
Hybrid Parallel Programming on GPU Clusters

Chao-Tung Yang Chih-Lin Huang Cheng-Fang Lin Tzu-Chieh Chang

Department of Computer Science, Tunghai University, Taichung, 40704, Taiwan
ctyang@thu.edu.tw clj.joe@gmail.com superfun.lin@gmail.com s942826@gmail.com

Abstract—Nowadays, NVIDIA’s CUDA is a general purpose
scalable parallel programming model for writing highly parallel
applications. It provides several key abstractions – a hierarchy of
thread blocks, shared memory, and barrier synchronization. This
model has proven quite successful at programming
multithreaded many core GPUs and scales transparently to
hundreds of cores: scientists throughout industry and academia
are already using CUDA to achieve dramatic speedups on
production and research codes. In this paper, we propose a
hybrid parallel programming approach using hybrid CUDA and
MPI programming, which partition loop iterations according to
the number of C1060 GPU nodes in a GPU cluster which consists
of one C1060 and one S1070. Loop iterations assigned to one MPI
process are processed in parallel by CUDA run by the processor
cores in the same computational node.

Keywords: CUDA, GPU, MPI, OpenMP, hybrid, parallel
programming

I. INTRODUCTION
Nowadays, NVIDIA’s CUDA [1, 16] is a general purpose

scalable parallel programming model for writing highly
parallel applications. It provides several key abstractions – a
hierarchy of thread blocks, shared memory, and barrier
synchronization. This model has proven quite successful at
programming multithreaded many core GPUs and scales
transparently to hundreds of cores: scientists throughout
industry and academia are already using CUDA [1, 16] to
achieve dramatic speedups on production and research codes.
In NVDIA the CUDA chip, all to the core of hundreds of ways
to construct their chips, in here we will try to use NVIDIA to
provide computing equipment for parallel computing.

This paper proposes a solution to not only simplify the use
of hardware acceleration in conventional general purpose
applications, but also to keep the application code portable. In
this paper, we propose a parallel programming approach using
hybrid CUDA, OpenMP and MPI [3] programming, which
partition loop iterations according to the performance
weighting of multi-core [4] nodes in a cluster. Because
iterations assigned to one MPI process are processed in
parallel by OpenMP threads run by the processor cores in the
same computational node, the number of loop iterations
allocated to one computational node at each scheduling step
depends on the number of processor cores in that node.

In this paper, we propose a general approach that uses
performance functions to estimate performance weights for
each node. To verify the proposed approach, a heterogeneous
cluster and a homogeneous cluster were built. In our

implementation, the master node also participates in
computation, whereas in previous schemes, only slave nodes
do computation work. Empirical results show that in
heterogeneous and homogeneous clusters environments, the
proposed approach improved performance over all previous
schemes.

The rest of this paper is organized as follows. In Section 2,
we introduce several typical and well-known self-scheduling
schemes, and a famous benchmark used to analyze computer
system performance. In Section 3, we define our model and
describe our approach. Our system configuration is then
specified in Section 4, and experimental results for three types
of application program are presented. Concluding remarks and
future work are given in Section 5.

II. BACKGROUND REVIEW

A. History of GPU and CUDA
In the past, we have to use more than one computer to

multiple CPU parallel computing, as shown in the last chip in
the history of the beginning of the show does not need a lot of
computation, then gradually the need for the game and even
the graphics were and the need for 3D, 3D accelerator card
appeared, and gradually we began to display chip for
processing, began to show separate chips, and even made a
similar in their CPU chips, that is GPU.

We know that GPU computing could be used to get the
answers we want, but why do we choose to use the GPU? This
slide shows the current CPU and GPU comparison. First, we
can see only a maximum of eight core CPU now, but the GPU
has grown to 260 core, the core number, we'll know a lot of
parallel programs for GPU computing, despite his relatively
low frequency of core, we I believe a large number of parallel
computing power could be weaker than a single issue. Next,
we know that there are within the GPU memory, and more
access to main memory and GPU CPU GPU access on the
memory capacity, we find that the speed of accessing GPU
faster than CPU by 10 times, a whole worse 90GB / s, This is
quite alarming gap, of course, this also means that when
computing the time required to access large amounts of data
can have a good GPU to improve.

