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Abstract—Three-Dimensional Electro-Magnetic Particle Model 
(3DEMPM), based on the equations of Maxwell and Newton-
Lorentz, takes advantages of the Finite-Difference Time-
Domain (FDTD) and Particle-In-Cell (PIC) to trace a large 
quantity of particles in order to gain insight into the physics of 
them. Although MPI alone can be used to parallelize with 1D 
decomposition along x-direction, the efficiency decreases with 
increase of CPUs because there are more communications 
involved. We combine MPI and OPENMP to reduce the 
communications in the PC cluster, one node of which shares 
memory with duel-core. The whole domain is decomposed into 
several sub-domains, the same number as the nodes. Between 
the nodes we use MPI to realize the communications, and 
inside each node the OPENMP is applied to do the parallel 
computing with no communication. In this way, the higher 
speed-up is achieved while the communication is reduced.  
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I.  INTRODUCTION 
Computer simulation of plasma mainly comprises two 

numerical methods: magneto hydro-dynamic (MHD)[1] and 
particle-in-cell (PIC)[1]. MHD regards the plasma as fluid 
and makes a statistical analysis on the particles. Using MHD 
simulation, a good result could be achieved for the macro-
scale, but the micro features of the plasma are neglected. 
Unlike MHD, the ions and electrons are treated as the 
relativistic and collision-less particles in particle simulation, 
thus we can get the micro features of plasma completely[1]. 
Hence it is an advanced model to study the micro 
phenomena of magnetic reconnection, magnetic storm, etc..  

Based on PIC, the whole simulation grid is decomposed 
with the YEE lattice[2] and the electric and magnetic field 
both scatter discretely on the grids in 3DEMPM. Given the 
initial position and velocity of the particles as well as the 
fields, we could get the force on every particle using Lorentz 
equation before we calculate the new velocity and position of 

particles with Newton equations. Then we get the current 
density distribution by averaging statistic method and solve 
the Maxwell equations to update the electric and magnetic 
fields on every grid, so the particles move forward in the grid 
in turn. Thus a recursive procedure is formed. Usually, we 
run this code for thousands of loops which takes a long time 
and cannot be probably accomplished by just one computer. 
Parallel computing is an effective way to reduce the 
computing time [3].  

3DEMPM can be parallelized with MPI and OPENMP. 
The OPENMP, a shared-memory standard of multithreads, 
allows large numbers of CPUs to have access to a single 
memory space. And MPI is based on message passing, 
running on a distributed memory system. It is essential to 
explore our parallelization of 3DEMPM with these two 
models. In addition, we can further parallelize 3DEMPM 
with the combination of MPI and OPENMP. 

II. DESIGN OF PARALLEL ALGORITHM WITH MPI 

A. Some Ideas of Parallelism 
Basically, there are two solutions for the parallelized 

3DEMPM. 
The first one is to distribute the particles on average to 

each process, and magnetic and electric fields are assigned to 
all. In this way, the calculation of particles movement and 
current contribution can be parallelized. The current on each 
process are summed up to get the final update of electric 
field, and we can solve the Maxwell equations on each 
process respectively. The merit of this solution is load 
balance. But as the size of the grid becomes larger and 
larger, the communication between processes will increase 
dramatically, which is a great challenge of the switch and 
may lead to the problem of communication obstacles. 

The second one is to decompose the domain into several 
sub-domains so that the physical value of fields and particles 
corresponding to the sub-domain are stored on each process. 
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In this methodology, each process just needs to exchange the 
fields on the boundaries of sub-domain with its neighboring 
process for the calculation of electric and magnetic fields, 
and also the particles that will move to neighboring process. 
But as time goes by, particles are no longer equally 
distributed on the sub-domain, causing the problem of load 
imbalance, which means some sub-domains have to 
manipulate more particles while others do not.  

The second solution is applied in this paper. On x axis, 
the domain is decomposed on average as shown in Fig. 1.  

 
Figure 1 Decomposition with MPI plus OpenMP 

 

 
Figure 2  Flow chart for parallelized 3DEMPM 

 
Fig. 2 shows the process of the parallelism, in which the 

subroutines with solid boarder are parallelized, while the 
ones with bold boarder are communications between 
processes, and the others with dashed lines work in the same 
way as the serial program. 

