
Assessing the Usefulness of Type Inference Algorithms
in Representing Java Control Flow to Support Software Maintenance Tasks

Alex Kinneer
NVIDIA Corporation

Riata Trace Parkway, Austin, TX
akinneer@nvidia.com

Gregg Rothermel
Dept. of Computer Science and Engineering

University of Nebraska - Lincoln
grother@cse.unl.edu

Abstract

A wide range of techniques for supporting software
maintenance tasks rely on representations of program con-
trol flow. The accuracy of these representations can be
important to the effectiveness and efficiency of these tech-
niques. The Java programming language has introduced
structured exception handling features that complicate the
task of representing control flow. Previous work has at-
tempted to address these complications by using type in-
ference algorithms to analyze the control flow effects of ex-
ceptions, but to date, there has been no study of whether
the use of these algorithms is justified. In this paper we re-
port results of an empirical study addressing this issue. We
find that type inference algorithms can lead to more accu-
rate representations of control flow, but this improvement
does not necessarily translate into benefits for maintenance
techniques that use them. It follows that type inference algo-
rithms should not just automatically be applied; rather, the
tradeoffs of applying them must first be assessed with re-
spect to particular maintenance techniques and workloads.

1. Introduction

Many of the techniques that have been proposed as aids
to software maintenance tasks rely on control flow repre-
sentations of software. For example, techniques for improv-
ing regression testing through regression test selection (e.g.,
[10, 21, 23]) and test case prioritization (e.g. [24, 27]) rely
explicitly on control flow information, while techniques
based on program slicing [11] (such as for determining de-
pendence clusters [3] and analyzing change impact [4]) de-
pend on control flow information to calculate dependencies.
The accuracy of control flow representations can impact

the effectiveness and efficiency of such techniques. The
extent to which a control flow graph accounts for possi-
ble paths of execution through a program can determine the
soundness of techniques, and the extent to which a control

flow graph distinguishes paths that differ can determine the
precision and efficiency of techniques.
The Java programming language includes facilities

for structured exception handling, including mandatory
checked exceptions (those for which the programmer must
explicitly account). Such exception handling constructs are
frequently present in Java programs [26]. Exceptional con-
trol flow in Java introduces the potential for non-local trans-
fers and type dependent transfers, including via dynamic
polymorphic binding of exceptions to handlers by type.
These exception handling features introduce new challenges
for the representation of program control flow.
Prior research on analysis of exception handling con-

structs in Java programs (see Section 6) has sought to model
the effects of such constructs on control flow. Such research
has often been more concerned with creating safe repre-
sentations of exceptional control flow (in which no poten-
tial paths are missed) than with creating precise represen-
tations (in which paths that are distinct are properly distin-
guished, and paths that are not feasible are omitted). To
address problems of precision, the application of type in-
ference algorithms to exceptions in Java programs has been
suggested [26]. To date, however, we can find no reports of
empirical studies evaluating the effects of using type infer-
ence algorithms to improve control flow graph precision.
In addition to considering precision, we must also con-

sider the cost of applying type inference algorithms. In gen-
eral, more powerful type inference are expected to produce
more precise results at a higher cost. Because type inference
algorithms have not been evaluated specifically in the con-
text of analysis for exceptional control flow, however, there
is little data available on the costs associated with their use
in that context, and the extent to which precision may be
gained from more costly algorithms is not clear.
While understanding the precision and cost of techniques

for analyzing control flow using type inference algorithms
is important, of greater practical importance is the impact
of these attributes on the client techniques that use the re-
sulting control flow graphs. More powerful type inference

978-1-4244-2614-0/08/$25.00 © 2008 IEEE ICSM 2008127

algorithms are justified only if the additional precision they
provide yields sufficient benefits to client techniques, rela-
tive to the additional costs incurred. To date, we can find no
research addressing this issue.
We have thus performed an empirical study, evaluating

the use of four type inference algorithms for analyzing ex-
ceptional control flow for Java programs [26], to assess the
costs and benefits of using these algorithms to model control
flow. To perform the assessment we rely on three methods.
First, we assess the costs of applying the algorithms when
computing exceptional control flow and producing control
flow graphs. Second, we use a metric that is independent
of client techniques to assess the relative precision of the
control flow graphs produced. Third, we investigate the ef-
fects of using the improved control flow graphs to support a
client maintenance technique, regression test selection.
The results of our study show that, while the type infer-

ence algorithms investigated do differ in terms of costs and
precision measured independently of client applications, the
benefits of these algorithms do not extend, for the programs,
versions, and test suites studied, to the client analysis prob-
lem of regression test selection. More generally, these re-
sults illustrate that the usefulness of precision-enhancing
analyses such as type inference algorithms should not auto-
matically be assumed to carry over to specific applications
of specific maintenance techniques. Rather, the tradeoffs of
applying such analyses should be assessed with respect to
particular analyses and workloads.
The remainder of this paper is organized as follows. Sec-

tion 2 provides necessary background information. Sec-
tion 3 summarizes essential details of our type inference
algorithm implementations. Section 4 presents our exper-
iment design and results, and Section 5 discusses implica-
tions of our findings. Section 6 discusses related work, and
Section 7 concludes and describes future work.

2. Background: Exceptions in Java
The Java language provides features for signaling excep-

tional conditions and implementing handlers to deal with
exceptions. All exceptions are first-class objects that inherit
from a single base class (java.lang.Throwable).
The Java Language Specification (JLS) [9] creates
additional classifications for exceptions by iden-
tifying the subclasses java.lang.Error and
java.lang.RuntimeException of Throwable
as special. Exceptions that extend from these classes
are unchecked exceptions; they can occur anywhere in a
program and need not be explicitly handled by the pro-
grammer. All other exceptions are checked exceptions; they
occur at specific program locations and must be explicitly
handled by the programmer. A checked exception is raised
to signal an exceptional state by throwing an instance of an
exception object using the throw keyword.

