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Abstract

Inference of phylogenetic trees comprising thousands of
organisms based on the maximum likelihood method is com-
putationally expensive. A new program RAxML-SA (Ran-
domized Axelerated Maximum Likelihood with Simulated
Annealing) is presented that combines simulated annealing
and hill-climbing techniques to improve the quality of final
trees. In addition, to the ability to perform backward steps
and potentially escape local maxima provided by simulated
annealing, a large number of “good” alternative topologies
is generated which can be used to build a consensus tree on
the fly. Though, slower than some of the fastest hill-climbing
programs such as RAxML-III and PHYML, RAxML-SA finds
better trees for large real data alignments containing more
than 250 sequences. Furthermore, the performance on 40
simulated 500-taxon alignments is reasonable in compar-
ison to PHYML. Finally, a straight-forward and efficient
OpenMP parallelization of RAxML is presented.

1. Introduction

Phylogenetic trees are used to represent the evolutionary
history of a set of n organisms which are often also called
taxa within this context. A multiple alignment of a small re-
gion of their DNA or protein sequences can be used as in-
put for the computation of phylogenetic trees. Note, that a
high-quality multiple alignment of the organisms is a nec-
essary prerequisite to conduct a phylogenetic analysis: The
quality of the evolutionary tree can only be as good as the
quality of the multiple alignment!

In a computational context phylogenetic trees are usu-
ally strictly bifurcating unrooted trees. The organisms of
the alignment are located at the tips of such a tree and
the inner nodes represent extinct common ancestors. The
branches of the tree represent the time which was required
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for the mutation of one species into another—new—one.
The inference of phylogenies with computational methods
has many important applications in medical and biological
research, such as e.g. drug discovery and conservation bi-
ology (see [1] for a summary). Due to the rapid growth of
available sequence data over the last years and the constant
improvement of multiple alignment methods it has now be-
come feasible to compute very large trees which comprise
more than 1.000 organisms. The computation of the tree-of-
life containing representatives of all living beings on earth
is considered to be one of the grand challenges in Bioinfor-
matics.

The most fundamental algorithmic problem computa-
tional phylogeny faces consists in the immense amount of
potential alternative tree topologies. This number grows ex-
ponentially with the number of sequences n, e.g. for n = 50
organisms there already exist 2.84∗1076 alternative topolo-
gies; a number almost as large as the number of atoms
in the universe (≈ 1080). Thus, given some—biologically
meaningful—optimality criterion for evaluating all alterna-
tive configurations in order to search for the best tree, one
can quickly assume that the problem might be NP-hard.
In fact, this has already been demonstrated for the maxi-
mum parsimony (MP) criterion [5]. The maximum likeli-
hood (ML) criterion [6] is also believed to be NP-hard,
though this could not be demonstrated so far due to the
mathematical complexity of the model.

Another important aspect for the design of heuristic tree
searches consists in the very high degree of accuracy (dif-
ference to the score of the optimal or best-known solution)
which is required to obtain reasonable biological and topo-
logically closely related results. While an accuracy of 90%
is considered to be a “good” value for heuristics designed to
solve other NP-hard optimization problems, recent results
suggest [30] that phylogenetic analyses require an accuracy
≥ 99.99%. When comparing the various optimality criteria
for phylogenetic trees one can observe a trade-off between
speed and quality. This means that a phylogenetic analysis
conducted with an elaborate model, e.g. ML requires sig-
nificantly more time but yields trees with superior accuracy
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than e.g. neighbor joining [7] (NJ) or MP [8, 29]. Due to
the higher accuracy it is desirable to infer large and com-
plex trees with compute-intensive statistical methods. It is
important to emphasize that the design of maximum likeli-
hood programs is primarily an algorithmic discipline, due to
the gigantesque number of alternative tree topologies. Thus,
progress in the field is mainly attained via algorithmic im-
provements rather than by brute force allocation of compu-
tational resources. Therefore, the main focus of this paper
is on algorithmic as well as technical solutions for the com-
putation of large trees (containing ≥ 500 sequences) based
on statistic models of sequence evolution. Moreover, the in-
tention is to combine the advantages of hill-climbing and
simulated annealing searches in order to produce more reli-
able results.

