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Abstract— Embedded multimedia systems are expected to fully 
embrace the future many-core wave. As a consequence parallel 
programming is being revamped as the only way to exploit the 
power of coming chips. While waiting for them we try to 
extrapolate some lessons learned from current multi-cores to 
influence future architectures and programming methods. In this 
paper we investigate the parallelism and scalability of a JPEG 
image encoder, which is a typical embedded application, on 
several shared memory machines using the OpenMP 
programming framework. We identify the Huffman coding as 
the bottleneck that blocks the application from scaling above a 7x 
factor. We propose a strategy to parallelize the Huffman coding, 
which introduces a small degradation in some parts of the image, 
allowing to reach higher speedup factors. A factor of 18.8x has 
been reached in SGI Altix 4700 using 22 threads. Contrasting 
these results with some previous works using message passing 
architectures we consider that the use of OpenMP on top of 
shared memory architectures should be reconsidered for future 
chips in favor of message passing architectures and 
programming models. 
 
Keywords— JPEG, encoder, OpenMP, performance, 
parallelization 

I. INTRODUCTION 
JPEG encoding is present as an important function of many 

embedded devices such as smart phones and still cameras. In 
such embedded environments it is cost effective to have 
dedicated hardware to assist the JPEG encoding, which is a 
computational demanding task. However, with a new wave of 
many-core processors on the horizon, which are expected to 
land in the embedded arena, maybe it will not be cost effective 
to add a specific core to assist the task if the already present 
many-core processor can do the job. 

There is no consensus about what paradigm will be used in 
future many-core processors. Many of the current proposals 
are based on the shared memory paradigm. Shared memory is 
perceived as a beneficial paradigm because it offers an easy 
programming environment that relies upon having good 
compilers and runtimes. However we would like to show how 
shared memory paradigm limits the scalability of applications, 
like JPEG encoding, which could be further accelerated using 
other more scalable paradigms like message passing or stream 
processing.  

 

II. PREVIOUS WORK 
The high compression ratios achieved by the JPEG 

standard are based on the fact that only few values can be used 
to describe each block of an image after DCT transform and 
quantization processes has been applied. These few values are 
then Huffman coded to reduce the final number of bits that are 
finally stored (see Figure 1). 

JPEG encoding has received much attention because of its 
commercial interest and has been implemented in many 
different platforms. There is a vast amount of literature about 
the different parts of the encoder and also many 
implementations in several different platforms. Since it is 
difficult to cover the entire work in the literature, we only 
provide some pointers to some representative contributions. 

 

 
Fig. 1  Block diagram of the JPEG encoding process 

To the best of our knowledge, the maximum JPEG 
encoding performance is obtained when custom hardware is 
used, usually as part of an ASIC. Nethra claims in [1] that his 
commercially available NI2065/66 chip offers a performance 
of 75MPixels/s. Kovac and Ranganathan claim in [2] that, if 
implemented, their Jaguar chip design would give 
100MPixels/s working at 100Mhz clock frequency. ASIC 
designs offer a very good performance, but this comes with a 
sacrifice to flexibility since the chips can not be reused for 
other tasks. 

Some more flexibility is offered by DSPs, ASIPs and 
FPGAs. For instance, Cast, Inc. claims in [3] that their 
encoder IP can encode more than 30 frames per second at a 
4/3 HDTV resolution in an Altera EP3SE50 device running at 
250Mhz. This is equivalent to more than 50MPixels/s. The 
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same performance is claimed by Texas Intruments in [4] using 
the TMS320DM355 chip running at 216Mhz. 

Hardware implementations often require using the minimal 
amount of memory, so they are commonly based on a 
pipelined design (see Figure 2). The way to achieve the 
maximum performance is to split the process in the greater 
possible number of stages and reduce the pipelining period, 
which is determined by the time needed by the slowest stages. 

 

 
Fig. 2  Hardware pipeline 

This parallelization strategy gives impressive performance 
and can also be implemented in software quite effectively as 
reported by Shee in [5] and Osorio in [6]. These works use 
Xtensa SL, and Ambric  many-core processors respectively, 
which are message passing architectures in which pipeline can 
be easily implemented. The maximum reported performance 
is 31MPixels/s. 