B. The Parallel Computing of Electric and Magnetic Field 
By YEE lattice and centre-difference, the magnetic field 

on the (i,j,k) grid depends on the electric field on (i+1,j,k), 
(i,j+1,k), (i,j,k+1); the electric field on the (i,j,k) grid is 
coupled with the magnetic field on (i-1,j,k), (i,j-1,k), (i,j,k-1). 

In addition, when computing the position and velocity of 
particles, the particles on the x axis depends on the grid of 
x=i-1 and x=i+1; when calculating the charge and current 
for the update of electric field, the electric field on the (i,j,k) 
grid relies on the grids (i,j-1,k-1),(i,j-1,k),(i,j,k-1),(i-1,j,k-
1),(i-1,j,k), (i-1,j-1,k) where particles are located at. To 
realize the data exchange between processes, the concept of 
Guard Cell[7] is introduced: for each process, on x axis, two 
grids are added to the front and three grids are added to the 
end. With such a scheme of expanding the grids, each 
process can obtain the field from its neighboring process. 

Each process calculates the fields on [FBDL，FBDR], 
and [FBDL，FBDR] of all processes make up a whole 

domain, where FBDL=3, FBDR=nFx+2 and nFx=(mx-
5)/Nproc except for the last process with FBDR = mx-2-
(Nproc-1)*nFx. And PBDL and PBDR referring to the 
boundaries for particles are also defined: PBDL = (np-
1)*nFx+3.0, PBDR = np*nFx+3.0.  

After the calculation of FIELD_PUSH, the boundaries of 
fields should be transferred to the neighboring process for 
communication. This is done by the subroutine 
FIELD_COPY. Process N-1 delivers the field value on 
FBDR to process N on FBDL-1, meanwhile, process N 
passes the field value on FBDL to process N-1 on FBDR+1, 
with the result that both processes get the field value on the 
boundaries from neighbors, as it is shown in Fig. 3(a). 
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Figure 3 Field communication 

 
Here comes the pseudo code of MPI in FORTRAN that 

sends x-component of the field to the process on the right. 
The similar approach is followed for y and z.  

if(myid.ne.0)then 
         call MPI_IRECV(fxr,my*mz, MPI_REAL,myid-1) 
else 
 call MPI_IRECV(fxr,my*mz,MPI_REAL,Nproc-1) 
end if 
…… 
if(myid.ne.(Nproc-1))then 
         call MPI_SEND(fxs,my*mz, MPI_REAL, myid+1) 
else 
  call MPI_SEND(fxs,my*mz,MPI_REAL,0) 
end if 
call MPI_WAIT 

Upon updating the electric field, SPLIT calculates not 
only the particles on [PBDL, PBDR), but also the ones on 
the Guard Cell. Firstly, we set the electric fields on the 
Guard Cell of each process to be zero before computing 
the current contributed by the particles in the sub-domain 
of each process. Then, after SPLIT, the electric fields on 
the Guard Cell of each process are the current 
contribution to the boundaries of the neighboring 
processes. Finally, these electric fields will be passed to 
neighboring processes and then be added to the originally 
computed values to obtain the corresponding electric 
fields on the boundaries, as it is shown in Fig. 3(b).  

3,2,1;2,1;,,:
1,1

),,1(),,1(),,1(
),,3(),,2(),,2(

1

11

==
≤≤≤≤

−++−+=−+
−++−+=−+

−

−−

nmezeyexf
mzkmyj

kjnFBDRfkjnFBDLfkjnFBDLf
kjmFBDLfkjmFBDRfkjmFBDRf

NNN

NNN

 

215215215215215215



C. The Parallel Procession of Particles 
The calculation of particles’ velocity and displacement is 

done by the subroutine MOVER. Each process manipulates 
the particles whose x-coordinates are within [PBDL, PBDR). 

DHD =PBDL-3.0 
i= xi(n)-DHD 
With the definition of DHD, i is the relative coordinate 

value of nth particle for the sub-domain of a process, hence 
the field position where the particle stands is found. 

