
1338 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

Parallelization of a Fast Multipole Boundary
Element Method with Cluster OpenMP

André Buchau, Serge Mboonjou Tsafak, Wolfgang Hafla, and Wolfgang M. Rucker

Institute for Theory of Electrical Engineering, University of Stuttgart, 70569 Stuttgart, Germany

Parallelization of a boundary element method for the solution of problems, which are based on a Laplace equation, is considered. The
fast multipole method is applied to compress the belonging linear system of equations. The well-known parallelization standard OpenMP
is used on shared memory computers and the new standard Cluster OpenMP is used on computer clusters. Both standards are based
on multithreading and exploit multicore processors very efficiently. Cluster OpenMP is an enhancement of OpenMP. There, multipro-
cessing on a computer cluster is hidden by virtual threads, which use a virtual shared memory on a distributed memory computer.

Index Terms—Boundary element methods (BEMs), Cluster OpenMP, fast multipole method (FMM), parallelization.

I. INTRODUCTION

NOWADAYS, boundary element methods (BEMs) are well
established for the solution of electromagnetic field prob-

lems, which are based on a Laplace equation. Modeling and dis-
cretization of a problem are relatively easy. Furthermore, accu-
racy and efficiency of modern BEM software is excellent. One
reason for this purpose is that the originally fully dense matrix
of the underlying linear system of equations is compressed. The
loss of accuracy of matrix compression techniques like hierar-
chical matrices [1] or fast multipole method (FMM) [2] is neg-
ligible. Even nonlinear problems can be taken into account, if
the BEM is supplemented by volume integral equations [3].

Excellent numerical methods are necessary for a successful
solution of electromagnetic field problems. Nevertheless, the
used computer platform significantly influences the efficiency
of the method. In the past, speed of processors was increased
each year. Hence, software became faster without any modifi-
cations. Today, processor speed stagnates and multicore proces-
sors are introduced. However, software must be adapted to this
new computer architecture by parallelization. Multicore com-
puters are shared memory systems. Then, parallelization can be
realized by multithreading. A well-established standard for par-
allelization based on multithreading is OpenMP [4]. It is sup-
ported by all modern compilers and is relatively easy to imple-
ment. Last year, Intel Corporation introduced the new Cluster
OpenMP standard, which is an enhancement of OpenMP [5].
Cluster OpenMP transforms a computer cluster with distributed
memory into a virtual shared memory system.

Cluster OpenMP is used to parallelize a boundary element
method, which is based on the fast multipole method. Efficiency
is studied for electrostatic field problems. The results of the novel
ClusterOpenMPapproacharecomparedwithclassicalOpenMP.

II. BACKGROUND

A. Boundary Element Method and Fast Multipole Method

Electrostatic field problems, which are based on a Laplace
equation, are considered. All matter is assumed to be linear,
isotropic and piecewise homogeneous. Electric potential on

Digital Object Identifier 10.1109/TMAG.2007.916262

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

conductors is given. Normal component of dielectric displace-
ment is continuous at interfaces between two dielectrics. A
similar task is the solution of steady current flow field problems.
There, potential at the ports of conductors is given. Current
flow is continuous at interfaces between two conductors with
different conductivity. In both cases, an indirect BEM formula-
tion based on surface charge densities is applied [6].

If the fast multipole method is used, a sparse near-field matrix
is computed. It takes into account all interactions between ele-
ments, which lie close together. This sparse matrix corresponds
to the originally dense matrix, from which all far-field inter-
actions were removed. Although only a sparse matrix must be
computed, this operation is time consuming and requires a fast
processor. A reason for this purpose is that singular and nearly
singular integrals have to be evaluated, what results in a huge
number of floating point operations [7].

The linear system of equations is solved iteratively. Then,
a matrix vector product has to be computed in each iteration
step. This product is accelerated by the fast multipole method.
The estimated solution in the current iteration step is consid-
ered as sources on the elements and the field on the elements is
computed. Here, the coupling of an element with all other ele-
ments is taken into account. The FMM summarizes information
of sources of a group of elements and computes the field of these
sources for another group of elements. The size of these groups
depends on the distance between them. Note the number of op-
erations, which must be evaluated, is relatively small. However,
a relatively large amount of data must be interchanged [7].

B. OpenMP and Cluster OpenMP

The standard mode of execution of software for numerical
field computations is to run the software in a single process
and a single thread on one central processing unit (CPU). All
commands are processed one by one. Of course, no data must
be exchanged and no conflicts can happen. Modern CPUs even
vectorize some operations to accelerate computations with large
arrays.

In recent years, the speed of CPUs grew steadily. Unfortu-
nately, clock speed of CPUs stagnates now. Latest developments
of CPUs go to multicore processors. Both Intel and AMD, the
two most important manufacturers for standard computer CPUs,
introduced so-called quad-core processors. Each of these pro-
cessors possesses four cores. A dual-processor computer can ex-
ecute eight independent operations in parallel. This trend makes
parallelization of software not optional but indispensable.

0018-9464/$25.00 © 2008 IEEE

BUCHAU et al.: PARALLELIZATION OF A FAST MULTIPOLE BOUNDARY ELEMENT METHOD WITH CLUSTER OPENMP 1339

Fig. 1. Communication between threads on a shared memory computer.

Fig. 2. Processes and threads in the case of OpenMP.

A standard computer consists of a multicore CPU with a
shared memory. This means that all processors access the same
memory (Fig. 1). Data in one memory cell is accessible to
all processors. The software is executed in a single process,
which is split into multiple threads. Normally, one thread
per processor is chosen. Multithreading is supported by most
compilers with the well-known OpenMP standard. OpenMP is
independent of platform and operating system. Only time-con-
suming parts of the software are parallelized. In the case of a
BEM in combination with the FMM, these are assembly of the
near-field matrix and matrix vector products during solution
of the linear system of equations (Fig. 2). Matrix assembly
means in practice that singular and nearly singular integrals
are computed. Computing these integrals for two elements
is completely independent. Care must only be taken during
storage of the results in the matrix. Nodes belong to multiple
elements. Hence, data of one node is computed by multiple
element integrations. To avoid memory writing conflicts, only
one thread is allowed to write into the matrix at a time. During
the matrix vector product, the FMM operations are distributed
among the threads. In many cases, multiple threads have to
read the same data from memory. Then, data must be ensured
to be up-to-date. More difficult is to avoid writing conflicts and
data race during the storage of the results. Since the storage
size of the output vector is relatively small in comparison to
the remaining memory requirements, an output vector for each
thread is used and these vectors are added at the end of the
parallel section. Then all threads are completely independent,
too. A big advantage of OpenMP is that load distribution is
done dynamically during runtime. The threads are created and
managed by the compiler and the operating system. OpenMP
is, therefore, easy to implement.

If a computer cluster is used, parallelization is more compli-
cated. CPUs and memory are distributed among the computing
nodes (Fig. 3). It is necessary to start a process on each node
(Fig. 4). Since it is a distributed memory system, which is often
interconnected via a local area network (LAN), data must be
exchanged between the processes. Of course, this interchange

Fig. 3. Communication between threads on a distributed memory computer.

Fig. 4. Processes and threads in the case of Cluster OpenMP.

causes an overhead. Furthermore, a LAN is very slow in com-
parison to the bus in a computer. Hence, communication be-
tween the nodes should be kept to a minimum.

A classical approach to realize parallelization with multiple
processes on a distributed memory computer is the MPI stan-
dard [8]. MPI is very powerful and allows the software devel-
oper full control over the execution of the program. Neverthe-
less, MPI has some disadvantages. The complete program must
be parallelized and not only time-consuming parts. In practice,
this is often ignored and some parts of the program are executed
on all nodes with the same data. Then, conflicts in file access
or the like must be avoided. The main disadvantage is that data
exchange between the processes must be implemented by the
software developer and load balance must be provided, too. Es-
pecially, this point is, in many cases, very difficult.

