
Parallelization of Radiation Transport
on Unstructured Triangular Grids

with Spatial Decomposition and OpenMP

Eric E. Aubanel
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick

E3B 5A3 Canada
aubanel@unb.ca

Faysal El Khettabi
Department of Mechanical Engineering

University of New Brunswick
Fredericton, New Brunswick

E3B 5A3 Canada
faysalek@unb.ca

Abstract

Parallel computing can be of critical importance to the
deterministic solution of radiation transport equations, es-
pecially with respect to solving the transport process within
highly variable media with complex geometries. We pro-
pose an approach that extends the Alternating Direction of
Transport Sweeps (ADTS) method of M. Yavus and E.D.
Larson to unstructured triangular grids, using the Recur-
sive Spectral Bisection (RSB) algorithm to partition our do-
main and OpenMP to implement the parallelism on shared
memory computers. Our results, using a neutron transport
test case, show that the ADTS method with the RSB algo-
rithm leads to a significant increase in the parallel conver-
gence rate, resulting in improved parallel efficiency, and
thus improved turnaround time. We emphasize that excel-
lent parallel efficiency is possible using domain decomposi-
tion and an SPMD-OpenMP implementation.

1 Introduction

The Sn transport codes have been widely used in neu-
tronics calculations, including shielding calculations and
reactor core calculations. They are also being considered
for treatment planning in Boron Neutron Capture Therapy
(BNCT) [1].

In Sn transport codes, the Boltzmann equation is solved
as a difference equation using the discrete ordinates meth-
ods to describe the position and direction of particles. These
codes can be very time and resource consuming, particu-
larly for realistic solutions in domains with complex geome-
tries such as are found in BNCT dose calculations, which
are based on neutron flux calculations.

Several studies on parallelization have been performed
for Sn transport calculations by applying angular and spa-
tial domain decomposition [2]-[8]. Since the transport
sweeps over discrete ordinate angles are independent of
each other, parallelization over these angles is trivial. This
approach may not be ideal, since the number of angles is
much less than the number of finite elements, and may be
less than the number of processors available.

Until recently, parallelization based on spatial domain
decomposition has been restricted to rectangular meshes.
In the past few years there have been several applications
to unstructured meshes: Nowak and Nemanick [7] used
a Hybrid MPI/OpenMP implementation of a method us-
ing Jacobi iteration, Plimptonet al. [8] developed an
asynchronous message passing algorithm, and one of the
present authors (F.E. Khettabi) extended the ideas of Yavuz
and Larson [2] to unstructured triangular meshes together
with an implementation in Cray’s High Performance For-
tran (HPF/CRAFT) [9]. In the present work, we have im-
plemented the latter work using OpenMP, resulting in more
portable and highly scalable code. We outline the scalar
iteration method in Section 2. Our application of the par-
allel source iteration method to unstructured grids using
OpenMP is given in Section 3. Results illustrating con-
vergence rates and speedups are presented and discussed in
Section 4, and we conclude in Section 5.

2 Scalar Source Iteration

The one-groupX − Y geometrySn equations can be
written:

µm
∂ψm

∂x
(r) + νm

∂ψm

∂y
(r) + σt(r)ψm(r) =

1
4π

[σs(r)φ0(r) + S(r)], r ∈ Ω, (1)

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

wherer = (x, y) is the position,Ω is the spatial domain,
ψm(r) is the angular neutron flux at positionr in the dis-
crete ordinates direction(µm, νm), andφ0(r) is the scalar
flux

φ0(r) =
N∑

m=1

ωmψm(r). (2)

The boundary conditions for this equation are

ψm = 0, r ∈ ∂Ω, (µm, νm) · n(r) < 0, (3)

wheren(r) is the unit outer normal on the boundary∂Ω at
point r.

The discretized-in-space versions of this equation can be
solved by the source iteration scheme, in which one iterates
on the scattering sourceσsφ0. Thus, introducing an iter-
ation superscript, the last equation for the source iteration
method become

µm
∂ψn+1

m

∂x
(r) + νm

∂ψn+1
m

∂y
(r) + σt(r)ψn+1

m (r) =

1
4π

[σs(r)φn
0 (r) + S(r)], r ∈ Ω, (4)

ψn+1
m = 0, r ∈ ∂Ω, (µm, νm) · n(r) < 0, (5)

φn+1
0 (r) =

N∑
m=1

ωmψn+1
m (r). (6)

The solution algorithm of equation involves transport
sweeps across the domainΩ in each direction of neutron
travel. As a result, each iteration on the scattering source
consists of transport sweeps along each of the directions
of the angular quadrature. In each spatial cell, the exit-
ing angular fluxes are used as incident angular fluxes for
the “downwind” cells, which in turn are used for obtain-
ing the exiting flux in those cells. Thus, the calculation for
any given cell depends on the calculations in all “upwind”
cells. We call this the scalar source iteration method. Be-
cause each cell calculation depends on all the “upwind” cell
calculations, this scalar source iteration method cannot be
geometrically decomposed for use on parallel computers.
However, a geometrically decomposed modification of this
method is described in the following section.

3 Parallel Source Iteration

A triangulationTh is established over the domainΩ, i.e,
the setΩ is subdivided into a finite number of trianglesT
andh is the mesh size. An efficient parallel source itera-
tion method centers about four related considerations:1)
ordering of transport sweeps;2) domain decomposition;3)
asynchronization iteration;4) implementation of the algo-
rithm.

3.1 Transport Sweeps

For each direction(µm, νm), we partition the mesh into
layersSm

0 , Sm
2 , ..., Sm

end

Sm
0 ≡ {T ∈ Th : ∂m

inT ⊂ ∂m
inΩ}, (7)

Sm
i+1 ≡
{T ∈ Th : ∂m

inT ⊂ ∂m
in(Ω−

⋃

j≤i

Sm
j)},

i = 0, 1, ..., end, (8)

where∂m
inΩ is the inflow boundary ofΩ and∂m

inT is the
inflow boundary of the triangleT [10].

With this partition ofTh, the approximate solution may
be obtained in an explicit manner, first inSm

0 , then inSm
1 ,

etc. The updated exiting fluxes inSm
i are transferred to the

neighboring layerSm
i+1 for use as updated incident fluxes.

This approach represents an inherently sequential procedure
which does not lend itself to parallel processing. In order
to overcome this obstacle, we use spatial domain decom-
position and asynchronous iteration that we describe in the
following sections.

3.2 Domain Decomposition

Many large scale computational transport equations are
based on unstructured computational domains. One good
method for decomposing such domains is Recursive Spec-
tral Bisection (RSB) [11, 12], which is based on the compu-
tation of an eigenvector of the Laplacian matrix associated
with the graph(mesh). This method produces good load bal-
ancing of the subdomains, and minimizes communication
between subdomains by minimizing the number of edges
cut between them.

Each processor is assigned a subdomain. The general
problem described by equation 1 forP processors can be
written as:

µm
∂ψm,p

∂x
(r) + νm

∂ψm,p

∂y
(r) + σt(r)ψm,p(r)

=
1
4π

[σs(r)φ0,p(r) + S(r)], r ∈ Ωp, (9)

p = 0, 1, ..., P − 1,

ψm,p(r) =
{

0 if r ∈ Γp, (µm, νm) · n(r) < 0,
ψm,p′ (r) if r ∈ Γp,p′ ,

(10)

φ0,p(r) =
N∑

m=1

ωmψm,p(r), (11)

whereΓp is the part of the boundary of the subdomainΩp

that coincides with the outer boundary ofΩ andΓp,p′ is the
interface between subdomainsΩp andΩp′ .

