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Abstract

The hybrid memory model of clusters of multiprocessors
raises two issues: programming model and performance.
Many parallel programs have been written by using the
MPI standard. To evaluate the pertinence of hybrid models
for existing MPI codes, we compare a unified model (MPI)
and a hybrid one (OpenMP fine grain parallelization after
profiling) for the NAS 2.3 benchmarks on two IBM SP sys-
tems. The superiority of one model depends on 1) the level
of shared memory model parallelization, 2) the communi-
cation patterns and 3) the memory access patterns. The
relative speeds of the main architecture components (CPU,
memory, and network) are of tremendous importance for
selecting one model. With the used hybrid model, our re-
sults show that a unified MPI approach is better for most of
the benchmarks. The hybrid approach becomes better only
when fast processors make the communication performance
significant and the level of parallelization is sufficient.

1 Introduction

Some primary supercomputer manufacturers like IBM
and Compaq use CLUsters of MUItiProcessors (CLUMP)
to provide scalable high performance computers. The fu-
ture ASCI White machine corresponds to this architecture
with 512 16-way SMP nodes. CLUMPs may use differ-
ent memory models for the interconnection of the SMP
nodes: NUMA or Message-Passing. The SGI Origin com-
puters use the NUMA approach as well as the Convex Ex-
emplar ones. The IBM SPs and the Compaq SC Clusters
use message-passing. In this paper, we focus on CLUMPs
with a hybrid memory model (shared memory inside nodes
and message passing between nodes) at the hardware level.
Two main issues should be addressed for selecting a pro-
gramming model: the ease of use and performance.

First, we must choose between a unified programming
model or a hybrid one. In the unified programming models,
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the programmer uses a single API to describe the communi-
cations inside the multiprocessor nodes and between them.
All the “message passing” or DSM systems belong to this
category. The hybrid memory models mix shared memory
inside the multiprocessor and message passing between the
nodes. MPI+OpenMP, MPI+threads are two hybrid models.
Because the hybrid programming models require managing
two different memory models, they are much more complex
for the programmer. Also, many existing applications use a
MPI implementation. For these applications, the relevance
of the hybrid programming models must be carefully exam-
ined because, as we will demonstrate, even optimized hy-
brid codes may provide insignificant performance improve-
ment compared to the original MPI version.

The second issue is performance. It depends on at least
three parameters: a) the sharing of communication support
(memory system and network interface) between the pro-
cessors for the unified model i.e. how the per processor
latency and bandwidth evolve when several processors use
a same network interface (and protocol), b) the degree of
shared memory parallelism for the hybrid model and c) the
speed-up on the parallel section for both models that can be
different because loop nests may be executed in a different
way.

Section 2 presents the programming models and the
methodology. Section 3 compares the performance of MPI
unified model and the MPI+ OpenMP hybrid model for
the NAS 2.3 Benchmarks. We present detailed results for
different cluster sizes and data set sizes (CLASS A and
CLASS B) in section 4. Section 5 presents related works.
Finally, section 6 concludes.

2 Programming models and methodology

In this paper, we focus on existing MPI programs that
have been developed for traditional parallel machines. Be-
cause most of the manufacturers provide extended versions
of their communication library for clusters of multiproces-
sors, existing MPI codes can be directly used with a unified
MPI model. The alternative is mixing MPI with a shared
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memory model such as OpenMP. In that case, different pos-
sibilities exist, which must be compared according to the
performance and programming effort trade-off.

2.1 Programming efforts for mixing MPI +
OpenMP

2.1.1 Fine-grain parallelization

From an existing MPI code, the simplest approach is the in-
cremental one: it consists in OpenMP parallelization of the
loop nests in the computation part of the MPI code. This ap-
proach is also called OpenMP fine-grain or loop level par-
allelization. Several options can be used according to 1) the
programming effort and 2) the choice of the loop nests to
parallelize.

Several levels of programming effort can be used. First
possibility consists in parallelizing loop nests in the compu-
tation part of the MPI code without any manual optimiza-
tion. Only the correctness of the parallel version versus
the sequential version semantic is checked. But the incre-
mental approach can be significantly improved by applying
several manual optimizations (loop permutation, loop ex-
change, use of temporary variables). These optimizations
are required 1) to transform non parallel loop nests into par-
allel ones and 2) to improve the parallel efficiency by avoid-
ing false sharing or reducing the number of synchronization
points (critical sections, barriers).

