690 multiprocessor with 1.3GHz pro-
cessor speed and AIXS5.1 operating system. The ground
plane problem shown in Fig. 1 models the ground plane that
is used to provide a uniform ground potential to all the com-
ponents of a VLSI circuit.

Table 1. Parallel performance for the ground
plane problem on shared memory machine.

Problem Size

p | 128 x 128 | 256 x 256 512 x 512
T E T E T E
1 {770 | 100 | 3727 | 100 | 17164 | 100
2 | 385 | 100 | 1865 | 100 | 8610 | 99
4 1193 | 99 | 938 | 99 | 4315 | 99
8 | 103 | 93 | 483 | 96 | 2203 | 97
16 | 55 87 | 250 | 93 1193 | 89

The problem requires computing the self-impedance of
a lem x lcm ground plane. A uniform two-dimensional
mesh is used to discretize the ground plane. A tolerance of
1073 was specified for the relative residual norm of the pre-
conditioned GMRES method. Table 1 shows the execution
time and efficiency for linear systems of order 32K, 128K
and 512K unknowns. For a fixed size problem, a modest
decrease in parallel efficiency with increase in the number
of processors indicates an efficient parallel implementation.
Figure 3 illustrates the scalability of the algorithm. It can be
seen that by increasing the problem size, parallel efficiency
is maintained when the number of processors are increased.

nn

COMPUTER
SOCIETY

\IZ Procs @4 Procs 08 Procs 16 Procs

100 100
100 | 99 99 99 99
97
_ %
& g5 |
5 00 93 93
(%)
c
3
£ 90 | 89
u 87
85 |
80
128x128 256x256 512x512

Problem Size

Figure 3. Shared memory parallel efficiency
for the ground plane problem.

4.2 Mixed Mode Parallelization

The cross-over problem shown in Fig. 4 is a standard
benchmark problem for inductance extraction. This setup
represents a cross-over of interconnect segments. The prob-
lem consists of determining the impedance matrix for these
segments. The segments are 1cm long and 2mm wide, and
are separated by 500um in the horizontal direction. This
problem leads to a non-uniform point distribution for the
dense matrix-vector multiplication algorithm.

=

e o
W

Figure 4. Cross-over problem with a view of a
discretized conductor.

Mixed mode experiments were conducted on 16 proces-
sors of an IBM p690 at NCSA, Illinois. No more than 16
processors were available due to site restrictions. Various
combinations of OpenMP and MPI processes were used to
demonstrate the mixed mode parallel efficiency of the soft-
ware. Each MPI process was responsible for one conductor
and OpenMP directives were used to parallelize computa-
tion within the conductor.

Proceedings of the 2004 International Conference on Parallel Processiné (ICPP’04)
0190-3918/04 $20.00 © 2004 IEEE

Table 2. Parallel performance for the cross-
over problem with 128 x 640 filaments per
conductor.

Pypr
Powp 1 2 4 8
T E T E T E T E
1 578 | 100 | 582 | 99 | 597 | 99 | 618 | 98
2 286 | 100 | 292 |1 99 | 296 | 100 | 316 | 96
4 150 | 96 150 | 96 | 158
8 81 88 88
16 49 74
[W1OMP B2 OMP 4 OMP T8 OMP 116 OMP
1001 s g 3 3 < 3= 8o
< 9 3 3
$
% NS
70 1
60
50
1 2 4 8

MPI Processes

Figure 5. Mixed mode parallel efficiency for
the cross-over problem with 128 x 640 fila-
ments per conductor.

Table 2 shows the parallel performance of the software
on the cross-over problem where each conductor has been
discretized by a mesh of size 128 x 640. Figure 5 shows
that the parallelism within a conductor is exploited very ef-
fectively via the OpenMP directives.

4.3 Distributed Memory Parallelization

The parallel performance of the software was studied on
the IBM pSeries 690 as well as the Intel and AMD Linux
clusters. The experiments were conducted on a 64-bit In-
tel Itanium cluster at NCSA, Illinois and on a 64-bit AMD
Opteron-240 Tensor cluster at Texas A&M University. The
Intel cluster consists of 800MHz 64-bit Itanium processors
with Redhat-Linux operating system. Intel compilers were
used to compile the code. The Tensor cluster consists of
1.4GHz 64-bit AMD Opteron processors with SUSE-Linux
operating system. GNU compilers were used on the Tensor
cluster for compiling the code.