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

In this parallel source iteration method, one iterates on
the scattering source as well as the interface fluxes. At
the beginning of a transport sweep, processorp has esti-
mates for both the incident interface fluxes and the scat-
tering source for subdomainΩp. At the end of a transport
sweep, new estimate have been calculated for both the scat-
tering source withinΩp and the exiting fluxes fromΩp. The
updated exiting fluxes are transferred to neighboring pro-
cessorsp′ for use as updated incident fluxes.

3.3 Asynchronization Iteration

In the parallel method described above, for a given itera-
tion in a particular subdomain, incident fluxes from adjacent
subdomains are calculated in the previous iteration. This re-
sults in an increase in the number of iterations required until
convergence is achieved. This problem can be mitigated by
using updated incident fluxes as they become available, as
proposed by Yavuz and Larson [2] and described below.

Let ⊕ show the need for incident boundary fluxes and
let ⊗ show the availability of new outgoing fluxes from a
neighboring subdomain. Thus, if⊗ ≡ ⊕, then we use the
new available information; otherwise, we use the older es-
timates. Starting with the initial guess for the scalar and
interface boundary fluxes in processor p, we solve

µm

∂ψn+1
m,p

∂x
(r) + νm

∂ψn+1
m,p

∂y
(r) + σt(r)ψn+1

m,p (r) =

1
4π

[σs(r)φn
0,p(r) + S(r)], r ∈ Ω, (12)

p = 0, 2, ..., P − 1,

ψn+1
m,p (r) =





0 if r ∈ Γp, (µm, νm) · n < 0,
ψn+1

m,p′
(r) if r ∈ Γp,p′ ,⊗ ≡ ⊕,

ψn
m,p′ (r) if r ∈ Γp,p′ ,⊗ 6= ⊕.

(13)
Then, we update the scalar flux by

φn+1
0,p (r) =

N∑
m=1

ωmψn+1
m,p (r). (14)

Yavuz and Larson’s Alternating Direction of Transport
Sweeps (ADTS) source iteration scheme uses this equation
and an alternating order of transport sweeps. In its original
form, this meant that while one swept in a specified direc-
tion in processorp, one swept in a direction in a proces-
sor with a neighbouring subdomainp′ so that both proces-
sors were able to use the new outgoing interface boundary
fluxes from their neighbors as soon as possible. In the ideal
case of a square domain divided into four subdomains this
works perfectly, and incident interface fluxes are always cal-
culated before they are needed. In general, updated fluxes

are not always available. We optimize the ordering of trans-
port sweeps as follows. For a given subdomainDp, we find
the first layer in the subdomain for each direction, that is the
smallestni,m such thatSm

ni,m
∈ Dp (see Eqs. 7,8); we then

order the directionsm1,m2, ..., such thatni,m1 ≤ ni,m2
This means, for instance, that sweeping in subdomains on
the outer boundary of the domain will be done first for di-
rections that come from outside.

3.4 Implementation for Unstructured Grids

Implementation of the ADTS method for irregular grids
requires nontrivial domain decomposition (see section 3.2)
and a communication pattern that is much more compli-
cated than for regular grids. We have used the observation
that problems with asynchronous communication are best
implemented on shared memory computers [13], because
each processor can access a global address space without
the participation of other processors, and have implemented
the ADTS scheme using OpenMP, an industry-wide stan-
dard for threads-based shared memory parallelization.

The computational kernel of the code, which contains
the source iteration, was placed in one OpenMP parallel
region and parallelized using the Single Program Multiple
Data (SPMD) approach. That is, we did not use the typi-
cal approach taken with OpenMP of parallelizing individual
loops. An optimized order of sweeps was used to maximize
availability of updated incident fluxes from adjacent sub-
domains. When such incident fluxes are required they are
obtained (updated or not) transparently from global mem-
ory. This may require access to distributed shared memory,
which can have performance implications, as will be dis-
cussed below.

4 Results

We initially implemented our parallel source iteration
algorithm in Fortran 90 on a single IBM Winterhawk-II
node, containing four 375 MHz Power3 processors and 1
GB memory. The code was then moved to an SGI Ori-
gin 2400 with 64 MIPS R12000 400 MHz processors and
16 GB memory. The Origin 2400 is a distributed-shared-
memory machine, with a “first touch” data placement pol-
icy. This means that pages are allocated to memory close to
the processor that runs the code. Therefore, shared arrays
were initialized in parallel to maximize local memory refer-
ences. All the processors initiate their work simultaneously
after a particular processor initializes the input data for oth-
ers. At the end of every iteration a globalL1 relative error
norm is calculated for the scalar fluxes:

E =
‖φn+1

0 − φn
0‖1

‖φn
0‖1

. (15)

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

This is the only serial part of our algorithm, in addition to
the initialization described above. If the global convergence
criterion is satisfied, the program prints out the results and
terminates. Otherwise, all processors continue to perform
transport sweeps until the entire problem converges.

4.1 Model Problem

This problem consist of anX−Y geometry system with
a vacuum boundary. The diskΩ was triangulated by means
of a quasi-uniform mesh of 169,366 triangles and decom-
posed into between 2 and 64 subdomains, depending on
the number processors to be used. Constant values of the
cross sections were used:S(x, y) = 1.0, σt(x, y) = 1.0,
σs(x, y) = 0.5 for all x, y, unless otherwise specified.
An S8 angular quadrature approximation was used, which
spans 40 angles in the plane. The convergence criteria was
that the relative change in the average flux between source
iterations (Eq. 15) not exceed1.0× 10−5 in magnitude.

4.2 Convergence Rate

First, we examine how the asynchronous parallel source
iteration method affects the convergence rate. Figure 1
shows the number of iterations required to converge as a
function of the number of processors, forσs = 0.5 (equal
scattering and absorption) andσs = 0.8 (more scattering
than absorption). Forσs = 0.5 the number of iterations
rises rapidly at first from 16 for the serial calculation, but
then levels off to 33 for the 64-processor parallel calcula-
tion. As expected, the number of iterations is greater for the
optically thin case, and the number of iterations increases at
a slightly greater rate.

The parallel source iteration method involves both the
use of updated incident fluxes from adjacent subdomains
(Eq. 13) and the ordering of transport sweeps to maximize
the availability of the fluxes. We examined the influence of
these two factors on the convergence rate. We modified the
algorithm so that only incident fluxes from adjacent sud-
domains from the previous iteration were available, leaving
only synchronous communication once every iteration. Fig-
ure 2 shows that the synchronous algorithm takes almost
twice as many iterations as does the asynchronous algo-
rithm. The importance of the ordering of transport sweeps
was determined by performing calculations where transport
sweeps were done in the same order in each subdomain,
in contrast to the original algorithm where the ordering is
optimized for each subdomain. The result, indicated in Fig-
ure 2, shows that there is a small increase of only a few iter-
ations when the same ordering of transport sweeps is used.

