
Performance Comparison of Single-Precision SPICE Model-Evaluation

on FPGA, GPU, Cell, and multi-core Processors

Nachiket Kapre

Computer Science

California Institute of Technology

Pasadena CA 91125

email: nachiket@caltech.edu

André DeHon

Electrical and Systems Engineering

University of Pennsylvania

Philadelphia PA 19104

email: andre@seas.upenn.edu

ABSTRACT

Automated code generation and performance tuning tech-

niques for concurrent architectures such as GPUs, Cell and

FPGAs can provide integer factor speedups over multi-core

processor organizations for data-parallel, floating-point com-

putation in SPICE Model-Evaluation. Our Verilog AMS

compiler produces code for parallel evaluation of non-linear

circuit models suitable for use in SPICE simulations where

the same model is evaluated several times for all the de-

vices in the circuit. Our compiler uses architecture specific

parallelization strategies (OpenMP for multi-core, PThreads

for Cell, CUDA for GPU, statically scheduled VLIW for

FPGA) when producing code for these different architec-

tures. We automatically explore different implementation

configurations (e.g. unroll factor, vector length) using our

performance-tuner to identify the best possible configura-

tion for each architecture. We demonstrate speedups of 3–

182× for a Xilinx Virtex5 LX 330T, 1.3–33× for an IBM

Cell, and 3–131× for an NVIDIA 9600 GT GPU over a

3 GHz Intel Xeon 5160 implementation for a variety of single-

precision device models.

1. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Empha-

sis) [1] is an analog circuit-simulator that is used to model

the behavior of electronic circuits. Accurate SPICE simu-

lations of large sub-micron circuits can often take days or

weeks (see Table 1) of runtime on modern processors. Var-

ious attempts at reducing SPICE runtimes by parallelizing

SPICE have met with mixed success (See Section 2.5 of [9]).

SPICE does not parallelize easily on conventional proces-

sors due to the irregular structure of the computation, lim-

ited peak floating-point capacities and scarce memory band-

width.

Newer parallel architectures such as GPUs, Cell and FP-

GAs provide opportunities for greater parallelism in acceler-

ating SPICE. Modern FPGAs can now support large floating-

point computations on a single-chip and can be customized

to implement irregular floating-point datapaths. GPUs sup-

port massively-parallel processing of concurrent threads over

hundreds of single-precision floating-point graphics pipelines

(newer GPUs support double-precision). The IBM Cell pro-

cessor is also capable of running several threads in parallel

over eight vector floating-point processing elements (SPUs).

However, programming these architectures continues to

be a challenge. In order to properly exploit available par-

allelism, developers are forced to use a laborious, low-level

programming approach to manually tune the implementa-

tion for best performance. This makes it hard to port the de-

sign to a different parallel organization or scale the applica-

tion to use increasing parallel capacity provided by Moore’s

law. In this paper, we use automated code-generation and

performance-tuning of SPICE Model-Evaluation computa-

tion to demonstrate productive application development on

diverse parallel architectures that can take advantage of in-

creasing on-chip parallelism. This avoids an architecture-

specific manual parallelization effort and eliminates the need

for programmer intervention in tuning an implementation

for best performance.

We previously reported double-precision floating-point

FPGA implementations for SPICE Model-Evaluation and

compared them to a 65nm processor mapping [9]. Here, we

replace the double-precision floating-point operators with

single-precision operators and compare such an FPGA map-

ping with the 65nm processor as well as GPUs and Cell im-

plementations. We also consider a 45nm comparison be-

tween the processor and FPGA. In this paper, we focus only

on parallelizing the Model-Evaluation phase of SPICE; in

future work we intend to parallelize the Matrix-Solve phase

and integrate a complete SPICE simulator.

The key contributions of this paper include:

• Development of a code-generation and performance-tuning

framework for SPICE Model-Evaluation to produce opti-

mized parallel code for the GPU, Cell, FPGA and multi-

core architectures.