CPU using advanced flow control such as branch predict or
delay branch and a large cache to reduce memory access
latency, and GPU's cache and a relatively small number of
flow control nor his simple, so the method is to use a lot of
GPU computing devices to cover up the problem of memory
latency, that is, assuming an access memory GPU takes 5

International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4190-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ISPA.2010.97

142

seconds of the time, but if there are 100 thread simultaneous
access to, the time is 5 seconds, but the assumption that CPU
time memory access time is 0.1 seconds, if the 100 thread
access, the time is 10 seconds, therefore, GPU parallel
processing can be used to hide even in access memory than
CPU speed. GPU is designed such that more transistors are
devoted to data processing rather than data caching and flow
control, as schematically illustrated by Figure 1.

Therefore, we in the arithmetic logic by GPU advantage,
trying to use NVIDIA's multi-core available to help us a lot of
computation, and we will provide NVIDIA with so many core
programs, and NVIDIA Corporation to provide the API of
parallel programming large number of operations to carry out.

We must use the form provided by NVIDIA Corporation
GPU computing to run it? Not really. We can use NVIDIA
CUDA, ATI CTM and apple made OpenCL (Open Computing
Language), is the development of CUDA is one of the earliest
and most people at this stage in the language but with the
NVIDIA CUDA only supports its own graphics card, from
where we You can see at this stage to use GPU graphics card
with the operator of almost all of NVIDIA, ATI also has
developed its own language of CTM, APPLE also proposed
OpenCL (Open Computing Language), which OpenCL has
been supported by NVIDIA and ATI, but ATI CTM has also
given up the language of another, by the use of the previous
relationship between the GPU, usually only support single
precision floating-point operations, and in science, precision is
a very important indicator, therefore, introduced this year
computing graphics card has to support a Double precision
floating-point operations.

Figure 1: The CPU Devotes More Transistors to Data Processing

B. CUDA Programming
CUDA (an acronym for Compute Unified Device

Architecture) is a parallel computing [2] architecture
developed by NVIDIA. CUDA is the computing engine in
NVIDIA graphics processing units or GPUs that is accessible
to software developers through industry standard
programming languages. The CUDA software stack is
composed of several layers as illustrated in Figure 2: a
hardware driver, an application programming interface (API)
and its runtime, and two higher-level mathematical libraries of
common usage, CUFFT [17] and CUBLAS [18]. The
hardware has been designed to support lightweight driver and
runtime layers, resulting in high performance. CUDA
architecture supports a range of computational interfaces
including OpenGL [9] and Direct Compute. CUDA’s parallel
programming model is designed to overcome this challenge
while maintaining a low learning curve for programmers

familiar with standard programming languages such as C. At
its core are three key abstractions – a hierarchy of thread
groups, shared memories, and barrier synchronization – that
are simply exposed to the programmer as a minimal set of
language extensions.

These abstractions provide fine-grained data parallelism
and thread parallelism, nested within coarse-grained data
parallelism and task parallelism. They guide the programmer
to partition the problem into coarse sub-problems that can be
solved independently in parallel, and then into finer pieces that
can be solved cooperatively in parallel. Such a decomposition
preserves language expressivity by allowing threads to
cooperate when solving each sub-problem, and at the same
time enables transparent scalability since each sub-problem
can be scheduled to be solved on any of the available
processor cores: A compiled CUDA program can therefore
execute on any number of processor cores, and only the
runtime system needs to know the physical processor count.

Figure 2: Compute Unified Device Architecture Software Stack

C. CUDA Processing flow
In follow illustration, CUDA processing flow is described

as Figure 3 [16]. The first step: copy data from main memory
to GPU memory, second: CPU instructs the process to GPU,
third: GPU execute parallel in each core, finally: copy the
result from GPU memory to main memory.

