
978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

Performance Enhancement of Smith-Waterman Algorithm
Using Hybrid Model: Comparing the MPI and Hybrid

Programming Paradigm on SMP Clusters

Mahdi Noorian
School of Computer Science

University of New Brunswick
Fredericton, Canada

Hamidreza Pooshfam
School of Computer Science

University Sains Malaysia
Pulau Pinang, Malaysia

Zeinab Noorian
School of Computer Science

University of New Brunswick
Fredericton, Canada

Rosni Abdullah
School of Computer Science
University Sains Malaysia

Pulau Pinang, Malaysia

Abstract— Nowadays, database pattern searching
is the most heavily used operation in computational
biology. Indeed, sequence alignment algorithm plays an
important role to find the homologous groups of
sequences which may help to determine the function of
new sequences. Meanwhile Smith-Waterman algorithm
is one of the most prominent pattern matching
algorithms. However, it cost the large quantity of time
and resource power. By the aid of parallel hardware
and software architecture it becomes more feasible to
get the fast and accurate result in efficient time. In this
paper, Smith-Waterman algorithm is parallelized base
on various types of parallel programming, pure MPI,
pure OpenMP and Hybrid MPI-OpenMP model. In
addition, based on the experiments it will be proved
that hybrid programming which employ the coarse
grain and fine grain parallelization, is more efficient
compare with pure MPI and pure OpenMP in cluster of
SMP machines.

Keywords—Pattern Matching, Smith-Waterman
Algorithm, Hybrid MPI-OpenMP.

I. INTRODUCTION
With the emergence of parallel hardware and

software technologies, developers are encountered
with the challenge of choosing a programming
paradigm best suited for the underlying computer
architecture [12]. Generally, Parallel computers can
be divided into two main categories: Shared Memory
Processor (SMP) and Distributed-Shared Memory
Processor (DSMP) [13]. Due to the fact that using
more powerful machines with SMP architecture has
high hardware cost, thus the manufacturer intend to
combine low-cost SMP machines together as a
cluster of SMPs (CLUMPs) [13,1] which is the
domain of focus in this paper.

On the other hand, by generating high amounts
of data in new biological experimental techniques
generic sequence searching becomes one of the most
heavily used operations in computational biology
[11,15,9]. In particular, the size of GenBank/ EMBL/
DDBJ double every 15 months [3]. Therefore
analyzing generic databases with such a constant

growth, raise a challenge for scientist, in respect of
being time consuming, expensive and impractical
[14]. Smith-Waterman algorithm [18] is one the most
significant and widely-used similarity algorithms for
biological sequence comparison that adopts the
dynamic programming method [11].

Despite its high sensitivity in identifying best
local alignments, it is very time consuming and
computationally expensive process. This algorithm
requires quadratic time for each comparison of two
sequences [16]. Therefore, because of the complexity
of this algorithm, there is a need for a methodology
that could reduce the computation time while
delivering accurate results.

In this study, various programming paradigms
are being compared for the parallelization of Smith-
Waterman algorithm on a cluster of SMP nodes.

Specifically, an evaluation between different
type of implementation paradigm such as pure MPI,
pure OpenMP and Hybrid model which is a
combination of both, is provided in terms of
execution time.

The remainder of this paper is organized as
follows. In the next section the different
parallelization approach is presented. In section III
the original algorithm will be described in details
while in section IV the methodology for hybrid
model and coarse grain and fine grain parallelization
will be discussed. Section V explains the
experimental results and comparisons and finally the
last section will conclude the paper.

II. PARALLELIZATION APPROACH

Nowadays, there are numerous approaches
which are suitable for transforming sequential Smith-
Waterman algorithm into parallel paradigms. This
transformation can be performed by using MPI,
OpenMP or hybrid model. Based on the hardware
architecture either of aforementioned models needs
its own library and runtime support systems [20]. In
following subsections each methodology will be
described.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
492

978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

A. MPI and OpenMP
Message Passing Interface (MPI) is a standard

for inter-process communication for distributed-
memory multiprocessor application. When an MPI
program starts, the program spawns into the number
of processes as specified by the user. Each process
runs and communicates with other instances of the
program, possibly running on the same processor or
different one.