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 65

��������	�
����������	�

��������	�

��������	���

����
����������
���
���������

�����
��������

 ���!����������"�#

����$�����$%��#

&���%������������%

 '����(��)%�����������%

��

������������
�	�
*�	�
+�	�

��������	�
����������	�

Fig. 1. Flowchart of a SPICE Simulator

• Quantification of the impact on accuracy and iterations

of using single-precision Model-Evaluation with double-

precision Matrix-Solve in spice3f5 over a set of bench-

mark circuits using the bsim3 device model.

• Quantitative empirical comparison of SPICE model eval-

uation on the Intel Xeon 5160 processor, NVIDIA 9600

GT GPU, IBM Cell (1st generation) and Virtex-5 LX330T

FPGA (65nm) as well as on the Intel Core i7 965 proces-

sor and Virtex-6 LX 760 FPGA (45nm).

2. BACKGROUND

2.1. Review of SPICE

SPICE simulates the dynamic analog behavior of a circuit

described by non-linear differential equations. SPICE cir-

cuit equations model the linear (e.g. resistors, capacitors,

inductors) and non-linear (e.g. diodes, transistors) behavior

of devices while obeying the conservation constraints (i.e.

Kirchoff’s conservation laws—KCL and KVL) at the dif-

ferent nodes and branches of the circuit. SPICE solves the

non-linear circuit equations by alternately computing small-

signal linear operating-point approximations for the non-

linear elements and solving the resulting system of linear

equations until it reaches a fixed point. The linearized sys-

tem of equations is represented as a solution of A~x = ~b,

where A is the matrix of circuit conductances,~b is the vector

of known currents and voltage quantities and ~x is the vector

of unknown voltages and branch currents. The simulator

calculates entries in A and ~b from the device model equa-

tions that describe device transconductance (e.g., Ohm’s law

for resistors, transistor I-V characteristics) in the Model-

Evaluation phase. It then solves for ~x using a sparse-direct

linear matrix solver in the Matrix-Solve phase. We illus-

Table 1. spice3f5 Runtimes (Intel Core i7 965)
bsim3 Model Matrix Percent

Circuits Eval. Solve Model-Eval.

runtime (seconds)

ram2k 30 12 71%

ram8k 130 73 64%

ram64k 1105 908 54%

floating-point ops. (millions)

ram2k 25.29 1.89 93%

ram8k 101.11 7.56 93%

ram64k 809.57 60.50 93%

trate the steps in the SPICE algorithm in Figure 1. The inner

loop iteration supports the operating-point calculation for

the non-linear circuit elements, while the outer loop mod-

els the dynamics of time-varying devices such as capacitors.

2.2. Model Evaluation

In the Model-Evaluation phase, the simulator computes con-

ductances and currents through different elements of the cir-

cuit and updates corresponding entries in the matrix with

those values. For the linear elements (e.g. resistors) this

needs to be done only once at the start of the simulation.

For non-linear elements, the simulator must search for an

operating-point using Newton-Raphson iterations which re-

quires repeated evaluation of the model equations multiple

times per time-step as shown by the innermost loop (labeled

Newton-Raphson iterations) in Figure 1. For time-varying

components, the simulator must recalculate their contribu-

tions at each timestep based on voltages at several previous

timesteps. This also requires repeated re-evaluations of the

device-model as shown by the outer loop (labeled Transient

iterations).

For circuits dominated by non-linear transistor devices,

the simulator can spend more than half its time evaluating

the device models (see “runtime” in Table 1). Moreover,

the Model-Evaluation phase can be responsible for almost

90% of total floating-point operations in the simulation (see

“floating-point ops.” in Table 1). Additionally, as transistor

devices shrink in feature-size, the complexity of the device

models required to simulate them correctly grows over time.

Newer device models often have complexity 3–5× that of

the classic bsim3 model [2] (as shown in Table 2, the psp

model [3] is 5× more complex than the bsim3 model).

2.3. Parallelism Potential

The SPICE Model-Evaluation phase has high data paral-

lelism consisting of thousands of independent device evalu-

ations each requiring hundreds of floating-point operations.