D. Run and Build CUDA on Ubuntu
In this session, we will describe how to build CUDA on

Linux Ubuntu OS.

• Go to NVIDIA official web site to download CUDA
toolkit, CUDA SDK and CUDA SDK for Linux.

• Exit X-Window and install NVIDIA Driver then
execute CUDA toolkit and SDK install run files.

$ sudo apt-get install libglu1-mesa-dev libxmu-dev libglui-dev
libX11-dev libXi-dev build-essential gcc-4.1 g++-4.1

143

• Change directory to /usr/bin and remove gcc, g++,
i486-linux-gnu-gcc-4.3, i486-linux-gnu-g++-4.3, and
links simply because most of the sample codes do not
support gcc 4.3, you can do this by execute the
following commands.

Figure 3: Processing flow on CUDA from Wiki [16]

$ cd /usr/bin

$ sudo rm gcc i486-linux-gnu-gcc g++ i486-linux-gnu-g++

$ sudo ln -s gcc-4.1 gcc;sudo ln -s g++-4.1 g++

$ sudo ln -s i486-linux-gnu-g++-4.1 i486-linux-gnu-g++

$ sudo ln -s i486-linux-gnu-gcc-4.1 i486-linux-gnu-gcc

$ sudo echo /usr/local/cuda/lib >>/etc/ld.so.conf

$ sudo ldconfig

• Go to the directory which you choose cuda SDK to
install to. Here use ~/NVIDIA_CUDA_SDK as
example,then execute make to compile sample code,
the executable file will leave in bin/linux/release/

$ cd ~/NVIDIA_CUDA_SDK;make

$ cd bin/linux/release/

E. OpenMP Programming
In contrast, Open Multi-Processing (OpenMP) [6], a kind of

shared memory architecture API [35], provides a multi-
threaded capacity. A loop can be parallelized easily by

invoking subroutine calls from OpenMP thread libraries and
inserting the OpenMP compiler directives. In this way, the
threads can obtain new tasks, the un-processed loop iterations,
directly from local shared memory.

OpenMP is an open specification for shared memory
parallelism. The basic idea behind OpenMP is data-shared
parallel execution. It consists of a set of compiler directives,
callable runtime library routines and environment variables
that extend FORTRAN, C and C++ programs. OpenMP is
portable across the shared memory architecture. The unit of
workers in OpenMP is threads. It works well, when accessing
shared data costs you nothing. Every thread can access a
variable in shared cache or RAM.

The OpenMP (Open Multi-Processing) is an application
programming interface (API) that supports multi-platform
shared memory multiprocessing programming in C, C++ and
FORTRAN on much architecture, including UNIX and
Microsoft Windows platforms. It consists of a set of compiler
directives, library routines, and environment variables that
influence run-time behavior.

F. Combining MPI and CUDA
The simplest way forward is to use nvcc for everything.

The nvcc compiler wrapper is somewhat more complex than
the typical mpicc compiler wrapper, so it's easier to make MPI
code into .cu and compile with nvcc than the other way
around. A sample make file might resemble:

[arnoldg@ac14 mpi-gpu]$ cat Makefile

 MPICC := nvcc -Xptxas -v

 MPI_INCLUDES := /usr/mpi/intel/mvapich2-1.2p1/include

 MPI_LIBS := /usr/mpi/intel/mvapich2-1.2p1/lib

%.o : %.cu

 $(MPICC) -I$(MPI_INCLUDES) -o $@ -c $<

mpi_hello_gpu : vecadd.o mpi_hello_gpu.o

 $(MPICC) -L$(MPI_LIBS) -lmpich -o $@ *.o

clean :

 rm vecadd.o mpi_hello_gpu.o

all : mpi_hello_gpu

Source code files as follow:
[arnoldg@ac14 mpi-gpu]$ cat mpi_hello_gpu.cu

 #include <mpi.h>

 #include <stdio.h>

 #include <stdlib.h>

 #define PPN 4

 #define INTARRAYLEN 65535

 #define BCASTREPS 1000

int main(int argc, char *argv[])