On the other side, OpenMP is an open standard
for providing parallelization mechanisms on shared-
memory multiprocessors. The standard provides a
specification of compiler directives, library routines,
and environment variables that control the
parallelization and runtime characteristics of a
program

B. Hybrid; MPI + OpenMP
As can be seen in Figure 1, the hybrid

programming model provides opportunity to take
advantage of the both abovementioned models at the
same time. The hybrid programming model
instinctively matches with the structural
characteristics of a cluster of SMP nodes, as well as
providing two level communication patterns: intra
and inter-node communication [7].

To elaborate, Intra-node communication is
feasible by the aid of OpenMP and thread
programming model. On the other hand, Intra-node
communication happens when multiple threads has
common access to the one particular node’s share
memory. The main concern in this common access is
to provide synchronization to ensure data consistency
throughout the execution of the program which is
supported by OpenMP.

Subsequently, inter-node communication is
achieved through message passing Interface
technology between nodes.

III . SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm which was
enhanced by Gotoh [9] is perhaps the most widely-
used local similarity algorithm for biological
sequence pair wise alignment. In Smith-Waterman
database search, the dynamic programming method
is used to compare every database sequence to query
sequence and assign a score to each comparison
result [14]. This algorithm is built on the idea of
comparing segments of all possible lengths between
two sequences to find the best local alignment. This
means that the algorithm is very sensitive and
accurate which guarantee to locate an optimal
alignment of the sequences [4].
The algorithm consists of three steps:

1. Fill the dynamic programming matrix.
2. Find the maximal value in the matrix.
3. Trace back the path that leads to maximal

score to find the optimal local alignment.

To elaborate, let’s assume that the first/main
sequence, S, contains characters of length m, and the
pattern sequence, T, is the length of n.

S = {s0, s1, s2…s m-1}
T = {t0, t1, t2…t n-1}

In the first step, a two-dimensional similarity
matrix R is created by considering m+1 as the
number of rows and n+1 as the number of columns.
The first row and the first column are assigned the
value zero. Hence, filling up the cells will start from
the left topmost empty cell which is R (1, 1),
continued by the cell on its right, R (1, 2) and it will
proceed to cell R(m+1) (n+1).

Master Node

Worker #1

Core #1

Core #2

Core #3

Core #4

Worker #2

Core #1

Core #2

Core #3

Core #4

Worker #3

Core #1

Core #2

Core #3

Core #4

Input

O
utput Stream

 N
ode #1

O
utput Stream

 N
ode #3

Master Node Output

MPI Parallelization

O
pe

nM
P

Pa
ra

lle
liz

at
io

n
O

pe
nM

P
Pa

ra
lle

liz
at

io
n

O
pe

nM
P

Pa
ra

lle
liz

at
io

n

Figure.1 Hybrid model, MPI and OpenMP level of parallelization

Subsequently, in the second step, the score of
each cell is determined by choosing the maximum
score resulted from equation (1). Assume that, the
gap penalty is presented by g and similarity score
with sbt.
The equations are:

R(i 1)(j 1) + Sbt(si ,tj)

R(i 1)j + g

Ri(j 1) + g

0.

Ri j = max (1)

Where the conditions are:

if (si = tj) then Sbt (si , tj) = 2
 else -1

g = -2

493

978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

Finally, after all cells are filled up, a search for
highest value in the matrix will be performed. Then,
by referring to the location of the highest value, it
starts to trace back the operation by taking into
account the vicinity of the value which is either the
upper, left, or right cell. Applying the above equation
indicates that, the complexity of this search
algorithm is O(mn). As it is mentioned before, the
drastic growth in bioinformatics data cause an
increase to O(kmn) steps where k represents the
exponential growth of the size in genetic databases
[11].The optimized approach to overcome this
challenge is to implement this algorithm via parallel
programming solution by taking advantage of both
MPI and OpenMP technologies.

IV. THE APPROACH & THE METHODOLOGY

In order to implement this algorithm either the
task or the data can be divided between processors.
Task decomposition is about to break down the job in
different parts and assign each part of job to a
specific processor while in data decomposition, all
processors apply the same job on different portion of
data. As matter of fact, in most cases the nature of
algorithm and study would determine which type of
decomposition has to take place. For this algorithm,
data decomposition parallel approach is utilized in
both node level and cluster level.