There is high pipeline parallelism within each device eval-

66

Table 2. Verilog-AMS Compiler Output

Models Instruction Distribution

Add Mult. Div. Sqrt. Exp. Log

bjt 22 30 17 0 2 0

diode 7 5 4 0 1 2

hbt 112 57 51 0 23 18

jfet 13 31 2 0 2 0

mos1 24 36 7 1 0 0

vbic 36 43 18 1 10 4

mos3 46 82 20 4 3 0

mextram 675 1626 397 22 52 37

bsim3 283 634 122 9 8 1

v3.2

bsim4 222 286 85 16 24 9

v3.0

psp 1345 2319 247 30 19 10

uation as operations can be represented as an acyclic feed-

forward dataflow graph (DAG) with nodes representing op-

erations and edges representing dependencies between the

operations. These DAGs are static graphs that are known

entirely in advance and do not change during the simulation

enabling efficient offline scheduling of instructions. Within

a simulation, there may be very few unique device mod-

els active (e.g. typically all transistors in a circuit will use

the same bsim3 model). Individual device instances are

predominantly characterized by constant parameters (e.g.

Vth, Temperature, Tox) that are determined by the CMOS

process leaving only a handful of parameters which vary

from device to device (e.g. W, L of device).

2.4. Verilog-AMS

Modern SPICE simulators accept a wide variety of device

models that cater to different designer requirements. These

device models are released as simulator independent Verilog-

AMS descriptions [4, 5]. We use open-source Verilog-AMS

descriptions of a variety of devices available from Silvaco [6].

We developed a Verilog-AMS compiler that supports a sub-

set of the Verilog-AMS language for device models [4]. We

compile the device model equations into a flexible interme-

diate representation that allows us to perform analysis, opti-

mization and code-generation for different architectures eas-

ily. Our compiler generates a generic feed-forward dataflow

graph of the computation that is processed by architecture-

specific backend tools. The instruction counts and distribu-

tion for different device models is shown in Table 2.

2.5. Related Work

We compare several parallel SPICE efforts in [9]. More re-

cent work has focussed on parallelizing Model-Evaluation

on GPUs. The use of GPUs for accelerating SPICE Model-

Evaluation of the bsim3 model was first explored in [7]

(double-precision) and subsequently in [8] (single-precision).

[7] showed speedups of 10×–50× over a quad-core AMD

CPU when using an AMD Firestream 9170 GPU (512 pro-

cessors). [8] showed speedups of 32×–40× over a quad-

core Intel CPU when using an NVIDIA 8800 GTX GPU

(128 processors). Our approach shows a speedup of 30× for

bsim3 model over a dual-core Intel Xeon processor when

using an NVIDIA 9600 GT GPU with only 64 processors.

In this paper, We benchmark a wide variety of device mod-

els in addition to the bsim3 model (shown in Table 2) and

also evaluate other parallel architectures.

3. IMPLEMENTATION OF COMPUTATION

There are several competitive architectural choices for ac-

celerating floating-point applications (See Table 5). These

architectures exploit different forms of parallelism, support

various programming models and require differing amount

of programming effort. Their raw floating-point peak per-

formance varies across two orders of magnitude and they

have different underlying compute organizations. This sug-

gests these architectures may deliver different performance

across the varying needs of diverse device models. This pa-

per focuses on comparing the performance of the Intel Xeon

5160, NVIDIA GPU 9600 GT, IBM Cell (1st generation)

with the Xilinx Virtex 5 FPGAs (65nm technology) and the

Intel Core i7 965, with the Xilinx Virtex 6 FPGAs (45nm

technology or smaller).

3.1. Code Generation

As noted in Section 2.3, SPICE Model-Evaluation is a data-

parallel computation. We exploit this data-parallelism when

generating parallel code for the different architectures. Each

architecture provides a different parallel construct to expose

this parallelism to the compiler as shown in Table 3. Our

code-generator produces custom code using these constructs

for respective architectures without any programmer assis-

tance. We generate code with simple OpenMP pragma omp

parallel for shown in Table 3(a) to distribute Model-

Evaluation across 8 threads on the Intel Core i7 processor.

We express each individual device evaluation as one scalar

thread of work and let the GPU thread scheduler distribute

these threads across the GPU using the CUDA API con-

structs shown in Table 3(b). We distribute processing across

the six user-programmable PS3 Cell SPUs by using PThreads

[10] shown in Table 3(c) to create and manage parallel threads.

We generate custom VLIW instructions for our FPGA archi-

tecture described in [9].