Regions of code may be guarded by a try block that
may transfer control to an exception handlerwhen a partic-
ular class of exception is raised in that region (the excep-
tion is said to be bound to the handler). Multiple exception
handlers may be associated with a single try block, rep-
resented as consecutive catch blocks, each of which de-
clares the class of exception that is caught and handled. The
matching of exceptions to handlers considers subclass rela-
tionships. If an exception is thrown, and there is no handler
for the specific class of exception thrown, but there is a han-
dler for a superclass of that exception, the exception binds
to the handler for the superclass. Thus exception handlers
in Java are said to subsume subtypes. Nesting of exception
handlers is also permitted.
An exception that does not bind to any handler in the

current method is said to escape the method. A handler
may also re-throw an exception, in which case the exception
may bind to any enclosing handlers or escape the method.
The JLS requires that all checked exceptions that escape a
method be reported by the method in the throws clause of
that method’s declaration. A caller in this case must provide
a handler or handlers for the thrown exceptions, or itself de-
clare the exceptions in its throws clause. Thus when an
exception is thrown, it propagates up the call stack until it
binds to a matching handler, or causes program termination.
A region of code may also be guarded by a finally

block, which is code that must be executed regardless of
whether or not execution in the guarded region raises an ex-
ception. If an exception is raised, control flows immediately
to the matching handler, which in turn transfers control to
the finally block. A finally block may determine
control flow (such as by a return), in which case it su-
persedes any control flow induced by the handler, or it may
return to the handler upon completion. In the absence of
an exception, equivalent control flow occurs subsequent to
execution of the last instruction in the guarded region.

3. Exception Type Inference Techniques
The accuracy of control flow representations in the pres-

ence of exception features depends on the accuracy with
which the possible binding handlers of exceptions can be
determined, which is linked to the types of exceptions that
can be raised at various program points. Type inference al-
gorithms [6, 26] determine the possible types for expres-
sions. Safe estimates of types ensure safe representations
of control flow (in which no paths that might occur due to
exceptions are missed), while more precise estimates, ob-
tained at additional analysis costs, improve the precision
of control flow representations, by more accurately distin-
guishing alternative paths and omitting infeasible paths.
In this work we evaluate the effects of four algorithms for

performing type inference on exceptions. The algorithms
we investigate replicate, as closely as possible, those pre-

128

sented in [26]. All four algorithms ensure the safety of the
type estimate and thus of the resulting control flow. Three of
the algorithms perform additional work, at additional cost,
to produce type estimates that lead to control flow represen-
tations of greater precision. Here, we briefly describe the
algorithms; for details see [16]. All algorithms were im-
plemented by the first author, with common functionality
shared or implemented equivalently in code.
Simple Baseline (base). This algorithm uses simple con-

textual information to generate a conservative estimate of
the possible types of exceptions at each throw point. The
contextual information used is the catch types associated
with enclosing exception handlers, types declared as thrown
by the current method, and in the case of calls, types de-
clared as thrown by the called method.
Flow-sensitive Intraprocedural (fsi). This algorithm per-

forms a flow-sensitive backwards search from the point of
each throw to find all reaching exception object instantia-
tions. The search stops when the beginning of the method
is reached. The algorithm also terminates the search when
a method call is reached, unless it is searching for the cre-
ation of an exception assigned to a local variable, as non-
local variables may be assigned by the called method. The
algorithm makes conservative estimates to determine possi-
ble exceptional control flow out of calls. The result of the
search is classified as precise if object instantiations can be
found on all reaching paths.
Flow-insensitive Interprocedural (fii). This algorithm

performs a flow-insensitive search for all exception objects
that may be instantiated by the current call or its callees. For
call instructions, the algorithm takes the union of the types
reaching exceptional exit nodes in the graphs for all possi-
ble bindings of the call. The types inferred at a throw point
are then the subset of the found types that are subclasses
of those types declared as thrown by the method or caught
by enclosing exception handlers. In the case of throw in-
structions, the inferred control flow varies only with enclos-
ing exception handlers. Inferred control flow for calls varies
depending on the implementations that may be bound to the
call and the enclosing handlers.
Combined Intraprocedural and Interprocedural (cmb).

This algorithm applies the flow-sensitive algorithm first,
then applies the flow-insensitive algorithm to blocks for
which flow-sensitive analysis was imprecise.

4. Experiment Design and Results
Our goal is to empirically evaluate the use of type infer-

ence algorithms to improve representations of control flow,
considering the cost of the algorithms, the precision of re-
sulting representations, and the effects on a client analysis
that uses the representations. This section describes our ob-
jects of analysis, variables and measures, experiment setup,
threats to validity, and results.

4.1. Objects of Analysis

We used four Java programs as objects of analysis: ant,
xml-security, jmeter, and jtopas, all drawn and
available from the SIR repository [8]. Ant [1] is a build tool
similar to make. Xml-security is a library that imple-
ments security standards defined for XML [34]. Jmeter is
a desktop application for load testing and measuring perfor-
mance of other Java software [12]. Jtopas is a simple li-
brary for text parsing [14]. A sequence of released versions
are available for each of these programs. Each program is
also equipped with JUnit test suites that were created by the
developers of the programs.
Table 1 summarizes the characteristics of the most recent

versions of each of these programs with respect to overall
size, percentage of methods containing exception handling
constructs (% MwH), and JUnit test suite sizes. Based on
this information, and the data reported in [26], it can reason-
ably be argued that these programs are a representative sam-
ple of Java software being developed in practice in terms of
size, use of exceptions, and test suites. (As a point of ref-
erence, we collected similar data on the 27 most frequently
downloaded Apache Jakarta and Sourceforge projects. We
found a range of program sizes from 2.9 to 157.7 KLOC,
with an average of 41.3 KLOC.)