The remainder of this paper is organized as follows: In
Section 2 related work is briefly described with a focus on
current state-of-the-art sequential programs for maximum
likelihood-based inference, which are used to assess perfor-
mance of RAxML-SA. In the following Section 3 the simu-
lated annealing algorithm is outlined. Section 4 summarizes
experimental results for RAxML-SA on simulated and real
data. The subsequent Section 5 describes the OpenMP par-
allelization of RAxML. Finally, Section 6 provides a con-
clusion and addresses current and future issues of work.

2. Related Work

The survey of related work is restrained to statisti-
cal phylogeny methods since they have shown to be the
most accurate methods currently available. On the one
hand there exist “traditional” maximum likelihood meth-
ods and a large variety of programs implementing maxi-
mum likelihood searches. The site maintained by J. Felsen-
stein [19] lists most available programs. On the other
hand there exist Bayesian methods which are rela-
tively new compared to maximum likelihood and have
experienced great impact, especially through the re-
lease of a program called MrBayes [11]. In fact, Bayesian
methods also use a search technique based on simu-
lated annealing with multiple chains which is known as
Metropolis-Coupled Markov-Chain Monte-Carlo (MC3) al-
gorithm. A thorough comparison of popular phylogeny
programs using statistical approaches such as fastD-
NAml, MrBayes, PAUP [18], and TREE-PUZZLE [26] on
small simulated datasets (up to 60 sequences) has been con-
ducted by T.L. Williams et al [29]. The most important re-
sult of this paper is that MrBayes outperforms all other
phylogeny programs in terms of speed and tree qual-
ity. However, the results of this survey do not necessar-
ily apply to large real data sets since simulated align-
ment data has different properties and a significantly
stronger phylogenetic signal than real world data (see Sec-

tion 4 for a discussion), i.e. typically much more compu-
tational effort is required to find a “good” phylogenetic
tree for real-world data. Due to the significant differ-
ences between real and simulated datasets comparative sur-
veys should include collections of simulated and real
datasets in order to yield a more complete image of pro-
gram performance. In fact, there exist some real datasets
for which MrBayes fails to converge to acceptable like-
lihood values within reasonable time [25]. Huelsenbeck
et al [12] provide an in-depth discussion of potential pit-
falls of Bayesian inference. More recently, Guidon and
Gascuel published an interesting paper about their new pro-
gram PHYML [8], which is very fast and seems to be able
to compete with MrBayes. PHYML is a “traditional” max-
imum likelihood hill-climbing program which seeks to find
the optimal tree in respect to the likelihood value and like
MrBayes is also capable of optimizing nucleotide substi-
tution model parameters. Moreover, the respective per-
formance analysis includes larger simulated datasets of
100 sequences and two well-studied real data sets con-
taining 218 and 500 sequences which are also used in the
current paper. Their experiments show that PHYML is ex-
tremely fast on real and simulated data. However, the
accuracy on real data needs improvement [25]. More-
over, the results show that well-established sequential pro-
grams like PAUP* [18], TREE-PUZZLE [26], and fastD-
NAml [16] are prohibitively slow on datasets containing
more than 200 sequences, at least in sequential execu-
tion mode. Therefore, PAUP*, TREE-PUZZLE, and fastD-
NAml are not included in the present study (see [8] for per-
formance data of these programs). More recently Vinh et
al [27] published a program called IQPNNI which yields
better trees than PHYML on real world data but is signif-
icantly slower. It is important to note that the authors of
IQPNNI also included a special program option to distin-
guish between inference of real and simulated data align-
ments due to their distinct characteristics. Finally, the
current hill-climbing version of RAxML-III clearly out-
performs PHYML on real world data, both in terms of
execution time and final tree quality [25]. However, it con-
stantly performs worse than PHYML on simulated data
due to the aforementioned properties of simulated data
and the points discussed in Section 4. The first appli-
cation of simulated annealing techniques to ML tree
searches is proposed by Salter et al [22] (the tech-
nique has previously been applied to MP phylogenetic
tree searches by Barker et al [2]). However, the respec-
tive program SSA has not become very popular due to
the limited availability of nucleotide substitution mod-
els and its focus on the molecular clock model of evolu-
tion. Moreover, the program is relatively hard to use and
comparatively slow in respect to recent hill-climbing im-
plementations. Despite the fact that Salter et al were the
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first to apply simulated annealing to ML-based phyloge-
netic tree searches the author is not aware of any biological
results published based on SSA. Due to the aforemen-
tioned problems and limitations of SSA it was not fea-
sible to use the program in the comparative analysis on
large datasets with PHYML and RAxML-SA. In the fi-
nal analysis it can be stated that MrBayes, PAUP*,
TREE-PUZZLE, and fastDNAml are too slow to con-
duct a comprehensive performance study on large sim-
ulated and real world data. Therefore, mainly PHYML,
RAxML-III, and in some cases IQPNNI have been used to
assess performance of RAxML-SA. This represents a bal-
anced choice since PHYML performs well on simulated
data and RAxML-III on real world data. The perfor-
mance of IQPNNI is situated somewhere between PHYML
and RAxML-III.

3. The Simulated Annealing Algorithm

The application of the simulated annealing technique to
combinatorial optimization problems which are based on an
optimality criterion f() is introduced by various authors,
notably Cerny [3] and Kirkpatrick et al [14]. A more de-
tailed description of the application of simulated annealing
to phylogenetic tree searches can be found in [2] and [22].

The main components of a simulated annealing algo-
rithm are listed below:

1. A method for generating a candidate solution ti+1

based on the current solution ti (often also called con-
figuration); in the concrete case of phylogenetic anal-
ysis this methods is called topology proposal mech-
anism. The initial configuration t0 is often chosen at
random.

2. A problem-specific cooling schedule which deter-
mines how frequently and to which extent solutions
which decrease the value of the objective func-
tion f(), i.e. induce backward steps, will be ac-
cepted and how this acceptance parameters are
modified as the computation advances. Occasional ac-
ceptance of backward steps can help escape local
maxima.

3. The Metropolis-step in which the algorithm decides
if a solution ti+1 is accepted or rejected. If ti+1 im-
proves the value of the objective function it is always
accepted, otherwise it is accepted with a probability
P (f(ti), f(ti+1)) (see below).

4. A stopping criterion, which determines when to stop
the simulated annealing process.

In the implementation of RAxML-SA the stopping cri-
terion is omitted and the program is stopped on user’s dis-
cretion. However, as a rule-of-thumb RAxML-SA should

be provided the four-fold execution time of its hill-climbing
counterpart RAxML-III. Thus, the recommended practice
for using RAxML-SA consists in initially using RAxML-
III to obtain a reference execution time and likelihood value.
The desired RAxML-algorithm (SA or hill climbing) can be
selected by a simple command line switch. The goal of the
work carried out on RAxML-SA is to integrate the efficient
hill-climbing operations introduced with RAxML-III into
a solid theoretical framework which allows for backward
steps and avoidance of local maxima. Moreover, the com-
putation of consensus trees on the fly is intended to yield
more reliable biological results than standard hill-climbing
algorithms. Thus, RAxML-SA can be regarded as a hybrid
hill-climbing/simulated annealing program.

In the rest of the current Section the cooling schedule,
the tree proposal mechanism, and the whole algorithm are
described.

Cooling Schedule: In the concrete case the optimality cri-
terion f() corresponds to the likelihood function and the
distinct tree topologies correspond to the configurations
t0, ..., ti−1, ti, ti+1, ..., tn.

As cooling schedule for the temperature T the simple
schedule T = T ∗ α is used, where α = 0.95 and T
is updated every m moves. The parameter m is set to n
by default which corresponds to the number of taxa in the
tree; the starting value for T is set to 3.0. In the Metropo-
lis step a tree ti+1 is accepted if P2 ≥ P1 where P1 =
exp((f(ti+1)− (f(ti))/T ) and P2 is an equally distributed
random variable between 0 and 1. Note that the signs in
the formula for P1 are correct since log likelihood val-
ues are negative. This means that if the likelihood of tree
ti+1, f(ti+1) is better than that of ti the new tree will al-
ways be accepted. In the other case ti+1 will be accepted
sometimes; new trees ti+1 which have only a small differ-
ence to the score of ti will be accepted more frequently than
trees with a significantly worse likelihood score.

Tree Proposal Mechanism: The tree proposal mechanism
represents the key element of the algorithm. It incorporates
some important features of the RAxML-III hill-climbing
algorithm, namely lazy subtree rearrangements. Given the
current configuration (current tree) ti the next configuration
(tree) ti+1 is proposed either by:

1. optimizing the nucleotide substitution model parame-
ters with probability 0.25% (model optimization).

2. optimizing the length of a randomly chosen branch
with probability 4.75% (branch optimization).

3. selecting the best topology among a set of topologies
generated by lazy subtree rearrangements with proba-
bility 95% (topology proposal).

The selection probabilities for the distinct moves repre-
sent good empirical values. The branch length optimiza-
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tion is carried out by a standard Newton-Raphson method
and yields a tree with an at least equally good or slightly
improved likelihood in respect to ti. The same holds for
the optimization of the nucleotide substitution model pa-
rameters. Thus, for model optimization and branch opti-
mization the tree proposal mechanism performs a strict hill-
climbing operation to generate ti+1. This means that in case
of branch or model optimization ti+1 is always accepted by
the Metropolis-step.

Branch length optimization need not be carried out too
frequently since the topology proposal step which is de-
scribed below also performs a fast superficial branch length
optimization. Furthermore, model optimization need not be
applied frequently, since the model parameters are rela-
tively stable over a wide range of reasonable (non-random)
topologies [31]. The choice to lay out those two compo-
nents as strict hill-climbers is based on the following ob-
servation: When a relatively stable state of branch length
and model parameter configurations is reached the major
changes in the likelihood (objective function) are caused by
alterations of the topology. Thus, possible backward steps
can only be triggered when the topology proposal mecha-
nism is selected (95% of all moves represent topological al-
terations). The rationale for this is to provide the possibility
to generate and accept potential backward moves which fit
into the simulated annealing scheme while maintaining the
advantages of well-established hill-climbing techniques.

As already mentioned RAxML-SA uses the concept of
lazy subtree rearrangements to propose an alternative topol-
ogy ti+1 which is introduced in [25]. The key idea of sub-
tree rearrangements consists in removing a given subtree
from the current tree ti and re-inserting it into all neighbor-
ing branches with a distance of min up to max nodes from
the initial deletion point of the subtree. Usually, the branch
lengths of each topology generated during this process are
optimized exhaustively. Lazy rearrangements do not opti-
mize all branches of an alternative topology but only the
three branches adjacent to the new insertion point, whereas
the remaining branches remain unchanged. This allows for
rapidly pre-scoring a large number of alternative topologies.
For a more detailed description of lazy subtree rearrange-
ments see [25].

The topology proposal mechanism in RAxML-SA
works as follows: Initially, a candidate subtree for re-
moval is selected at random. Thereafter, the mini-
mum rearrangement distance is set to min=1 and the
maximum subtree rearrangement distance is set to
max=Random(2...rearrangementsMAX).

Function Random(2...rearrangementsMAX) re-
turns a randomly chosen integer value between 2 and
rearrangementsMAX which is set to 21 by default but
can be adjusted by a command line switch. Given those pa-
rameters lazy subtree rearrangements of the candidate

subtree are performed on the current tree ti. After com-
pletion of all rearrangements the branch lengths of the
best pre-scored rearranged topology are superficially op-
timized. The superficial optimization is carried out by a
one-pass optimization of each individual branch in the
tree. The such obtained likelihood value is then propa-
gated to the Metropolis-step.

Finally, in order to summarize the information of the
large number of “nearly” equally good trees generated dur-
ing the simulated annealing process every 2n steps (n: num-
ber of taxa) a consensus tree is built out of the 100 best—
topologically distinct—trees. The consensus tree is built by
a call to the consensus tree program consense [13] which is
integrated into the RAxML-SA distribution.

Whole Algorithm: In order to provide a complete descrip-
tion of the algorithm all major computational steps are listed
below:

1. Generate a randomized parsimony starting tree (this
will yield a distinct starting tree for each run) exactly
as in RAxML-III or read in a user-specified starting
tree.

2. Perform initial optimization of nucleotide substitution
parameters and branch lengths.

3. Start endless simulated annealing loop.

4. Select model optimization (0.25%), branch optimiza-
tion (4.75%), or topology proposal (95%).

5. Reject or accept proposed tree in the Metropolis-step.

6. Update cooling schedule parameters.

7. Every 2n invocations of the tree proposal mechanism
build consensus tree out of 100 best and most recent
trees.

8. Goto 4.

4. Results

Test Data & Platforms: For conducting experiments align-
ments comprising 150, 200, 250, 500, 1.000, 1.665,
and 2.025 taxa (150 ARB,...,2025 ARB) have been ex-
tracted from the ARB small subunit ribosomal ribonu-
cleic acid (ssu rRNA) database [15]. Those alignments
contain organisms from the domains Eukarya, Bac-
teria and Archaea. In addition, the 101 and 150 se-
quence data sets (101 SC, 150 SC) which can be down-
loaded at http://www.indiana.edu/˜rac/hpc/fastDNAml
are used. The 101 SC and 150 SC alignments have
proved to be very hard to optimize, in terms of conver-
gence to best-known likelihood values, especially for Mr-
Bayes (see [25]).
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Furthermore, two well-known real data sets comprising
218 and 500 sequences (218 RDPII, 500 ZILLA) were in-
cluded into the test set. Those two alignments are consid-
ered to be ”classic” real data benchmarks and have also
been used by Guindon et al with PHYML. In particular,
the 500 ZILLA alignment has been studied extensively un-
der the parsimony criterion [4]. A 193-taxon data set 193 V
is also included which has been used by Vinh et al [28] to
assess performance of the PhyNav program.

Finally, 40 simulated 500-taxon (α500 1,...,α500 30,
π500 1,...,π500 10) alignments haven been gen-
erated using the program r8s [23]. Furthermore,
Seq-Gen [20] was used as indicated below to gen-
erate the α-alignments (model incorporating het-
erogeneity of evolutionary rates among sites)
seq-gen -m HKY -l 1000 -t x -a y -s 0.5
with transition/transversion ratio x set to 1.5 and 2.0 for
each distinct value y of the α shape parameter which
was set to values ranging from 0.1 (high level of rate het-
erogeneity), 0.4, 0.7, 1.0,..., 4.3 (low level of rate
heterogeneity). The parameter -l specifies the align-
ment length and -m the model of nucleotide substitution
(HKY85 [9]). The setting for the π-alignments (plain align-
ments without rate heterogeneity) is outlined below:
seq-gen -m HKY -l 1000 -t x -s y with tran-
sition/transversion ratio x set to 1.5 and 2.0 for each
distinct value x of the branch length scaling parame-
ter y which was set to values in the range of 0.5, 0.6,...,0.9.

PHYML, RAxML-III, and RAxML-SA have been com-
piled with the native Intel compiler icc -O3 and exe-
cuted on a cluster of unloaded Intel Xeon 2.4GHz proces-
sors equipped with 4GB of main memory for real data ex-
periments. The simulated alignment experiments have been
conducted on an unloaded Intel Centrino 1.4GHz proces-
sor with 768MB of main memory.

IQPNNI could not be re-compiled with icc -O3 since
the program is only available as LINUX-binary without
source code.

Simulated Data Experiments: For the simulated data exper-
iments one has to distinguish between the results obtained
for alignments incorporating rate heterogeneity among sites
(α-alignments) and those who do not (π-alignments).

α-alignments: The average execution time of PHYML for
the α-alignments is 393 seconds whereas RAxML-SA was
executed with a running time limitation of 3600 seconds,
thus the average execution time was 1 hour. In the simulated
experiments the RAxML-SA search was initiated with the
BIONJ starting tree of PHYML. This is due to the fact that
with simulated data the true tree need not be the maximum
likelihood tree, i.e. the true tree need not have the best like-
lihood value. In fact, 11 out of 30 parsimony starting trees
for α500 1,...,α500 30 already showed a better likelihood
than the true tree. Therefore, BIONJ starting trees were used

which had a better likelihood value than the true tree in
only 2 out of 30 cases. This phenomenon of over-estimation
is also caused by the strong and perfect phylogenetic sig-
nal produced by simulated alignment data which does not
contain gaps nor alignment or sequencing errors. This per-
fection leads to computation of near-optimal starting trees
with simpler methods such as BIONJ and MP. For exam-
ple consider the relative differences in likelihood scores be-
tween starting trees and the true tree for simulated data:
it is only 0.04% on average for the α and π-alignments.
On the other hand it amounts to 0.76% (factor 19) for the
difference between real data starting trees and best-known
trees of the real data alignments used in this study. Thus,
a significantly higher amount of more drastic topological
changes is required to optimize real data trees which is also
reflected by the significantly longer execution times for real
data (see Table 1). As example for the large difference in
the amount of applied topological changes between simu-
lated and real data consider that PHYML only executed 20
NNI-swaps (Nearest Neighbor Interchange) on the α500 21
dataset whereas it executed 202 (factor 10) on the 500 ARB
dataset.

The average normalized RF-distance (Robinson-Foulds
distance [21]) to the true tree obtained with PHYML for the
α-alignments is 0.020. For RAxML-SA 2 measures were
applied: Firstly, the RF-distance to the last consensus tree
written by the program which averaged to 0.023 and sec-
ondly the best RF-distance to all intermediate checkpoints
written by RAxML-SA which amounts to 0.021 on aver-
age. The second measure was selected because RAxML-SA
has a strong tendency to over-estimate the trees, i.e. pro-
duce trees with better likelihood values than the true tree.
Thus, trees which are topologically closer to the true tree
are detected during earlier stages of the RAxML-SA infer-
ence process. An example for this behavior is outlined as a
plot of log likelihood values over time in Figure 1 for dataset
α500 21. The likelihood value of the true tree is indicated
by a thick horizontal line. The non-monotonous increase
in the log likelihood score is due to the backward steps of
the simulated annealing process. The average time to reach
the respective best checkpoint in terms of RF-distance for
RAxML-SA is 756 seconds.

π-alignments: For the 10 π-alignments PHYML yielded
trees with an average normalized RF-distance of 0.0167
and required an average execution time of 98 seconds. For
plain data RAxML-SA could be executed with the stan-
dard randomized parsimony starting tree and was granted
an execution time limit of 1200 seconds. The average RF-
distance of the last consensus tree to the true tree is 0.0166
whereas the average topological distance to the best check-
point amounts to 0.0167. The average time required to reach
the best checkpoint in terms of RF-distance is 322 seconds.
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Figure 1. Over-estimation of simulated tree
by RAxML-SA

The performance differences which can be observed be-
tween PHYML and RAxML-SA on real and simulated data
as well as execution times are due to the distinct design
of topological moves in those two programs. The modified
NNI-strategy deployed in PHYML allows for local changes
only whereas lazy subtree rearrangements in RAxML-SA
allow for more drastic regional modifications of the topol-
ogy. Due the significantly smaller topological and likeli-
hood distance between starting trees and true trees for sim-
ulated data the PHYML-strategy is more efficient on this
type of data. Moreover, it does not produce over-estimated
trees as frequently as RAxML-SA due to the less exhaustive
search. On the other hand RAxML-SA is faster and signifi-
cantly better on real data as shown in the next Section.

Real Data Experiments: All tests with real data have been
carried out using the HKY85 [9] model of nucleotide sub-
stitution without accounting for rate heterogeneity among
sites. The transition/transversion parameter of the model
was optimized by the programs. Note, that all likelihood
values correspond to RAxML-likelihood values, i.e. the
likelihood of the final PHYML and IQPNNI trees was eval-
uated with RAxML. This is due to subtle differences in the
numerical implementation of the likelihood functions which
mainly concern the scaling procedure for very small values.
However, this has only an effect on the absolute figures and
not on the relative differences among final likelihood val-
ues.

In Table 1 the results for the experiments on real align-
ment data sets are summarized. Column PHYML indicates
the likelihood values of the best tree found by PHYML and
the respective execution time (secs). The next two columns
R-III and secs indicate the likelihood and execution time
required for the best out of 10 (out of 5 for 2025 ARB)
RAxML-III executions with distinct randomized parsimony

starting trees. The next two columns (R-III(avg), secs(avg))
indicate the average likelihood values and execution times
over those 10 runs. Columns RAxML-SA and secs contain
the likelihood scores and run times of one RAxML-SA ex-
ecution per dataset. Finally, the remaining columns indi-
cate at which point of time the first checkpoint was writ-
ten by RAxML-III (R-III > PHY) and RAxML-SA (R-SA >
PHY) respectively which contained a tree with a better like-
lihood than the final tree yielded by PHYML. The values for
RAxML-III are average values over all 10 runs. The best-
known maximum likelihood values found for the real align-
ment data benchmark sets which have all been obtained by
RAxML-III or RAxML-SA are marked by bold letters in
Table 1. IQPNNI was only executed on the 218 RDPII and
500 ZILLA datasets due to long execution times. The final
likelihood value for 218 RDPII was -156348.0 (25138 secs)
and -100049.9 (10380 secs) for 500 ZILLA. Those likeli-
hood values of IQPNNI were reached by RAxML-III after
an average of 1019 seconds for 218 RDPII and 397 seconds
for 500 ZILLA. RAxML-SA required 481 seconds to out-
perform IQPNNI on the 218-taxon alignment and 446 sec-
onds on the 500-taxon data set.

One important result is that RAxML-SA produced all
best-known trees for large alignments containing ≥ 250
sequences. Moreover, RAxML-SA outperforms the aver-
age RAxML-III final tree likelihood values on all align-
ments except 150 ARB. In addition, in all but one case
(500 ZILLA) RAxML-III encounters a better tree than the
final PHYML tree more rapidly than PHYML. RAxML-SA
is naturally slower in some cases, since the likelihood does
not improve as fast over time.

It is important to note that the apparently small differ-
ences in final likelihood values are significant. On the one
hand they represent log likelihood values, i.e. differences
in order of magnitude. On the other hand the average rela-
tive difference of likelihood scores between PHYML trees
and the best RAxML-trees is 0.22% over all datasets and
0.36% for the datasets with ≥ 500 sequences. Thus, bear-
ing in mind the remark about a required or desired score-
accuracy of 99.99% in the introduction of this paper those
differences are significant and the additional computation
time to obtain them is not wasted.

5. OpenMP Parallelization

As already mentioned, most of the research carried out
in phylogenetics is very algorithmic and theoretical. How-
ever, as computation of 5.000-organism ML trees has be-
come feasible, it is also important to consider technical as-
pects such as cache efficiency and memory consumption.
The latter represents an often underestimated problem. The
general tendency in phylogenetics is that alignment sizes
will grow in both dimensions, i.e. number of organisms and
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data PHYML secs R-III secs R-III(avg) secs(avg) RAxML-SA secs R-III > PHY R-SA > PHY
101 SC -73970.3 70 -73786.8 1876 -73797.6 1107 -73791.5 453 29 22
150 SC -44287.5 86 -44141.6 859 -44154.3 996 -44146.7 655 19 9

150 ARB -76776.9 181 -76745.7 1603 -76750.5 1482 -76766.7 1827 101 207
193 V -64911.1 134 -64779.1 2908 -64806.9 2151 -64784.7 907 52 73

200 ARB -104164.5 250 -104073.8 2298 -104074.2 3340 -104076.2 3537 220 399
218 RDPII -156607.6 219 -156228.5 6255 -156268.2 5417 -156260.0 9142 165 235
250 ARB -130774.4 402 -130690.1 6150 -130720.0 4010 -130689.6 10071 309 552

500 ZILLA -100130.3 246 -99915.9 9247 -99939.1 9362 -99914.0 25271 348 472
500 ARB -251831.9 1108 -251009.3 24089 -251041.0 27416 -250988.2 35601 549 499

1000 ARB -400145.5 5728 -398911.4 94039 -398971.2 118173 -398904.0 223085 2707 2895
1663 ARB -310259.5 5424 -308975.0 210523 -309047.1 181654 -308952.2 359799 3479 1234
2025 ARB -372201.9 7824 -370401.8 242030 -370423.1 243344 -370342.9 487745 7354 29294

Table 1. PHYML, RAxML-III, RAxML-SA execution times and likelihood values for real data sets

number of base pairs. For alignments of 1.000 and 10.000
taxa PHYML and MrBayes [11] showed a relatively high
memory consumption compared to RAxML-III [24]. A rel-
atively easy way to improve performance of ML programs
and partially resolve memory problems at the same time
consists in shared memory parallelizations.

The compute-intensivefor-loops which update the like-
lihood vectors at each inner node of the tree typically
consume up to 90% of overall execution time in ML or
Bayesian phylogeny programs. To understand how the in-
dividual likelihood vectors are updated consider a subtree
rooted at node p with immediate descendants r and q and
likelihood vectors l_p, l_q, and l_r respectively. When
the likelihood vectors l_q and l_r have been computed
the entries of l_p can be calculated—in an extremely sim-
plified manner—as outlined by the pseudo-code below:

for(i = 0; i < n; i++)
l_p[i] = f(g(l_q[i], b_pq),

g(l_r[i], b_pr));

where f() is an inexpensive simple function which
combines the values of g(l_q[i], b_pq) and
g(l_r[i], b_pr). The g() function however is
more complex and computationally intensive since it car-
ries out the evaluation of the nucleotide substitution prob-
abilities. The parameters b_pq and b_pr represent the
branch lengths. Note, that the for-loop can easily be par-
allelized on a fine-grained level since entries l_p[i] and
l_p[i + 1] can be computed independently. An ini-
tial parallelization of RAxML-III with OpenMP [17]
(called RAxML-OpenMP) showed however that the
speedup is extremely hardware-dependent. Table 5 lists the
speedup values measured for simulated 100-taxon align-
ments with lengths of 1.000, 5.000, 10.000, and 20.000
base pairs on a Quad-Opteron and Quad-Itanium2 pro-
cessor. The bad parallel performance on the Itanium2
processor is most probably due to the memory access ar-
chitecture of the specific processor which represents a sig-
nificant bottle-neck. The partially super-linear speedups
attained on the Opteron processor are due to the “clas-

sic” reason: improved cache efficiency for large data sets.
An important advantage of this implementation consists
in the minimal effort required for parallelization: the criti-
cal for-loops in RAxML-III could be parallelized in half a
day (the parallelization also applies to RAxML-SA). As al-
ready mentioned other programs such as PHYML can eas-
ily be parallelized with OpenMP as well. Apart from solv-
ing memory problems, the current approach is intended to
be used for a hybrid MPI/OpenMP supercomputer imple-
mentation. This is due to the fact that RAxML-OpenMP
has limited scalability on pure shared memory ma-
chines.

number of base pairs Quad-Opteron Quad-Itanium2
1.000 2.11 0.88
5.000 3.58 1.38

10.000 4.30 1.51
20.000 4.22 1.42

Table 2. Speedup of RAxML-OpenMP on
Opteron and Itanium2 architectures

6. Conclusion, Availability & Future Work

A new algorithm has been introduced which effi-
ciently combines the advantages of simulated annealing
and hill-climbing approaches to ML-based phylogenetic in-
ference. A performance study conducted on 40 large
simulated alignment datasets shows that RAxML-SA per-
forms reasonably well in comparison to PHYML. In
addition, some problems inherent to the usage of sim-
ulated data are discussed. Moreover, RAxML-SA is
able to out-compete the currently fastest and most accu-
rate programs on real-world data RAxML-III, PHYML,
and IQPNNI on large data sets containing ≥ 250 se-
quences in terms of final likelihood values. In particu-
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lar, all best-known trees for those large alignments have
been established with RAxML-SA. Furthermore, the pro-
gram yields—with one exception—better final trees than
the average RAxML-III run on real data. Due to the com-
bination of hill climbing and simulated annealing tech-
niques in RAxML-SA the execution times remain com-
parable to those of strict hill-climbing approaches. A
major advantage of RAxML-SA consists in the abil-
ity to automatically build consensus trees out of the 100
currently best—topologically distinct—trees of the an-
nealing process on the fly. Thus, RAxML-SA facilitates
the computation of biologically reliable and publish-
able results by one single program execution. Finally, Sec-
tion 5 proposes some efficient technical solutions, in
terms of programming time and performance improve-
ment, to further accelerate current state-of-the-art ML phy-
logeny programs. The complete program package which
also includes the standard hill-climbing algorithm is
freely available for download as RAxML-V at www-
bode.in.tum.de/˜stamatak/.. In order to provide a set of
well-studied real alignment data sets as benchmark to the
community all real alignments used in the current work in-
cluding the best-known tree-topologies are also available
for download. The OpenMP-version of RAxML will be-
come available for download shortly.

Future work will mainly focus on the development of a
parallel version of RAxML-SA for hybrid supercomputer
architectures.
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