67

pragma omp p a r a l l e l f o r

f o r (i =0 ; i<DEVICES ; i ++)

k e r n e l () ;

dim3 g r i d (3 2 , 1 , 1) ;

dim3 t h r e a d s (DEVICES / 3 2 , 1 , 1) ;

k e r n e l <<<g r i d , t h r e a d s >>>();

f o r (i =0 ; i<THREADS; i ++)

p t h r e a d c r e a t e (t h r e a d [i]) ;

f o r (i =0 ; i<THREADS; i ++)

p t h r e a d j o i n (t h r e a d [i]) ;

void k e r n e l () {
/ / d e v i c e e v a l u a t i o n code

}

g l o b a l void k e r n e l () {
/ / d e v i c e e v a l u a t i o n code

}

i n t main (a r g u m e n t s t o t h r e a d) {
f o r (i =0 ; i<DEVICES PER THREAD ; i ++) {

/ / d e v i c e e v a l u a t i o n code

}
}

(a) OpenMP (b) CUDA SDK (c) Cell SDK

Table 3. A comparison of data-parallel constructs across three architectures

3.2. Optimizations

In addition to data-parallelism, we can exploit other char-

acteristics of SPICE Model-Evaluation graphs to get better

performance. For example, we notice that SPICE model-

evaluation graphs are characterized by long critical paths

with little work off this path which may significantly under-

utilize processor capacity. To increase utilization and im-

prove performance, we can perform loop unrolling or vec-

torize the device loop so that multiple devices are scheduled

together. For example, the bsim3 device model requires

365 cycles per evaluation with no unrolling, which reduces

to 202 cycles per evaluation when unrolled twice (see Fig-

ure 3b). Our FPGA implementation described in [9] exploits

the static nature of the graphs to perform efficient offline

scheduling of computation. We can even exploit pipeline

parallelism within the graphs to perform software-pipelining

across independent device evaluations. This allows us to re-

time the graphs to overlap computation and communication

and schedule them independently to achieve better perfor-

mance.

3.3. Auto Tuning

The process of manually customizing and tuning an appli-

cation mapping to a given architecture is a time-consuming

process that produces non-portable implementations. Since

our experiment targets multiple architectures with different

organizations and optimization parameters, we choose an

automated approach that empirically tunes the mapping for

each architecture. The approach is similar to the auto tuner

used in the ATLAS framework [11] for optimizing dense

linear algebra kernels. Our auto tuner can explore several

implementation parameters for the different architectures as

shown in Table 4. For example, our GPU implementation or-

ganizes device-evaluations into threads (mapped to an ALU)

which must be grouped into blocks (mapped to multiproces-

sor: collection of ALUs) and grids (mapped to GPU: collec-

tion of multi-processors) for a CUDA implementation. Our

auto-tuner picks the number of threads in each block (grid

configuration) to maximize GPU usage and deliver best per-

formance. Similarly, our FPGA architecture includes sev-

Table 4. Auto-Tuning Parameters

Architecture Parameter Range (Step)

Intel
Loop-Unroll Factor 1–5 (1)

MKL Vector true/false

NVIDIA GPU
Loop-Unroll Factor 1–2 (1)

Threads per block 8–512 (2x)

IBM Cell Loop-Unroll Factor 1–3 (1)

FPGA

Loop-Unroll Factor 1–15 (5)

Operators per PE 8–64 (2x)

BFT Rent Parameter 0.0–1.0 (0.1)

eral different parameters that can be chosen to make best use

of available resources for a given problem. Currently, the en-

tire space of implementation parameters we evaluate during

the tuning phase across all architectures is small. Hence, a

simple exhaustive sweep of this space is possible and runs

in a reasonable amount of time.

4. EXPERIMENTAL METHODOLOGY

We now explain the experimental methodology we use when

evaluating different architectures.

4.1. Development Environments

We tabulate the different compilers, tools, libraries and timing-

functions used in our experiments in Table 6. We report run-

time averaged across a large number of device evaluations to

minimize the effect of startup costs, OS overheads and mea-

surement noise.