 {

 int bcastme[INTARRAYLEN], ranksum;

 int rank, size, len;

 int gpudevice;

 int vecadd(int, int);

 char name[MPI_MAX_PROCESSOR_NAME];

144

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Get_processor_name(name, &len);

 // do some MPI work, showing MPI and CUDA being run
from one routine

 if (rank == 0) { bcastme[3]=3; }

 for (int i=0; i<BCASTREPS; i++)

 {

 MPI_Bcast(bcastme, INTARRAYLEN, MPI_INT, 0,
MPI_COMM_WORLD);

 }

 // modulo is useful in determining unique gpu device
ids if ranks

 // are packed into nodes and not assigned in round robin
fashion

 gpudevice= rank % PPN;

 printf("rank %d of %d on %s received bcastme[3]=%d [gpu
%d]\n", rank, size, name,bcastme[3], gpudevice);

 vecadd(gpudevice, rank);

 // more MPI work showing MPI is functional after CUDA

 MPI_Reduce(&rank, &ranksum, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

 if (rank == 0) { printf("ranksum= %d\n", ranksum); }

 MPI_Finalize();

 }

 [arnoldg@ac14 mpi-gpu]$

Parameters for passing the MPI rank and selecting a gpu
were added to vecadd.

[arnoldg@ac14 mpi-gpu]$ cat vecadd.cu

 // Kernel definition

 __global__ void vecAdd(float* A, float* B, float* C)

 {

 int i = threadIdx.x;

 A[i]=0;

 B[i]=i;

 C[i] = A[i] + B[i];

 }

#include <stdio.h>

 #define SIZE 10

 #define KERNELINVOKES 5000000

 int vecadd(int gpudevice, int rank)

 {

 int devcheck(int, int);

 devcheck(gpudevice, rank);

 float A[SIZE], B[SIZE], C[SIZE];

 // Kernel invocation

 float *devPtrA;

 float *devPtrB;

 float *devPtrC;

 int memsize= SIZE * sizeof(float);

 cudaMalloc((void**)&devPtrA, memsize);

 cudaMalloc((void**)&devPtrB, memsize);

 cudaMalloc((void**)&devPtrC, memsize);

 cudaMemcpy(devPtrA, A, memsize, cudaMemcpyHostToDevice);

 cudaMemcpy(devPtrB, B, memsize, cudaMemcpyHostToDevice);

 for (int i=0; i<KERNELINVOKES; i++)

 {

 vecAdd<<<1, gpudevice>>>(devPtrA, devPtrB, devPtrC);

 }

 cudaMemcpy(C, devPtrC, memsize, cudaMemcpyDeviceToHost);

 // calculate only up to gpudevice to show the unique
output

 // of each rank's kernel launch

 for (int i=0; i<gpudevice; i++)

 printf("rank %d: C[%d]=%f\n",rank,i,C[i]);

 cudaFree(devPtrA);

 cudaFree(devPtrA);

 cudaFree(devPtrA);

 }

int devcheck(int gpudevice, int rank)

 {

 int device_count=0;

 int device; // used with cudaGetDevice() to verify
cudaSetDevice()

 cudaGetDeviceCount(&device_count);

 if (gpudevice >= device_count)

 {

 printf("gpudevice >= device_count ... exiting\n");

 exit(1);

 }

 cudaError_t cudareturn;

 cudaDeviceProp deviceProp;

 cudaGetDeviceProperties(&deviceProp, gpudevice);

 if (deviceProp.warpSize <= 1)

 {

 printf("rank %d: warning, CUDA Device Emulation (CPU)
detected, exiting\n", rank);

 exit(1);

 }

 cudareturn=cudaSetDevice(gpudevice);

 if (cudareturn == cudaErrorInvalidDevice)

 {

 perror("cudaSetDevice returned cudaErrorInvalidDevice");

