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Abstract—This paper describes the use of CUDA to
accelerate the Himeno benchmark on clusters with GPUs.
The implementation is designed to optimize memory
bandwidth utilization. Our approach achieves over 83%
of the theoretical peak bandwidth on a NVIDIA Tesla
C1060 GPU and performs at over 50 GFlops. A multi-GPU
implementation that utilizes MPI alongside CUDA streams
to overlap GPU execution with data transfers allows linear
scaling and performs at over 800 GFlops on a cluster with
16 GPUs. The paper presents the optimizations required
to achieve this level of performance.

I. INTRODUCTION

The Himeno benchmark [1] was developed by Dr.

Ryutaro Himeno in 1996 at the RIKEN Institute in

Japan. Since its introduction the benchmark has grown

in popularity and is used throughout the HPC com-

munity, especially in Japan. Linpack, the well known

benchmark used for ranking the fastest 500 computer in

the world, is highly compute intensive, often approach-

ing a large percentage of the theoretical floating point

throughput on large computer systems. The Himeno

benchmark by contrast is highly memory intensive,

bound by memory bandwidth on modern processors.

A. The Himeno benchmark

The Himeno benchmark focuses on the solution of

a 3D Poisson equation in generalized coordinates on a

structured curvilinear mesh:
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Several numerical methods (like the fractional step

method) used to solve the incompressible Navier-Stokes

equations require the solution of such equation. With the

processing time dominated by the Poisson solution, it

makes the Poisson procedure a good measure of overall

performance.

Using finite differences, the Poisson equation is dis-

cretized in space yielding a 19-point stencil as shown

in figure 1.

The discretized Poisson equation is solved iteratively

using Jacobi relaxation. Table I shows the main solver

loop which applies the stencil to the pressure array

P. The 10 arrays a0 − 3, b0 − 2, and c0 − 2 store

kji ,,
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Figure 1. Stencil for the discretization of the Poisson equation in
generalized coordinates.

the spatially varying weights used in the stencil that

account for the local grid geometry. The wrk2 array is

a temporary storage for the updated pressure values, bnd
is a boundary condition flag used to specify whether a

grid location is solid or fluid, and wrk1 is the source

term that appears on the right hand side of the Poisson

equation.

The benchmark is designed to run on a wide range

of computer systems. Table II lists the sizes of the

benchmark along with the memory footprint of each

case.

Problem Size Memory size

XS 32 x 32 x 64 3.5 MB

S 64 x 64 x 128 28 MB

M 128 x 128 x 256 224 MB

L 256 x 256 x 512 1792 MB

XL 512 x 512 x 1024 14336 MB

Table II
HIMENO BENCHMARK STANDARD DOMAIN SIZES AND MEMORY

FOOTPRINTS.

II. GPU ARCHITECTURE AND CUDA

The GPU architecture has now evolved into a highly

parallel multi-threaded processor with very high floating

point performance and memory bandwidth. NVIDIA’s
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for (i=1; i<imax-1; i++)
for (j=1; j<jmax-1; j++)

for (k=1; k<kmax-1; k++)
{
s0 = a0[i][j][k]* p[i+1][j][k]

+ a1[i][j][k]* p[i][j+1][k]
+ a2[i][j][k]* p[i][j][k+1]
+ b0[i][j][k]*(p[i+1][j+1][k] - p[i+1][j-1][k]

- p[i-1][j+1][k] + p[i-1][j-1][k])
+ b1[i][j][k]*(p[i][j+1][k+1] - p[i][j+1][k-1]

- p[i][j-1][k+1] + p[i][j-1][k-1])
+ b2[i][j][k]*(p[i+1][j][k+1] - p[i+1][j][k-1]

- p[i-1][j][k+1] + p[i-1][j][k-1])
+ c0[i][j][k]* p[i-1][j][k]
+ c1[i][j][k]* p[i][j-1][k]
+ c2[i][j][k]* p[i][j][k-1]
+ wrk1[i][j][k];

ss = (s0 * a3[i][j][k]-p[i][j][k])
* bnd[i][j][k]; //(ss = delta P)

wrk2[i][j][k]=p[i][j][k]+omega*ss; //(over-relaxation)
gosa += ss*ss; //(residual, measure of convergence)

}

Table I
COMPUTATIONAL KERNEL: THE OUTPUT IS THE PRESSURE (WRK2) AT THE NEW ITERATION AND THE RESIDUAL TO MONITOR

CONVERGENCE.

Tesla 10-series, a product line for high performance

computing, has GPUs with 240 cores and 4 GB of

memory. The PCI-e card (C1060) has a clock frequency

of 1.296 GHz and a 1U system with 4 cards (S1070)

has a clock frequency of 1.44 GHz. The cards have

a 512–bit GDDR3 memory interface with a 800 MHz

memory clock frequency that gives 512/8(bytes) ∗
2(DDR) ∗ 800Mhz = 102GB/s theoretical peak

memory bandwidth.

The GPU is especially well-suited to address prob-

lems that can be expressed as data-parallel computa-

tions, i.e. the same program is executed on many data

elements in parallel. CUDA is a parallel programming

model and software environment designed to expose

the parallel capabilities of GPUs. CUDA extends C or

Fortran by allowing the programmer to define functions

or subroutines, called kernels, that when called are ex-

ecuted on the GPU by potentially thousands of parallel

threads.

III. CUDA IMPLEMENTATION

Before starting the discussion on the CUDA aspects

of the porting, let us analyze the benchmark, in partic-

ular a quantity called Compute Intensity (CI), the ratio

between memory accesses and floating point operations.

Referring to the code listing in Table I, at each spatial

location there are 14 floating point values that must be

accessed, and a total of 34 floating point operations.

This results in a CI of 34 flops / 14*(4 bytes) = 0.607

flops/byte. The algorithm is bandwidth limited and since

only one of the 14 arrays is reused, its also very cache-

unfriendly.
As a result, it is clear that the CUDA porting strat-

egy should focus on maximizing the effective memory

bandwidth. The solution strategy must expose enough

parallelism to completely utilize the GPU’s resources

while reducing the amount of redundant data accesses.
The key to reducing redundant data access is using

the on-chip shared memory to store the pressure data.

Shared memory is a user-managed cache that allows

threads within the same thread-block to cooperate with

one another. At 16 KB per multiprocessor, the shared

memory is a scarce resource and must be used sparingly.

A larger block of data will improve efficiency of the

algorithm by having a lower surface-area-to-volume-

ratio. However if a single block uses all of the shared

memory available, no other blocks can be scheduled

to run concurrently on the same multiprocessor, which

lowers the hardware’s ability to hide memory latency.

Thus, there is an inevitable trade-off in the 3D data

partitioning scheme.
In previous work [4], the 3D domain is decomposed

into 3D sub-blocks processed by a 2D block of threads.

The 2D thread block loads and processes several planes

of the input data, writing results directly to the global

memory.
In our approach we dramatically reduce the shared

memory usage by foregoing the storage of the entire 3D

data block. Instead, similar to [7], we store only three

planes which contain all the neighbor data necessary



to process a plane of the sub-block. These three planes

serve as a cyclic buffer, which are swapped as we march

along in the Z-direction, loading a new plane and then

computing the output for the current plane.
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Figure 2. Thread blocks process columns of the domain using a
cyclic buffer of 3 planes in shared memory: a) data access of a thread
block, b) the three shared-memory planes, c) the thread-block

Since we only store 3 planes we are able to run sev-

eral thread blocks concurrently on each multiprocessor

and have virtually no limit to the Z-direction size of the

data block. In fact, as we increase the size of the data

block in the Z-direction the algorithm becomes more

efficient since fewer redundant planes are loaded. We

take this approach to the extreme, strictly decomposing

the domain in 2D and processing an entire column of

planes with a single thread block, as shown in fig. 2.

Another advantage to the marching cyclic buffer

approach is the computation of the residual, which is

used to monitor the convergence of the iterative solver.