4.2. FPGA Hardware Implementation

Our FPGA processing-element shown in Figure 2 consists of

spatial floating-point operators coupled to on-chip memories

and configured in VLIW fashion. These operators are inter-

connected with a time-shared network that is fully pipelined

for high-performance. We limit our implementations to fit

68

Table 5. Peak Floating-Point Throughput

Family Intel Xeon Intel Core i7 Xilinx V5 Xilinx V6 IBM Cell NVIDIA GPU AMD GPU

Chip 5160 965 LX330T LX760 PS3 9600 GT AMD 9270

Technology 65 nm 45 nm 65 nm 40 nm 65 nm 65 nm 55 nm

Clock 3 GHz 3.2 GHz 200 MHz 200 MHz 3.2 GHz 1.625 GHz 750 MHz

Double-Precision 12 25.6 11.4 26 10.5 - 240

(GFLOPS)

Single-Precision 24 51.2 33 75.6 204.8 312 1200

(GFLOPS)

Power 80 Watts 130 Watts 20–30 Watts 20–30 Watts 135 Watts 59–96 Watts 160–220 Watts

Table 6. Software Environments
Arch. Compiler Libraries Timing

Intel gcc-4.3

(-O3)

libm, Intel

MKL 10.1

PAPI 3.6.2 [12],

PAPI flops()

Nvidia

GPU

nvcc, CUDA

SDK 2.1 [13]

CUDA

libraries

cudaEventRecord()

IBM

Cell

spu-gcc,

ppu-gcc, Cell

SDK 3.1 [14]

Simdmath,

MASS

gettimeofday()

Xilinx

FPGA

Synplify Pro

9.6.1, Xilinx

ISE 10.1

CoreGen,

Arénaire

[15], [16]

-

Table 7. FPGA Cost Model
Area Latency Speed Ref.

(Slices) (clocks) (MHz)

Add 296 8 280 [15]

Multiply 611 9 237 [15]

Divide 1499 57 258 [15]

Square Root 822 57 282 [15]

Exponential 1022 30 200 [16]

Logarithm 1561 30 200 [16]

PE support logic 82 - 300 -

BFT T-Switchbox 48 2 300 -

BFT Pi-Switchbox 64 2 300 -

Switch-Switch Wire 32 2 300 -

on a single chip and use only on-chip memory resources for

storing intermediate results. You can find additional details

about the VLIW architecture and the mapping tools used to

implement computation on that architecture in [9].

We synthesize and implement a sample single-precision

8-operator design for the bsim3 model on a Xilinx Virtex-

5 device [17] using Synplify Pro 9.6.1 and Xilinx ISE 10.1.

We provide placement and timing constraints to the back-

end tools and attain a frequency of 200 MHz (See Table 7,

aggressive pipelining of exp and log operators should enable

higher rates).

�������

�

�������

	

�����
��

��

�

�������
���
���
���

�
�����

��������

���
���

��
��������

���
���������

��
��������
�

��
�

���
��
���
������

Fig. 2. Virtualized (VLIW) Operator Architecture

5. EVALUATION

In this section, we discuss the impact of single-precision

model evaluation on spice3f5 and performance across

different architectures when evaulating a range of SPICE de-

vice models.

5.1. Impact of Single-Precision on spice3f5

In Table 8, we show the impact of performing single-precision

evaluation of device models (while retaining double-precision

processing of Matrix-Solve) on accuracy and iterations of

spice3f5. With single-precision calculations we expect

that there will be a small loss in simulation quality over

double-precision. To allow the simulation to converge at this

lower quality, we adjust the simulator’s tolerance parame-

ters reltol (relative tolerance), abstol (absolute current tol-

erance) and vntol (absolute voltage tolerance). spice3f5

Newton-Rhapson iterations converge when, for all voltages,

69

Table 8. Impact of Precision

bsim3

circuits

Single-Precision Double-

Precision

reltol abstol vntol Iter. Iter.

ram2k 1e−3 1e−11 1e−4 656 611

ram8k 1e−3 1e−11 1e−3 652 607

ram64k 1e−2 1e−11 1e−3 423 420

V , and currents, I:

|Vi − Vi−1| ≤ reltol · max (|Vi|, |Vi−1|) + vntol (1)

|Ii − Ii−1| ≤ reltol · max (|Ii|, |Ii−1|) + abstol (2)

Here Vi or Ii represent the value of the respective voltage or

current on the i-th iteration of the Newton-Rhapson loop.