Clearly, the asynchronous algorithm converges much
faster than the synchronous algorithm, which results from
the use of updated incident fluxes. The fraction of trian-

Procs Optimized dir. Identical dir.

2 0.64 0.34
4 0.66 0.49
8 0.64 0.48

16 0.61 0.47
32 0.57 0.52
64 0.59 0.58

Table 1. Fraction of subdomain interface tri-
angles satisfying ⊗ ≡ ⊕.

gles that lie on subdomain interfaces, require incident fluxes
from adjacent subdomains, and get updated values (⊗ ≡ ⊕
in the notation of Eq. 13) is shown in Table1. Also shown
is the same fraction for the case where an identical ordering
of transport sweeps is used in each subdomain. As many as
66% of triangles satisfy⊗ ≡ ⊕ in the asynchronous case,
whereas there are none in the synchronous case. This re-
sults in the significant increase in the convergence rate of
the asynchronous method seen in Fig. 2. Using an order of
transport sweeps optmized for each subdomain yields more
triangles that satisfy⊗ ≡ ⊕ and therefore increases the con-
vergence rate, but the improvement is modest. Curiously,
for 64 processors, both single and optimized ordering of
transport sweeps yield the same fraction of updated inci-
dent fluxes, while the latter method still converges faster.
Evidently this measure is insufficient, as it doesn’t take into
account the number of dowwind triangles that depend on the
triangle that is receiving fluxes from another subdomain.

4.3 Parallel Speedup

The speedup per iteration of the asynchronous parallel
program is shown in Figure 3, and is defined asSp = ts/tp,
wherets andtp are the execution times per iteration of the
sequential and parallel (usingp processors) programs re-
spectively, averaged over all iterations. The speedup is su-
perlinear, a result of the program data fitting into the 8 MB
L2 cache of the MIPS R12000 processor when it is divided
into more than eight processors. Figure 3 also shows the
speedup for a finer mesh of 677,464 triangles; again, the
speedup becomes superlinear when the data used by each
processor fits into its cache, which occurs here after 48 pro-
cessors.

The overall speedup, given by(Niter,sts)/(Niter,ptp),
whereNiter,s andNiter,p are the number of iterations re-
quired to converge for the serial and parallel calculations
respectively, is shown in Figure 4 for the two mesh sizes.
The decrease in the convergence rate of the parallel pro-
grams offsets to some extent the speedups obtained per iter-
ation. However, the speedup still increases with the number
of processors, even before the cache effects takes over.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Ite
ra

tio
ns

�

Number of Processors

Figure 1. Convergence rates for σs = 0.5(+) and σs = 0.8(×).

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Ite
ra

tio
ns

�

Number of Processors

Figure 2. Convergence rates for asynchronous method with optimized directions (+), identical order
of directions in each subdomain(∗) and for the synchronous method (×).

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

0

20

40

60

80

100

120

140

160

180

200

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
up

�

Number of Processors

Figure 3. Speedup per iteration for 169,366 (+) and 677,464 (×) triangles; linear speedup (–) is also
shown.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
up

�

Number of Processors

Figure 4. Overall speedup for 169,366 (+) and 677,464 (×) triangles; linear speedup (–) is also shown.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

4.4 Scalability of OpenMP

Parallelization with OpenMP is not normally associated
with domain decomposition (seee.g. [14]). The usual ap-
proach is to parallelize individual time-consuming loops,
which can yield poor performance due to Amdahl’s Law
and inefficient placement of data on a distributed shared
memory platform. One soultion to the latter problem is to
dynamically repartition the data [15]. We believe that a bet-
ter approach is to use SPMD parallelization together with
OpenMP, which in our case yields excellent speedup. Max-
imixation of local memory references is ensured by domain
decomposition and parallel initialization of data, together
with SGI’s “first touch” data placement policy. This does re-
quire more code modification than the loop-level approach,
but it is still far easier than a message-passing implementa-
tion.

5 Conclusions

In this paper, we have presented a parallel source iter-
action method for the tranport equation, using spatial do-
main decomposition and an optimized ordering of transport
sweeps. We have observed no significant degradation in the
convergence rates as has been reported [4, 5, 6]. Paralleliza-
tion with OpenMP on a 64-processor SGI Origin 2400 re-
sults in excellent speedups, even superlinear speedups due
to cache effects. We suggest that excellent parallel effi-
ciency is possible in general with OpenMP, provided the
SPMD programming model is used.

Acknowledgements

Calculations were performed on an SGI Origin 2400 at
the University of Alberta, Canada, part of the Multimedia
Advanced Computational Infrastructure (MACI).

References

[1] International Atomic Energy Agency, “Current Status
of Neutron Capture Therapy”, IAEA-TECDOC-1223
(May 2001).

[2] M. Yavuz and E. Larson,“Iterative Methods for Solv-
ing X − Y GeometrySn Problems on Parallel Archi-
tecture Computers”,Nucl. Sci. Eng., 111, 46, (1992).

[3] Y.Y Azmy,“Performance and Performance Modeling
of a Parallel Algorithm for Solving the Neutron Trans-
port Equation”,Journal of Supercomputing, 6, 211
(1992).

[4] R. Mattis and A. Haghighat,“Domain Decomposition
of a Two-DimensionalSn Method” , Nucl. Sci. Eng.,
111, 180, (1992).

[5] S.P. Burns and M.A. Christon, “Spatial Domain-
Based Parallelism in Large-Scale, Participating Me-
dia, Radiative Transport Applications”,Numerical
Heat Transfer, Part B,31, 401 (1997).

[6] J. Goncalves and P.J. Coelho, “Parallelization of the
Discrete Ordinates Method”,Numerical Heat Trans-
fer, Part B,32, 151 (1997).

[7] P. Nowak and M.K. Nemanic, “Radiation Transport
Calculations on Unstructured Grids using a Spatially
Decomposed and Threaded Algorithm”,Proc. ANS
Conf. on Math. and Computation, Reactor Physics
and Environmental Analysis in Nuclear Applications,
379 (1999).

[8] S. Plimpton, B. Hendrickson, S. Burns, W. McLen-
don III, “Parallel Algorithms for Radiation Transport
on Unstructured Grids”,Proc. SuperComputing 2000,
IEEE (2000).

[9] F. E. Khettabi, “Parallel Source Iteration For Solving
X−Y GeometrySn Problems with Unstructured Tri-
angular Mesh”,Proc. Int. Topl. Mtg. Radiation Protec-
tion and Shielding, Nashville, Tennessee, April 19-13,
1998,1, pp. 488-495, American Nuclear Society, La
Grange Park (1998).

[10] F.E. Khettabi and C. Lecot, “Characteristic Meth-
ods for Discretizing the Two-Dimensional Trans-
port Equation on an Unstructured Grid of Triangular
Cells”, Proc. Joint International Conference on Math-
ematical Methods and Supercomputing for Nuclear
Applications, 2, pp. 975-984, American Nuclear So-
ciety, La Grange Park (1997).

[11] A. Pothen, H.D. Simon and K.P. Liou “Partitioning
Sparse Matrices with Eigenvectors Of Graphs”,SIAM
Journal of Matrix Analysis and Applications, 11, 430
(1990).

[12] H.D. Simon,“Partitioning of Unstructured Problems
for Paralle Processing”,Computing Systems in Engi-
neering, 2, 135 (1991).