Since each thread will compute an entire column there is

no need to store the result of the residual at each spatial

location. Instead, each thread accumulates a partial sum

as it processes a column of the domain. One could then

write these partial sums to the global memory, which

are only a single plane in size, and then sum these

with an additional pass over these values with a parallel

reduction kernel.

We further reduce the memory bandwidth and storage

required for the residual by adding a parallel reduction

in shared memory to the end of our Jacobi iteration

kernel. We reuse one of the 3 shared memory planes

to sum the partial column residuals into a single value.

This results in writing only one value for each thread

block, instead of one value for each thread. After this

optimization the residual computation and summation

is virtually free.

In the following sections we will present several

optimization steps and their performance implications:

• Coalescing the memory access

• Optimizing the execution configuration

A)

B)

C)

D)

Active Thread

Shared memory accessedInactive Thread

Previously Loaded

Figure 3. A block of threads loads a plane of the pressure array into
shared memory in several steps. A) interior points, B) top and bottom
halo points, C) left and right halo points, D) corner points.

• Using the texture cache

• Removing logic and branching

The initial implementation was performing at

22.4 GFlops.

A. Coalescing memory transactions

The GPU memory subsystem has some special re-

quirements to achieve optimal bandwidth ( see [2] for

a detailed description of these rules). Similar to CPU

cache lines, GPU memory is partitioned into segments

that can be loaded in a single memory transaction. On

current hardware the memory controller can fetch 128,

64, and 32 byte segments. For optimal performance

each warp of 32 threads should access data in a single

segment. This means we must pad the size of array rows

to a multiple of 32, and pad the beginning of each array

to ensure the 32 values accessed are aligned with the

segments.

Coalescing the memory access is very effective be-

cause it affects all 14 of the 3D arrays. This simple

optimization improves performance by over 57%, from

22.4 to 35.2 GFlops.



__global__ void jacobi_kernel( ... ){
...

__shared__ float p_sh[3][(BLOCK_Y+2)][(BLOCK_X+2)];
//Load first 2 Planes
p_sh[btm]...
p_sh[mid]...
for(int z=1; z<ZMAX; z++) {

index += plane_size;
//Load next pressure plane
p_sh[top] = ...
...
//apply stencil
s0 = a0*p_sh[top][ty+1][tx+1] + a1*p_sh[mid][ty+2][tx+1] ...
ss = bound*(s0*a3 - p_sh[mid][ty+1][tx+1]);
//write result
if( inside the domain ) wrk2[index] = p_sh[mid][ty+1][tx+1] + omega*ss;

//swap planes top --> mid --> btm --> top
}
}

Table III
CUDA CODE FOR JACOBI KERNEL

B. Execution Configuration

Another important and easy optimization is determin-

ing the best thread-block dimensions. Large blocks have

more efficient data access since the halo or ghost cell

region will be a smaller percentage; however, this also

means each block will use more shared-memory and

registers.

The CUDA toolkit comes with an occupancy cal-

culator to assist in determining optimal block size.

Occupancy is a measure of GPU utilization as a ratio of

the number of a kernel’s threads capable of concurrently

executing on a multiprocessor relative to the maximum

possible.

The toolkit also comes with a visual profiler that

provides an abundant amount of useful information for

tuning the performance of GPU programs, including

occupancy, instruction throughput, memory bandwidth,

and many other performance counters.

In experiments, best performance is achieved with

64x3 blocks, matching the predictions obtained with

simple bandwidth efficiency and occupancy calcula-

tions, shown in table IV .

With this additional optimization, the performance is

now 42.3 GFlops.

C. Texture Cache

Further improvements are made by loading P with

texture fetches. Texture memory provides cached read-

only access that is optimized for spatial locality.

The load statements in the kernel:

p_sh[btm][ty ][tx ] = p[index];

are simply replaced with tex1Dfetch statements as

shown below:

p_sh[btm][ty ][tx ] =
tex1Dfetch(ptex, index);

Using the texture cache prevents redundant loads of

global memory. When several blocks request the same

region the data will be loaded from the cache. It is

important to notice that texture cache is not designed

to reduce latency, thus texture loads have similar cost

to global loads regardless of whether or not there is a

cache hit.