Table 1. Experiment Objects
Object Versions KLOC Classes Tests % MwH
ant 11 80.4 789 878 8.2

xml-security 9 16.3 207 84 18.7
jmeter 7 43.4 486 98 6.9
jtopas 4 5.4 63 209 9.8

4.2. Variables and Measures

4.2.1 Independent Variables
Our independent variable is the type inference algorithm ap-
plied during the computation of exceptional control flow,
and we use the four algorithms described in Section 3. The
baseline algorithm base serves as the control for our exper-
iment. This lets us compare more complex type inference
algorithms against a low-cost conservative algorithm.

4.2.2 Dependent Variables and Measures
We chose three dependent variables and measures. The first
two variables involve client-independent measures related
strictly to type inference algorithm performance and the
quality of the resulting exceptional control flow. Thesemea-
sures help us understand the general performance of the al-
gorithms, in a manner that provides initial guidance on their
relative strengths and weaknesses. The third measure is re-
lated to the support for a client consumer of the control flow
graphs: the regression test selection technique described in
[26]. We chose this client technique in particular because in
[26], that technique is the technique that the type inference
algorithms we study here were meant to assist.

129

Analysis Cost. The first dependent variable we measure
is analysis cost; we measure this in terms of the time re-
quired to perform type inference and construct control flow
graphs for all of the methods in the object program. This
simple measure provides an understanding of the relative
performance of the algorithms.

Analysis Precision. A client-independent metric of the
relative precision of two type inference algorithms can be
obtained by considering the control flow graphs produced
by those algorithms. In particular, a type inference algo-
rithm A′ is more precise than another algorithm A on pro-
gram P if, by eliminating infeasible edges, refining the pre-
cision of types on edges, and introducing new more precise
feasible edges, A′ produces a control flow graph on P that
is more precise than the graph produced by A on P .
One way to evaluate a type inference algorithm A′ for

precision, following this definition, would be to compare
the control flow graph computed usingA′ to a baseline “op-
timal” graph; however, it is not possible to compute an opti-
mal graph for non-trivial systems such as those we consider.
Further, when comparing control flow graphs, a metric that
simply counts edges will not suffice, because one graph can
have a larger or smaller number of edges that are more ac-
curate in terms of type information than another graph and
be of higher precision than that graph. Thus, we have de-
vised a metric allowing pairs of graphs to be compared for
precision in a manner that accounts for the various types of
precision improvements that are possible. We provide the
metric in algorithmic form here, with discussion of the in-
tuition behind it; additional details are available in [16].
Our metric is designed to award higher scores to control

flow graphs that exhibit greater precision; that is, graphs
in which fewer exceptional edges represent infeasible paths
and a greater number of exceptional edges encode exact or
more precise types of exceptions associated with the control
flow. In the control flow graphs that we compare, there is a
direct correspondence between exception throwing nodes in
each graph, and the only possible variance is in the outgoing
edges of these nodes. This makes it possible to compare
outgoing edges from corresponding nodes in two graphs.
Algorithm 1 (CFG-assess) performs this comparison.

The algorithm takes as inputs the sets of edges E and E ′

computed by two algorithms A and A′, respectively, but
with common edges (any edge inE that represents the same
exceptional edge as an edge inE

′, and vice-versa) removed.
For each edge e in E, CFG-assess first compares the excep-
tion associated with e against the exceptions associated with
edges in E′ to determine whether it is a superclass of any
exceptions inferred by A′. If so, a point is awarded since
this indicates that A′ eliminated that class of exception as a
possibility, either because more precise subclasses could be
determined, or because it was infeasible.

Algorithm 1 CFG-assess

Require: Set E of edges computed only by algorithm A

Set E′ of edges computed only by algorithm A′

1: return metric score indicating improvement yielded by A′ over A
2: for each e in E do
3: if class(e) is a superclass of any class(e′) (e′ ∈ E′) then
4: score += 1 {A′ eliminated an imprecise/infeasible edge}
5: else
6: if class(e) is a maximal class in E then
7: if class(e) is a subclass of any class(e′) (e′ ∈ E′) then
8: {anti-refi nement; ignore}
9: else if class(e) is a checked exception then
10: score += 1 {A′ eliminated an imprecise/infeasible edge}
11: end if
12: else if class(e) is a subclass of class(e2) (e2 ∈ E) then
13: if e2 was awarded a point then
14: score += 1 {A′ eliminated an infeasible edge}
15: else
16: {transitive anti-refi nement; ignore}
17: end if
18: end if
19: end if
20: end for
21: for each e′ in E′ do
22: if class(e′) is a subclass of any class(e) (e ∈ E) then
23: score += 1 {A′ led to a refi nement}
24: else
25: {anti-refi nement; ignore.}
26: end if
27: end for

If e is not a superclass of any type inferred by A′, we
have reason to suspect that it is an infeasible edge that was
eliminated, or for which strictly more precise types were
inferred, which would suggest that A′ performed better.
Thus CFG-assess next tests whether the exception associ-
ated with e holds a maximal superclass relationship relative
to other exceptions inferred by A. If this is true, and if the
exception is a checked exception and is not a subclass of
any type inferred by A′, CFG-assess awards a point since
A′ eliminated the exception as infeasible. A point is not
awarded, however, if the exception is a subclass of an ex-
ception inferred by A′, as this indicates a loss of precision.
In the case where the exception associated with e does

not hold a maximal superclass relationship relative to other
exceptions inferred by A, CFG-assess tests whether it is a
subclass of any other exceptions e2 inferred by A. If it is,
CFG-assess awards a point based on whether the inference
of the superclass e2 was awarded a point. The reasoning
here is that the judgment of the metric with respect to the
superclass transitively applies to any subclasses.
Finally, CFG-assess considers the unique edges pro-

duced by A′ and simply determines whether an exception
inferred by A′ is a subclass of any exception inferred by
A. If this is the case, it awards a point as this is a sim-
ple refinement of precision. Otherwise, the type inferred
by A′ cannot be considered a superior result, so no point is
awarded.