A. Coarse Grain Parallelism Using MPI at Cluster
Level

In practice, a target database is partitioned and
distributed between different cluster nodes by the aid
of MPI technology. Afterward a similarity matching
algorithm is applied on the data to search for the best
alignment. Since in this study the FASTA file is
being used as input data, there is a requirement for
some pre-processing and data manipulation phase
before the algorithm could be applied on them.
Therefore the Master node is responsible to perform
this prerequisite action in order to omit irrelevant
data and extract the pure sequences and make them

ready for further process. The detailed description of
the Master node’s job is depicted in Table I.

B. Applying Dynamic Load Balancing
One of important factor that may degrade a

performance is overhead that happens as a result of
unload balanced data distribution among processors.
Uneven load distribution may cause some processors
terminate their job earlier than the other; as a result,
the processes with a lighter load will remain idle
while those with a heavier load are trying to finish
their tasks. Indeed this matter can adversely affect on
the total execution time and consequently the speed
up.

As aforementioned, master node has the
responsibility of data decomposition and divide the
database sequences between slave nodes. In the other
hand, database sequences have the different length
which may vary from 500 up to 2000 characters.
Therefore, it seems necessary to have the method
which handles the sequences distribution not only
based on the number of sequences. Thus, the
dynamic method is proposed which can help to
decompose the data in more balance manner. Unlike
static load balancing technique which only
distributes the target database based on the number
of slaves, this method divide sequences among the
slaves based on the number of characters that each
sequence contains. To illustrate, in this proposed
method it is assumed that each slave nodes have their
own Bucket[i], i refer to the slave node’s number,
and the database have k sequences, which is 0<k n ,
the load balancing is performed as following steps :

1. Assign the first sequence to Bucket[1], and
second sequence to Bucket[2], and sequence
i to Bucket[i].

2. Get each Bucket[i] size and assign the new
sequences to the one who has the smallest
size.

3. Continue the step 2 until all database
sequences divide between the Buckets.

In fact, this model can ensure that each slave will
receive the same amount of data thus it could help to
reduce the idle time of each slave processor and
increase the performance.

C. Fine Grain Parallelism Using OpenMP at Node
Level

As can be seen in Figure 2, besides using MPI at
the cluster level, another level of parallelization will
be performed inside the slave nodes by the aid of
OpenMP technology. To clarify, several threads are
spawned inside slave nodes and each of them applies
the Smith-Waterman algorithm on different segments
of data. The detailed responsibility of slave nodes
will illustrated in Table II.

TABLE I
MASTER NODE RESPONSIBILITIES

1. Read the data from FASTA file.
2. Separate each sequence and remove the

description info form them; add the unique ID
to each sequence.

3. Assign each sequence to each slave base on
load balancing technique.
for (i = 1 to number of slaves)

a) find the smallest bucket (in matter
of number of characters)

b) Append pure sequence to bucket(i)
4. for (i =1 to number of slave)

 Send (bucket[i] to slave[i]);
5. Get query sequence and broadcast to slaves.
6. Receive (result from slaves).
7. Combine the result and Output.

494

978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

Seq part

Init MPI

Comp.

Comm.

Sync

Seq part

Parallel Comp.

Unparallel Comp.

End SW

init SW

End MPI

Seq part

Sync

S

P

Synch

S

C

S

Pn

Figure.2 Parallelizing a MPI code with OpenMP by using fine
grain approach.

V. EXPERIMENT AND ANALYSIS

Based on abovementioned methodology, Smith-
Waterman algorithm has been implemented using
MPI and OpenMP and Hybrid paradigms. The
performance of this parallel implementation was
evaluated using various database sizes and a against
specific query sequences.

A. Experiment Infrastructure
The hardware used for the experiments used Dell

PowerEdge cluster which consists one 2x Quad-Core
Intel Xeon 1.6GHz, 2x4MB Cache as master and two
2x Quad-Core Intel Xeon 1.6GHz, 2x4MB Cache as
worker running on PureOS 64bit. Both clusters are
interconnected using the fast Ethernet by Gigabyte
switch.

B. Experiment Result
This study conducts different classes of

experiments for the homology searches in three
parallel implementation model based on the number
of processors and database size.

The data provided by ExPASy Proteomics [19].
The database size starts from 83KB (approximately
200 sequences) up to 175MB (about 102400
sequences).

As a first class of experiments, the execution time
for the three programming paradigm is calculated
(sequential, parallel MPI and Hybrid model) across
different size of data.