 }

 else

 {

 cudaGetDevice(&device);

 printf("rank %d: cudaGetDevice()=%d\n",rank,device);

 }

}

 [arnoldg@ac14 mpi-gpu]$

145

III. SYSTEM HARDWARE

A. Tesla C1060 GPU Computing Processor
The NVIDIA® Tesla™ C1060 transfor

into a high-performance computer that out
cluster. This gives technical profession
computing resource at their desk-side that i
more energy-efficient than a shared cluster
The NVIDIA® Tesla™ C1060 computing
which consists of 240 cores is a PCI Expre
computing add-in card based on the NV
graphics processing unit (GPU). This boa
high-performance computing (HPC) solution
systems. The Tesla C1060 [15] is capable
[13] of processing performance and comes st
of GDDR3 memory at 102 GB/s bandwidth.

A computer system with an available PCI
is required for the Tesla C1060. For the best
between the host processor and the Te
recommended (but not required) that the
installed in a PCI Express ×16 Gen2 slot. T
based on the massively parallel, many-core
which is coupled with the standard CUDA
[14] environment to simplify many-core prog

B. Tesla S1070 GPU Computing System
The NVIDIA® Tesla™ S1070 [12] c

speeds the transition to energy-efficient p
[2]. With 960 processor cores and a standar
simplifies application development, Tesla
solve the world’s most important compu
more quickly and accurately. The NVIDIA
Computing System is a 1U [12] rack-mount
Tesla T10 computing processors. This system
or two host systems via one or two PCI E
Host Interface Card (HIC) [5] is used to
Express cable to a host. The host int
compatible with both PCI Express 1x and
systems.

The Tesla S1070 GPU computing system
T10 GPU from NVIDIA. It can be connecte
system via two PCI Express connections
connected to two separate host systems via
connection to each host. Each NVID
corresponding PCI Express cable connects t
GPUs in the Tesla S1070. If only one PCI
connected to the Tesla S1070, only two of
used. To connect all four GPUs in a Tesla
host system, the host must have two avail
slots and be configured with two cables.

IV. EXPERIMENTAL RESUL

We built a heterogeneous GPC cluster
Tesla C1060 and a Tesla S1070, each with
NIC interconnected via a D-LINK DGS
switch. To verify our approach, illust
environment, and describe the terminology fo
we implemented programs with MPI/Open

E

rms a workstation
tperforms a small
nals a dedicated
is much faster and
in the data center.

g processor board
ess 2.0 form factor
VIDIA Tesla T10
ard is targeted as
n for PCI Express
of 933 GFLOPs/s
tandard with 4 GB

I Express ×16 slot
system bandwidth

esla C1060, it is
Tesla C1060 be

he Tesla C1060 is
e Tesla processor,
A C programming
gramming.

computing system
parallel computing
rd C compiler that

S1070 scales to
uting challenges—
A® Tesla™ S1070
t system with four
m connects to one
Express cables. A
connect each PCI
terface cards are
d PCI Express 2x

m is based on the
ed to a single host
 to that host, or

a one PCI Express
DIA switch and
to two of the four
I Express cable is
the GPUs will be
S1070 to a single

lable PCI Express

LTS
consisting of one

h Gigabit Ethernet
-3100-24 Gigabit
trate our cluster
for our application,
nMP for execution

on our test bed. We then com
scheme with those of other sta
heterogeneous and homogeneo
Matrix Multiplication, MD5
discuss performance compar
homogeneous clusters. From F
at execution time to emphasis
that the performance of GPU
parallel execution as the appli
form 256 to 2048. Figure 5 re
better performance than single
MD5 hashing computation. Fi
comparison of performance on
OpenMP.

