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Abstract

Cutting Stock Problems arise in many industries where
large stock sheets of a given material must be cut into
smaller pieces. Many algorithms have been proposed for
solving each of the problem formulations. We present diffe-
rent implementations based on Viswanathan and Bagchi’s
algorithm to solve the Two-Dimensional Cutting Stock
Problem (2DCSP). One approximation parallelizes the ge-
neration of new builds from different subproblems. Also
a highly efficient data structures to store subproblems are
introduced, allowing to provide a parallel implementation
where the generation of new subproblems from a particular
one can be distributed. The OpenMP tool has been used
for the parallel implementations and some computational
results are presented.

1. Introduction

Cutting Stock Problems (CSP) arise in many production
industries where large stock sheets (glass, textiles, pulp and
paper, steel, etc.) must be cut into smaller pieces. CSP can
be classified [12, 6] attending to several characteristics: the
number of dimensions (1D, 2D, 3D), the number of availa-
ble surfaces and patterns, the shape of the patterns (regular
or irregular), the orientation, etc. Even considering the sim-
plest formulation of the problem, Cutting Stock Problems
are classified as NP-Hard problems [5].

The first formulation of the Cutting and Packing Problem
as a Linear Programming Problem was made in 1961 [7].
Since that moment a lot of bibliography about the diffe-
rent formulations of the problem has appeared. The Con-
strained Two-Dimensional Cutting Stock Problem (2DCSP)
is one of the most interesting variants of CSP. It targets
the cutting of a large rectangle in a set of smaller rectan-
gles finding the set of pieces that get a maximum profit and
a minimum loss of the available surface. The solution to
the problem has been studied following multiple approxi-

mations. Though a large number of heuristics have been
proposed the number of exact algorithms is not so exten-
sive. The exact algorithms fall in two categories: depth-first
searches [2] and best-first search methods [15, 8, 4]. To our
knowledge, not many parallel exact algorithms have been
devised [13, 11]. Wang [16] was the first to make the obser-
vation that all guillotine cutting patterns can be obtained by
means of horizontal and vertical builds of meta-rectangles
(Figure 2). Her idea was exploited by Viswanathan and
Bagchi [15] to propose a brilliant best first search algo-
rithm (VB) which uses Gilmore and Gomory [7] dynamic
programming solution - for the unbounded version of the
problem - to build an upper bound. Later, Hifi [8] and Van-
Dat, Hifi and Le-Cun [4] proposed a modified version of
Viswanathan and Bagchi algorithm (called MVB) introdu-
cing an initial lower bound and rules to find in constant time
duplicated/dominated patterns. The efficiency of MVB is
also a consequence of other two novelties: the use of a bidi-
mensional data structure and a reduced upper bound which
combine the VB with the solution of a One-Dimensional
Knapsack Problem.

Niklas et al. in [11] proposed a parallel version
of Wang’s approximation algorithm [16]. Unfortunately,
Wang’s method does not always yield optimal solutions in
a single invocation and is slower than VB algorithm [15].
Tschöeke and Holthöfer parallel version [13] starts from
the original Viswanathan and Bagchi algorithm and uses
the Paderborn Parallel Branch and Bound Library (PPBB-
LIB [14]). Due to the asynchronous nature provided by the
PPBB-LIB skeleton, the algorithm does not guarantee the
processing of best subproblems first. Another consequence
is the generation of unwanted duplicates which aren’t pro-
duced by the sequential version. In the worst case an ex-
ponential growth of elements may result. The authors pro-
posed a stamp-based mechanism to hinder the generation of
duplicates.

Initially, we implemented the problem using MaLLBa
skeletons [10]. MaLLBa [1] skeletons have been develo-
ped in C++ and they provide sequential and parallel solvers
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1 OPEN := , , . . . , ; CLIST := ; f’ := UpperBound();
2 repeat
3 choose meta-rectangle from OPEN with higher value;
4 return( ) if ;
5 Insert in CLIST;
6 forall in CLIST do
7 /* horizontal build */
8 ; ; ;
9 /* vertical build */
10 ; ; ;
11 ;
12 ;
13 if (( ) and ( ) and ( )) then
14 Insert in OPEN;
15 if (( ) and ( ) and ( )) then
16 Insert in OPEN;
17
18 forever;

Figure 1. Viswanathan and Bagchi’s Algo-
rithm

based on a specific algorithmic technique. The 2DCSP im-
plementation done with MaLLBa is also based on VB al-
gorithm. The general structures provided by the skeletons
do not allow to obtain good performance results, so we de-
cide to do an ad hoc C implementation. Some improve-
ments have been introduced into this implementation: new
data structures for the management of builds and ad hoc
parallelizations have been tested. Note that any Best First
Search Branch and Bound will greatly benefit of these ideas.
In particular, they can be implemented by skeletons giving
support to this technique.