As it is depicted in Figure 3, the hybrid model
which get benefit from both MPI and OpenMP
technology, obtain better result and performance in
terms of execution time compare with pure MPI
parallel implementation and clearly sequential
model. Note that, the sequential implementation of
the algorithm cannot be executed for 102400
numbers of sequences. In this experiment, six quad-
core processors are being used as our computational
resources.

Figure.3 Comparison between three methods for different data
files with 6 CPUs

Subsequently for the second class of
experiments, it is focused on speed up feature of
parallel processing.

To illustrate, Figure 4 displays the speed up
diagram which prove the better performance of
Hybrid Model against Pure MPI. Based on
experimental results the output for hybrid model
significantly has better speed up in compare with
pure MPI model. What is clear from the curve by
implementing hybrid model in compare with pure
MPI implementation is that in CLUMPS machine
with multi core processor hybrid implementation can
show almost fourteen-fold speed up with six quad
core processors in master-slave model. On the other
hand, due to the fact that, in hybrid model the whole
process is divided in two levels: the node levels and
the CPU level, in both levels the process take place
concurrently and it helps to get more efficient speed
up in whole process.

With regard to results that gathered from
experiment and its visual presentation in Figure 4
and Figure 5 maximum speed up which achieved
with 6 CPUs is equal to 13.962.

Figure. 4 Comparison in speed up with six CPUs

0
50

100
150
200
250
300
350
400

Ti
m

e
(S

ec
.)

Number of Sequences

Sequential

MPI

Hybrid

13.9617

0
2
4
6
8

10
12
14
16

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

Sp
ee

d
U

p

Number of Sequences

Speed Up
- Hybrid
Speed Up
- MPI

TABLE II
SLAVE NODE RESPONSIBILITIES

1. Receive (bucket[i] form Master)
2. Receive (query sequence)
3. for (i=1 to bucket size)

Smith-Waterman(bucket[i], query sequence);
4. Send (result to Master).

495

978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

In addition, Figure 5 demonstrates speed up of
MPI and Hybrid model for a specific input data
across different processor number.

Figure. 5 Comparison speed up between MPI and Hybrid methods
for data file with 3200 Sequences

So far, the advantages of hybrid model against
pure MPI are examined. In the last class of
experiments it is required to look into the
functionally and performance of pure OpenMP in
details.

Figure 6 exhibits the performance of pure
OpenMP with different inputs database size. To
elaborate, Pure OpenMP get advantages from Share
Memory Structure along with low-light thread
programming. Evidently, the computational power
inside the nodes increases considerably due to the
thread programming. On the other hand, share
memory structure along with OpenMP enables it to
get benefit of Inter-Node communication rather than
Intra-Node communication that exist in pure MPI.
This makes the communication overhead in OpenMP
rather negligible compare with the one in pure MPI.

It is noteworthy to mention that, the cost of
OpenMP is mainly calculated based on thread
initialization and synchronization while in MPI the
main cost is imposed by communication overhead.

To conclude, pure OpenMP achieve almost
seven-fold speed up with two quad core processors
while in pure MPI this performance is only four fold.

Figure. 6 Pure OpenMP speed up with two CPUs

VI. CONCLUSION

In this paper, the hybrid implementation of the
Smith-Waterman algorithm is presented, which
combines fine grain and coarse grain parallelism and
multi-level scheduling. This implementation
achieved a speed up fourteen on a cluster five Quad-
Core Intel Xeon 1.6GHz as workers and one as
master. Nowadays, it becomes an obligation to use
hybrid implementation by taking advantages from
multi-core processors technology in clusters of SMP
machine. Since a processor in a cluster contains of
different cores and each core can run a thread
separately, these types of clusters can give a
significant speed up with hybrid implementation as
compared with pure MPI. Breaking job in to the
threads at the processor level and using share
memory with high speed bus connections gives us
the opportunity to decrease the execution time in
hybrid model.

REFERENCES

[1] Abdul Rashid, N., Abdullah, R., & Zawawi, A. H. (2007).
Parallel homologous search with Hirschberg algorithm: a hybrid
MPI-Pthreads solution. Proceedings of the 11th WSEAS
International Conference on Computers (pp. 228-233). Agios
Nikolaos, Crete Island, Greece: World Scientific and
Engineering Academy and Society (WSEAS).