130

Note that our metric can only partially assess the im-
pact of unchecked exceptions, a limitation resulting from
the fact that contextual information is used when conser-
vative estimates are required, and this information is often
not available for unchecked exceptions. However, we be-
lieve that the use of unchecked exceptions in a manner that
is invisible to the metric is limited in practice. Specific han-
dling of unchecked exceptions is visible to the metric, and
corresponds to most interesting control flow related to such
exceptions in practice.

Support for Regression Test Selection. Regression test
selection is the problem of choosing which test cases in a
test suite should be re-run when a new version of a soft-
ware system is to be regression tested [22]. One approach
for selecting regression tests is to select those that exercise
code changed since the software was last tested. This is
the approach used by DejaVu [23] and its object-oriented
counterpart, DejaVoo [10]. DejaVu performs simultane-
ous depth-first traversals on the control flow graphs for the
old and new versions of a method to find places where code
has been changed. Traces of the execution of test cases on
the old version of the method are then used to select test
cases that traverse edges that reach changed blocks in the
graphs. DejaVu relies on control flow graphs to facilitate
code instrumentation and to perform its graph traversals.
The safe representation of control flow is crucial to

DejaVu’s ability to preserve fault detection with respect to
selected test cases, and the degree of precision with which
control flow is represented can be important to Dejavu’s
efficiency. This is particularly relevant for exceptional con-
trol flow, as conservative estimates of control flow are safe
but often highly imprecise. Therefore, to assess the impact
of type inference on this client analysis, we implemented a
version of DejaVu and measured a dependent variable spe-
cific to this problem. The variable we chose is the number of
tests selected given the graphs generated using each of the
type inference algorithms. This measure indicates whether
the differences in exceptional control flow resulting from
the various algorithms affect the test selection results on the
given programs, versions, and test suites.

4.3. Experiment Setup

All of the algorithms we implemented were executed
using v1.4.2 of the Java Runtime Environment (JRE) in a
Linux environment. For timing consistency, all measure-
ments for each particular object program were collected
on the same system, though different objects may have
been evaluated on different machines. Experimentation on
jtopas was performed on a Pentium-III 800 Mhz system
with 512 Mb RAM running SuSE Linux 9.1. Experimenta-
tion on the larger subjects was performed on a Pentium-M
1.6 Ghz machine with 1 Gb RAM running SuSE Linux 9.1.

(The use of multiple systems enabled faster data collection,
and does not bias our results since we focus only on relative
performances on particular objects.)
We implemented our algorithms within the Sofya analy-

sis system [15, 17], which provides utilities for instrumen-
tation and control flow graph construction. We used shell
scripts to execute the control flow graph builder with the
various type inference algorithms enabled across the ver-
sions of each program, and modified the main method of
the CFG builder to report the total execution time, giving us
accurate measurements of the time required for graph con-
struction with each type inference algorithm active.

4.4. Threats to Validity

External Validity. The primary threat to external validity
for this study involves the representativeness of our object
programs, versions, and associated test suites. Other sys-
tems and system releases, including larger and more com-
plex industrial systems, may exhibit different behaviors and
cost-benefit tradeoffs, as may other forms of test suites.
However, as noted in Section 4.1, the programs we inves-
tigate do reflect several characteristics of a popular set of
open-source Java programs, the versions we utilize are ac-
tual released versions of those programs, and the test suites
we utilize are the actual suites providedwith those programs
by their developers.

Internal Validity. The primary threat to the internal va-
lidity of this experiment is possible faults in the implemen-
tation of the algorithms, and in the tools that we use to per-
form evaluation. We controlled for this threat through the
use of extensive functional tests on our tools and verifica-
tion against smaller Java programs and code fragments for
which we can manually determine correct results. A sec-
ond threat involves inconsistent decisions and practices in
the implementation of the algorithms studied; for example,
variation in the efficiency of implementations of common
functionality between algorithms could bias timing assess-
ments. We controlled for this threat by having all of our
algorithms implemented by the same developer, utilizing
consistent implementation decisions and shared code.

Construct Validity. The client-independent metric we
calculate is not the only such metric that might be devised
for evaluating the performance of type inference algorithms.
As we note, this metric may not account for the influence of
unchecked exceptions in all circumstances. Similarly, the
client-dependent measure we utilize is not the only possi-
ble such metric. Rather than measuring numbers of tests
selected, we could measure the time required to apply the
regression test selection technique on our object programs
and execute the selected tests, and compare the resulting
savings. In our study, however, as we shall see, the use of
this alternative metric would have added no value.