Besides, PARTICLE_SORTING uses some middle 
variables to store the position and velocity of particles whose 
x position is beyond the range of [PBDL, PBDR). And then 
these variables of one process will be passed to the 
neighboring process by PARTICLE_PASSING so that each 
process receives the corresponding particles.  

D. The Performance Analysis 
In each loop, the computation functions include BPUSH, 

MOVER, EPUSH, SPLIT and PARTICLE_ESCAPE, all of 
which constitute the computing part. On the other hand, 
BCOPY, ECOPY and PARTICLE_SORTING as well as 
PARTICLE_PASSING are responsible for the 
communicating. It is necessary to examine both computing 
time and communicating time. Table I shows a comparison 
between them in 10 loops for 245x145x145 with 8 pairs of 
particles per cell.  

 
TABLE I  TIME FOR MPI IN 10 LOOPS 

 Comp 
(s) 

Comm 
(s) 

Total 
(s) 

Ratio of Comp to 
Comm 

Speedup 
(times) 

1 282 - 282 - 1 
2 161.52 6.48 168 24.93 1.68 
4 83.5 8.5 92 9.82 3.07 
8 43.61 9.39 53 4.64 5.32 

16 25.25 9.15 34.4 2.76 8.20 
 
With more processes involved, the computation time 

decreases to a certain extent and meanwhile the 
communication increases as there are more data exchanges 
between processes. And the ratio of the computation time to 
the communication time drops greatly. To sum up, MPI does 
not work well with the increasing number of processes. A 
shared memory model, such as OPENMP, may offer a more 
efficient parallelization strategy. 

III. THE OPTIMIZATION OF PARALLIZED MPI 3DEMPM 
WITH OPENMP 

Unlike MPI, the shared memory model of OPENMP 
does not have to consider the communication any more. 
$OMP PARALLEL and $OMP DO can be added outside the 
loop in order to do the computation concurrently by threads. 
The subroutines of MOVER and SPLIT are at the core of the 
computation. Both of them have to access all of the ions and 
electrons in order to update their new positions or compute 
the current. So it is essential to parallelize these two 
subroutines for optimization. The arrays of particles are 
defined as the SHARED directives while other local 
variables are defined as FIRSTPRIVATE or PRIVATE. 

Each thread is responsible for manipulating the same number 
of ions on average in terms of the total. 

SUBROUTINE MOVER 
!$OMP PARALLEL SHARED (ui,vi,wi,xi,yi,zi) 
!$OMP+ FIRSTPRIVATE (ex,ey,ez,bx,by,bz ,ions,……) 
!$OMP+ PRIVATE (n,ex0,ey0,ez0,bx0,by0,bz0,……) 
!$OMP DO  
 do n=1,ions 
 …………. 

end do 
!$OMP END DO 
!$OMP END PARALLE 
END SUBROUTINE 
In the SPLIT, the electric field is determined by the 

surrounding particles not limited to the location of the field. 
Hence, we need to make a reduction to sum up the current 
contributed by particles for updating the electric field.  

SUBROUTINE SPLIT 
!$OMP PARALLEL SHARED (ui,vi,wi,xi,yi,zi) 
!$OMP+FIRSTPRIVATE (mh, mx,my,mz ,ions, ……) 
!$OMP+ PRIVATE (i,j,k,dx,dy,dz,cx,cy,cz,……) 
!$OMP+ REDUCTION (+:ex,ey,ez) 
!$OMP DO  
 do m=1,ions 
 …………. 

end do 
!$OMP END DO 
!$OMP END PARALLE 
END SUBROUTINE 
 

TABLE II  TIME FOR OPENMP IN 10 LOOPS 
Threads Total time (s) Speed-up (times) 

1 216 1.00 
2 119 1.82 
4 71 3.04 
8 53 4.08 

16 96 2.25 
 
The OPENMP program runs on the hp server with 8 

CPUs and can also be accelerated. The performance falls 
when there are 16 threads as there are only 8 CPUs in each 
machine. It is known that due to the limited memory of a 
single machine, OPENMP works poorly when the grid 
grows in size and more particles are involved. On the other 
hand, MPI is an explicit control parallelism, with its 
distributed memory on different nodes in the cluster, solving 
problems with bigger scale. Hence, a better approach is to 
take advantages of both MPI and OPENMP. Between the 
nodes, MPI is applied to realize the communication while 
OPENMP is responsible for conducting the parallel 
computation with no communication inside the node.  