On the other hand, Shared Memory architectures are not 
specially addressed to pipelined processes and their natural 
programming frameworks, like OpenMP, encourage 
exploiting the parallelism at the data level. However it is 
shocking to notice the few number of works that have 
addressed the parallelization of embedded applications in this 
kind of architectures, and the few number of processors used 
in most scalability studies. For instance, Oh ([7]), Kodaka 
([8]), and more recently Tumeo ([11]) have addressed the 
parallelization of JPEG encoding on shared memory 
architectures and its scalability up to just four processors. 

III. IDENTIFICATION OF THE ALGORITHMIC BOTTLENECKS 
The sequential JPEG encoding process could be described 

by the following pseudo-code. 
 

write headers 
for each block of the image 
{ 
 r0 = rgb2yuv(block) 
 r1 = dct(r0) 
 r2 = q(r1) 
 r3 = zigzag(r2) 
 eDC = dcEncode(r3[0], lastDC) 
 write(eDC) 
 lastDC = r3[0]; 
 rles = RLE (r3) 
 eAC = Huffman(rles) 
 write(eACs)  
} 

With a simple profiling of the above sequential encoder 
implementation we can prove, as reported by innumerable 
works before, that the most time-consuming functions of the 

encoding processes are 2D DCT transform, color conversion, 
quantization, and Huffman coding, respectively. 

All the functions work with a small amount of memory (a 
block of 64 values at most) and each block is almost 
processed totally independently from the rest. A first problem 
that prevents us from treating each block independently is the 
data dependency between a block and the previous one, 
because the previous DC value is needed to compute the 
differential encoding of the DC coefficients. 

If we split the loop in two, we can have a fist loop with the 
DCT and Quantization and Zig-Zag and a second loop with 
the remainder. But in order to do that, we need a large 
intermediate memory to store the results of the Zig-Zag 
function for each block of the image. So the modified pseudo-
code would be as follows. 

write headers 
for each block of the image 
{ 
 r0 = rgb2yuv(block) 
 r1 = dct(r0) 
 r2 = q(r1) 
 r3[block] = zigzag(r2) 
} 
 
for each block of the image 
{ 
 eDC = dcEncode(r3[block][0], 
                r3[prev_block][0]) 
 write(eDC) 
 rles = RLE (r3) 
 eAC = Huffman(rles) 
 write(eACs)  
} 

Now the first loop contains the most computing demanding 
functions and can be totally parallelized. But as we do that we 
observe the Amdahl's Law effects as the second sequential 
loop becomes dominant. Figure 3 depicts this effect in a 
hypothetical 4 processor system encoding a 8 block image. 
Four processors are simultaneously computing Color, DCT, Q, 
ZZ functions of different blocks until all blocks are computed. 
Afterwards Huffman codes must be serially processed. In the 
image different colors represent the data dependencies among 
functions. Each box represents a function that is executed in a 
processor. 

 

 
Fig. 3  First loop parallelization 

Most works in the literature pay much attention to the 
parallelization of this first loop, resulting in designs that show 
poor scalability. We have implemented a first parallel version 
of the encoder that only parallelizes the first loop. 

The scalability results are shown in Figure 4.  In this simple 
test we have encoded the bruno image on several Shared 
Memory platforms. In section 5 more details will be given 
about test images and execution platforms. 
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As previously discussed, the scalability of the encoder is 
poor due to the sequential Huffman loop. The maximum 
achieved speedup is 7x in Altix machine which is the slowest 
system of the set. In faster Xeon machines the maximum 
speedup is below 4x. 

 
Fig. 4  Scaling of trivial parallelization of the JPEG encoding in various 
Shared Memory Platforms. 

The parallelization of the second loop is harder because it 
writes the Huffman codes to the output bitstream. This is a 
problem because writing should be done in order and the 
written codes have a variable length, so it is not possible to 
calculate the offset for each result into the output bitstream.  
But even more important is the fact that resulting codes are bit 
aligned. So, in case we could compute the codes in parallel we 
would need to join them properly by a costly process of bit 
alignment, which is much more complex than a desirable 
simple memory copy. 

Cook presented in [9] and [10] various strategies to perform 
the bit alignment and overcome this bottleneck, showing how 
JPEG could be effectively parallelized. Later on some 
extensions were added to JPEG coding ([12]) to allow the 
tiled coding of images, providing better error correction 
features and enabling the parallel encoding and decoding of 
the images. In order to do that, some new restart markers 
where introduced to identify the boundaries of the tiles and 
ensure that the critical information was byte aligned. These 
features have received the attention of the industry as shown 
in [13] but their use is far from universal. 