131

Table 2. Analysis Costs (seconds)
base fsi fi i cmb

xmlsecurity
v0 561.8 580.3 768.9 821.7
v1 560.2 578.0 770.2 822.6
v2 569.2 587.1 785.2 836.1
v3 642.9 663.1 875.3 929.4
v4 653.5 673.7 890.1 946.8
v5 664.1 686.2 905.6 965.6
v6 669.8 691.0 914.7 974.5
v7 442.7 457.8 565.1 608.7
v8 440.1 456.0 563.0 604.8
jtopas
v0 44.5 45.6 51.7 54.0
v1 48.3 49.4 55.4 58.0
v2 52.2 53.3 60.1 62.8
v3 186.4 190.3 222.0 229.9
ant
v0 514.2 517.7 841.1 868.4
v1 834.2 842.6 1428.4 1533.5
v2 1700.3 1741.7 2957.5 3026.3
v3 1677.7 1760.8 2980.1 3164.9
v4 4371.9 4477.1 7842.4 8001.1
v5 4415.8 4452.3 7857.4 7951.2
v6 4521.4 4565.3 7900.0 8138.0
v7 4400.5 4428.6 8074.2 8200.7
v8 4471.2 4498.9 7995.4 8206.4
v9 7009.1 7065.6 12564.2 12842.5
v10 7015.1 7073.7 12770.6 12835.2
jmeter
v0 1304.0 1299.7 1784.3 1843.3
v1 1260.5 1276.4 1749.7 1816.9
v2 1198.6 1200.1 1719.9 1781.5
v3 1820.1 1801.3 2659.6 2742.9
v4 1824.6 1836.0 2720.6 2792.6
v5 1945.2 1985.3 2865.7 2921.4
v6 1893.6 2047.1 2741.7 2824.7

4.5. Results and Analysis

We now present the results of our experiment; further
discussion and interpretation of results occurs in Section 5.

4.5.1 Analysis Cost
Table 2 displays analysis costs (CFG construction times)
for the four algorithms, for each version of each object pro-
gram. The data suggests that the algorithms compare sim-
ilarly across objects and versions. The base algorithm is
least expensive, but fsi is only slightly (at most 5%) more
expensive. The interprocedural algorithms are more expen-
sive than base and fsi, but their costs never exceed 1.85
times those of the base algorithm.
Boxplots of the analysis cost results (available in [16],

omitted here for space) show similar variance among al-
gorithms for each program. We performed per program
ANOVAs on the data, for a significance level of 0.05, and in
cases where differences were observed (on all programs but
jtopas), used the Bonferroni method for multiple com-

Table 3. ANOVA on Analysis Costs
xml-security Df SS MS F-value p-value
Technique 3 4.5e11 1.5e11 10.9136 0.00004
Residuals 32 4.4e11 1.4e10

multiple comparison by Bonferroni method
critical point: 2.8123

Estimate Std. Err Lower Upper
Bound Bound

base-cmb -2.56e5 55400 -4.12e5 -1.0e5 ****
base-fi i -2.04e5 55400 -3.6e5 -48000 ****
base-fsi -18800 55400 -1.75e5 1.37e5
cmb-fi i 52500 55400 -1.03e5 2.08e5
cmb-fsi 2.37e5 55400 81700 3.93e5 ****
fi i-fsi 1.85e5 55400 29200 3.41e5 ****
jtopas Df SS MS F-value p-value

Technique 3 9.95e8 3.32e8 0.0552 0.9821
Residuals 12 7.22e10 6.01e9
ant Df SS MS F-value p-value

Technique 3 9.8e13 3.3e13 2.95 0.044
Residuals 40 4.43e14 1.11e13

multiple comparison by Bonferroni method
critical point: 2.7759

Estimate Std. Err Lower Upper
Bound Bound

base-cmb -3.08e6 1.42e6 -7.02e6 8.65e5
base-fi i -2.93e6 1.42e6 -6.88e6 1.01e6
base-fsi -4.48e4 1.42e6 -3.99e6 3.9e6
cmb-fi i 1.42e5 1.42e6 -3.8e6 4.08e6
cmb-fsi 3.03e6 1.42e6 -9.09e5 6.97e6
fi i-fsi 2.89e6 1.42e6 -1.05e6 6.83e6
jmeter Df SS MS F-value p-value

Technique 3 3.79e12 1.26e12 6.1369 0.003
Residuals 24 4.93e12 2.06e11

multiple comparison by Bonferroni method
critical point: 2.8751

Estimate Std. Err Lower Upper
Bound Bound

base-cmb -7.82e5 2.42e5 -1.48e6 -85300 ****
base-fi i -7.14e5 2.42e5 -1.41e6 -16500 ****
base-fsi -28400 2.42e5 -7.26e5 6.69e5
cmb-fi i 68800 2.42e5 -6.28e5 7.66e5
cmb-fsi 7.54e5 2.42e5 56800 1.45e6 ****
fi i-fsi 68.5e5 2.42e5 -12000 1.38e6

parisons between algorithms to further assess the differ-
ences. Table 3 reports the results, with cases in which dif-
ferences between algorithms were statistically significantly
indicated by “****”. For xml-security and jmeter,
the analysis reveals statistically significant differences be-
tween the costs of the different algorithms. The p-value of
0.04 for ant suggests that there are statistically significant
differences between algorithms for that object as well, but
the (less powerful) Bonferroni comparisons do not identify
differences between any specific pairs of algorithms. The
results for jtopas did not indicate significance.