[13] S.M. Pancake, “Is Parallelism for You?”,Computa-
tional Science and EngineeringVol. 3, No. 2, 18
(Summer, 1996).

[14] J. Hoeflinger, P. Alavilli, T. Jackson, and B. Kuhn,
“Producing Scalable Performance with OpenMP: Ex-
periments with Two CFD Applications”,Parallel
Computing, 27391 (2001).

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

[15] D.S. Nikolopoulos and E. Ayguade, “Scaling Irregu-
lar Parallel Codes with Minimal Programming Effort”,
Proc. SuperComputing 2001(November 2001).

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

A Limited-Global Fault Information Model for Dynamic Routing in
2-D Meshes

�
Zhen Jiang and Jie Wu

Department of Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431�
zjiang, jie� @cse.fau.edu

ABSTRACT
In this paper, a fault-tolerant routing in 2-D meshes with
dynamic faults is provided. It is based on an early work
on minimal routing in 2-D meshes with static faults. Un-
like many traditional models that assume all the nodes
know global fault information, our approach is based on
the concept of limited global fault information. First, a
fault model called faulty block is used in which all faulty
nodes in the system are contained in a set of disjoint faulty
blocks. Then, the information of faulty block needs to be
distributed to a limited number of nodes at the boundary
lines of block to avoid a message entering a detour area.
We study the limited distribution of fault information in a
dynamic network where faults occur during a routing pro-
cess. Our study shows that fault information can be dis-
tributed quickly to help the routing process. In addition,
the performance of routing process degrades gracefully in
such a dynamic system. PCS routing scheme used in this
paper and its experimental results show that certain levels
of fault tolerance can be offered.

KEY WORDS
Dynamic faults, fault tolerance, 2-D meshes, routing,
safety levels

1. Introduction

In a multicomputer system, a collection of processors (also
called nodes) works together to solve large application
problems. These nodes communicate and coordinate their
efforts by sending and receiving messages through the un-
derlying communication network. Thus, the performance
of such a multicomputer system is dependent on the end-
to-end cost of communication mechanisms. Routing is
the process of finding a path from the source node to the
destination node in a given system. Routing in mesh-
connected networks, such as 2-D meshes, has been com-
monly discussed due to the structural regularity for easy
construction and the high potential legibility for variety of
algorithms. Some multicomputers are built based on 2-D
meshes [3, 4, 6, 7].�

This work was supported in part by NSF grant CCR 9900646.

As the number of nodes in a mesh-connected mul-
ticomputer increases, the chance of failure also increases.
The complex nature of networks also makes them vulner-
able to disturbances which can be either deliberate or ac-
cidental. Therefore, the ability to tolerate failure is be-
coming increasingly important, especially in the commu-
nication subsystems. Several studies have been conducted
which achieve fault tolerance by adding (or deleting) ex-
tra components of the system [1, 8]. However, adding and
deleting nodes and/or links require modification of network
topologies which may be expensive and difficult. We focus
here on achieving fault tolerance using the inherent redun-
dancy present in the mesh-connected multicomputer, with-
out adding spare nodes and/or links.

Recently, a routing switching technique known as
pipelined circuit switching(PCS) is developed by Gaughan
and Yalamanichili [2]. Unlike wormhole routing, PCS al-
lows backtracking during the path setup phase. Backtrack-
ing is a key element in providing fault tolerance in a sys-
tem with dynamic faults. However, without fault informa-
tion, routing process may enter a region where all minimal
paths to the destination are blocked by faulty nodes. Thus,
PCS routing needs either detour or backtracking and causes
routing difficulty which will increase routing delay and
cause traffic congestion. The routing process here refers
to the path setup phase. In PCS, the actual message send-
ing occurs after a routing path is set up. Dynamic faults
refer to ones appeared in the set-up phase only.

An optimal routing algorithm using faulty block in-
formation, which is a special form of limited distribution
of fault information, is presented in [10]. Comparing with
other fault information such as a routing table associated
with each node, the update of faulty block information con-
verges quickly. It reduces oscillation update caused by un-
stable information (also called inconsistent information).
First, all faulty nodes are contained in disjointed faulty
blocks by applying a labeling process. Routing is based
on block information distributed at the nodes along the
boundary lines of faulty blocks to avoid routing difficul-
ties. Compared with the routing-table-based routing, this
approach reduces the memory requirement to store fault
information in the whole network. When a disturbance oc-
curs, only those affected nodes need to update fault infor-

1

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

mation. However, the approach in [10] uses a static fault
model; that is, it is assumed that no new fault will occur
during a routing process.

When dynamic faults occur, faulty blocks need to be
reconstructed and their fault information needs to be re-
distributed. In this case, the update of fault information
and the routing process proceed hand-in-hand. During
the converging period, the routing process may experience
more detours with inconsistent information. Most of rout-
ing techniques are not suitable for networks with dynamic
faults. In addition, a good analytical model is lacking while
we resort mostly simulations.

This paper is our first attempt to study the effect of
dynamic faults on routing in 2-D meshes. We provide
a collection and distribution process of fault information
which exhibits desirable properties of self-stabilizing, self-
optimizing, and self-healing. In a 2-D mesh, based on the
extended safety level (a distance vector to closest faulty
blocks along different dimensions), a safe source node can
determine a minimal routing path. A detour may occur only
if new faults occur during the routing process. Unlike a safe
source, a routing message from an unsafe source needs one
or more detours to reach its destination. We propose a fault-
information-based PCS routing which keeps certain levels
of fault-tolerance and adaptivity for any routing from either
a safe source or an unsafe source.

The paper is organized as follow: In Section 2, the
limited-global information model and its relevant proper-
ties are introduced. Some related research work are dis-
cussed. A collection and distribution process of the infor-
mation model is presented in Section 3. In Section 4, a PCS
routing based on fault information is provided. In Section
5, a dynamic fault model for the PCS routing is introduced.
In Section 6, we discuss some important properties in term
of the number of routing detours in 2-D meshes with dy-
namic faults. Section 7 shows simulation results. Section 8
concludes the paper and provides ideas for future research.
Throughout the paper, proofs to theorems are omitted and
they can be found in [5].

2. Preliminaries

2-D meshes. Each node� in a 2-D mesh is labeled as���	�	
��
���
. Two nodes

������
��
���
and

���	��
��
���
are connected

if their addresses differ in one and only one dimension.
Basically, nodes along each dimension are connected as
a linear array. The distance between two nodes� and � ,� � �
 � � , is equal to � ��������� �! "� �#�$���#� � . Assume
node � is the current node,� is the destination node, and% is a neighbor of node� . % is called apreferred neighbor
if
� � %
 � �'& � � �
 � � ; otherwise, it is called aspare neigh-

bor. Respectively, the corresponding connecting directions
are calledpreferred directionandspare direction.

Block fault model. Most existing literatures on fault-
tolerant routing use disjoint rectangular blocks to model
node faults and to avoid routing difficulties in meshes. A

(a) (b) (c)

(5,0)(0,0)

(0,6)

(0,0) (0,0)

faulty node disabled node clean node recovered node

Figure 1. (a) A faulty block consisting of disabled and
faulty nodes. (b) A clean process triggered by the recov-
ery of (5,4). (c) Stabilized faulty blocks after the recovery.

node-labeling scheme that identifies nodes is as follows:

Definition 1: In a 2-D mesh, a non-faulty node is initially
labeled enabled; however, its status is changed to disabled
if there are two or more disabled or faulty neighbors in
different dimensions.