For double-precision evaluation of the models, all cir-

cuits in Table 8 converge with the default tolerance values in

the simulator; reltol = 1e−3 , abstol = 1e−12 , vntol = 1e−6.

For single-precision evaluation, we observe that abstol must

be relaxed to 1e−11 (accuracy of 10 picoAmperes), vntol

must be relaxed to 1e−3 (accuracy of 1 milliVolt) and reltol

must be relaxed to 1e−2 (accuracy 1 part in 100). This re-

laxation may be acceptable for most circuit simulation sce-

narios. We also observe a modest 10% increase in SPICE

iterations, but each iteration will be faster. Overall, once we

integrate the entire simulator (part of our future work), we

expect single-precision evaluation to run faster with a slight

loss in result quality.

5.2. Auto-Tuning

In Figure 3a, Figure 3b and Figure 3c we illustrate the auto-

tuning process for different device models and different ar-

chitectures using loop-unrolling as an example. Our auto-

tuner will try several unroll factors over a pre-determined

range and pick the one that provides best performance for

each device model and architecture separately. In Figure 3a,

we observe that for the large bsim3 device model, loop-

unrolling is not very useful on the Intel processor, NVIDIA

GPU or the IBM Cell. In some cases, a modest amount

of loop-unrolling even exhausts the finite memory resources

available on the GPU and Cell. The FPGA design (8 opera-

tors/PE) however is able to improve performance by 2× for

an unroll factor of 15×. Figure 3b illustrates how the choice

of unroll factor interacts with the choice of another parame-

ter in the auto-tuning process; i.e. number of floating-point

operators in an FPGA for the mos3 device model. We ob-

serve that best unroll factor may by 5 if using 8 or 32 opera-

tor PEs and 10 when using 16 operator PEs (Architecture de-

tails in [9]). Figure 3c shows that the choice of unroll factor

varies with the device model (unroll=5 is best for mos1, un-

roll=10 is best for diode and unroll=15 is best for vbic).

Unroll Factor

R
u
n
ti

m
e

(n
a
n
os

ec
on

d
s)

3 6 9 12 15

600

1200

1800

2400

Intel

FPGA

Cell

GPU

(a) Impact of Unroll Factor across different architectures (bsim3)

Unroll Factor

C
y
cl

es

2 4 6 8 10 12 14

20

30

40

50

60

8 Operators x 4 PEs

16 Operators x 2 PEs

32 Operators x 1 PE

(b) Interaction between Unroll Factor and PEs (mos3)

Unroll Factor

R
u
n
ti

m
e(

n
an

os
ec

on
d
s)

2 4 6 8 10 12 14

5

10

15

20

25

diode

mos1

vbic

(c) Unroll Factor for different devices

Fig. 3. Impact of Auto-Tuning

70

5.3. 65nm Single-Precision Evaluation

In Figure 4a, we show the Model-Evaluation runtime for dif-

ferent devices using single-precision arithmetic on 65nm ar-

chitectures. We observe that Intel multi-core processor is

outperformed by other architectures for all device models.

In Figure 4c, we see that the FPGA implementation pro-

vides the best speedup compared to all other architectures

for small devices (bjt, diode, jfet, mos1, vbic, hbt)

as they can effectively exploit limited FPGA resources. For

the larger devices (mos3, mextram, bsim3, bsim4, psp)

the GPU implementation is able to provide better perfor-

mance than the FPGA due to lower thread scheduling over-

heads. FPGA performance gets worse at larger devices sizes

due to several factors including larger interconnect require-

ment, greedy placement and long operator latencies which

we will address in the near future. In Figure 4e, we ob-

serve that FPGAs are able to exploit up to 70% of the peak

floating-point processing capacity of the chip while the rest

of the architectures are unable to reach more than 20% of

their respective peaks.