The Texture implementation reaches 47.1 GFlops.

D. Removing Logic

As stated above, texture cache does not reduce la-

tency, however, the use of texture allows for more

flexible data access patterns and consolidates redundant

acceesses. Thus, our final optimization is to exploit

this to reduce logic expressions and the total number

of instructions to load the Pressure array. The load of

the P array is typically done in several steps, as shown

in figure 3. First, all points excluding halo regions are

loaded. Next, threads on the left and right boundaries

of the block load the left and right halo points, then

threads on the top and bottom edges load the top and

bottom halo. Finally, a single thread loads the four

corner points.

The corresponding code is shown in table V.

However, after employing the texture cache, the ac-

cess pattern can be altered to remove all if statements

from the pressure loads. This results in loading the



block x block y Shared Registers Occupancy Load Blocks per

memory(Bytes) Efficiency Multi-processor

16 16 3888 6400 0.500 0.296 2

32 8 4080 6400 0.500 0.400 2

64 4 4725 6400 0.500 0.444 2

64 3 3960 4800 0.563 0.400 3

64 2 3168 3200 0.500 0.333 4

Table IV
COMPARING SEVERAL EXECUTION CONFIGURATIONS (THREAD-BLOCK SIZES) TO FIND A BALANCE OF OCCUPANCY, LOAD EFFICIENCY,

AND CONCURRENT BLOCKS PER MULTIPROCESSOR.

//load next plane
//interior points
p_sh[top][ty+1][tx+1] = p[index];
//top and bottom halo
if(ty==0 ) p_sh[top][0 ][tx+1] = p[index-rsize];
if(ty==BLOCK_Y-1)p_sh[top][(BLOCK_Y+1)][tx+1] = p[index+rsize];
//left and right halo
if(tx==0 ) p_sh[top][ty+1][0 ] = p[index-1];
if(tx==BLOCK_X-1)p_sh[top][ty+1][(BLOCK_X+1)] = p[index+1];
//corener points
if(tx==0&&ty==0)
{

p_sh[top][0 ][0 ] = p[index-rsize-1];
p_sh[top][0 ][(BLOCK_X+1)] = p[index-rsize+BLOCK_X];
p_sh[top][(BLOCK_Y+1)][0 ] = p[index+BLOCK_Y*rsize-1];
p_sh[top][(BLOCK_Y+1)][(BLOCK_X+1)] = p[index+BLOCK_Y*rsize+BLOCK_X];

}
__syncthreads();

Table V
LOADING P, WITH LOGIC

pressure plane in only 4 instructions as shown in table

VI.

This change not only improves performance, but also

makes the code much cleaner and easier to read.

The code is now performing at 51.2 GFlops.

E. Effect of the optimization steps

Figure 4 shows the effect of the progressive optimiza-

tion steps. We went from the first naive implementation

running at 22.4 GFlops to the fully optimized version

running at 51.2 Gflops. Using the Compute Intensity

factor of 0.607, this is equivalent to 84.3 GB/s of

bandwidth, 83% of the available peak.

F. Previous work

The implementations used in two previous papers on

the Himeno benchmark on GPUs ([4] and [5] ) are

different from the one described in this paper.

In the work performed at Titech ([4]), the problem

was decomposed in blocks of shape (16×16×8). Inside

each block, 256 threads ( arranged as 16 × 16) read 8

elements each. All the elements of the pressure array

were loaded in shared memory: this required 12.5 KB

of shared memory and translated in a single block

scheduled per multiprocessor. The measured memory

bandwidth was 67.9 GB/s on a GeForce GTX280 (

out of the theoretical peak of 142 GB/s). They also

implemented a multi-GPU version using Tesla S1070.

On the XL-sized benchmark, they achieved 524 GFlops

on 16 GPUs and 709 GFlops on 32 GPUs.

Naruse ([5], [6]) used a block of shape (64×4×64).