In a 2-D mesh, an enabled node is anadjacent node
of a faulty block if it has one faulty or disabled neighbor
in that faulty block. And its connecting direction to that
faulty or disabled node isblockeddirection of such an ad-
jacent node. Acorner of a faulty block is defined as an
enabled node with two adjacent nodes of that faulty block
in different dimensions [9]; that is, it’s connecting direc-
tion to one is the blocked direction of another. It is noted
that an enabled node can be a corner for more than one
faulty block. Connected disabled and faulty nodes form a
faulty block. In Figure 1 (a), five faults (2,5), (3,6), (4,6),
(5,4), and (5,3) form a rectangle [2:5, 3:6]. In general,(��)'*,+.-/��)'0213
��
)'*4+5-6�
)'021�7

represents a rectangle with
four corners:

����)'*,+8�:9

��
)'*4+;�:9<�
,
����)'*,+8�:9

��
)'021 9=� ,���)'021 9>
��
)'021 9<� , and

���)'021 9>
��
)'*,+?�@9=� . To simplify
the discussion, it is assumed that souce� and destination�
of a routing message are out of any faulty block.

Extended safety level. The extended safety level [10] of
a node in a given 2-D mesh is a 4-tuple: (E, S, W, N),
where E stands for the distance from this node to the closet
faulty block to its east. S, W, and N are defined in a similar
way. To ensure a minimal path from source node, Wu [10]
provided a safe node definition:Assume that source node� : ��AB
CA#� has an extended safety level

��DE
CFG
IHJ
�KL�
and des-

tination node is
��� �
�� � �

, with
� �
�� �$M A

. The source node
is safe (to the routing) if

� �ON D
and

� �EN K
; otherwise,

it is unsafe.If a node is safe, a minimal path is guaranteed
from source

��AB
�A��
to
��� �
�� � �

as long as no new fault occurs
during the routing process.

Faulty-block-information used in minimal routing. A
safe source of a routing message can ensure the existence
of a minimal path. In [10], the notion ofregion of minimal
paths(RMP) is introduced that includes all the intermediate
nodes of minimal paths for a given source and destination
pair. That is, nodes and only nodes in this region are used

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

L3 L4 X

R1 R8 R7

R2 R6

R3 R4 R5
L2

L1

corner

L3 (A & B)

L1 (B)

L1(A)

block B

block A

Y Y

X

corner

(a) (b)

Figure 2. Boundaries of faulty blocks.

to construct a minimal path. The task of routing process
for a minimal path is to ensure that each forwarding node
along the path is inside RMP. Once the boundary of RMP is
known we can construct any minimal path to support fully
adaptive routing.

In [10], Wu presented afaulty-block-information
model and such information is associated with nodes in
the adjacent lines of a faulty block. These lines (P'Q , PSR ,PST , and PVU in Figure 2 (a)) are calledboundariesof that
faulty block. Based on these boundaries, RMP is easy
to derive. Figure 2 (b) shows an example of boundaries
of multiple faulty blocks. The boundaries start from two
corners (NE-corner

���)W0X1 9>
��
)'021 9<� and SW-corner���)'*,+8�J9>
��
)'*,+/�Y9<�
, or NW-corner

����)'*,+ 9>
��
)'021 9<�
and SE-corner

���)W0X1Z�[9

��
)'*4+@�\9<�
) of each faulty block

and go forward along with each direction of] and ^ di-
mensions. Without any other faulty block, the propagation
of boundary information is forwarded node by node in each
direction until it reaches an edge of the mesh. If a boundaryP * intersects with another faulty block, a turn is made to-
wards P * of the second faulty block. Another turn is made
at the corner of the second faulty block to joinP * (see Fig-
ure 2 (b) wherePST of block _ joins PST of block `).

For a message from source� : (0,0) to destination� :
(
���#
��
�

) with
���#
��
� M A

, a construction of RMP boundary
from destination is provided in [10] and its reverse proce-
dure from source is provided as following: If the source��A3
�A��

is safe, RMP is enclosed by two paths, Path A and
Path B (see Figure 3). Faulty blocks inside RMP are ex-
cluded. Starting from source

��AB
CA#�
, Path A is constructed

by going east (positive]) until reaching the line
�bac� �

and then by going north (positive^) to reach destination��� �
�� � �
. A turn from east to north is made if (a) the path

hits a faulty block or (b) it crosses the lower section of
boundaryPdT of a faulty block and the destination is in the
area of e U which is one of regions divided by the bound-
aries of that faulty block (see Figure 2 (a)). After that, a turn
from north to east is made at the NW corner

���)'*,+
��)'021 �
of the faulty block and the process continues. Path B is con-
structed in a similar way. In a regular mesh without faults,
the corresponding RMP is a rectangle

(Af-3� �
CAO-3� � 7
. The

RMP of a safe source� and a destination� in a 2-D mesh

s (0,0)

d (x , y)

X

RMP Path A

Path B
d d

faulty blocks

RMP

Y

Figure 3. A sample RMP.

with multiple faulty blocks is shown in Figure 3.
The above construction of RMP boundaries can be

used to prevent the routing message from moving out of
RMP. In [10], Wu proposed a unicast algorithm based on
the faulty block information for any routing from a safe
source� : ��AB
�A�� to a destination� : ��� �
�� � � with

� �
�� �gM A
.

The safety status of the source is determined from the ex-
tended safety level associated with the source. The routing
starts from a safe source and uses any adaptive minimal
routing until the boundary of any faulty block is met. If
the selection of any preferred neighbor does not affect the
minimal routing, the path isnon-critical; otherwise, it is
critical. In case of a critical path, one of preferred direc-
tions cannot be selected in a minimal routing due to the
effect of faulty blocks. Such a direction is calledpreferred
but detour direction. The selection should be done at cur-
rent node� :

�����	
��
���
based on the relative location of the

destination:h (� is on the left section ofPWQ of any faulty block):
If the destination is in the area ofeji divided by the
boundaries of that faulty block (see in Figure 2 (a)),
the routing message should stay onPWQ until reaching
the intersection ofP'Q and P U (that is, positive] is a
preferred direction and positive^ is a preferred but
detour direction); otherwise, the next hop can be ran-
domly selected.h (� is on the lower section ofP T of any faulty block):
If the destination is in the area ofe;U divided by the
boundaries of that faulty block the routing message
should stay onPST until reaching the intersection ofPdT
and P R (that is, positivê is a preferred direction and
positive] is a preferred but detour direction); other-
wise, the next hop can be randomly selected.

For example, as shown in Figure 2 (b), when the rout-
ing from

��A3
�A#�
meets the lower section ofP T of faulty

block ` , it also meetsP T of faulty block _ . If the des-
tination is not in e U of _ or e U of ` , the routing is still
non-critical and any of two preferred directions (positive] and positivê) can be selected randomly; otherwise,
the routing is critical and the message cannot be forwarded

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

to positive] . In this case, positive] is the preferred but
detour direction and positive^ is the only preferred direc-
tion that can be selected to construct a minimal path.