IV. PROPOSED PARALLELIZATION 
Having a variable length output from the Huffman coding 

is very beneficial to provide a high compression ratio but 
complicates the concatenation of several parallely computed 
bitstreams. Recall that, if the results from the Huffman coding 
were byte aligned, we could produce them in parallel and join 
them easily in a final step. Could we force a byte alignment 
resynchronization in certain parts of the bistream ? 

We propose a way to parallelize the JPEG encoder without 
using JPEG extensions or the realignment techniques used by 
Cook. Instead, we propose to use the cause of the problem as 
the solution to the problem. If the variable Huffman codes 
create a byte misalignment, we could use an arbitrary number 
of "convenient" Huffman codes to realign the bitstream to 
byte boundaries. 

Figure 5 describes this method. The top bitstream 
corresponds to a hypothetic JPEG image. In the figure we can 
see a complete block and the beginning of the following block. 
A block starts with the encoded value of the DC coefficient, 
and is followed by an undetermined number of encoded run-
lengths of AC coefficients. Notice that encoded values have a 
variable length and are not byte aligned. The bottom bitstream 
is the result of applying the proposed method. When the first 
shown block is encoded, it is specified that realignment must 
be applied. So, after the DC a number of Huffman codes with 
odd length are written to the bitstream until byte boundaries 
are reached. 

 
Fig. 5  Realignment to byte boundaries by replacing some Huffman codes by 
convenient ones 

Since we parallelize the outer loop of the block iteration 
(the row loop) we apply the substitution at the last block of the 
row. This process eventually degrades the quality of the image 
since important AC component are removed. But, since the 
selected blocks contain the Cr color component information, 
and their associated Y and Cb components are preserved, the 
quality loss will not be noticeable for most large photographic 
images. 

  
Fig. 6  Detail of large original images (left) and their parallely encoded results 
(right) for photographic images  

The effect of the parallelization strategy on the image 
quality is shown in Figures 6 and 7. As we eliminate the high 
frequency coefficients from the last block of each row, a 
blurred band is created at the right edge of the image. 
Synthetic images are more affected than photographic images 
because they usually contain more high frequency information. 
Photographic images usually have less variability in the 
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chrominance fields so the degradation is less evident to the 
human eye. 

 

  
Fig. 7  Detail of large original images (left) and their parallely encoded results 
(right) for synthetic images  

We have to modify the encoding algorithm in order to 
incorporate the byte realignment feature we are proposing. 
The second loop has to be spitted again in two loops and 
partial bitstreams must be created for each row. So, now the 
second loop writes the encoded values in the bitstream 
associated to each row, and when the end of the row is 
detected the last block is forced to realign to byte boundaries. 
Finally a third loop concatenates all row bitstreams to the final 
bitstream by simple memory copy operations. 

This algorithm can be effectively parallelized because the 
first loop (DCT, Q, Zig-Zag) and second loop (Byte-aligned 
Huffman by row) have no data dependencies between 
iterations. 

 
write headers 
for each block of the image 
{ 
 r0 = rgb2yuv(block) 
 r1 = dct(r0) 
 r2 = q(r1) 
 r3[block] = zigzag(r2) 
} 
 
for each row of the image 
 for each block of the row 
 { 
  eDC = dcEncode(r3[block][0], 
                r3[prev_block][0]) 
  write(eDC, encRow[row])  
 
  if (block is last) 
  { 
    realign(encRow) 
  } 
  else 
  { 
   rles = RLE(r3) 
   eAC = Huffman(rles) 
   write(eACs, encRow[row]) 
  }  
 } 
 
for each row of the image 
{  
  write(encRow[row]) 
} 

The second loop no longer represents a bottleneck to 
prevent the application scaling, and greater speedups can be 
achieved. The parallelization strategy is graphically depicted 
in Figure 8. 

 

 
Fig. 8  Proposed parallelization strategy 

V. IMPLEMENTATION & RESULTS 
We test the encoder performance with two big resolution 

images bruno and women. The bruno image is a 3MPixels 
(2000x1502) color image, the women image is a 16MPixels 
(4992x3328) color image. 