Another issue is the choice of the loop nests to paral-
lelize. One option is to parallelize all loop nests. This op-
tion has two drawbacks: it increases the programming effort
and the parallelization of loop nests that doesn’t contribute
significantly to the global execution time can be counter-
productive. The alternative consists in selecting by profil-
ing the loop nests that contribute significantly to the global
execution time. In this work, we have selected the loops to
parallelize according to the framework shown in figure 1.
The complete description of intra-node parallelization pro-
cess for the NAS parallel benchmarks is described in [1].

Execute
witha

profiler
Build the
calling

graph

Check
semantic
and

speedup

Correct
MPI+OpenMP!
code for SMP

nodes

Select loop to
parallelize
and insert
directives

Correct

for SMP nodes

False or
Slow down

Remove or
refine
parallelization

Figure 1. The parallelization framework

2.1.2 Coarse-grain parallelization

Instead of applying a two level parallelization (process level
and loop level), another currently investigated approach is
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the coarse-grain OpenMP SPMD parallelization. In this ap-
proach, OpenMP is still used to take advantage of the shared
memory inside the SMP nodes but a SPMD programming
style is used instead of the traditional shared memory mul-
tithread approach. In this mode, OpenMP is used to spawn
N threads in the main program, having each thread act sim-
ilarly to a MPI process. The OpenMP Parallel directive
is used at the outermost level of the program. The prin-
ciple is to spawn the threads just after the spawn of the
MPI processes (some initializations may separate the two
spawns). As for the message passing SPMD approach, the
programmer must take care of several issues: array distri-
bution among threads, work distribution among threads and
coordination between threads. Since the array distribution
is done assuming a shared memory, the distribution of the
arrays only concerns the attribution of different array re-
gions to the different running threads. For maximum per-
formance, these regions should not overlap for write ref-
erences. The work distribution is made according to the
array distribution. Typically, the OpenMP DO directive is
not used for distributing the loop iterations among threads.
Instead, the programmer inserts some calculations of the
loop boundaries that depends on the thread number. Co-
ordinating the threads involves managing critical sections
(I/0, MPI calls) using either OpenMP directives like Mas -
ter or thread library calls like omp_get_thread.-num ()
to guard conditional statements. Few results have been pub-
lished on the coarse-grain mixed OpenMP+MPI paralleliza-
tion.

In this paper, we only consider the fine grain incremental
approach including manual optimizations and profiling to
choice the loop nests to parallelize. The comparison results
between MPI and MPI+OpenMP performance presented in
this paper are only valid for this approach.

2.2 MPI versus MPI+OpenMP

MPI The MPI processes within nodes communicates
through the memory (MP-SHARED-MEMORY option on
the IBM SP) without using the network interface. The user
space mode has been used for highest possible performance.
With this model, existing MPI codes run without modifica-
tion (except for time measurements).

MPI+OpenMP Parallelizing an application for the
SPMD MPI paradigm often produces a program with the
typical layout presented in the left part of figure 2. It cor-
responds to the parallelization for a cluster of uniprocessor
nodes, where a MPI process is allocated on each node. The
right part shows how the computation part of the MPI pro-
cess is split into threads by using OpenMP directives. The
number of threads corresponds to the number of CPUs in
each node. In Figure 2, P is the part of MPI code that can-
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Figure 2. Parallelizing a MPI code with
OpenMP by using the fine grain approach:
the computation part of the MPI code on a
node is parallelized with OpenMP directives.

not be parallelized with OpenMP and Pn is the OpenMP
parallel part.

2.3 IBM SP systems

Two IBM SP systems were used for the experiments be-
cause they exhibit two different balances between the per-
formance of the main components (CPU, Memory, Net-
work) performance. The first system gathers 32 Winter-
Hawk II (WH2) multiprocessors with 4 Power3+ CPUs per
node running at 375 MHz. Memory system for these nodes
is based on a bus with a 1.6 GB/s maximum bandwidth.
The second system connects 8 NightHawk I (NH1) mul-
tiprocessors based on Power3 CPUs running at 222 MHz.
Each NH1 multiprocessor provides a theoretical 14.2 GB/s
peak memory bandwidth under specific assumptions (mem-
ory bank population). The Power3 CPU has a 64 KB data
cache. The unified L2 cache sizes are respectively 8 MB
(WH2 nodes) and 4 MB (NH1 nodes) per CPU.