5.4. 45nm Single-Precision Evaluation

In Figure 4b, we show the performance comparison between

the latest Xilinx Virtex-6 FPGA and the latest Intel Core

i7 965 when using single-precision arithmetic on 45nm ar-

chitectures. We observe that the FPGA is able to provide

speedups between 4×–63× over the multi-core processor

(Figure 4d). These speedups suggest that the performance

gap between the FPGA and the multi-core processor for data-

parallel applications will remain even as we scale to more

advanced processes. In Figure 4f, we see that FPGAs can

again achieve up to 70% of their peak capacity while the

processor is still only able to use 20% of its peak.

6. FUTURE WORK

We identify the following broad areas for additional research

that can improve upon our current parallel design.

• A parallel solution to the sparse Matrix-Solve phase is es-

sential for achieving balanced total speedup for the SPICE

application. [23] demonstrates a potential for at least 10×
speedup for sparse-direct LU factorization on FPGAs.

• Reducing precision floating-point FPGA datapaths (even

below single-precision) provide the potential to deliver

greater acceleration per FPGA. Additional work is needed

to determine the precision sufficient to achieve a given ac-

curacy requirement.

• Additional work is necessary to address FPGA bottlenecks

at large model sizes and improve FPGA performance fur-

ther. It may even be possible to exploit pipeline paral-

lelism to further improve GPU and Cell performance.

7. CONCLUSIONS

We are able to show that we can accelerate Single-Precision

SPICE Model-Evaluation by 3×–182× when using a Xilinx

Virtex5 FPGA, 1.3×-33× when using an IBM Cell, and 3×-

131× when using the NVIDIA 9600 GT GPU compared to

a 3 GHz Intel Xeon 5160. FPGAs are able to outperform all

other architectures for small devices as the highly-optimized

custom VLIW architecture can make efficient use of lim-

ited FPGA resources. For larger devices, GPUs are able to

provide superior performance due to lower scheduling over-

heads and the greater raw operator parallelism. Our code-

generation and auto-tuning framework allows us to produce

high-quality parallel code across vastly different organiza-

tions. We expect auto-tuning will become increasingly im-

portant in achieving performance portability across diverse

parallel architectures.

8. REFERENCES

[1] L. W. Nagel, “SPICE2: a computer program to sim-

ulate semiconductor circuits,” Ph.D. dissertation, EECS

Department, University of California, Berkeley, 1975.

[2] P. Ko, J. Huang, Z. Liu, and C. Hu, “BSIM3 for analog and

digital circuit simulation,” in Proceedings of the IEEE Sym-

posium on VLSI Technology CAD, 1993, pp. 400–429.

[3] G. Gildenblat, et al, “PSP: an advanced Surface-Potential-

Based MOSFET model for circuit simulation,” IEEE Trans-

actions on Electron Devices, vol. 53, no. 9, pp. 1979–1993,

2006.

[4] L. Lemaitre, G. Coram, et al, “Extensions to Verilog-A to

support compact device modeling,” in Proceedings of the Intl.

Workshop on Behavioral Modeling and Simulation, 2003, pp.

134–138.

[5] B. Wan, B. Hu, L. Zhou, and C. Shi, “MCAST: an abstract-

syntax-tree based model compiler for circuit simulation,” in

Proceedings of the IEEE Custom Integrated Circuits Confer-

ence, 2003, pp. 249–252.

[6] “Open-Source Simucad Verilog-A models,”

[7] A. M. Bayoumi and Y. Y. Hanafy, “Massive parallelization

of SPICE device model evaluation on GPU-based SIMD

architectures,” in 1st Intl. ACM Forum on Next-generation

multicore/manycore technologies. 2008, pp. 1–5.

[8] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry, “Fast cir-

cuit simulation on graphics processing units,” in Design Au-

tomation Conference, Asia and South Pacific, 2009, pp. 403–

408.

[9] N. Kapre and A. DeHon, “Accelerating SPICE Model-

Evaluation using FPGAs,” in Proceedings of the 17th Annual

IEEE Symposium on Field-Programmable Custom Comput-

ing Machines, 2009.

[10] B. Nichols and D. Buttlar, Pthreads programming. O’Reilly

Media, Inc., 1996.