The article content will be organized in the following
way: An exact algorithm based on VB and its parallel ver-
sion will be explained in sections 2 and 3. Section 4 ex-
poses some improvements introduced to the data structures
in the sequential algorithm. The new scheme gives a chance
for the implementation of a new parallelization described in
section 5. Computational results of the different implemen-
tations will be shown in Section 6. Finally, conclusions and
future works are given.

2. Implementation based on linked lists

The Constrained Two-Dimensional Cutting Stock Prob-
lem (2DCSP) is one of the most interesting variants of CSP
and targets the cutting of a large rectangle of dimensions

in a set of smaller rectangles , each one with di-
mensions , and an associated profit . Let’s the
number of available rectangles of type and the number
of pieces of type that have been fit into the large rectangle.

Figure 2. Vertical and horizontal builds

The problem consists in finding the set of pieces and its dis-
tribution along the surface that get a maximum profit and
a minimum loss of the available sheet, that is:

subject to and .

Our first implementation is based on VB algorithm (Fi-
gure 1). The algorithm makes uses of two list OPEN and
CLIST to yield the set of feasible solutions. At each step,
an element of size from OPEN is chosen and
combined with the elements in CLIST to produce horizontal

and vertical builds (Figure 2).
In order to have a way to know which builds are better

and which are worse, it is defined the build accumulated
profit, , as the profit sum of all patterns belonging
to the build . Besides, is defined as the maximum
profit obtainable from the remaining area of the surface. So,
having a certain build , its total profit is defined as:

. To calculate the estimated total profit ,
the algorithm uses an upper estimation of , denoted as

.
The presented implementation introduces some features

to the original VB algorithm: Duplicated builds are de-
tected and removed when inserting new subproblems into
OPEN. Before moving any build from OPEN to CLIST, the
algorithm must check dominance between the current sub-
problem and the ones in CLIST. All dominated rectangles
will be removed. Dominance attend to the pieces employed
in the build and its dimensions. The implementation also
stores the best current solution in order to discard the worst
builds.

3. Parallel implementation based on linked lists

The first parallel approach is based on a shared memory
scheme to store the build lists (OPEN and CLIST) used du-
ring the search process. This feature allows several threads
to simultaneously generate new builds from different ones.
The bottleneck is to keep OPEN sorted, since threads are
simultaneously accessing it. For this reason, the simple in-
sertion of OPENMP pragmas is not sufficient.

The master-slave model is in the core of the implemen-
tation. Before the threads begin to work, the master gen-
erates the initial subproblems. At each step, the master re-
moves the first subproblem from OPEN. If it is a solution,
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Figure 3. Data structure to store CLIST

the search finishes. In other case, and assuming the subpro-
blem is not dominated, it verifies if someone is combining it
or if it has been combined before. If the subproblem is still
unbranched the master does the combination. If the sub-
problem is assigned, the master must wait until the thread
which works on it finishes to generate its new combinations.
Once all the combinations have been generated, the master
inserts them into OPEN. Until the master does not notify the
end of the search, each slave works generating new builds
from the unexplored subproblems in OPEN.

Problems appear when different threads are simultane-
ously trying to modify the same shared variable. OpenMP
does not provide high-level mechanisms to solve these
problems when using with dynamic memory structures, so
we had to incorporated extra synchronization and flush op-
erations.

4. Improving Data Structures

In VB original version the combination is achieved
traversing the whole CLIST list, discarding non feasible so-
lutions. To alleviate this, Cun and others [4] introduced
the data structure depicted in Figure 3. This way (shown
in Figure 4) uses two loops, one for the horizontal combi-
nations (lines 7-16) and another for the vertical combina-
tions (lines 17-26) and only problems holding the geome-
try constraints are visited. There is one loss however. Ob-
serve that and for
any and and any pattern . When using the original list
data structure this common values are computed only once.
The decoupling on two loops implies the repetition of such
calculations (lines 11 and 21). We can reduce this over-
head as follows: During the horizontal loop (lines 7-16) we
save a pointer to inside the data structure representing the
meta-rectangle (for that we use an extra field, let us call
it ). On a second field (call it ) we store

1 OPEN := , , . . . , ; CLIST := ; f’ := UpperBound();
2 BestSol := Heuristic(); B: = ;
3 repeat
4 choose meta-rectangle from OPEN with higher value;
5 return(Bestsol) if ;
6 Insert in CLIST at entry ;
7 for x := 0 to L - do
8 forall such that do
9 /* horizontal build */