3. Faulty Block Information

In 2-D meshes, the shape of a faulty block may change by
the occurrence of new faults or by the recovery of nodes
from faulty status to healthy one. To identify the shape
of new faulty blocks and propagate their block informa-
tion along the boundaries, three procedures are used to ex-
change and update related information among neighbors:
block construction, identification process, and boundary
construction. Here we use areactive approachwhere in-
formation update at a node is done only when there are
status changes among its neighbors.

First, a new labeling scheme is proposed as follows:

Definition 2: In a 2-D mesh, if any new fault occurs, Def-
inition 1 is applied. If any node is recovered from faulty
status, it is labeled clean. A disabled node is labeled clean
if it has a clean neighbor and has not two faults in different
dimensions. Once all its neighbors have known its clean
status in the clean process, each clean node is labeled en-
abled. Each enabled node applies Definition 1 until there
is no status change.

Specifically, a recovered node is set toclean. The
change will be propagated to its disabled neighbors and
contribute further changes. In Figure 1 (b), node (5,4) is
recovered from faulty status. First, (5,4) is labeled clean
and it triggers the change of status in its disabled neigh-
bors (4,4) and (5,5) to clean. The procedure continues until
there is no more status change. The stabilized faulty blocks
are shown in Figure 1 (c). It is noted that the clean sta-
tus of (4,4) will trigger the change of status in (4,5) and
(3,4). When (3,5) knows the status changes of (4,5) and
(3,4), it does not change its status to clean since it has two
faulty neighbors in different dimensions. (4,5) changes to
enabled once all its neighbors have known its clean status.
In the next round, it has one faulty neighbor (4,6) and one
disabled neighbor (3,5). And then, this new enabled node
will change to disabled when Definition 1 is applied.

The new enabled/disabled labeling scheme can
quickly identify those non-faulty nodes that may cause
routing difficulty by labeling them disabled. For each oc-
currence of a new fault or a new recovered node, the new
node status can be easily determined through rounds of sta-
tus exchanges among neighbors. Only these affected nodes
update their status. Such a procedure is calledblock con-
struction.

After the block construction incurred by some new
faults, a faulty block may enlarge its size, and even a new
faulty block may appear in the network. On the other hand,
after the block construction incurred by some nodes recov-
ered from faulty status, a faulty block may shrink its size
or be divided into several small faulty blocks. If a corner
of an old faulty block finds its existing condition cannot

SW-corner
(opposite corner)

turn

(a)

NE-corner
(initialization
corner)

Y

X

SW-corner
(opposite corner)

turn

(b)

Y

corner)
(initialization
NE-corner

X

Y
initialization
corner

X
(c)

Figure 4. (a) Identification process activated at NE-corner
and SW-corner. (b) Identified information re-sending. (c)
Exceptions in identifying propagation.

be satisfied, the existing boundaries of such a block is out-
dated. The deletion process starts and will propagate along
those old boundaries. To identify a new faulty block, in-
formation of all the adjacent nodes of this block is identi-
fied by a procedure calledidentification process. For each
new faulty block in the network that needs identification
(if any), it has at least one new corner of this faulty block.
The identification process is activated at such a new cor-
ner. Since the system is distributed and dynamic, no cor-
ner knows if the block construction is completed. Thus,
this procedure starts whenever anew corner is formed.
For each initialization corner, two identification messages
(one clockwise and one counter-clockwise) are initiated
(see Figure 4 (a)). Each message initiated at that corner
C:
����k=
��
kC�

carries partial block information:
����k=
��#k��

and
the blocked direction of the neighbor is also sent. First,
they will be sent to those two neighbors adjacent to the
new block. Such propagation will continue until the mes-
sage traverses all the enabled nodes adjacent to the new
faulty block. The clockwise and counter-clockwise mes-
sages from one corner will reach the opposite corner of that
initialization corner. With the position information of pair
of corners (the initialization corner and its opposite corner),
the new faulty block is identified and the faulty block infor-
mation

(��)'*4+l-#��)'0213
��
)'*4+O-
�#)W0X1�7
is formed at that meet-

ing corners. After that, these two messages will continue
their propagation (see Figure 4 (b)) and carry this identified
faulty block information back to the initialization corner.

To guide the routing process, the faulty block infor-
mation is transferred along the boundary of the new faulty
block from the initialization corner and its opposite cor-
ner when they get the identified information (see in Fig-
ure 2). In our reactive model, if any corner has already
had the new faulty block information, there is no need to
start a new boundary propagation. This propagation may
also incur a deletion of out of date boundaries and update
the boundaries of other faulty blocks. Such a procedure
is calledboundary construction. All these procedures are
shown in Algorithm 1.

Note that each identification message (clockwise /
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Algorithm 1: Block construction and information distribu-
tion

1. Block construction by applying Definition 2.

2. Identification of adjacent nodes and corners.

3. Identification process: (a) Two identification mes-
sages (one clockwise and one counter-clockwise) are
sent along the enabled nodes adjacent to the new block
from a new corner, until they reach the opposite cor-
ner. (b) Partial block information from the initializa-
tion corner is transferred to form faulty block infor-
mation at the opposite corner. (c) The faulty block
information is sent along the adjacent nodes back to
the initialization corner by these two messages.

4. A boundary construction is activated at initialization
corner and its opposite corner that receives consistent
faulty block information.

counter-clockwise) sent from its initialization corner is
expected to make one and only onespecific turn(m A�n
right/left turn) before reaching the opposite corner. If there
is a faulty or disabled neighbor in the forwarding direction,
it is ensured that the new block is not stable. The message
is discarded at current node to avoid generating incorrect
faulty block information. If only one message from the
initialization corner is received at the opposite corner, the
other is discarded in the propagation procedure or has a
wrong turn. That is, the shape of block may not be the ex-
act rectangle indicated by the positions of the initialization
corner and its opposite corner. Normally, a TTL (time-to-
live) is associated with each identification message and the
corresponding message will be discarded once the time ex-
pires (see Figure 4 (c)). After these two messages from
the same initialization corner meet at the opposite corner,
the propagation continues. But this time, the stable block
ensures that they can go back to their initialization corner.

4. Faulty-block-information-based Routing

The PCS routing in [2] needs a detour when its preferred
neighbors are all faulty and needs a backtracking when all
its outward directions have been tried or blocked by faulty
neighbors. The routing based on fault information is an
adaptive routing in 2-D meshes. Like a regular minimal
routing, at each step it tries to forward the message to a
preferred neighbor. The difference is that the selected pre-
ferred neighbor can ensure the remaining path is minimal
in the fault-information-based routing (if there is no occur-
rence of a new fault).

Algorithm 2 shows a fault-information-based PCS
routing from � : �����<
����I� to � : �����#
��#�<� in a 2-D mesh with
dynamic faults. For the current node� :(

�	�3
��
�
) (oa �) with

one incoming direction and three possible outgoing direc-

spare
(along with
block)incoming

preferred but detour

preferred

incoming

preferred

preferred

destinationdestination

(b)

spare

(a)

Figure 5. Routing directions.

Algorithm 2: Fault-information-based PCS routing

1. If the current node� is disabled, backtrack; otherwise,

2. pick an unused outgoing direction with the highest pri-
ority. The address of� and the direction selected is
recorded in the message header.