71

Virtex5 LX330T FPGA

NVIDIA GT 9600

IBM PS3 Cell

Intel Xeon 5160

1 ns

10 ns

100 ns

1000 ns

10000 ns

b
jt

d
io

d
e

jf
et

m
o
s1

v
b
ic

m
o
s3 h
b
t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

R
u
n
ti

m
e

(a) Runtime Comparison (65nm)

Xilinx Virtex6 LX760 FPGA

Intel Core i7 965

1 ns

10 ns

100 ns

1000 ns

b
jt

d
io

d
e

jf
et

m
o
s1

v
b
ic

m
o
s3 h
b
t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

R
u
n
ti

m
e

(b) Runtime Comparison (45nm)

Virtex5 LX330T FPGA

NVIDIA GT 9600

IBM PS3 Cell

1x

10x

100x

1,000x

b
jt

d
io

d
e

jf
et

m
o

s1

v
b

ic

m
o

s3 h
b

t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

S
p

ee
d

u
p

(c) Speedup over Intel Xeon 5160 (65nm)

1x

10x

100x

b
jt

d
io

d
e

jf
et

m
o

s1

v
b

ic

m
o

s3 h
b

t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

S
p

ee
d

u
p

(d) Speedup over Intel Core i7 965 (45nm)

Virtex5 LX330T FPGA

NVIDIA GT 9600

IBM PS3 Cell

Intel Xeon 5160

10

20

30

40

50

60

70

80

90

100

b
jt

d
io

d
e

jf
et

m
o

s1

v
b

ic

m
o

s3 h
b

t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

P
er

ce
n

t
o

f
F

lo
at

in
g

−
P

o
in

t
P

ea
k

(e) Percentage of Floating-Point Peak (65nm)

Xilinx Virtex6 LX760 FPGA

Intel Core i7 965

10

20

30

40

50

60

70

80

90

100

b
jt

d
io

d
e

jf
et

m
o

s1

v
b

ic

m
o

s3 h
b

t

m
ex

t.

b
si

m
3

b
si

m
4

p
sp

P
er

ce
n

t
o

f
F

lo
at

in
g

−
P

o
in

t
P

ea
k

(f) Percentage of Floating-Point Peak (45nm)

Fig. 4. Performance Analysis on 65nm and 45nm Architectures

[11] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear

algebra software,” in Proceedings of the 1998 ACM/IEEE

conference on Supercomputing. San Jose, CA: IEEE

Computer Society, 1998, pp. 1–27.

[12] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI:

a portable interface to hardware performance counters,” in

Proc. Dept. of Defense HPCMP Users Group Conference,

1999, pp. 7–10.

[13] NVIDIA, Compute Unified Device Architecture (CUDA)

SDK 2.1, 2008.

[14] IBM, “Cell SDK 3.1,” 2008.

[15] “Floating-Point operator v4.0 datasheet” April 2008

[16] J. Detrey and F. de Dinechin, “Parameterized floating-

point logarithm and exponential functions for FPGAs,”

Microprocessors and Microsystems, vol. 31, no. 8, pp.

537–545, Dec. 2007.

[17] Xilinx, Virtex-5 Datasheet, 2006.

[18] A. Caldwell, A. Kahng, and I. Markov, “Improved Algo-

rithms for Hypergraph Bipartitioning,” in Proceedings of the
Asia and South Pacific Design Automation Conference, Jan-

uary 2000, pp. 661–666.

[19] Y. Lin, “Recent developments in high-level synthesis,” ACM

Trans. Des. Autom. Electron. Syst., vol. 2, no. 1, pp. 2–21,

1997.

[20] S. Devadas and A. R. Newton, “Algorithms for hardware

allocation in data path synthesis,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. 8, no. 7, pp. 768–781, 1989.

[21] N. Kapre, N. Mehta, et al, “Packet switched vs. time multi-

plexed FPGA overlay networks,” in Proceedings of the 14th

Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2006, pp. 205–216.

[22] N. Mehta, “Time-multiplexed FPGA overlay networks on

chip,” Master’s Thesis, California Institute of Technology,

Pasadena, 2006.

[23] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara,

and C. Nwankpa, “Sparse LU decomposition using FPGA,”

in International Workshop on State-of-the-Art in Scientific

and Parallel Computing (PARA), 2008.

72