The multi-stage interconnection network is the same for
both SP systems. Each multiprocessor node has one net-
work interface. The maximum per node network band-
width is 150-MB/sec unidirectional and 300-MB/sec bidi-
rectional.

The SP software environment includes the AIX 4.3
operating system, the XLF 6.1 Fortran compiler that in-
cludes OpenMP directives and the PPE 2.4 Parallel Envi-
ronment (intra-node MPI communications use the shared
memory). The following compiler options have been used:
-O3 -garch=pwr3 -qtune=pw3 -qcache=auto for MPI. The
Power3 microprocessor options allow the use of prefetch
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instructions. The -qcache=auto option lets the compiler de-
cides whether optimizing or not according to the features of
memory hierarchy. For OpenMP, the following options are
needed: -qsmp=noauto:schedule=static. It means that the
compiler must not parallelize automatically, but obey the
directives (OpenMP or other ones). The scheduling option
indicates how the loop iterations must be distributed among
the different threads. The static option without argument
means a block distribution with a block size of I/n, where
I is the number of loop iterations and n is the number of
parallel threads that will run concurrently.

Table 1 details the bidirectional communication perfor-
mance (asynchronous echo test) with WH2 nodes. Note that
no compiler optimizations were used for these measures.

Uniprocessor 4-way node 4-way node
External comm. Internal comm.
Bandwidth 193 MB/s 49 MB/s 360 MB/s (1 comm.)
(per CPU) 174 Mo/s (2 comm.)
Latency 17 us 37 us 7.8 s (1 comm.)
8.4 us (2 comm.)

Table 1. Communication performance for bidi-
rectional point to point tests (1 comm. means
that only two processors are communicating.
2 comm. means that two couples of proces-
sors are communicating simultaneously).

Table 1 shows that each CPU can use 1/4 of the maxi-
mum bandwidth delivered by the network board. The mea-
sured standard deviation is very low. It is lower than 5% for
the per processor communication bandwidth when 4 CPUs
from one node communicate with 4 CPUs of another node
(extended echo test for clusters of SMP nodes). For this
communication scheme, each CPU experiences a latency
of 37 ps. For a given number of small messages to send
from a node, the total communication time is thus two times
smaller with 4 CPUs per node than with only one. The
reason is the overlap between the computation parts of the
communications. The internal communication performance
is far greater than the external one. Each node has a bus
between the CPUs and the memory. This is why the band-
width decreases by a half for two simultaneous communi-
cations within the SMP node.

2.4 Using SMP nodes

2.4.1 Scalability of the NAS benchmarks with 1-way
nodes

Before examinig the scalability of the NAS benchmarks
with the two different memory models on clusters of multi-
processors, we present some background results about their
scalability on a cluster of uniprocessors. The behaviour of
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Figure 3. Speedup for the NAS benchmarks with WH2 nodes. The left part corresponds to Class A

and the right part to Class B.

the NAS benchmark highly depends on the balance between
the main components of the parallel architectures. In [2]
most of the Class A benchmarks except IS and FT have a
linear speedup up to 32 processors on recent architectures.
The SGI Origin even provides superlinear speedup for some
benchmarks. The figure 3 presents the speedup of the Class
A and class B benchmarks for the SP3 with WH2 nodes.
The observed speedups, which depend on the communica-
tion/computation ratio, are sensitive to the dataset sizes, as
shown by CG and LU (sub-linear for Class A and super-
linear for Class B for 32 nodes). Previous results avail-
able on the NAS Benchmark Web page generally show sub-
linear speedups for most of the computers. [2] presents a
deep analysis of the reasons behind the different behaviours
of the NAS benchmarks on different machines. The main
parameters of the scalability are the sequential node archi-
tecture and the performance of the communication system.
The authors demonstrate that although the SGI Origine has
a relatively low communication efficiency on the NAS com-
munication patterns, some superlinear speedups are achiev-
able because of the node architecture (cache, memory sys-
tem).