4.5.2 Analysis Precision

Table 4 reports the results obtained by applying our graph
comparison metric to the pairs of graphs constructed by

132

Table 4. Analysis Precision Values
base/ base/ base/ fsi/ fi i/
fsi fi i cmb fi i cmb

xmlsecurity
v0 36 998 1001 960 0
v1 36 998 1001 960 0
v2 36 1074 1077 1036 0
v3 46 1887 1880 1854 34
v4 48 1978 1987 1944 36
v5 52 2047 2056 2015 0
v6 52 2047 2056 2015 0
v7 52 460 460 429 0
v8 50 458 458 429 0
jtopas
v0 4 15 15 14 0
v1 4 15 15 14 0
v2 4 19 19 18 0
v3 90 241 241 167 0
ant
v0 151 360 360 219 0
v1 218 499 499 293 0
v2 312 819 819 454 0
v3 310 805 805 450 0
v4 586 1400 1401 752 0
v5 592 1406 1407 754 0
v6 600 1410 1411 755 0
v7 600 1412 1413 755 0
v8 608 1478 1479 801 0
v9 722 2250 2257 917 3
v10 715 2255 2262 916 3
jmeter
v0 110 560 560 469 0
v1 111 530 530 438 0
v2 117 546 546 448 0
v3 132 633 633 532 0
v4 129 640 640 508 0
v5 140 639 639 497 0
v6 140 633 632 491 0

the four algorithms, for each version of each object pro-
gram. The columns correspond to comparisons between
pairs of algorithms (as indicated in the header in format
“first-algorithm/second-algorithm”). The values shown in-
dicate the improvement gained by the second algorithm
with respect to the first in each comparison, in terms of
our metric. The magnitudes of the values should not be
compared across object programs or program versions, but
rather to the values reported (by other algorithm comparison
combinations) within the same version.
The data clearly indicates the extent to which the more

advanced algorithms can improve the accuracy of the re-
ported control flow information. As expected, there is a
progression in benefits from base to fsi to fii, with (not sur-
prisingly) the results of the flow sensitive intraprocedural
algorithm falling between those of the base and flow in-
sensitive interprocedural algorithms. The flow insensitive
interprocedural algorithm produces the greatest gains. On
most versions, however, there is no gain associated with the
combined algorithm with respect to the interprocedural al-
gorithm.

Table 5. Numbers of Selected Tests
no. of base fsi fi i cmb
tests

xmlsecurity
v1 104 0 0 0 0
v2 106 48 48 48 48
v3 92 88 88 88 88
v4 92 0 0 0 0
v5 94 55 55 55 55
v6 94 0 0 0 0
v7 84 78 78 78 78
v8 84 0 0 0 0
jtopas
v1 126 87 87 87 87
v2 128 15 15 15 15
v3 209 44 44 44 44
ant
v1 137 103 103 103 103
v2 219 121 121 121 121
v3 219 43 43 43 43
v4 521 189 189 189 189
v5 534 199 200 199 199
v6 557 410 410 411 411
v7 559 42 43 42 42
v8 559 518 518 518 518
v9 877 504 504 504 504
v10 878 349 349 349 349
jmeter
v1 78 48 48 48 48
v2 81 73 73 73 73
v3 79 78 78 78 78
v4 79 49 49 49 49
v5 98 47 47 47 47
v6 98 0 0 1 0

4.5.3 Support for Regression Test Selection

Table 5 shows the number of tests selected by DejaVu
when that technique is applied to the control flow graphs
constructed using the four different type inference algo-
rithms, per version, per object program. For example, the
entry for row v1 for jtopas indicates that the changes in
jtopas between versions v0 and v1 caused DejaVu to
select 87 tests from the test suite, for each of the four type
inference algorithms.
The data indicates that the application of type infer-

ence algorithms during construction of control flow graphs
yielded little benefit, on our experiment objects, for regres-
sion test selection. In nearly all cases the test selection
results are identical to those obtained when using control
flow graphs constructed using the base algorithm. In only
four cases — versions 5, 6, and 7 of ant and version 6 of
jmeter—did we see changes in test selection results, and
in these cases the difference involved only a single selected
test. An ANOVA on the regression test selection results
confirms this observation (significance level .05, p-value
= 1, results not shown).

133

5. Discussion

Keeping in mind the threats to validity for this study, we
now comment on the implications of our results.
Based on the minimal differences between the base and

flow-sensitive intraprocedural (fsi) algorithms in the timing
data reported in Table 2, there is strong evidence that the
fsi algorithm should be preferred over the base algorithm.
There is a greater cost associated with the interprocedural
algorithms, which suggests that a more careful evaluation
of the tradeoffs in using them is needed.
The results reported by the graph comparison metric

serve as our first means of evaluating the tradeoffs. The
metric further confirms that the fsi algorithm has precision
superior to that of the base algorithm. Given that the al-
gorithms have similar costs, there simply is no significant
penalty associated with the application of fsi and thus there
should be no reason to prefer the base algorithm.
Further, as already noted, there is a considerable pre-

cision improvement associated with the use of the flow-
insensitive interprocedural algorithm (fii), which should not
be surprising since the interprocedural algorithm benefits
from the significant advantage of being able to refine ex-
ceptional flow paths associated with calls. Given that ex-
ceptions are often used to signal unexpected conditions to
callers, there are more opportunities for the interprocedu-
ral algorithm to improve the precision of the control flow
graphs subsequently created.
The graph comparison metric results provide evidence

that the application of more advanced type inference algo-
rithms has the potential to yield benefits to consumers of
the resulting control flow graphs. The question of whether a
more costly algorithm is justified then may need to be eval-
uated on an individual basis against the benefits obtained by
the consumer of the improved control flow graphs. Thus we
next look at the client analysis that we considered, regres-
sion test selection.
As the results in Table 5 show, the improvements re-

ported by the metric did not translate into meaningful gains
during the regression test selection process. Given such re-
sults, there clearly would be no advantage to incurring the
additional cost associated with the more precise type infer-
ence algorithms, when performing regression test selection
on the programs, versions, and test suites considered. This
is significant, given that a primary motivation for introduc-
ing these algorithms in the first place was to improve the re-
gression test selection process [26]. However, further analy-
sis also suggests some additional factors worth considering
when attempting to explain or generalize these results.
First, programming practices when dealing with excep-

tions could be partly responsible for results such as this. In
particular, the practice of creating exceptions immediately
at the throw point may lead to exceptional control flow that
can be trivially inferred correctly at that point by any type