Inside each block, 256 threads (arranged as 64×4) read

64 elements each. The pressure was loaded only for the

3 planes necessary to compute the stencil ( similar to our

approach) resulting in a shared memory usage of only

4.7 KB and in the possibility of scheduling 3 blocks per

multiprocessor. While the single GPU implementation

has performance comparable to our implementation in

terms of percentage of peak memory bandwidth , the

multi-GPU implementation did not scale as well as ours:

the performance went from 70 GFlops with a GTX 285

GPU to 170 Gflops with 4 GPUs.



//load next plane
p_sh[top][ty ][tx ] = tex1Dfetch(ptex, index+psize-rsize-1);
p_sh[top][ty ][tx+2] = tex1Dfetch(ptex, index+psize-rsize+1);
p_sh[top][ty+2][tx ] = tex1Dfetch(ptex, index+psize+rsize-1);
p_sh[top][ty+2][tx+2] = tex1Dfetch(ptex, index+psize+rsize+1);
__syncthreads();

Table VI
LOADING FROM TEXTURE CACHE
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Figure 4. GPU performance after each optimization. The completely optimized version runs at up to 51.2 GFLOPS on a Tesla C1060 GPU.

G. Performance of the GPU implementation

A workstation with a single C1060 GPU reaches

51.2 GFlops or 84.3 GB/s of sustained performance. As

seen in figure 5 our implementation outperforms the lat-

est generation of quad-core CPUs (Nehalem) by a factor

of 10× and previous generation CPUs (Harpertown) by

over 33×.

H. Accuracy of the GPU implementation

The CPU implementation of the Himeno benchmark

uses single precision. The benchmark could be run on

different classes of data sets, from the small (S) class

on a 32× 32× 64 grid to the extra large (XL) class on

a 512× 512× 1024 grid.

During the validation phase, we noticed a discrepancy

between the CPU solution and the GPU solution when

the grid size was increased. The original CPU code is

using a single accumulator.

The main source of error is due to the growing

difference in magnitude between the running sum and

the elements added to it. In this particular case, all

the elements of the sum are positive, so there are no

cancellation errors.

Accurately computing very long sum of floating point

values is a very well known problem in numerical

analysis ([3]): to increase the accuracy of the final result,

one could resort to Kahan summation, use multiple

accumulators (for example with a tree reduction) or use

double precision representation for the running sum(s).

The CUDA implementation computes the residual us-

ing a tree reduction. This method is more accurate since

partial sums are typically much closer in magnitude:

the small elements are summed into larger elements

which are summed together, avoiding the truncation

errors associated with summing values of disparate

magnitudes.

To minimize the changes to the CPU code, we used

double precision with the single accumulator to get a

reference solution. As we can see in Table VII, the GPU

results are very close to the reference implementation.

IV. MULTI-GPU IMPLEMENTATION

Extending the solver to multiple GPUs requires fur-

ther decomposing the domain into portions for each

GPU. The simplest approach is to slice the domain

along the Z-direction. This 1-D decomposition keeps

all the boundary data for communication in contiguous
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I J K CPU CPU CPU GPU GPU

double precision single precision % error single precision % error

32 32 64 6.714e-3 6.711e-3 0.039 6.713e-3 0.005

64 64 128 3.417e-3 3.408e-3 0.285 3.416e-3 0.049

128 128 256 1.723e-3 1.768e-3 2.608 1.722e-3 0.095

256 256 512 8.683e-4 4.883e-4 43.77 8.637e-4 0.533

Table VII
CONVERGENCE OF THE SOLVER AFTER A SINGLE ITERATION: COMPARISON WITH DOUBLE PRECISION ACCUMULATION ON CPU, SINGLE

PRECISION ACCUMULATION ON THE CPU AND SINGLE PRECISION PARALLEL ACCUMULATION ON THE GPU

regions of memory. Each domain must exchange the top

and bottom planes with top and bottom neighbors, and

use the data to fill a halo area above and below the local

domain, as shown in figure 6.