3. If there is no unused outgoing direction, backtrack.

4. If the message is backtracked to the source, the desti-
nation is unreachable.

tions, the routing selects one of directions as the forward-
ing direction in the priority order of preferred, spare (along
with block), preferred but detour, and incoming directions
(see in Figure 5). Normally, we have the following cases
for intermediate node� : (a) If

���paq� �
or
�
�faq� �

, there
is one preferred direction and two spare directions. (b) If��� oac� �

and
�
� oac� �

, there are two preferred directions
and one spare direction. (c) At a boundary line, if it is criti-
cal, one preferred direction changes to preferred but detour
direction. If it is not critical, there is no preferred but detour
direction.

It is noted that each forwarding direction at a partici-
pant node cannot be used again. Thus, each routing header
in our PCS routing includes destination address and a list
of used-directions for each forwarding node along the path.
This is because that the system is dynamic and the priority
of directions may also change. Theorem 1 ensures the ef-
fectiveness of our fault information model when faults are
recovered in the networks.

Theorem 1: The constructions of the fault recovery do not
affect the optimal routing.

5. Dynamic Fault Model

In general, it is impossible to design an optimal fault-
tolerant routing algorithm when node failure and recovery
can occur dynamically at any time. Under such general dy-
namic failure assumptions, it is not even possible to guar-

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

block information exchanges and
updates (identified, propagated)

rounds
1 2 ...

time

t i

(b)

time

i-1 i i+1

t i+1d d d

step step step step step step step step step

routing decision

boudary construction

identifying construction

block construction

fault detection message sendingmessage
reception

(a)

Figure 6. (a) Actions within a step. (b) Interval� * .
antee an upper bound on the routing distance since no al-
gorithm can predict when and where faults will occur. It is
therefore necessary to impose some failure conditions and
restrictions.

We adopt the following model for activities in a node.
At each step, every node in anrtsur mesh starts with
fault detection of adjacent links and nodes, and then col-
lects and distributes three kinds of fault information: block
information, identifying information, and boundary infor-
mation throughv rounds of exchanges and updates. The
disabled/enabled status propagation, identifying message,
block information updating advance one hop further at each
round. Before the end of each step, based on the fault in-
formation, a routing decision selects a forwarding node to
forward the routing message and, then, the message is sent
to this forwarding node. Therefore, every routing message
advances one hop along with its routing path at each step.
The actions within a step are shown in Figure 6 (a).

To simplify the discussion, it is assumed that any ad-
jacent faults, links and nodes, are detected at fault detec-
tion phase (any faults occur after the fault detection phase
will be detected at the next step). During the update of
fault information, each node can also receive one incoming
message (if any). It is also assumed that the action “mes-
sage receive” occurs right before the “routing decision” as
shown in Figure 6 (a). The model used represents a reac-
tive approach where information update is done only when
there is a change of information of at least one neighbor.

We assume there are at mostw faulty nodes in a 2-
D mesh network, including dynamically generated faults.
Faults x Q , x R , ..., x>y occur at timez Q
 z R
X{4{,{4
 z|y ; respec-
tively, where z *4} Q � z *$a � * (

9 N�~ & w). � * is the in-
terval between two consecutive fault occurrences (see in
Figure 6 (b)). To simplify our discussion, it is assumed that
the fault information updating in the mesh is already stabi-
lized before the occurrence of the next fault and there is no
fault that occurs at the edge of mesh. Based on the prop-
erties discussed in [10], there is no disconnected area in
such a mesh. It means that there is always a path between

�
number of faults in a given����� mesh and

�\�J� ��X� ���4�
fault occurrence where

�����<�=� � ��������� �/�� �
occurrence time of

�X�� �
the interval between two consecutive fault occurrences� �

and
� �,���

; i.e.,
�>�	� � �4����� � ��

start time of a routing process� number of fault occurrences before the routing starts�
distance from source to destination�g� � �
distance from the current node to the destination at

� �¡ � total rounds that the stabilizing block construction
for
�2�

converges¡
¢G£I¤ ¥$¦X§ � ¡ � �¨X¢©£I¤ maximum of all length or width of fault blocksª �
total rounds that the stabilizing identification process
for
� �

converges« � total rounds that the stabilizing boundary construction
for
� �

converges¬
number of rounds of fault block construction and
information distribution at each step

Table 1. List of notations used in the discussion.

the source and the destination. Before a routing message is
initiated at timez , it is assumed that the first­ fault occur-
rences have already occurred; that is,­ aq®O¯�°���± � z³² N z´� .� � ~ �

represents the distance from the current node (�) to
the destination (�) at time z * when x * occurs (

9 Nµ~jN w)
and D represents the distance from source to the destina-
tion. Before the start timez , the routing message is at
its source and

� � ~ �la � a � � � �¶� � �· t� � � �¸� � �
(
~@N ­). For the

~³¹�º
fault occurrence, the block construc-

tion will be stabilized in » 02¼½W¾ steps, the identifying con-
struction will be stabilized in»À¿ ¼½!¾ steps, and the boundary
construction will be stabilized in» k ¼½ ¾ steps. We assume
that � */Á ®O¯>°3� 0 ¼ } ¿ ¼ } k ¼½ � . Therefore, before the next oc-
currence of fault (z *4} Q), the new boundaries incurred by
the fault occurrence atz * are already stabilized. To sim-
plify the discussion, Table 1 summarizes the notation used
in this paper.

6. Detour Analysis

Based on the definition of safe source, the corresponding
PCS routing does not need any detour if there is no new
fault. If a new fault occurs, before the new information
distribution is stabilized, a routing message may use incon-
sistent information and enter a detour area. If the size of a
faulty block is limited by Â)'021 , the number of detours is
limited. Enlarging the interval will increase the number of
optimal steps in it. Since the distance from� to � is limited
in a 2-D mesh, the maximum number of intervals before the
routing message reaches its destination can be reduced by
enlarging the interval; in other words, the number of total
detours is reduced.

Theorem 2: For any fault-information-based routing from
a safe source� to an enabled destination� , if

� � ~ 9<� Á A :Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

emax

ia

X

Y
d

s

Figure 7. The maximum number of detours by a new fault.

Ã �g� � � � � � � ��g� �BÄÅ�2� �Y� � � �>��� � Ä �ÇÆ � � ¡ �3� � ¨ ¢©£I¤ � � � ��g� �BÄÅ�2� �Y�g� � � � � �>��� � ¡ �	� � ¨ ¢G£I¤ � �gÈ � È �
Assume that­f ÊÉ �µ9 is the largest index for fault

such that
� � ­· lÉ �Ë9=� Á A . That is,xÀÌ }�Í2Î Q is the last fault

occurrence that could affect the routing process. Actually,É is the maximum number of intervals in which the routing
message detours at least once.