inference algorithm, rendering test selection results on the
resulting control flow graphs identical with respect to the
corresponding portions of the graphs. It is also plausible
that code for handling exceptions is more stable than other
code, and thus less likely to be considered by difference-
based test selection algorithms such as DejaVu. Propaga-
tion of exceptions to high level handlers is an instantiation
of this design strategy, and seems to be used to some extent
in our object programs. Finally, the use of wrapped excep-
tions, especially subsequent to release 1.4 of the JDK when
it was incorporated into the language design, adds complex-
ity to the analysis of exceptional control flow. In particular,
it seems reasonable to surmise that the use of wrapped ex-
ceptions may result in considerably less local handling of
exceptions, with a corresponding reduction in the number
of code regions subject to change and test selection.
The nature of the DejaVu algorithm itself may also be

partly responsible for the results. Because DejaVu’s test
selection is based on differences between program versions,
increased precision in exceptional control flow representa-
tion will translate into selected test cases only if changes
occur on exceptional control flow paths. If exception han-
dling code is more stable than other code as considered
above, then additional precision in the representation may
not yield notable improvement for this particular control
flow dependent application. In general, this situation may
be further complicated if changes on exceptional flow paths
are masked by earlier differences on non-exceptional paths.
DejaVu selects test cases based on the first dangerous edge
found on paths; it then does not require further information
about changes occuring further along the path. We did not
observe this situation to occur with frequency, however, on
our particular object programs and versions.
One concern that arises from the use of programs ob-

tained from the field involves particular characteristics of
their test suites. Test suites provided with the objects we
studied do not focus specifically on boundary and excep-
tional use cases within the object programs. That said, our
results do pertain to the actual test suites provided with the
programs, thus representing results practitioners would ex-
pect in practice with such test suites.
Finally, it may also be the case that typical JUnit test

cases lack the scope to effectively probe exceptional flow
paths within a program. Since individual JUnit test cases
typically exercise a small region of code, the interactions
most likely to result in exceptions may arise infrequently.
Exceptional conditions may also be considered uninterest-
ing to many JUnit test designers, since it is often the case
that the response of other components to exceptions is the
more interesting behavior, and unit testing is not as con-
ducive to testing effects involving interactions likely to lead
to exceptions. For this reason, other forms of tests, such as
functional tests, may yield different results.

134

6. Related Work

Beyond the work reported in [26] (described in Sec-
tion 1), there has been quite a bit of work related to analysis
of exceptional control flow in Java.

Woo et al. [33] propose an algorithm for alias analysis in
Java based on reference set computations, that accounts for
exceptional constructs. This contribution is presented in the
context of the more general question of alias analysis.
Chang and Jo [5] present a set-based analysis to estimate

the propagation of exceptions based on an operational se-
mantics for Java. Their work is primarily concerned with
determining interprocedural propagation of exceptions; it
does not focus on the question of type inference specifically
for the purpose of improving precision of control flow rep-
resentation, and their proposed algorithm in fact concedes a
dependence on such type inference techniques.
Choi et al. [7] present a control flow representation called

the Factored Control Flow Graph (FCFG). This representa-
tion addresses the problem of frequently occurring poten-
tially exception throwing instructions (PEIs) in Java, includ-
ing unchecked exceptions such as divide-by-zero and other
errors that may be raised implicitly by the virtual machine.
While the algorithms for modeling control flow for excep-
tions that we investigate account for such exceptions in a
conservative manner, we are more concerned with control
flow related to checked exceptions – in particular, control
flow explicitly created and handled by the programmer. The
question Choi et al. address concerns efficiency more than
precision – a related but different question.
Jorgenson [13] investigates improvements to the rep-

resentation and handling of exceptional constructs in the
Soot framework [29] for analysis and transformation of Java
class files. This work is particular to the Soot framework
and is principally concerned with preserving the correctness
of potential transformations. The problem of type inference
of thrown exceptions is noted, but no type inference is actu-
ally implemented.
Significantly, the foregoing work focuses primarily on

presenting algorithms, and includes no substantive empiri-
cal evaluation of techniques with respect to client analyses,
and only limited evaluation of the implications of applying
type inference.

Beyond the analysis of exceptions, considerable atten-
tion has been given to the question of points-to analysis in
Java [2, 18, 19, 20, 25, 28, 30, 31, 32]. However, such work
has not been limited to the question of impact on the ac-
curate representation of exceptional control flow. It is thus
difficult to draw empirical conclusions from this work about
the cost-benefits specific to the use of type inference in de-
termining exceptional control flow.

7. Conclusions and Future Work

We have performed a study of the costs and benefits re-
lated to the application of type inference algorithms in con-
structing representations of control flow in Java programs.
This study found evidence that the use of type inference
can create different control flow graphs and thus may po-
tentially yield benefits for some maintenance activities that
depend on control flow representations. However, this ev-
idence comes from the computation of a metric assessing
the overall precision of the control flow graphs constructed.
Our study did not demonstrate worthwhile benefits for the
particular maintenance task of regression test selection. For
the programs, versions, and test suites considered, the cost
associated with performing type inference is not justified
for that particular client technique.
More broadly, we conclude that the question of whether

to utilize type inference to improve the representation of
exceptional control flow must in future be more rigor-
ously considered, by investigators developing analysis al-
gorithms, with respect to particular client maintenance tech-
niques of interest, and particular workloads to which those
techniques are to be applied. Additional experience and
studies are required to measure the extent to which apparent
benefits reported by the client-independent metric translate
into positive tradeoffs for consumers of the control flow rep-
resentations resulting from type inference on exceptions.
There are several possibilities for future work. First, one

issue we would like to investigate is the impact of type in-
ference on regression test selection when applied to other
types of test suites. For example, functional test suites may
exhibit different characteristics than the JUnit test suites
studied here, particularly with respect to program integra-
tion and the associated exception handling between com-
ponents. Second, we wish to extend the study to include
a broader range of object programs, to assess the extent to
which results generalize. Third, since this study did not dis-
cover benefits for regression test selection, we would like
to evaluate the tradeoffs associated with other consumers of
control flow representations; such evaluations can provide
a more comprehensive understanding of the value of using
type inference on exceptions.
From the results presented in this paper and from future

work, we hope to provide empirically grounded guidance
to software practitioners in deciding when to make use of
exceptional type inference to construct the representations
of control flow used by software maintenance techniques.