Table 3 shows the execution time and parallel efficiency

un@

COMPUTER
SOCIETY

Table 3. Parallel performance for the cross-
over problem on workstation clusters. Each
conductor has been discretized by a 128 x
640 filament mesh.

IBM p690 | Intel-64 Linux [AMD-64 Linux
p| T | E | T E T E
1| 578 | 100 | 738 100 300 100
2| 585 | 99 | 746 99 301 99
4| 604 | 98 | 765 99 310 99
81629 | 97 | 790 99 320 99
‘l2 Procs @4 Procs 08 Procs‘
100 - 99 99 99 99 99 99
§ 95 A
;:3 90 A
85
80 -

IBM p690

Intel-64 Linux AMD-64 Linux

Figure 6. Parallel efficiency of the software
for cross-over problem on different clusters.
Each conductor was discretized by a 64 x 320
filament mesh.

of the software for the cross-over problem. Note that the
number of conductors is identical to the number of MPI
processors. In these cases, the total base operations and the
execution time increase with increasing conductors. This
is accompanied by a growth in the communication required
among the processors. However, the parallel efficiency de-
fined as the average base operations per second per proces-
sor is maintained across problem instances. This indicates
that the code utilizes each processor efficiently when the
load is distributed uniformly across processes.

5 Conclusion

This paper presents a high performance parallel software
package called ParlIS for inductance extraction of VLSI cir-
cuits. The software is based on a parallel formulation of
the solenoidal basis method for inductance extraction. The
computational complexity of the algorithm depends on the
cost of computing matrix-vector products with dense coef-
ficient and preconditioner matrices. ParlS uses an efficient

Proceedings of the 2004 International Conference on Parallel Processina (ICPP’04)
0190-3918/04 $20.00 © 2004 IEEE

parallel formulation of a hierarchical approximation scheme
that is similar to the FMM algorithm. The software employs
a two-tier approach in the mixed mode parallel code that
is both portable and efficient on a variety of multiproces-
sors. Experimental results demonstrate that ParlS achieves
very high parallel efficiency on shared-memory, distributed-
memory, and distributed-shared memory multiprocessors.

References

[1] J. Barnes and P. Hut. A hierarchical O(n log n)
force calculation algorithm. Nature, Vol. 324:446—
449, 1986.

[2] A. Grama, V. Kumar, and A. Sameh. Parallel hier-
archical solvers and preconditioners for boundary ele-
ment methods. SIAM Journal on Scientific Computing,
Vol. 20:337-358, 1998.

[3] L. Greengard. The Rapid Evaluation of Potential
Fields in Particle Systems. The MIT Press, Cam-
bridge, Massachusetts, 1988.

[4] M. Kamon, M. J. Tsuk, and J. White. FASTHENRY:
A multipole-accelerated 3D inductance extraction pro-
gram. [EEE Transaction on Microwave Theory and
Techniques, Vol. 42:1750—-1758, September 1994.

[5] H. Mahawar and V. Sarin. Parallel iterative meth-
ods for dense linear systems in inductance extraction.
Parallel Computing, Vol. 29:1219-1235, September
2003.

[6] H. Mahawar, V. Sarin, and W. Shi. A solenoidal ba-
sis method for efficient inductance extraction. In Pro-
ceedings of the 39t" Conference on Design Automa-
tion, pages 751-756, New Orleans, Louisiana, June
2002.

[7]1 Y. Saad. Iterative Methods for Sparse Linear Systems.
PWS Publishing Company, Boston, 1996.

[8] F. Sevilgen, S. Aluru, and N. Futamura. A provably
optimal, distribution-independent, parallel fast multi-
pole method. In Proceedings of the 14" IEEE Inter-
national Parallel and Distributed Processing Sympo-
sium, pages 77-84, Cancun, Mexico, May 2000.

[9] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. L.
Hennessy. Load balancing and data locality in hierar-
chical n-body methods. Journal of Parallel and Dis-
tributed Computing, Vol. 27:118-141, 1995.

[10] S. H. Teng. Provably good partitioning and load bal-
ancing algorithms for parallel adaptive n-body simu-
lation. SIAM Journal of Scientific Computing, Vol.
19:635-656, 1998.

un@

COMPUTER
SOCIETY

	footer1:

