
Hybrid Distributed-/Shared-Memory Parallelization For

Re-Initializing Level Set Functions

Oliver Fortmeier and H. Martin Bücker

Institute for Scientific Computing,

Center for Computational Engineering Science (CCES),

RWTH Aachen University,

52056 Aachen, Germany

{fortmeier,buecker}@sc.rwth-aachen.de

Abstract—The ever-increasing power of high-performance
computers and advances in numerical techniques make pos-
sible the realistic study of two-phase flow problems in three
spatial dimensions. Unfortunately, today, there is often still
a gap between the design of numerical algorithms and the

characteristics of the hardware on which the algorithms are
executed. For the solution of a particular subproblem of a
two-phase flow problem, we develop a numerical algorithm
that aims to match the architecture of a cluster of nodes
with multi-core chips. The algorithm is concerned with the
re-initialization of level set function used to keep track of the
interface between two phases of a fluid. It consists of a hybrid
MPI/OpenMP parallelization strategy, using a domain decom-
position approach on the outermost level of parallelization.
On the inner level, a parallel region handles an individual
subdomain. So, a domain decomposition approach based on
MPI is combined with an OpenMP approach leading to a
hybrid distributed-/shared-memory parallelization. Numerical
experiments show that using such a hybrid strategy scales
better than a pure MPI parallelization on two different Xeon-
based clusters of quad-core processors using up to 1024 cores.

Keywords-hybrid parallelization, two-phase flow problems,
unstructured grids, finite elements, computational fluid dynam-
ics, DROPS

I. INTRODUCTION

Three-dimensional flow problems are ubiquitous in scien-

tific computing on high-performance computers. In various

flow problems, there are two spatial regions each of which

is characterized by a different physical property. Often,

these properties are uniformly distributed in space. Examples

of such two-phase flow problems include climate systems

separating clouds from air, oil slicks in coastal waters, or

systems containing gas and liquid. The aim of an interdisci-

plinary team of researchers from engineering, mathematics

and computer science at RWTH Aachen University is to

analyze the behavior of multi-phase flow problems using

different approaches [1]. In particular, one is interested in

a drop levitated in a fluid of different density [2] as well

as in a fluid located on walls of a tube that flows as a

continuous film downwards driven by gravity [3]. In both

applications, different flow phenomena in the vicinity of the

interface between the phases are studied.

A mathematical model to describe two-phase flows is

based on a so-called level set approach [4]. Here, a scalar

function, called level set function, is used to divide the

computational domain into two parts, where each part rep-

resents one of the two phases. In this approach, it is crucial

that the level set function is close to a signed distance

function, i.e., the value of the level set function indicates

the distance to the interface between the two phases. While

evolving in simulation time, this distance property gets lost.

To recover the property, two-phase flow solvers typically

include a re-initialization algorithm to retrieve the signed

distance property.

Various sequential approaches are commonly applied

for this task. Three examples includes the fast marching

method [5], the fast sweeping method [6], and the solution of

the underlying Eikonal equation [7]. In [8], a comparison of

these sequential approaches is given. Parallel algorithms to

re-initialize level set functions are rarely investigated in the

open literature. Often, the parallel algorithms require struc-

tured grids as described for the fast sweeping method in [9]

and for the fast marching method in [10]. In [11], the level

set function is discretized on an adaptive refined Cartesian

grid, whereas the flow is discretized on an unstructured grid.

In contrast, our approach uses the same unstructured grid to

discretize the flow and the level set function.

The recent parallel algorithm [12] for re-initializing level

set functions is based on a domain decomposition strategy.

This algorithm uses the same unstructured grid for the level

set function as well as for the flow solution. In this present

note, we extend this domain decomposition parallelism

by an additional level of shared-memory parallelism. The

main advantage of extending the algorithm is given by

the opportunity to use a hybrid distributed-/shared-memory

parallelization. This allows to cope with the architecture

of most of state-of-the-art high-performance clusters where

each compute node consists of a multi-core chip.

The outline of this note is as follows. In Sec. II, we

briefly describe the level set approach modeling two-phase

flows. The hybrid parallel algorithm for re-initializing level

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.64

114

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.64

114

set functions is presented in Sec. III. We show detailed

performance results using up to 1 024 cores in Sec. IV before

concluding the note in Sec. V.

II. LEVEL SET APPROACH FOR TWO-PHASE FLOW

The level set approach is a technique for the solution of

two-phase flow problems thoroughly described in [4], [13].

Let Ω ⊂ R
3 denote a computational domain. The level set

function is a scalar-valued function ϕ : Ω× [0, τe]→ R used

to split the computational domain over time τ ∈ [0, τe] into

two subdomains Ω1(τ) and Ω2(τ), where Ω1(τ) exemplarily

represents an oil phase such as a drop, and Ω2(τ) the second

phase, e.g., the surrounding water phase. These subdomains

are characterized by

Ω1(τ) := { ~x ∈ Ω | ϕ(~x, τ) < 0 } and

Ω2(τ) := { ~x ∈ Ω | ϕ(~x, τ) > 0 } .

That is, depending on the sign of ϕ(~x, τ) the point ~x ∈ Ω
is located at time τ in Ω1(τ) or Ω2(τ). This representation

allows to describe the interface Γϕ(τ) between both phases

implicitly by the root of the level set function ϕ, in formula

Γϕ(τ) := { ~x ∈ Ω | ϕ(~x, τ) = 0 } .

In Fig. 1, this situation is illustrated for a one-dimensional

example. Here, ϕ decomposes the domain Ω ⊂ R into Ω1

and Ω2.

Using the level set function ϕ, a two-phase flow problem

involving the velocity field ~u(~x, τ) and the pressure p(~x, τ)
in a domain Ω can be mathematically modeled by the

following set of equations

ρ(ϕ)

(

∂~u

∂τ
+ (~u · ∇)~u

)

= −∇p + ρ(ϕ)~g + (1)

div(µ(ϕ) ~D(~u)) + fΓϕ
,

div ~u = 0, (2)

∂

∂τ
ϕ + ~u · ∇ϕ = 0 (3)

with suitable boundary and initial conditions. Here, equa-

tions (1)–(2) are the Navier–Stokes equations, whereas (3)

describes the evolution of ϕ in time. In these equations, ~D

denotes the viscous stress tensor and ~g the external gravity

force. The term fΓϕ
is the so-called “continuum surface

force term” [14], [15], describing the surface tension at the

interface Γϕ. To distinguish between the different material

properties of the two phases, the density ρ and the viscos-

ity µ depend on the level set function. That is, the material

properties at a point ~x ∈ Ω and time τ are determined

according to the sign of ϕ(~x, τ).
For simulating two-phase flow problems, it is crucial that

the implicitly given interface Γϕ can be accurately resolved

numerically. Therefore, the level set function should be close

to a signed distance function satisfying the distance property

‖∇ϕ‖2 = 1, (4)

Γϕ Γϕ

Ω2 Ω2Ω1

Ω

ϕ

x

ϕ(x)

Figure 1. One-dimensional example of a decomposed domain Ω ⊂ R by
a level set function ϕ.

where ‖·‖2 denotes the Euclidian norm. That is, the absolute

value of ϕ(~x, τ) gives the distance of ~x to Γϕ at time τ ,

and the sign indicates the phase in which ~x is located.

If ϕ is close to a signed distance function the numerical

algorithms can determine the position of Γϕ accurately.

However, while evolving in simulation time the property of

the signed distance function may be lost. In the next section,

we present a hybrid parallel re-initialization algorithm for re-

constructing a signed distance function without moving its

root set, i.e. Γϕ.

III. HYBRID PARALLEL ALGORITHM

We introduce some notations and the serial algorithm be-

fore describing the hybrid parallel re-initialization algorithm

with two levels of parallelism in Sec. III-B. The underlying

parallel algorithm with a single level of parallelism obtained

from a domain decomposition strategy is presented and

analyzed in [12].

A. Re-Initialization Algorithm

Let T denote a tetrahedral triangulation of the three-

dimensional domain Ω and V the set of vertices in T
where the degrees of freedom to represent ϕ are located.

Given a numerically disturbed level set function ϕ̃(~x), the

objective of the re-initialization algorithm is to determine

a new level set function ϕ(~x). The re-initialized level set

function ϕ better recaptures the distance property (4) at each

vertex u ∈ V without changing the root of ϕ̃. To this end,

we distinguish between frontier and off-site vertices. The

“frontier vertices,” denoted by F , are located on tetrahedra

intersected by Γϕ. The remaining vertices S := V \ F
are called “off-site vertices.” An example triangulation T
with an interface Γϕ is illustrated in Fig. 2. For the sake

of simplicity, the example is given in two dimensions. In

this figure, the interface Γϕ is given by a dashed line, the

frontier vertices are marked by •, and the off-site vertices

are marked by ◦.
Computing the unsigned distance d (Γϕ, u) between a

vertex u ∈ V and the interface Γϕ differs for frontier and

115115

Γϕ

v
‖v − w2‖2
w2

w1

d (Γϕ, w2)

Figure 2. Triangulation T of a computational domain Ω with a given
interface Γϕ where the frontier vertices F are marked by • and the off-site
vertices S by ◦.

off-site vertices. The algorithm outlined in Alg. 1 consists

of the following three steps:

1) Determine all frontier vertices F and compute the

distance d (Γϕ, w) of each w ∈ F .

2) Determine d (Γϕ, v) of each v ∈ S.

3) Determine the value of ϕ(u) for each vertex u ∈ V ,

i.e., assigning the signed distance.

Algorithm 1: Algorithm to re-initialize a level set func-

tion.

d (Γϕ, u)←∞ for all u ∈ V1

foreach t ∈ T do // FRONT2

if t is intersected by Γϕ then3

d (Γϕ, w)← min(d (Γϕ, w) , P (t, w)) for each4

corner vertex w ∈ t

F ← F ∪ {w} for all corner vertices w ∈ t5

S ← V \ F6

KD ← Build k-d tree representing F7

foreach v ∈ S do // OFFSITE8

Compute N (m, v) with KD9

minDist ← ∞10

foreach y ∈ N (m, v) do // MIN11

minDist ← min {minDist, d (Γϕ, v, y)}12

d (Γϕ, v)← minDist13

foreach u ∈ V do // SIGN14

ϕ(u)← d (Γϕ, u) · sign (ϕ̃(u))15

The first step (lines 2–6 of Alg. 1) is accomplished by a

loop over all tetrahedra. If a tetrahedron t ∈ T is intersected

by the root of the level set function, all corner vertices w of t

are characterized as frontier vertices. The distance d (Γϕ, w)
for w ∈ F is performed by a local projection P (t, w) on an

intersected tetrahedron t involving basic geometrical calcu-

lations. This projection is described in [13]. All remaining

vertices are marked as off-site vertices.

Afterwards, in the second step (lines 7–13), the distance

between each off-site vertex v ∈ S and Γϕ is determined.

Therefore, we first define the distance d (Γϕ, v, w) of an off-

site vertex v via a frontier vertex w by

d (Γϕ, v, w) := ‖v − w‖2 + d (Γϕ, w) . (5)

Using this definition, we determine the distance d (Γϕ, v)
between v ∈ S and Γϕ by

d (Γϕ, v) := min { d (Γϕ, v, w) | w ∈ F } . (6)

Here, the distance of an off-site vertex is given by the

shortest distance via all frontier vertices. To determine

the minimum in (6) efficiently, we do not search for the

minimum over all frontier vertices but only over the m

nearest neighbors of v in the set F . The set of m nearest

neighbors of v is denoted by N (m, v) ⊂ F where m is

a user-given parameter. Note that determining (6) by using

only the nearest neighbor does not give accurate results. For

instance, in Fig. 2, the nearest neighbor of v in F is the

vertex w1. However, with respect to the distance defined

in (5), the distance of v to the interface is shorter via w2 than

via w1. Bentley [16] developed k-d trees (k-dimensional

trees), which allow to perform a nearest neighbor search

of a given point v in a set of points F efficiently. To

this end, the set of frontier vertices F is represented by

a tree data structure. Overall, the second step of the re-

initialization algorithm consists of generating the set of m

nearest neighbors N (m, v) for each vertex v ∈ S followed

by determining

d (Γϕ, v) := min { d (Γϕ, v, y) | y ∈ N (m, v) } .

The final and third step (lines 14–15) consists of deter-

mining the value of the re-initialized level set function ϕ(u)
for each vertex u ∈ V . The value of ϕ(u) is determined by

the product of the distance d (Γϕ, u) and the sign of ϕ̃(u),
in formula

ϕ(u) := d (Γϕ, u) · sign (ϕ̃(u)) .

B. Hybrid Parallel Re-Initialization Algorithm

In this section, we combine a distributed-memory par-

allelization with a shared-memory parallelization leading

to a hybrid parallel algorithm for re-initializing level set

functions. A domain decomposition strategy, i.e., distributing

the tetrahedra of T among processes, enables the distributed-

memory parallelization. The shared-memory parallelization

additionally distributes the computational work of the loops

beginning in lines 2, 8, and 14 of Alg. 1. In the remainder,

we use the labels FRONT, OFFSITE, and SIGN for these

loops as given in Alg. 1.

The distributed-memory parallelization of the numerical

solution of (1)–(3) is presented in detail in [12], [17], [18]

and is implemented using the message passing interface

(MPI). Decomposing the tetrahedra of T among processes

116116

leads to a decomposition of the vertices V and, in particular,

of the off-site vertices S and frontier vertices F . Let T p, Vp,

Sp and Fp denote the restriction of these sets to a process p,

respectively. Then, each process has to determine the value

of ϕ(u) for each vertex u ∈ Vp. However, for computing

the nearest neighbor set N (m, v) in line 9 of Alg. 1, each

process p needs to access the “global” set F to build a

k-d tree representing F . Note that using on each process

only a k-d tree representing the “local” set Fp does not

yield accurate results because the nearest neighbor w of a

vertex v ∈ Sp must not be located on the same process p.

Creating the k-d tree in parallel and performing a parallel

nearest neighbor search is beyond the scope of this paper and

is currently investigated in an ongoing work. For creating

the “global” k-d tree, an additional communication step is

necessary to gather the set F from the “local” sets Fp. After

this gathering step, each process stores the global set F and

is capable of building the k-d tree. Note that this gathering

also takes special care of frontier vertices located at process

boundaries.

The shared-memory parallelization distributes the compu-

tational work arising in the subdomains. To this end, the

loops FRONT, OFFSITE, and SIGN are parallelized by

using the OpenMP standard.

• Parallelization of loop FRONT. Most of the com-

putational work within step one, i.e., initializing the

frontier vertex set and the distance of its vertices, can

be performed in parallel. Hence, the loop over all

tetrahedra can be distributed among threads. However,

in general, a frontier vertex w ∈ F is located at

several tetrahedra. If two threads handle two different

tetrahedra but assign d (Γϕ, w) for the same vertex w,

then a data race occurs. Hence, assigning d (Γϕ, w) to

a frontier vertex has to be executed by only one thread

at any time.

• Parallelization of loop OFFSITE. Computing the

distance d (Γϕ, v) for off-site vertices in lines 9–13

of Alg. 1 does not depend on computing any other

distance d (Γϕ, v′) for all v′ ∈ V \ {v}. Therefore, no

data dependencies exist for different loop indices and

this loop can be parallelized.

• Parallelization of loop SIGN. Determining the value

of ϕ(u) as the signed distance ±d (Γϕ, u) does not

depend on any other assignment in that loop. Hence, the

computational work of this loop body is straightforward

distributed among threads.

Note that searching the minimum in line 11 of Alg. 1 la-

beled by MIN can be also parallelized by OpenMP leading to

an additional level of shared-memory parallelism. However,

numerical experiments not reported here indicate that such

an approach involving nested shared-memory parallelization

is not competetive in terms of execution time. Indeed, the

smallest execution times are gained if all available threads

Algorithm 2: Hybrid parallel algorithm to re-initialize a

level set function.

d (Γϕ, u)←∞ for all u ∈ V1

foreach {T 1, . . . , T p} do in parallel // MPI2

foreach t ∈ T p do in parallel // OpenMP3

if t is intersected by Γϕ then4

d (Γϕ, w)← min(d (Γϕ, w) , P (t, w)) for5

each corner vertex w ∈ t

Fp ← Fp ∪ {w} for all corner vertices6

w ∈ t

F ← Gather Fp
7

Sp ← Vp \ F8

KD ← Build k-d tree representing F9

foreach {S1, . . . ,SP } do in parallel // MPI10

foreach v ∈ Sp do in parallel // OpenMP11

Compute N (m, v) with KD12

minDist ← ∞13

foreach y ∈ N (m, v) do14

minDist ← min {minDist, d (Γϕ, v, y)}15

d (Γϕ, v)← minDist16

foreach {V1, . . . ,VP } do in parallel // MPI17

foreach u ∈ Vp do in parallel // OpenMP18

ϕ(u)← d (Γϕ, u) · sign (ϕ̃(u))19

are used to execute the loop OFFSITE in a single level of

shared-memory parallelism rather than two levels of shared-

memory parallelism. The high-level representation depicted

in Alg. 2 summarizes the hybrid MPI/OpenMP parallel

algorithm. Here, the labels MPI and OpenMP indicate the

distributed- and shared-memory parallelization, respectively.

IV. NUMERICAL RESULTS

All experiments are performed at RWTH Aachen Uni-

versity on two clusters consisting of Xeon-based quad-core

processors. One is based on “Harpertown” and one on

“Nehalem” processors. Each node of the cluster has two

sockets, where on each socket a quad-core processor is

placed. The nodes are connected via an InfiniBand network,

the executable is built by the Intel compiler (version 11.1),

and SUN’s implementation of MPI (version 8.2) is used to

implement the communication among processes.

The re-initialization algorithm given in Alg. 2 is im-

plemented within the parallel C++ two-phase flow solver

DROPS [13], [17], [19], [20], [18]. To demonstrate perfor-

mance results of the parallel re-initialization algorithm, our

test scenario is a conical measurement cell taken from [21].

In Fig. 3, a vertical slice through the rotationally symmetric

cell with a levitated droplet is depicted. This cell is used

to study the behavior of levitated oil drops [2] in water.

The cell is discretized by a tetrahedral grid which is locally

117117

- ~g

Figure 3. Vertical slice through the computational domain Ω and a drop described by ϕ.

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

Nodes

T
im

e
[s

]

1−4

2−2

4−1

(a) Using 4 cores per node (Harpertown)

1 2 4 8 16 32
10

0

10
1

10
2

10
3

Nodes

T
im

e
[s

]

1−8

2−4

4−2

8−1

(b) Using 8 cores per node (Harpertown)

1 2 4 8 16 32
10

0

10
1

10
2

10
3

Nodes

T
im

e
[s

]

1−4

2−2

4−1

(c) Using 4 cores per node (Nehalem)

1 2 4 8 16 32
10

0

10
1

10
2

10
3

Nodes

T
im

e
[s

]

1−8

2−4

4−2

8−1

(d) Using 8 cores per node (Nehalem)

Figure 4. Execution time of carrying out the loop OFFSITE (lines 10–16 of Alg. 2) on different numbers of nodes.

refined in the vicinity of the surface of the drop. The

2 733 447 tetrahedra lead to 3 152 034 degrees of freedom

to represent ϕ. Here, |F| = 155 962 vertices are located

at intersected tetrahedra. In all experiments, the number of

nearest neighbors is set to m = 1 000. The implementation

of the k-d trees is based on Kennel’s library [22]. To

determine a suitable decomposition of the tetrahedra, the

graph partitioning library ParMetis [23] is used. In this

scenario, over 99 % of the sequential execution time for re-

initializing level set functions is performed in the body of

the loop OFFSITE, corresponding to lines 10–16 of Alg. 2.

Recall that the algorithm includes two levels of paral-

lelism: the distributed-memory parallelization (lines 2, 10,

and 17) and the shared-memory parallel regions (lines 3, 11,

and 18). We use different schemes to place MPI processes

and OpenMP threads on the eight cores per node. We denote

the schemes by P -T . Here, P denotes the number of MPI

processes placed on each node. For each such process, T

denotes the number of threads used to execute the parallel

regions of the shared-memory parallelization. Thus, if n

nodes are used, the total number of cores executing the

algorithm is given by n · P · T . For instance, if using the

2-4 scheme, two processes are placed on each node and

each process spawns four threads leading to eight threads

per node. The total number of MPI processes p is given by

p = P · n. The execution time of the algorithm carried out

on n nodes using the P -T scheme is denoted by tP -T (n).

First, we investigate which P -T scheme exploits the

hardware best. In Fig. 4, we present the execution time on

various number of compute nodes to determine d (Γϕ, v) for

118118

1 2 4 8 16 32 64
0

10

20

30

40

50

Nodes

S

Harpertown

Nehalem

(a) S2-1
MPI using the scheme 2-1 on different numbers of nodes

1 2 4 8 16 32 64 128
0

2

4

6

8

Nodes

S

T=1 T=2 T=4 T=8

(b) S1-T
OpenMP for different number of Nehalem nodes

Figure 5. Speedup of the hybrid parallel re-initialization algorithm (Alg. 2).

all v ∈ S, i.e., performing lines 7–16 of Alg. 2. In Fig. 4(a)

and (c), only each second core of a node is used whereas,

in Fig. 4(b) and (d), all cores of a node are involved in the

computation. In Fig. 4(a) and (b), the execution times on

a cluster consisting of Harpertown processors is presented

whereas, in Fig. 4(c) and (d), a cluster of Nehalem proces-

sors is used. Although the clock cycle of both processors

is approximately equal to 3 Ghz, the execution time on the

Harpertown cluster is larger because the connection between

the memory and the Nehalem’s cores is better than the

connection to the Harpertown’s cores. If considering the

pure MPI parallelization, i.e., the scheme 4-1 in both left

figures and 8-1 in both right figures, the algorithm scales

well on up to 4 nodes of the Harpertown cluster and up to

32 nodes of the Nehalem cluster. An explanation is given by

the InfiniBand network connecting the nodes. The Nehalem

cluster uses a newer generation of an InfiniBand network

than the Harpertown cluster. This newer network is faster

and, in contrast to the Harpertown cluster, the network

interface cards can serve the eight MPI processes on a node

better. All figures demonstrate that exclusively using an MPI

parallelization yields the largest execution times on a fixed

number of nodes because the shared memory can not be

exploited. For instance, in Fig. 4(d), switching from a hybrid

MPI/OpenMP parallelization to a pure MPI parallelization

increases the runtime on four nodes from t1-8(4) = 24.8 s

to t8-1(4) = 52.1 s. In particular, on four nodes, the serial

runtime is reduced by a factor of 18.4 by using the hybrid

parallel approach whereas the corresponding factor is 8.6
using a pure MPI approach. In general, for both types of

processors, the smallest execution time is obtained if placing

one process and four threads on each socket, i.e., using

strategy 2-4. The Nehalem processors provides simultaneous

multithreading (SMT) which allows to place up to 16 threads

on one node. However, our experiments show that enabling

this technology increases the runtime on one node by a factor

1.06 compared to only using eight threads.

Finally, we investigate the speedup of Alg. 2. Concerning

the MPI parallelization we define the speedup SP -T
MPI (n) using

n nodes and the scheme P -T by

SP -T
MPI (n) :=

tP -T (1)

tP -T (n)
.

For a fixed number of nodes n, the speedup with respect to

OpenMP using T threads is defined by

SP -T
OpenMP(n) :=

tP -1(n)

tP -T (n)
.

In Fig. 5, the speedup of the re-initializing algorithm is

depicted. The speedup S2-1
MPI is illustrated in Fig. 5(a) for

a varying number of nodes. This figure demonstrates that

the parallel algorithm scales well on both clusters using a

pure MPI parallelization with two processes per node. That

is, on both clusters, the execution time of two MPI processes

on one node is reduced by a factor of about 40 if using 64
nodes. In Fig. 5(b), the speedup S1-T

OpenMP with respect to a

varying number of threads is shown for different numbers

of Nehalem nodes. This figure illustrates that the shared-

memory parallelization is capable of decreasing the runtime

by a factor larger than 4 for all nodes using T = 8 cores.

V. CONCLUSIONS

Today’s high-performance computing platforms are in-

creasingly built by connecting nodes consisting of multi-core

chips. Most likely, the total number of threads summed over

all nodes that is available on future platforms will easily

exceed the number of independent tasks that follow from

119119

using a single level of parallelism. A hierarchy of multiple

levels of parallelism seems a promising option to cope

with this large number of threads. This has an immediate

implication to the design of algorithms which will have

to offer these multiple levels of parallelism. We propose a

novel algorithm for the re-initialization of level set functions

on an unstructured grid that consists of two levels of

parallelism. We investigate the performance of that algorithm

by combining a domain decomposition approach based on

MPI with an additional level of parallelism obtained from

an OpenMP approach. Numerical experiments are carried

out on two clusters whose nodes consist of Xeon-based

quad-core processors of type Harpertown or Nehalem. These

results indicate that it is currently difficult to determine the

“best” technique from the rich set of parallelization strategies

that results from mapping the hierarchy of parallel tasks to

cores in a different way. However, it is evident from our

performance results that, for the particular re-initialization

algorithm, a hybrid MPI/OpenMP approach is superior to a

parallelization technique purely based on MPI.

ACKNOWLEDGMENT

The development of the parallel finite element solver

DROPS was supported by the “Deutsche Forschungsgemein-

schaft” (DFG) in the SFB 540 “Model-based Experimental

Analysis of Kinetic Phenomena in Fluid Multi-phase Re-

active Systems,” and is being developed in a collaboration

with the chair for numerical mathematics (LNM) at RWTH

Aachen University. We would like to thank Alin Bastea

and the HPC group of the Center for Computing and

Communication for helping us to gather and analyze all

performance data.

REFERENCES

[1] W. Marquardt, “Model-based experimental analysis of kinetic
phenomena in multi-phase reactive systems,” Trans. Inst.
Chem. Eng., vol. 83, no. A6, pp. 561–573, 2005.

[2] E. Gross-Hardt, A. Amar, S. Stapf, A. Pfennig, and
B. Blümich, “Flow dynamics inside a single levitated droplet,”
Ind. & Eng. Chem. Res., vol. 1, pp. 416–423, 2006.

[3] S. Groß, M. Soemers, A. Mhamdi, F. Al-Sibai, A. Reusken,
W. Marquardt, and U. Renz, “Identification of boundary heat
fluxes in a falling film experiment using high resolution
temperature measurements,” Int. J. Heat Mass Tran., vol. 48,
pp. 5549–5562, 2005.

[4] M. Sussman, P. Smereka, and S. Osher, “A level set approach
for computing solutions to incompressible two-phase flow,” J.
Comput. Phys., vol. 114, no. 1, pp. 146–159, 1994.

[5] J. A. Sethian, “A fast marching level set method for mono-
tonically advancing fronts,” in Proc. Natl. Acad. Sci. of the
USA, vol. 93, no. 4, 1996, pp. 1591–1595.

[6] H.-K. Zhao, “A fast sweeping method for Eikonal equations,”
Math. Comput., vol. 74, no. 250, pp. 603–627, 2004.

[7] S. Osher and J. A. Sethian, “Fronts propagating with curva-
ture dependent speed: Algorithms based on Hamilton-Jacobi
formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49,
1988.