Acknowledgements

This work was supported in part by NSF under Awards
CNS-0454203, CCR-0080898, and CCR-0347518 to the
University of Nebraska - Lincoln.

135

References

[1] http://ant.apache.org.
[2] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Uma-

nee. Points-to analysis using BDDs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 103–114, June 2003.

[3] D. Binkley and M. Harman. Locating dependence clus-
ters and dependence pollution. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 177–
186, Sept. 2005.

[4] S. Bohner and R. Arnold. Software Change Impact Analysis.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[5] B.-M. Chang and J.-W. Jo. Estimating exception induced
control flow for Java. In The Second Asian Workshop
on Programming Languages and Systems,, pages 377–387,
Dec. 2001.

[6] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of
concrete type-inference in the presence of exceptions. Lec-
ture Notes in Computer Science, 1381:57–74, 1998.

[7] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Effi cient
and precise modeling of exceptions for the analysis of Java
programs. In Workshop on Program Analysis and Software
Tools and Engineering, pages 21–31, Sept. 1999.

[8] H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-
trolled experimentation with testing techniques: An infras-
tructure and its potential impact. Empirical Software Engi-
neering: An International Journal, 10(4):405–435, 2005.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specifi cation, Second Edition: The Java Series. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[10] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. Spoon, and A. Gujarathi. Regression test
selection for Java software. In Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Languages
and Applications, pages 312–326, Oct. 2001.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. SIGPLAN Notices, 23(7):35–46,
June 1988.

[12] http://jakarta.apache.org/jmeter.
[13] J. Jorgenson. Improving the precision and correctness of

exception analysis in Soot. Technical report, McGill Uni-
versity, Sept. 2003.

[14] http://jtopas.sourceforge.net/jtopas.
[15] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexible

framework for development of dynamic program analysis
for Java software. Technical Report TR-UNL-CSE-2006-
0006, University of Nebraska - Lincoln, Apr. 2006.

[16] A. Kinneer and G. Rothermel. Assessing the cost-benefi ts
of using type inference algorithms to improve the represen-
tation of exceptional control flow in Java. Technical Report
TR-UNL-CSE-2005-0002, University of Nebraska – Lin-
coln, May 2005.

[17] A. J. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Sup-
porting rapid development of dynamic program analyses for
Java. In Proceedings of the International Conference on
Software Engineering, pages 51–52, May 2007.

[18] O. Lhoták. Spark: A flexible points-to analysis framework
for Java. Master’s thesis, McGill University, December
2002.

[19] D. Liang, M. Pennings, and M. J. Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to
analyses for Java. In Workshop on Program Analysis for
Software Tools and Engineering, pages 73–79, June 2001.

[20] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
java. In Proceedings of the International Symposium on Soft-
ware Testing and Analysis, pages 1–11, July 2002.

[21] A. Orso, N. Shi, and M. J. Harrold. Scaling regression test-
ing to large software systems. In Proceedings of the Interna-
tional Symposium on Foundations of Software Engineering,
pages 241–251, Nov. 2004.

[22] G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques. IEEE Transactions on Software Engi-
neering, 22(8):529–551, 1996.

[23] G. Rothermel and M. J. Harrold. A safe, effi cient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173–210, 1997.

[24] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: an empirical study. In Proceedings of the
International Conference on Software Maintenance, pages
179–188, Aug. 1999.

[25] A. Rountev, A. Milanova, and B. G. Ryder. Points-to anal-
ysis for Java using annotated constraints. In Proceedings of
the Conference on Object-Oriented Languages and Systems,
pages 43–55, Oct. 2001.

[26] S. Sinha and M. J. Harrold. Analysis and testing of programs
with exception handling constructs. IEEE Transactions on
Software Engineering, 26(9):849–871, 2000.

[27] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In Proceedings of the
International Symposium on Software Testing and Analysis,
July 2002.

[28] M. Streckenbach and G. Snelting. Points-to for Java: A gen-
eral framework and an empirical comparison. Technical re-
port, University Passau, Nov. 2000.

[29] R. Vallé-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization framework.
In Proceedings of the Conference of the Center for Advanced
Studies on Collaborative Research, pages 125–135, 1999.

[30] T. Wang and S. F. Smith. Precise constraint-based type infer-
ence for Java. In Proceedings of the European Conference
on Object-Oriented Programming, pages 99–117, 2001.

[31] J. Whaley and M. S. Lam. An effi cient inclusion-based
points-to analysis for strictly-typed languages. In Proceed-
ings of the International Static Analysis Symposium, pages
180–195, Sept. 2002.

[32] J. Whaley and M. Rinard. Compositional pointer and es-
cape analysis for Java programs. ACM SIGPLAN Notices,
34(10):187–206, 1999.

[33] J. Woo, J. Woo, I. Attali, D. Caromel, J.-L. Gaudiot, and
A. L. Wendelborn. Alias analysis for exceptions in Java.
Australian Computer Science Communications, 24(1):321–
329, 2002.

[34] http://xml.apache.org/security.

136