2.4.2 1-way nodes versus 4-way nodes

Before going into details of the performance comparison,
we want to confirm the intuition that sharing the memory
system and network interface makes a cluster of SMP nodes
less efficient than a cluster of uniprocessor nodes using the
same number of CPUs. On the SP system with 32 WH2
nodes, we have compared the execution times of class A
and class B MPI benchmarks when using the same num-
ber of CPUs, with either 1-way nodes or 4-way nodes. The
comparison have thus been done with 8, 16 and 32 CPUs.
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Figure 4. Ratio of the MPI execution time with
1-way WH2 nodes over the MPI execution time
with 4-way nodes according to the number of
CPUs for the class A and class B benchmarks.
The values are less than 1 when 1-way nodes
are better.

Results are shown in figure 4. The figure shows that the ra-
tio between clusters of 1-way nodes and clusters of 4-way
nodes is always less than 1 for any benchmark and any num-
ber of CPUs. Performance ratio clearly depends on the ap-
plication. For FT, the gap is accentuated because this bench-
mark uses global communications, which are presently not
highly optimized on the SP systems. The results of the com-
parison confirms the ones presented in [5] where the authors
claim that a cluster of uniprocessors can be faster that a clus-
ter of multiprocessors. The detailed comparison of these
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two types of clusters is out of the scope of this paper, which
aims on comparing programming models. More, compar-
ing performance according to the number of CPUs is very
debatable according to the cost issues and the current trends
in parallel architectures. Because of the increasing gap be-
tween CPU performance and DRAM performance, the tech-
nological trends are towards larger SMP nodes (NH2 nodes
of the IBM SP use 16-way nodes and the future SP4 systems
will have 32-way nodes) built as clusters of smaller SMP
nodes. This is why we only consider performance of SMP
nodes in the rest of the paper. 4-way nodes are the largest
nodes that can be used to compare MPI and MPI+OpenMP
on the two SP systems that were used.

2.5 Methodology

We first applied the incremental approach to the orig-
inal MPI NPB-2.3 benchmarks to get the hybrid version.
The NAS benchmarks have not been tuned specifically to
take advantage of the memory hierarchy of the Power3 for
both models. So performance results do not give the highest
possible value for these codes. However, we try to be fair
in comparing codes with quite equivalent optimization lev-
els. Then, the execution time have been decomposed into
computation and communication times. For that, all bench-
marks have been instrumented with time measurements.
Timings are accumulated across all nodes and divided by
the number of nodes to give mean values per processor. The
communication time includes the communication calls and
the synchronization procedures (Wait).

During the experiments on the IBM platforms and up
to now, no software was available to access the hardware
performance counters of the Power3 on the IBM SP. So all
interpretations of the measured results are based on the tim-
ing measurements. We have taken care to limit the inter-
pretation to the clearly apparent phenomena. A previous
study has been done and published [3] for a cluster of 64 2-
way Pentium-II nodes. On this platform, we had access to
the hardware performance counters and we could provide a
deeper analysis.

3 Overall comparison between MPI and
MPI+OpenMP

Figure 5 presents the ratio between the MPI execution
time and the MPI+OpenMP execution time according to the
number of 4-way nodes for each class of benchmarks (A or
B) and each type of SP nodes (WH2 and NH1). For BT
and SP, which use a square number of processes, we only
use the number of nodes (1, 4 and 16) that allows a direct
comparison with the other benchmarks, omitting the 9-node
configuration. A ratio less than 1 means that the unified MPI
version is more efficient than the hybrid version.
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The comparison results are clearly application-
dependent. Whatever nodes and data sets are used, the
unified MPI model is always better for LU, MG, BT
and SP. The advantage is spectacular with LU, for which
unified MPI is always more than 2 times more efficient
than MPI+OpenMP. For CG and FT, the advantage of one
model depends on the data set size, on the type of nodes
and also on the number of nodes. For NH1 nodes and class
A, MPI shows better performance for CG and FT for any
number of nodes. On the opposite, the hybrid model is
always better for FT with WH2 nodes (classes A and B)
and for class B (WH2 and NH1 nodes). It is always better
for CG with WH2 nodes and class B. The advantage of one
model can depend on the number of nodes: for CG and
the WH2-class A and NH1-class B configurations, MPI is
better for a small number of nodes and MPI+OpenMP for a
larger number of nodes. In both case, the threshold is low
(respectively for 2 and 8 nodes).