[2] Adhianto, L., & Chapman, B. (2006). Performance Modeling
of Communication and Computation in Hybrid MPI and
OpenMP Applications. Proceedings of the 12th International
Conference on Parallel and Distributed Systems - Volume 2 (pp.
3-8). EEE Computer Society.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., &
Wheeler, D. L. (2008). GenBank. Nucleic Acids Research , 25-
30.

[4] bio, C. (2007, May 1). Retrieved July 14, 2008, from CLC bio:
www.clcbio.com

[5] Boukerche, A., Melo, A. C., Sandes, E. F., & Ayala-Rincon,
M. (2007). An exact parallel algorithm to compare very long
biological sequences in clusters of workstations. Cluster
Computing (pp. 187-202). Hingham, MA, USA: Kluwer
Academic Publishers.

[6] Capello, F., & Etiemble, D. (2000). MPI versus MPI+OpenMP
on the IBM SP for the NAS Benchmarks. Conference on High
Performance Networking and Computing (p. 12). Dallas, Texas,
United States: IEEE Computer Society.

[7] Drosinos, N., & Koziris, N. (2004). erformance comparison of
pure MPI vs hybrid MPI-OpenMP parallelization models on
SMP clusters. 18th Int. Parallel & Distributed Symposium, (p.
15).

[8] Farrar, M. (2007). Striped Smith--Waterman speeds database
searches six times over other SIMD implementations.
Bioinformatics (pp. 156-161). Oxford University Press.

[9] Gotoh, O. (1982). An improved algorithm for matching
biological sequences. Journal of Molecular Biology , 162, 705-
708.

[10] Guan, X., Mural, R. J., & Uberbacher, E. C. (1995). Sequence
comparison on a cluster of workstations using the PVM system.
9th International Parallel Processing Symposium (pp. 190-195).
ipps.

[11] Hsien-Yu, L., Meng-Lai, Y., & Yi, C. (2004). A parallel
implementation of the Smith-Waterman algorithm for massive
sequences searching. Engineering in Medicine and Biology
Society, 2004. IEMBS apos;04. 26th Annual International
Conference of the IEEE, (pp. 2817-2820). San Francisco, CA,
USA.

13.9617

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6

Sp
ee

d
U

p

Number of CPU

Speed Up
- Hybrid

Speed Up
- MPI

0

1

2

3

4

5

6

7

8

Sp
ee

d
U

p

Number of Sequence

Speed Up
- Open MP

496

978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

[12] Jost, G., Jin, H., Mey, D. a., & Hatay, F. F. (2003).
Comparing the OpenMP, MPI, and Hybrid Programming
Paradigms on an SMP Cluster. Germany: NAS Technical
Report.

[13] Matin, C. (2004, April). Programming Options for Distributed
Shared Memory Cluster Computers. Center for High
Performance Computing , pp. 1-3.

[14] Meng, X., & Chaudhary, V. (2005). Exploiting Multi-level
Parallelism for Homology Search using General Purpose
Processors. Proceedings of the 11th International Conference on
Parallel and Distributed Systems - Workshops (ICPADS'05) -
Volume 02 (pp. 331-335). Washington, DC, USA: IEEE
Computer Society.

[15] Murakami, M. M., Maria, E., Walter, M. T., & Martins, W. S.
(2003). Parallel Implementation of the Smith-Waterman
Algorithm for Large Scale Database Search. The 1st
International Conference on Bioinformatics and Computational
Biology - ICoBiCoBi, 2003. Ribeirão Preto.

[16] Sanchez, F., Salami, E., Ramirez, A., & Valero, M. (2005).
Parallel processing in biological sequence comparison using
general purpose processors. Workload Characterization
Symposium, 2005. Proceedings of the IEEE International, (pp.
99-108).

[17] Smith, L. A. (2001). Mixed Mode MPI/OpenMP
Programming. UKHEC . Edinburgh: Edinburgh Parallel
Computing Center.

[18] Smith, T. F., & Waterman, M. S. (1981). Identification of
Common Molecular Subsequences. Journal of Moleculel
Biology , 147, 195-197.

[19] Swiss-Prot. (2008). Retrieved 2008, from ExPASy
Proteomics Server: http://www.expasy.ch/sprot/

[20] Thaker, D., Sun, L., Jiang, H., Hase, W. L., & V., C. (2002).
Experiments with Parallelizing a Tribology Application.
Proceedings of the 2002 International Conference on Parallel
Processing Workshops (p. 344). Washington, DC, USA: IEEE
Computer Society.

497

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