In May 2006, Intel Corporation introduced the new Cluster
OpenMP standard. It is based on OpenMP and supports dis-
tributed memory computers. In a first step, it appears to the
software developer in the same way as classical OpenMP. One
process is started and threads are created in the parallel section
of the program. These threads are distributed among the com-
puting nodes. For this purpose, processes on the nodes are cre-
ated by MPI calls. However, this is hidden by the compiler. All
threads see the same virtual shared memory. For efficiency pur-
poses, data must be declared sharable or not. If a thread writes
to a memory page, all other threads on the other nodes are no-
ticed about this action. If a thread reads a memory page, it is
checked to be up-to-date and data is exchanged where required.
To keep data transfer to a minimum, it is necessary to read and
write data in a very ordered way.

In principle, load distribution can be done dynamically during
runtime by the compiler. However, this often results in a large
data transfer between the threads. A better strategy is to imple-
ment a load distribution strategy. Data should be kept local. That

1340 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

Fig. 5. Discretized model of a coated conducting sphere.

means, data should be read and written on the same node. A goal
is to store data in such a way in memory that data of a memory
page belongs only to one thread. Of course, if such a strategy
is applied, simplicity of Cluster OpenMP is a little bit lost and
programming is similar to a MPI approach.

Cluster OpenMP is used to distribute the threads among the
computing nodes. If a node has multiple processors or multi-
core CPUs, classical OpenMP distributes the load of a Cluster
OpenMP thread with classical threads among the processors of
a node.

III. NUMERICAL RESULTS

Two numerical examples were studied to analyze the effi-
ciency of OpenMP and Cluster OpenMP in the context of a
BEM with the FMM. The first example is an electrostatic field
problem. A conducting sphere, which is coated with a dielec-
tric, is considered (Fig. 5). The configuration of this example
is very simple and an analytical solution is available to test the
accuracy of the method. Of course, parallelization makes sense
only for large problems. That is why the sphere was discretized
with 27 228 second-order, quadrilateral elements. An indirect
BEM formulation was applied to solve this electrostatic field
problem. A linear system of equations with 81 688 unknowns is
obtained. A classical BEM approach would result in memory
requirements of 50 GB. The FMM compresses the matrix to
500 MB. The potential along a radial was computed. It shows
excellent agreement with the analytical solution (Fig. 6).

Steady currents inside a printed circuit board (PCB) are
investigated as second numerical example (Fig. 7). A dual-layer
printed circuit board is equipped with two connectors, which
are loaded with several hundred amperes (Fig. 8). Typical
fields of application for such PCBs are agricultural machines.
The aim of this investigation was to get the influence of the
connection between connector and the conducting layers of the
board. For a numerical solution, an indirect BEM formulation
was chosen. Then, the current flow field inside the conductors
and the electric field in the substrate and the surrounding
(Fig. 9) are obtained within a single solution step. The PCB was
discretized with second-order quadrilateral elements, too. The
resulting linear system of equations for the 86453 unknowns
would require 56 GB with a classical BEM. The application of
the fast multipole method reduces this amount to 900 MB.

Two different computers were used for the numerical solution
of both examples. One computer was equipped with 16 Intel Ita-
nium 2 processors with a clock speed of 1.3 GHz. The computer

Fig. 6. Potential along a radial line compared with the analytical solution.

Fig. 7. Dual-layer printed circuit board with two connectors.

Fig. 8. All electrical components of the printed circuit board in Fig. 7.

Fig. 9. Electric field strength in the plane, which is depicted in Fig. 7.

cluster consists of eight computing nodes. Each node has two
AMD Opteron processors with a clock speed of 2.2 GHz. To
determine the speedup of parallelization, first a serial program
run was executed (Table I).

Matrix assembly consists of a huge number of floating point
operations. Its CPU time is mainly influenced by the power of
the CPU. During the solution of the linear system of equations,

BUCHAU et al.: PARALLELIZATION OF A FAST MULTIPOLE BOUNDARY ELEMENT METHOD WITH CLUSTER OPENMP 1341

TABLE I
CPU TIME OF SERIAL PROGRAM EXECUTION

Fig. 10. Speedup of matrix assembly and solution of linear system of equations
in the case of OpenMP.

the computational costs are mainly caused by matrix vectors
products. A huge amount of data must be transferred between
memory and processor. Hence, the speed of the bus between
memory and processor is very important. Vectorization, which
is standard in modern CPUs, is even not possible for many FMM
operations.