[8] S.-R. Hysing and S. Turek, “The Eikonal equation: Numer-
ical efficiency vs. algorithmic complexity on quadrilateral
grids,” in 17th Conference on Scientific Computing (Algoritmy
2005), Vysoké Tatry, Podbanské, Slovakia, A. Handlovicova,
Z. Kriva, K. Mikula, and D. Sevcovic, Eds., 2005, pp. 22–31.

[9] H. Zhao, “Parallel implementations of the fast sweeping
method,” J. Comp. Math., vol. 25, no. 4, pp. 421–429, 2007.

[10] M. C. Tugurlan, “Fast marching methods—parallel imple-
mentation and analysis,” Ph.D. dissertation, Department of
Mathematics, Louisiana State University, USA, 2008.

[11] M. Herrmann, “A parallel Eulerian interface
tracking/Lagrangian point particle multi-scale coupling
procedure,” J. Comput. Phys., vol. 229, no. 3, pp. 745–759,
2010.

[12] O. Fortmeier and H. M. Bücker, “Parallel re-initialization
of level set functions on distributed unstructured tetrahedral
grids,” RWTH Aachen University, Aachen, Preprint of the In-
stitute for Scientific Computing RWTH–CS–SC–10–03, 2010,
submitted for publication.

[13] S. Groß, V. Reichelt, and A. Reusken, “A finite element
based level set method for two-phase incompressible flows,”
Comput. Vis. Sci., vol. 9, no. 4, pp. 239–257, 2006.

[14] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum
method for modeling surface tension,” J. Comput. Phys., vol.
100, no. 2, pp. 335–354, June 1992.

[15] S. Groß and A. Reusken, “Finite element discretization error
analysis of a surface tension force in two-phase incompress-
ible flows,” SIAM J. Numer. Anal., vol. 45, no. 4, pp. 1679–
1700, 2007.

[16] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Commun. ACM, vol. 18, no. 9, pp.
509–517, 1975.

[17] S. Groß and A. Reusken, “Parallel multilevel tetrahedral grid
refinement,” SIAM J. Sci. Comput., vol. 26, no. 4, pp. 1261–
1288, 2005.

[18] O. Fortmeier, T. Henrich, and H. M. Bücker, “Modeling
data distribution for two-phase flow problems by weighted
graphs,” in 23rd Workshop on Parallel Sytems and Algorithms,
Hannover, Germany, Februar 12, 2010, M. Beigl and F. J.
Cazorla-Almeida, Eds. VDE, 2010, pp. 31–38.

[19] O. Fortmeier and H. M. Bücker, “A parallel strategy for a
level set simulation of droplets moving in a liquid medium,”
in 9th International Meeting on High Performance Computing
for Computational Science (VECPAR’10), Berkeley, CA, USA,
June 23–25, 2010, 2010, accepted for publication.

120120

[20] C. Terboven, A. Spiegel, D. an Mey, S. Groß, and V. Reichelt,
“Experiences with the OpenMP parallelization of DROPS,
a Navier-Stokes solver written in C++,” in OpenMP Shared
Memory Parallel Programming, Proceedings of the Interna-
tional Workshops IWOMP 2005 and IWOMP 2006, Eugene,
OR, USA, June 1–4, 2005, and Reims, France, June 12–
15, 2006, ser. Lecture Notes in Computer Science, M. S.
Mueller, B. M. Chapman, B. R. de Supinski, A. D. Malony,
and M. Voss, Eds., vol. 4315. Berlin: Springer, 2008, pp.
95–106.

[21] E. Gross-Hardt, E. Slusanschi, H. M. Bücker, A. Pfennig, and
C. H. Bischof, “Practical shape optimization of a levitation
device for single droplets,” Optimization and Engineering,
vol. 9, no. 2, pp. 179–199, 2008.

[22] M. B. Kennel, “KDTREE 2: Fortran 95 and C++
software to efficiently search for near neighbors
in a multi-dimensional Euclidean space,” 2004,
http://arxiv.org/abs/physics/0408067v2.

[23] G. Karypis and V. Kumar, “A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering,” J. Parallel
Distrib. Comput., vol. 48, no. 1, pp. 71–95, 1998.

121121