The test platforms are Shared Memory architectures. Intel 
Xeon 7310, Intel Xeon 7350, Intel Xeon X5560, Ultra Sparc 
T2 (see Table 1). Although not addressed to the embedded 
market, these CPUs can give us an idea of the features that 
would offer future embedded Shared-Memory many-core 
processors. 

TABLE I 
TEST PLATFORMS 

 Xeon 
7310 

Xeon 
7350 

Xeon 
X5570 

Ultra 
Sparc 

T2 

SGI 
Altix 
4700 

Processors 16 16 8 4 256 
Threads x 
processor 1 1 1 8 1 

Threads 16 16 8 32 256 
Clock 
Freq. 1.6GHz 2.93GHz 2.93GHz 1.2GHz 1.6GHz 

Cache 2x2MB 2x4MB 8MB 4MB 8MB 

 
Figure 9 shows the time taken by different processors to 

compress the women image. The Xeon X5570 (Nehalem 
architecture) offers the best Single Thread performance, and 
when using multiple threads gets the lowest encoding times: 
51ms and 275ms to encode the bruno and women images 
respectively. In terms of pixel performance this is almost 60 
MPixels/s, which is higher than all FPGA and DSP reported 
implementations and very close to pure ASIC ones. But this is 
not a very fair comparison because hardware assisted encoders 
run at lower clock frequencies offering a much better power 
efficiency ratio.  

If we just focus on performance, although ASIC and DSP 
implementations could try to increase their clock frequency, 
this is not a feasible task for current FPGA devices. On the 
other hand, message passing many-core architectures, like 
Ambric, have shown less performance but running at a 
significantly lower clock frequency. 
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Fig. 9  Time to compress women image on different platforms for different 
threads (Y axis is in logarithmic scale) 

We have scaled up to 32 threads to analyze the scalability 
of the application on the different platforms (see Figure 11).  
We get a maximum speedup factor of 18x in Altix machine 
using 22 threads. After 22 threads the Altix machine has an 
erratic performance and the T2 offers little speedup after 
adding threads. 

 
Fig. 10  Application scalability on different plaforms for the bruno image 

 
Fig. 11  Application scalability on different platforms for the women image 

We cannot measure the power consumption of the tested 
machines to observe the energy efficiency of the different 
computing platforms. But what we can do is use clock cycles 
instead of time to normalize the disparity of frequencies of 
operation. Since clock frequency is one of the main drivers of 
dynamic power consumption this can be a feasible way to 
have an idea of the efficiency of the different platforms. Of 
course, this analysis should be taken with skepticism because 
frequency is not the only driver to energy consumption. In 
Figure 12 we can see that, although shared memory approach 
is feasible and gives acceptable performance, it has a much 
lower efficiency of all the other alternatives. Looking at 
results published by Osorio (in [6]) it is interesting to see their 
message passing implementation has a much better ratio than 
our developed shared memory ones. 
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Fig. 12  Performace/Frequency ratio for different platforms in MPixels/GHz. 

VI. CONCLUSIONS 
We have proved that, introducing an small reduction of 

quality in the image, JPEG encoding can be speeded up to 20x 
by performing the Huffman coding on independent byte-
aligned bitstreams that can be finally joined using a fast 
memory copy operation. This allows surpassing the 
performance offered by previous referenced shared memory 
implementations by more two fold. 

However, the scalability depends on the image size and the 
platform used. It is important to notice that in most platforms 
the encoder shows a linear speedup for less than 16 threads, 
but after that the application scales poorly. Extrapolating the 
results one could see no significant benefits going above 32 
processors. 

Data locality is the key to good scalability, but shared 
memory architectures must provide a logical common global 
memory view. These contradictory requirements are projected 
to the programming frameworks. Shared Memory frameworks, 
like OpenMP, are embraced for the sake of programmer's ease 
of use, expecting to have a compilation tool-chain or runtime 
environment that will do a reasonable good job. But to 
efficiently place data into the global space some complex 
pragmas or access patterns must be performed. In fact, this is 

0

5

10 

15 

20 

25 

30 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Threads 

Ideal Speedup 
Xeon E7310 
Xeon E7350 
Xeon X5670 
Ultra Sparc T2 
SGI Altix 4700 

0,275

2,048

1,298

0,1 

1 

10 

100 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Threads

Ex
ec

ut
io

n 
Ti

m
e

Xeon E7310
Xeon E7350
Xeon X5670
Ultra Sparc T2
SGI Altix 4700

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Threads 

Ideal Speedup 
Xeon E7310 
Xeon E7350 
Xeon X5670 
Ultra Sparc T2 
SGI Altix 4700 

Sp
ee

du
p

Sp
ee

du
p

506



introducing some explicit communication details and, indeed, 
deriving into a more complex code. 