In Fig. 10, the speedup on the shared memory computer is
depicted. The speedup for matrix assembly is excellent. Even
for 16 threads the speedup is 15.8. Unfortunately, the speedup
for solution of the system of linear equations is much worse.
Memory bandwidth is only one factor. To avoid memory con-
flicts and data races, threads have to wait at some points in the
FMM algorithm for each other. Dense vector operations like the
near-field matrix are very efficient and parallelization is very ef-
ficient, too. However, to reduce the total computational costs,
memory access to the coefficients of the FMM must be im-
proved, for instance by a new version of the FMM algorithm,
which is trimmed to parallel execution.

Since a distributed memory computer causes communication
overhead between the virtual threads, the efficiency of Cluster
OpenMP must be worse than the efficiency of OpenMP. As can
be seen from Fig. 11, it is the case for both examples. Even
in the case of matrix assembly, the speedup for four threads,
which run on two computing nodes, is only three. A reason is
that after each writing memory access the other computing node
is informed about this change in the virtual shared memory. The
speedup for the solution of the linear system of equations is
good in comparison to OpenMP. One reason, therefore, is that
the FMM algorithm was slightly modified. Some fast operations
were done in each thread. Hence, data is locally available and
must not be transferred between the computing nodes.

Fig. 11. Speedup of matrix assembly and solution of linear system of equations
in the case of Cluster OpenMP.

IV. CONCLUSION

Today, parallelization is indispensable to use modern com-
puters with multicore CPUs efficiently. A very good approach is
then multithreading based on the OpenMP standard. Classical
dense vector operations like near-field matrix assembly show an
excellent speedup. Compression techniques like the fast mul-
tipole method have some problems. The algorithm itself is so
efficient that CPUs cannot be used at their best. In addition, an
efficient parallelization is difficult. A way out of this dilemma
would be a new algorithm, which takes parallelization and
memory access into account. Cluster OpenMP is very promising.
Particularly, parallelization on a computer cluster is easy to
implement. Both OpenMP and Cluster OpenMP will be a good
choice for an easy and efficient parallelization of software.
Especially the combination of parallelization and a fast and
efficient method like the BEM with the FMM is very attractive.

REFERENCES

[1] M. Bebendorf, “Approximation of boundary element matrices,”
Numer. Math., vol. 4, pp. 565–589, 2000.

[2] L. Greengard and V. Rokhlin, The Rapid Evaluation of Potential Fields
in Three Dimensions, C. Anderson and C. Greengard, Eds. Berlin,
Germany: Springer, 1987, vol. 1360, Lecture Notes Math., pp. 121–141.

[3] W. Hafla, A. Buchau, and W. M. Rucker, “Accuracy improvement
in nonlinear magnetostatic field computations with integral equation
method and indirect scalar potential formulations,” COMPEL, vol. 25,
no. 3, pp. 565–571, 2006.

[4] OpenMP Architecture Board, OpenMP C and C++ Application Pro-
gram Interface, ver. 2.0 [Online]. Available: http://www.openmp.org,
2002

[5] J. P. Hoeflinger, “Extending OpenMP to clusters,” White Paper, Intel
Corporation, 2006.

[6] A. Buchau, W. Hafla, and W. M. Rucker, “Accuracy investigations
of boundary element methods for the solution of Laplace equations,”
IEEE Trans. Magn., vol. 43, no. 4, pp. 1225–1228, Apr. 2007.

[7] A. Buchau, W. Rieger, and W. M. Rucker, “Fast field computations
with the fast multipole method,” COMPEL, vol. 20, no. 2, pp. 547–561,
2001.

[8] Message Passing Interface Forum, MPI: A Message Passing Interface
Standard [Online]. Available: http://www.mpi-forum.org June 12,
1995

Manuscript received June 24, 2007. Corresponding author: A. Buchau
(e-mail: andre.buchau@ite.uni-stuttgart.de).