Theorem 3: For a routing message from a safe source� to
a destination� in an r�sgr 2-D mesh, the routing process
will end in the followingÉ intervals and

É N ®O¯>°3�>± � � bz � z�Ì � Ì
} ² Î RÏ *,Ð Ì � � *��ÅÑ>Ò�*��:Ñ Â)W0X1
� Á A � {

Let us consider several cases for a routing from a safe
source, i.e., an optimal path exists before it starts:h The routing message will get closer to the destination

between two occurrences of consecutive faults as long
as these two faults are separated by more than

Ñ
Ò�* Ñ Â)'021 time steps.h When � * ’s are uniform, i.e.,� *'a.Ó
, É aq®O¯�°���± � ��±?�9<�2� � *��YÑ
Ò�*	�YÑ Â)'021#�'& � :z � z�Ì N � Ó � . ThenÉ N�Ô Õ } kk Î R 02ÖØ×�Ù=Î R�Ú ÖØ×�ÙBÛ .h The maximum number of detours for a message from

a safe source is
��Ò�)W0X1 uÂ)'021
� s Ô Õ } kk Î R 0XÖØ×´Ù�Î R�Ú ÖØ×´ÙBÛ .

Theorem 2 shows the maximum number of detours
in each interval for a routing message from a safe source.
Based on this, we get an upper bound of the maximum
number of detours for such a routing message in Theorem
3. The following theorem extends the above result for any
routing message including the one from an unsafe source
(see in Figure 8).

Theorem 4: For a routing message from a source� to a
destination� in an rÜsÝr 2-D mesh, if there is a routing

i+1 f

if

original path at starting time t

Y
d

Y

s

d

s

X X

Figure 8. The maximum number of detours for a routing
with an unsafe source.

0

0.005

0.01

0.015

0.02

0.025

20 40 60 80 100120140160180200

p
e

rc
e

n
t
o

f
u

n
sa

fe
 s

o
u

rc
e

Þ
number of faults

0

1

2

3

4

5

6

7

8

20 40 60 80 100120140160180200

m
a

xi
m

u
m

 o
f
a

ll
le

n
g

th
 o

r
w

id
th

number of faults

0

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200

n
u

m
b

e
r

o
f

ro
u

n
d

sß

number of faults

block construction
identifying construction (x3)
boundary construction (x15)

total(x15)

(a) (b)

(c)

Figure 9.
Ò�*

, à * , Ó2* , Â * , and
Ò�* Ýà * Ó2* in a

9ÀA#A s 9ÀA#A mesh
with at most 200 faults (intervals).

path of lengthP at start timez , the routing process will end
in the followingá intervals and

á N ®O¯�°B�>± � PÝ uz � z�Ì � Ì
} ² Î RÏ *,Ð Ì � � *?�ÅÑ>Ò�*?�ÅÑ Â)'021
� Á A � {

The probability of the maximum number of detours in a
routing is no more thanÌ }©â=Î Qã*4Ð Ì � 9r R �I{

7. Simulation

A simulation has been conducted on a
9=A
A s 9ÀA
A mesh to

test the estimated maximum number of detours using the
PCS routing based on fault information.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

¬
maximum number of detours average detours
analysis experiment /message
results results

(S) (G) (S) (G) (W) (S) (G) (W)
200 42 177 24 48 184 0.066 0.067 0.508
110 42 177 24 48 168 0.068 0.069 0.593
30 42 177 32 78 175 0.132 0.134 0.520
7 42 177 32 78 173 0.136 0.139 0.511
1 42 177 42 85 158 0.202 0.231 0.604

Table 2. Comparison of the maximum number of detours
among routing from a safe source (S) (or from an unsafe
source (G)) with fault information and routing without fault
information (W).

We randomly generate faults, source and destination.
Figure 9 (a) shows that only few source nodes are unsafe. It
means that almost all the routings fall under the cases dis-
cussed in Theorem 3. From experimental results shown in
Figure 9 (b),Â)'021 aåä

. Figure 9 (c) shows the number of
rounds needed for a new block construction and its infor-
mation distribution. From experimental result,

Ò�)'021Laæä
and

®O¯>°B��Ò�* [à * Ó2* � aµ9
9=A .
Table 2 shows the maximum number of detours of the

routing with fault information at different information dis-
tribution speed (v a 200, 110, 30, 7, and 1) in a 100s 100
2-D mesh with up to 200 dynamic faults when� */aç9
9=A

.
(S) is the maximum number of detours for routing from
safe source, (G) is for routing from unsafe source, and (W)
is for routing without fault information. We make the fol-
lowing observations from the comparison shown in Table 2.h The analytical result on the maximum number of de-

tours is rather accurate as an upper bound.h The experimental results of PCS routing using fault
information are lower than those of analytical results.
It is because that the worst fault configuration is diffi-
cult to occur when faulty nodes and source and desti-
nation pair are all randomly generated. Even when the
worst case occurs, based on Theorem 4, the probabil-
ity of the maximum number of detours is very small.h Based on different requirements, we can adopt dif-
ferent information distribution speeds. If we can ac-
cept several more detours, the best choice is to selectv M ®O¯�°���Ò�* � . It does not need a fast information
distribution. If the propagation of fault information is
processed as the same speed as transmission of routing
message (v aæ9

), although it is the worst case of all,
the upper bound of the maximum number of detours
is still accurate.

In summary, the experimental results of routing algo-
rithm using fault information are close to those analytical
results, even when the routing starts from an unsafe source.
As an upper bound of the maximum number of detours, the
analytical results are accurate.

8. Conclusions

We have studied an upper bound of the maximum number
of detours in a 2D mesh with dynamic faults using fault-
tolerant routing algorithm based on limited global informa-
tion. The concept of fault information associated with each
node at the boundary lines of faulty blocks has been used
to represent limited global information. Our study shows
that such limited global information can be collected and
distributed quickly to help the routing process. Simulation
results show the accuracy of our analytical upper bound of
detour number. Applying this approach to other fault mod-
els are interesting problems for future research.

References

[1] S. Dutt and J. P. Hayes. Some practical issues in the
design of fault-tolerant multiprocessors.IEEE Trans.
on Computers. May 1992, 588-598.

[2] P. T. Gaughan and S. Yalamanchili. A family of fault-
tolerant routing protocols for direct multiprocessor
networks. IEEE Transactions on Parallel and Dis-
tributed Systems. 6, (5), May, 1995, 482-497.

[3] INTEL. A Touchstone DELTA System Description.
Intel Corp., Santa Clara, CA, 1990.

[4] INTEL. Paragon XP/S Product Overview. Intel
Corp., Santa Clara, CA, 1991.

[5] Z. Jiang and J. Wu. Dynamic routing in 2-d meshes.
TR-CSE-02-01, Dept. of Computer Science and En-
gineering, Florida Atlantic University.

[6] S. L. Lillevik. The touchstone 30 gigaflop delta proto-
type.Proc. of the 6th Distributed Memory Computing
Conference, pages 671–677, 1991.

[7] C. L. Seitz. The architecture and programming of the
ametek series 2010 multi computer.Proc. of the 3rd
Conference on Hyperucbe Concurrent Computers an
d Applications, pages 176–182, 1988.

[8] N. F. Tzeng and G. Lin. Maximum reconfiguration
of 2-d mesh systems with faults.Proc. of 1996 In-
ternational Conference on Parallel Processing. 1996,
77-84.

[9] J. Wu. A distributed formation of orthogonal convex
polygons in mesh-connected multicomputers.Proc.
of International Parallel and Distributed Processing
Symposium. April, 2001.

[10] J. Wu. Fault-tolerant adaptive and minimal routing
in mesh-connected multicomputers using extended
safety levels. IEEE Trans. Parallel and Distributed
Systems. 2, (11), Feb., 2000, 149-159.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