On the other hand, being free from a global memory view, 
message passing architectures can exploit data locality at its 
best at the cost of more programming effort. In addition, we 
should argue that this claim is sometimes gratuitous. If we 
take, for instance, the common pipelined design of a JPEG 
encoder it turns out to be more complex to implement in 
OpenMP than in MPI. 

From the obtained results we observe that a typical 
embedded application like JPEG encoder do not scale above 
32 threads using the shared memory paradigm, and 
programming frameworks like OpenMP cannot easily express 
convenient pipeline designs or control data locality. We 
advocate for adopting message passing architectures and 
programming methods for future embedded many-cores that 
allow closing the gap between them and ASICs in terms of 
energy efficiency. 

ACKNOWLEDGMENTS 
The authors want to thank Alejandro Duran, Eduard 

Ayguade and Barcelona Supercomputing Center for granting 
access to their Altix machine and their valuable support.  

This work was partly supported by the European ITEA2 
ParMA (Parallel programming for Multicore Architectures) 
Project, the Spanish Ministerio de Industria, Turismo y 
Comercio project TSI-020400-2009-26 and Ministerio de 
Ciencia y Innovacion project TEC2008-03835/TEC, the 
Catalan Government Grant Agency Ref. 2009SGR700. 

 
 
 
 

REFERENCES 
[1] Nethra Imaging, NI-2065/66. 3.2 Megapixel Smart Camera Module 

Image Processor with JPEG Encoder (available at 
http://www.nethra.us.com/pdf_files/ProdBrief_NI2065-66.pdf) 

[2] Kovac, M. & Ranganathan, P. JAGUAR: a high speed VLSI chip for 
JPEG image compression standard VLSI Design, International 
Conference on, IEEE Computer Society, 1995, 0, 220 

[3] http://www.altera.com/products/ip/dsp/image_video_processing/m-cas-
jpeg-e.html 

[4] http://focus.ti.com/docs/prod/folders/print/tms320dm355.html 
[5] Shee, S.; Erdos, A. & Parameswaran, S. Heterogeneous multiprocessor 

implementations for JPEG:: a case study Proceedings of the 4th 
international conference on Hardware/software codesign and system 
synthesis, 2006, 222 

[6] Osorio, R. R.; Díaz-Resco, C. & Bruguera, J. D. Highly Parallel Image 
Processing on a Massively Parallel Processor Array XX Jornadas de 
Paralelismo, A Coruña, 2009 

[7] Oh, J.; Kim, S. & Kim, C. OpenMP and Compilation Issues in 
Embedded Applications Lecture notes in computer science, Springer, 
2003, 109-121 

[8] Kodaka, T.; Kimura, K. & Kasahara, H. Multigrain parallel processing 
for jpeg encoding on a single chip multiprocessor Proceedings of the 
International Workshop on Innovative Architecture for Future 
Generation High-Performance Processors and Systems (IWIA'02), 
2002, 57 

[9] Cook, G. W. & Delp, E. J. The Use of High Performance Computing in 
JPEG Image Compression the Twenty-Seventh Asilomar Conference 
on Signals, Systems, and Computers, 1993, 846-851. 

[10] Cook, G. & Delp, E. An investigation of JPEG image and video 
compression using parallel processing IEEE International Conference 
on Acoustics, Speech and Signal Processing, 1994, 5 

[11] Tumeo, A.; Monchiero, M.; Palermo, G.; Ferrandi, F. & Sciuto, D. A 
design kit for a fully working shared memory multiprocessor on FPGA 
Proceedings of the 17th ACM Great Lakes symposium on VLSI, 2007, 
222 

[12] ITU-T Recommendation T.84 | ISO/IEC 10918-3:1996, Information 
Technology Digital Compression and Coding of Continuous-Tone Still 
Images: Extensions 

[13] Moussavi, F.; Lin, S.; Kopet, T. & Jabbi, A. Method and apparatus for 
parallelization of image compression encoders, US Patent App. 
11/730,718, 2007. 

 

507