V. CO

In conclusion, we propose a
using hybrid CUDA and MPI
loop iterations according to the
in a GPU cluster which consist
During the experiments, loop
process are processed in pa
processor cores in the sam
experiments reveal that the h
currently processing with Ope
approach of composing high pe

Figure 4: Matrix Multiplication w

Figure5: Md5 hashing o

0.01

0.1

1

10

100

micro
seconds

Numbe

mpared the performance of our
atic and dynamic schemes using
ous clusters to solve problems in

and Bubble Sorting. We also
risons on heterogeneous and

Figures 4 to 6, we take log of 10
the differences. Figure 4 shows

U on processing the massively
ication of Matrix Multiplication
eveals that single GPU presents
e CPU with multiple threads on
inally, Figure 6 shows that the
n multiple GPU with MPI and

ONCLUSION
parallel programming approach

I programming, which partition
e number of C1060 GPU nodes
ts of one C1060 and one S1070.
iterations assigned to one MPI

arallel by CUDA run by the
me computational node. The
hybrid parallel multi-core GPU
enMP and MPI as a powerful

erformance clusters.

with problem sizes from 256 to 2048

on 10 to 2,098,651 words

r of words

GPU

openMP-
1thread

openMP-
2threads

openMP-
3threads

openMP-
4threads

146

Figure 6: Sorting numbers 640 times from 65,536 to 16,777,216 floating point

numbers.

ACKNOLOGEMENTS
This work is supported in part by the National Science

Council, Taiwan, under grants no. NSC 98-2220-E-029-001-
and NSC 98-2220-E-029-004-.

REFERENCES
[1] Download cuda, http://developer.nvidia.com/object/cuda.htm
[2] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.

Buijssen,M. Grajewski, and S. Tureka, “Exploring weak scalability for
FEM calculations on a GPU-enhanced cluster,” Parallel Computing,
vol. 33, pp. 685-699, Nov 2007.

[3] P. Alonso, R. Cortina, F.J. Martínez-Zaldívar, J. Ranilla “Neville
elimination on multi- and many-core systems: OpenMP, MPI and
CUDA”, Jorunal of Supercomputing,
http://www.springerlink.com/content/h49626615t707334/fulltext.pdf

[4] Francois Bodin and Stephane Bihan, “Heterogeneous multicore
parallel programming for graphics processing units”, Scientific
Programming, Volume 17, Number 4 / 2009, 325-336, Nov. 2009.

[5] Specification Tesla S1070 GPU Computing System,
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf.

[6] Open MP Specification, http://openmp.org/wp/about-openmp/
[7] Message Passing Interface (MPI),

http://www.mcs.anl.gov/research/projects/mpi/
[8] MPICH, A Portable Implementation of MPI,

http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm.
[9] OpenGL, D. Shreiner, M. Woo, J. Neider and T. Davis, OpenGL(R)

Programming Guide: The Official Guide to Learning OpenGL(R),
Version 2 (5th Edition), Addison-Wesley, Reading, MA, August 2005.

[10] (2008) Intel 64 Tesla Linux Cluster Lincoln webpage. [Online]
Available:
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Tes
laCluster/

[11] Romain Dolbeau, Stéphane Bihan, and François Bodin, HMPP: A
Hybrid Multi-core Parallel Programming Environment

[12] The NVIDIA Tesla S1070 1U Computing System - Scalable Many
Core Supercomputing for Data Centers
http://www.nvidia.com/object/product_tesla_s1070_us.html

[13] Top 500 Super Computer Sites, What is Gflop/s,
http://www.top500.org/faq/what_gflop_s

[14] NVIDIA CUDA Programming Guide,
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/
NVIDIA_CUDA_Programming_Guide_2.3.pdf

[15] NVIDIA Tesla C1060 Computing Processor,
http://www.nvidia.com/object/product_tesla_c1060_us.html

[16] CUDA, http://en.wikipedia.org/wiki/CUDA
[17] CUFFT, CUDA Fast Fourier Transform (FFT) library.

http://developer.download.nvidia.com/compute/cuda/1_1/CUFFT_Lib
rary_1.1.pdf

[18] CUBLAS, BLAS(Basic Linear Algebra Subprograms) on CUDA

http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBL
AS_Library_2.0.pdf

147