10 ; ; ;
11 ; ;
12 if ( ) then free OPEN from B to ;
13 = ; BestSol = ;
14 if ( ) then Insert in OPEN at entry ;
15
16
17 for y := 0 to W - do
18 forall such that do
19 /* vertical build */
20 ; ; ;
21 ; ;
22 if ( ) then free OPEN from to );
23 = ; BestSol = ;
24 if ( ) then Insert in OPEN at entry ;
25
26
27 return(Bestsol) if OPEN = ;
28 forever;

Figure 4. Modified Version of Viswanathan
and Bagchi’s Algorithm

a pointer to . Now if during the vertical loop (lines
17-26) the meta-rectangle (line 18) has its field
pointing to we can recover the values stored in

using the field of .
On any best-first search algorithm subproblems are

sorted by the value of their upper bounds. Maintaining this
usually very large set is often cause for performance degra-
dation. Since along the execution of any Branch and Bound
the lower bounds keep ascending and the upper bounds des-
cending we can state that during the search all the upper
bounds fall in the interval . We denote by

the initial heuristic value and by the maximum
upper bound of the initial subproblems. That suggest a nat-
ural solution: to have an array of pointers
to linked lists of subproblems. Subproblems with the same
upper bound go to the same linked list. Ties in OPEN are re-
solved according the value of . Insertion then can be done
in constant time. Notice that insertion using the classical list
approach [15, 16] leads - for VB algorithm but it is also the
general case for Branch and Bound - to time since
in the worst case the list grows exponentially with the num-
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Figure 5. Data Structure to store OPEN

ber of patterns. The other main operation involved, choos-
ing/extracting the subproblem with the largest upper bound
consists now in descending the interval searching for a non
void pointer. Full segments of memory can be freed any
time the lower bound improves (lines 22-23, Figure 4) or
the maximum upper bound decreases.

When memory is an issue and there is no space to afford
to store the whole interval the data struc-
ture becomes a tree-of-intervals (Figure 5). The root node
is now a smaller interval where .
Each item in is a pointer to an interval of size

and so on. The idea is extremely simple - but
as far as we know it is the first time that it is proposed - and
it can be applied to any best first search Branch and Bound
algorithm and therefore to Algorithmic Skeletons [1, 3, 14]
supporting this technique.

5. Parallel implementation based on the bidi-
mensional structure

In this new parallel approach, each processor works in a
section of the bidimensional CLIST. It combines the current
best subproblem with the subproblems contained in its sec-
tion. Each processor keeps a replicated copy of CLIST. The
work distribution can be a dynamic or static (cyclic, block).
On the other side, OPEN is distributed and only contains the
builds generated by its owner. These structures allow the
processors to work independently in the generation of new
subproblems. After this step, each processor has its own
best current subproblem. To determine global best current
build, an all-to-all reduction is performed. The same reduc-
tion is used to update the best solution current value. This
reduction and synchronization scheme is shown in Figure 6.

Each thread initializes its OPEN and CLIST variables.
The master thread creates the initial subproblems and in-
serts them into its OPEN list. At every iteration of the
search loop, the global best subproblem is identified. Each
thread makes public its best subproblem by updating the
corresponding entry of a shared static structure. The mas-
ter thread determines the thread identifier having the best
current subproblem and writes it to a shared variable. This
value is copied by the threads into a private variable. Be-
sides, the best subproblem owner must remove it from its

OPEN list. If the subproblem is not the solution and there are
no other similar or better subproblems it is inserted in the
local CLIST. If the subproblem is discarded, go to the pre-
vious step. The horizontal new builds are generated in the
first loop and in the second are generated the vertical ones.
These loops have a parallel-for pragma, so each thread will
do combinations of the subproblem with certain sections of
the CLIST matrix. The new subproblems are inserted into
the corresponding thread OPEN list. Once all the new sub-
problems have been created and inserted into the lists, each
thread must find its current best subproblem and copy it to
the static shared array. The same is done with the best so-
lution. These steps must be followed until the solution is
found.

The main problem of the implementation deals with the
use of dynamic linked lists. These lists have to be modified
by all threads and there is no mechanism available to ensure
the integrity of data. OpenMP compilers usually ensure the
integrity of static structures, that is, arrays or structs stored
in the static segment or in the execution stack. But it is
not the case when dealing with data structures allocated in
the heap. By this reason, some additional operations are
necessary to update the shared dynamic data structures used
in our implementation.

6. Computational Results

The experiments have been run on a machine with 4 Intel
Xeon 1.4GHz, and on an Intel Itanium 2 1.5GHz cluster.
The instances have been selected for the ones available on
the literature. Each experiment has been executed five times
and the results presented is the average.

Table 1 shows the results for the instances , and
described in [8]. Columns labelled “Time” show execution
times in seconds and the labelled “Comp.” show the number
of average computed nodes. The results grouped under the
name “Initial Version” are for the sequential and parallel ex-
ecutions for the algorithm described in section 2 on the mul-
tiprocessor. Speedups highly depend on the input problem.
Sequential times for the modified version described in sec-
tion 4 are also shown in the table under the label “Improved
Version”. As we can see, the modified sequential imple-
mentation introduces great improvements over the original
version.