In a naive multi-GPU implementation, each GPU

would compute the solution for the subdomain, then

boundary data would be transferred to the Host, which

would use MPI to exchange data with neighbors, and

finally copy received data back to the GPU. This is less

than ideal since the GPU will be idle during communi-

cation. A better approach is to factor the computations

such that they can be carried out concurrently with

communications. This improves the performance and

allows for improved scalability on GPU clusters.

There are two types of communications taking place,

GPU to CPU over the PCI-Express bus, and CPU

to CPU communications using MPI. Overlapping the

PCI-e communications with computations can be ac-

complished in CUDA using streams with appropriate

memory allocations and transfer calls.

The multi-GPU code also has room for improve-

ments. The initial implementation does not take into

consideration that there are 2 GPUs on each physical

node. Thus, some communications will be performed

using the network, while others simply pass through

system memory. In our test system the two computation

halves, A and B, are arranged such that A is com-

municated over the network, while B communication

goes through system memory. It would be ideal to

split A and B into unequal portions so the slower

communication can be overlapped with a larger amount

of computation, while the faster communications can be

executed concurrently with a smaller portion.

A few extra kernels were created to allow for an

uneven split between A and B, and are shown to be

effective in fine tuning the parallel performance. In

general, since A communication takes place over the

network, SPLIT should be chosen such that B > A.

A. GPU Cluster Performance

We performed benchmarks on an 8-node cluster with

16 GPUs. Each node is connected to half of a Tesla

S1070 system, containing 4 GPUs, so that each node

is connected to 2 GPUs. Each node has 2 Intel Xeon

E5462 ( 2.8 GHz with 1600 MHz FSB) and 16 GB of

memory. The nodes are connected with SDR Infiniband.
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Figure 7. Performance of Himeno benchmark before and after communications overlapping on various GPU cluster configurations for the XL
size class.

Figure 7 shows the cluster performance on the XL

problem size for 4, 8, and 16 GPU configurations with

and without the communication overlapping strategy.

After hiding the data transfers and communication cost

the cluster scales linearly reaching over 800 GFlops or

1.3 TB/s sustained performance. The small 8U GPU

cluster outperforms all but one of the top performing

systems listed on the Himeno website [1], as seen in
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figure 9. Compared to the CRAY XT3 which scores over

2 TFlops with 1920 Opteron CPUs, each GPU in our

cluster matches the performance of 44 Opteron CPUs.

V. CONCLUSIONS

With CUDA and Tesla GPUs, we boosted the Himeno

performance of both a workstation and cluster. GPUs,

with their floating point performances and excellent

memory bandwidth, are very well suited to tackle com-

putational problems. The use of GPUs allows one to

reduce the number of host nodes required to reach a

target performance level and can significantly reduce

the cost of high performance interconnects.

REFERENCES

[1] The Riken Himeno CFD Benchmark:
http://accc.riken.jp/HPC/HimenoBMT/index e.html

[2] NVIDIA CUDA Compute Unified Device Architecture
Programming Guide

[3] N. Higham, ”The Accuracy of Floating Point Summa-
tion”, SIAM J. Sci. Comput., 14(4):783-799, July 1993.

[4] S. Matsuoka, T. Aoki, T. Endo, A. Nukada, T. Kato and
A. Hasegawa, ”GPU accelerated computingfrom hype to
mainstream, the rebirth of vector computing ”, SciDAC
2009, Journal of Physics: Conference Series 180

[5] A. Naruse, S. Sumimotoand K. Kumon, ”Acceleration
Technique of Computational Fluid Dynamics on GPGPU
– Over 60 GFLOPS Himeno Benchmark Performance on



1 GPU –”, IPSJ SIG Technical Reports 2008-HPC-117-9
(2008)

[6] A. Naruse, Presentation at 2008 Riken Symposium,
http://accc.riken.jp/HPC/Symposium/2008/naruse.pdf

[7] Mike Giles, 2008, ”Jacobi iteration for a Laplace
discretisation on a 3D structured grid”, available at
http://people.maths.ox.ac.uk/ gilesm/codes/laplace3d/laplace3d.pdf



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