Again, the MPI domain decomposition is carried out as 
before with the 3D grid divided between each process on x 
axis. The OPENMP can be added to the MPI within the 
process as follows: 

MPI_INIT 
!$OMP PARALLEL 
…… 
!$OMP END PARALLEL 
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MPI_FINALIZE 
MPI uses the MPI_INIT and MPI_FINALIZE calls to 

initialize and finalize the process context as usual. In 
addition, OPENMP PARALLEL DO directives are placed 
around the loops, generating threads to calculate the position 
and velocity of particles concurrently in each of the process. 
The number of threads can be determined by the call of 
OMP_SET_NUM_THREADS command. 

 
TABLE III   TIME FOR MIXED MPI AND OPENMP IN 10 LOOPS 

 Comp 
(s) 

Comm 
(s) 

Total 
(s) 

Ratio of Comp to 
Comm 

Speedup 
(times) 

1 282 - 282 - 1 
2p1t 164.3 6.48 170.8 25.36 1.65 
2p2t 81.52 6.48 88 12.58 3.2 
2p4t 43.52 6.48 50 6.72 5.64 
4p2t 41 8.5 49.5 4.82 5.7 
2p8t 32.32 6.48 38.8 4.99 7.27 
4p4t 26.7 8.5 35.2 3.14 8.01 
8p2t 22.81 9.39 32.2 2.43 8.76 

 
It is high time to make a comparison of MPI with the 

mixed mode of MPI and OPENMP from TABLE I and 
TABLE III. 

 

 
Figure 4 Total time of MPI and MPI&OPENMP 

 
As shown in Fig. 4, generally, the total time of mixed 

mode drops slightly compared with that of pure MPI, except 
for running 2p(p: process used by MPI) and 2p1t (t: thread 
used by OPENMP) when we cannot draw benefits from 
communication reduction and get overhead of thread context. 
What’s more, when running 16p, we find another three 
alternatives 2p8t, 4p4t and 8p2t working differently. It seems 
that the performance is lower when there are more threads 
involved, and 8p2t is the best among the three. We select the 
best results, 4p2t and 8p2t, to get Fig. 5.  

 
Figure 5 Speedup of MPI and MPI&OPENMP 

 
It can be clearly seen from Fig. 5 that the combination of 

MPI and OPENMP offers a higher speedup than the MPI 
alone. The reason can be explained as below. When the 

program runs with N processes on MPI and N/2 processes 
with 2 threads on each for mixed MPI and OPENMP, there 
are N-1 communications between processes in MPI while 
only N/2-1 for the mixed, and meanwhile the computation 
can also be accelerated by the 2 threads with OPENMP. 
Therefore, in the mixed mode of MPI and OPENMP, the 
communication time is reduced. It can also be estimated that 
when the number of processes N increases, the benefits of 
the combination are more obvious since there will be (N-1)-
(N/2-1)=N/2 of communication time that can be saved. 

IV. THE EXPERIMENTAL RESULTS 
All of the experiments are carried out on the Linux 

cluster of 8 personal computers with 8G memory connected 
by the network. Although MPI can accelerate the execution 
of 3DEMPM, it involves large communication between each 
node when many computing machines are added. And 
OPENMP does not suffer from the load imbalance and there 
are no explicit communications involved. As a result, when 
an application needs good scalability, a mixed mode, with 
MPI between the nodes and OPENMP within each node, can 
have a better performance since we can reduce the number of 
processes for less communication time and the load 
imbalance is the only issue between the nodes.  

V. CONCLUSIONS 
Based on FDTD and PIC, we propose that the domain is 

decomposed into several sub-domains and each process 
calculates on its own sub-domain and communicates with its 
neighbors to acquire the boundary data. With MPI, 
3DEMPM is successfully parallelized on the distributed 
cluster. Also, OPENMP and the mixed mode of MPI and 
OPENMP are presented. This combination can reduce the 
communication time and achieve a better efficiency and 
speedup than the MPI alone. Further optimization, such as 
load balancing, and communication reducing, should be 
taken into account so as to achieve a better performance. 
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