The results are quite similar for the classes A and B,
but they are slightly more favorable to the hybrid model for
the class B. The results are also slightly more favorable to
the hybrid model when using WH2 nodes instead of NH1
nodes.

These results show that the relative performance of each
model depends on the application, the dataset size and
the features of the different components of the architecture
(CPU, Memory system, Interconnection system).

4 Understanding the performance results

To explain the results of the previous section, we have
decomposed the execution time into computation and com-
munication times. According to Figure 2, we have further
decomposed the computation time into S+P and Pn, where
S, P and Pn are respectively the sequential time, the MPI
parallel time (that cannot be parallelized with OpenMP) and
the computation time that can be parallelized with OpenMP.

4.1 Amdahl’s law for the hybrid model

For constant size problems, when using the MPI unified
model with N 4-way nodes, 4N CPUs will run concurrently
all the code parts except the sequential and the communica-
tion parts. For the hybrid model with N 4-way nodes, only
the Pn part of the program can be accelerated.

Figure 6 presents the Pn execution time/total execution
time ratio according to the number of 1-way nodes to evalu-
ate the part of the execution time that can effectively benefit
from the OpenMP parallelization on SMP nodes. The re-
sults correspond to Class A and Class B benchmarks.

Clearly, the time spent on the sequential sections and
the MPI parallel sections that cannot be parallelized with
OpenMP and the communication time limit the fraction of
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Figure 5. Ratio of the MPI execution time over the MPI+OpenMP execution time according to the
number of 4-way nodes. The values are less than 1 when MPI is better. The top diagrams correspond
to WH2 nodes, with class A (left) and class B (left). The bottom diagrams correspond to NH1 nodes.
For the NH1 nodes and class B, some measures are missing.

the overall code that can be accelerated with an OpenMP
parallelization. This application of Amdahl’s law is more
significant for the Class A than for the Class B, for which
the communication impact is less significant. Its impact is
more significant with the most powerful WH2 nodes. For
class A and WH2 nodes, CG has the worst behavior, the
Pn fraction going down to 25%. Pn fraction decreases from
100% (CG, FT) or 80% (LU, MG) down to 50 or 70% ac-
cording to the benchmark and the class.

These results are relevant considering the original as-
sumption that we use OpenMP to parallelize existing MPI
applications. Also, we should state that a better paralleliza-
tion could be achieved for some benchmarks like LU us-
ing a stronger parallelization effort, but this no longer cor-
responds to the incremental approach of parallelizing loop
nests, which is the context of this paper.
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4.2 Communication and Computation times

To explain why the hybrid model performs better on
some benchmarks and SP configurations, we have decom-
posed the execution time into computation and communi-
cation times. Summing separately the computation times
and communication times across all CPUs make easier the
presentation of the results. With this assumption, a per-
fect speedup would give the same value whatever number
of CPUs is used.

Class A results with WH2 nodes Figure 7 shows the re-
sult for CG, FT, LU and MG in class A with WH2 nodes.
Comparing the left and right scales for each benchmark in-
dicates the relative contribution of the communication time
on the overall execution time.

For all benchmarks except LU, MPI communication

H'FF

COMPUTER
SOCIETY



Pn exec.time/totalexec.
time

WH2 nodes

(D1 m20408mM16 @32

0.8 -
0.6
0.4
0.2

0 T T
cg-A cg-B ft-A

ft-B lu-A lu-B mg-A

mg-B

Pn exec. time/ total exec.
time

NH1 nodes

1
0.8
0.6
0.4
0.2
0-
cg-A cg-B ft-A ft-B Iu-A Iu-B mg-A mg-B

Figure 6. Fraction of the execution time that can be accelerated with OpenMP on clusters of 1-way
nodes according to the number of nodes for Class A and B benchmarks.
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times are larger than for MPI+OpenMP. The difference in-
creases significantly from 4 nodes. To explain this differ-
ence we should state that the two models use different com-
munication patterns for the same number of CPUs. With
N 4-way nodes, there are communications between 4N pro-
cesses for the MPI model opposed to communications be-
tween N processes for the MPI+OpenMP model. For con-
stant size problems, Won et al. [2] have shown for the NAS
benchmarks that message size generally decreases when the
number of nodes increases, but the number of messages
sent and received by each node is likely to increase as more
nodes lead to more complicated communication patterns.