The results for the other instances studied in [8] (that is,
, , , , , , , and ) are not shown because

the times obtained for the improved version are more dras-
tic and there is no chance for parallel improvements. Then,
we have selected the instances problem 1 from category 1
(cat1 1) and problem 2 from category 3 (cat3 2) from the
ones proposed at [9]. New data structures allow to obtain
really better times. They make possible to easily sort ele-
ments in OPEN and find duplicated/dominated nodes. But,

Proceedings of the International Symposium on Parallel Computing in Electrical Engineering (PARELEC'06)
0-7695-2554-7/06 $20.00  © 2006



Best

Open

P0

Best

Open

P1

Best

Open

P2

Best Uppers

Best

Figure 6. Reduction-Barrier Scheme

when the number of generated nodes increases, the inser-
tion of subproblems into OPEN turns too heavy for the first
implementation. By this reason, large problem instances
are not approachable by this version. However, they can
be solve by the parallel improved algorithm. The Table 2
presents the results obtained on the Intel Itanium cluster.
The columns labelled “Ins.” and “Gen.” shows the num-
ber of nodes, in thousands, inserted and generated respec-
tively. Parallel speedups strongly depend on the particular
problem. That is a result of changing the search space ex-
ploration order when more than one thread is collaborat-
ing in the resolution. Even in worse cases (cat1 1) we can
improve sequential times. A fair work load distribution be-
tween threads is difficult to obtain since it is not only needed
to fairly distribute the subproblems to generate but also the
ones to be inserted. Before doing a certain combination we
are not able to know if it will be valid or not (to be inserted).

7. Conclusions

Two sequential algorithms for the resolution of the Two-
Dimensional Cutting Stock Problem have been presented.
Both algorithms are based on Viswanathan and Bagchi’s
Algorithm. The second approach introduces some improve-
ments to the initial version. New data structures are design
in order to efficiently manage insertions, combinations and
dominance detections. Now insertion time does not depend
on the number of nodes in the lists and can afford the reso-
lution of larger problem instances.

Also, we have studied the parallelizations introduced
on both algorithms. Parallel versions have been imple-
mented using OpenMP. In the parallelization of the initial
scheme, threads work simultaneously in the generation of
new subproblems from different builds. When many diffe-
rent threads work over a same dynamic structure (OPEN)

data integrity/consistence problems may appear. OpenMP
does not provide any mechanisms to solve these problems
when working with dynamic memory structures, so we had
to incorporated some extra synchronization and flush op-
erations. The extra operations involved too overhead to
the scheme in comparison to the time invested in the com-
bination of a subproblem with all subproblems in CLIST.
The parallel version obtains better times because when all
threads work together, they can get a better current solution
earlier. This makes possible to discard a lot of builds than in
the sequential scheme had to be inserted into OPEN. A par-
allelization of the new build generation loop is proposed.
In this case, less work is distributed at each step and the
load distribution is worse than in the other parallel version.
Super and sublinear speedups may occur since the parallel
algorithms alters the sequential order. Porting an existing
C application to OpenMP even if the algorithm is straight-
forwardly parallel can be sometimes quite difficult due to
the lack of support to qualify dynamic memory variables as
shared or private.

Future works targets improvement of the modified algo-
rithm and its parallel version. New algorithm bounds are
been studied. In relation to the parallel algorithm we would
like to develop a message passing implementation in order
to compare with the ones presented. A depth study of the
work load distribution is also required.
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Table 1. First Approximation - Sequential and Parallel results
Initial Version Improved Version

Sequential 2 Threads 4 Threads Sequential
Problem Comp. Time Comp. Time Comp. Time Comp. Time

1 3502 2,78 4136 4,90 4044 3,39 578 0,079
A4 864 75,94 854 9,51 860 7,36 374 0,174
A5 1674 6,17 1510 6,63 1526 3,13 670 0,212

Table 2. Improved version - Parallel results
Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8
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cat1 1

Th 1 122 71631 42 112.09

Th 2 72 35551 52 36079 50 73.49

Th 4 39 18896 28 19874 35 18093 26 17515 56 73.96

Th 8 20 11443 16 13898 14 8216 15 9427 18 7068 10 5657 20 9503 10 7894 57 68.99

cat3 2

Th 1 145 5067 10 32.08

Th 2 43 2621 44 2919 11 5.59

Th 4 32 175 31 179 23 148 23 110 3 0.77

Th 8 30 200 19 126 21 184 17 128 25 172 28 228 12 112 22 117 5 1.01
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