These communication patterns and performance (latency
and bandwidth) explain the behavior of CG. Figure 8
presents the main communication patterns for CG when us-
ing 2, 4, 8 and 16 processors. The small white boxes are
for the processors. The grey rectangles correspond to the
mapping of communications on 4-way nodes. The external
communications are between the grey boxes. In each part
of the figure, communications are decomposed into small
and large messages, with the number of each type (num-
ber * 64-bit words). For CG, the long messages dominates
the communication time. When increasing the number of
processes, CG exchanges more long messages but the mes-
sages are shorter. As shown in table 1, the bandwidth when
using a single MPI process per node is similar to the aggre-
gate bandwidth when using 4 MPI processes per node. So,
only the number of long messages gives advantage to the
MPI+OpenMP.
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i I T = <
S 832% ] - 832+
8- 416 * 3500 —— 416 * 3500
! 3
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Figure 8. Communication patterns for CG us-
ing 2, 4, 8 and 16 processors.

The comparison of the communication time for LU gives
the opposite result. The unified MPI approach provides a
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lower communication time than the hybrid approach. Note
that the communication time also encompasses the synchro-
nization of the running processes. In the original code, there
is no way to separate the communication and the synchro-
nization times. LU uses many more small (< 1 KB) mes-
sages with blocking communication calls than large mes-
sages with asynchronous communication calls. Only con-
sidering the extended echo test (for cluster of multiproces-
sors) for synchronous communications cannot explain the
opposite behavior of LU compared to CG. Since 1) the
communication latency for the four processes inside a SMP
node (unified approach) is two times higher (71 us for 64
processes) than the communication latency (30 us for 16
processes) for a single process node (hybrid approach) and
2) the communication time for the hybrid approach (30 us)
stays close to the communication time (22 ps) for a void
message (the latency is the dominant factor) although the
hybrid approach uses larger messages (2 times) than the uni-
fied approach, the communication pattern should give the
advantage to the hybrid approach. The opposite result sug-
gests that the synchronization time is higher for the hybrid
approach than for the unified one.

For all benchmarks, the MPI computation times are less
than the MPI+OpenMP ones. The difference is relatively
small for FT and CG. For MG, it becomes significant for
a large number of nodes. For LU, the MPI computation
time is more than two times smaller than the MPI+OpenMP
one. Three factors contribute to the difference in computa-
tion time between the two versions. First one is the Am-
dahl’s law on the OpenMP parallel part that was mentioned
in the previous section. Second one is the data layout, which
may be different when a process is split into 4 threads by
an OpenMP parallelization or when there are 4 MPI pro-
cesses within a node. This difference impacts on the cache
behaviour, specially when MPI programming allows to ex-
press multi-dimensional blocking. A third factor is the over-
head of thread management in the OpenMP version. Next
section on “memory access patterns” and parallel efficiency
on the OpenMP parallel part will give more information to
understand the large difference on LU computation times
between the two versions.

Combining computation and communication values ex-
plain the overall results. The MPI approach with LU, which
has both better computation and communication perfor-
mance, outperforms the hybrid approach. For MG, the com-
putation advantage of MPI always compensates the commu-
nication disadvantage. For CG, the computation advantage
of MPI compensates the communication disadvantage only
for a small number of nodes.

For FT, communication disadvantage of the MPI ap-
proach associated with the more complicated all to all”
communication patterns leads to better performance with
the hybrid approach. As previously mentioned, the global
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communications on SP3 systems are not optimized with
SMP nodes.

Other configurations For LU and MG, the decomposi-
tion of the execution time gives very similar results for the 3
other configurations: WH2-class B, NH1-class A and NH1-
class B.

We present now for each configuration the time decom-
position of CG (figure 9). Like FT, CG is a benchmark for
which the best programming model depends on the configu-
ration, the dataset size and the number of nodes. For class A
with WH2 nodes, as previously explained, the computation
advantage of MPI compensates the communication disad-
vantage up to 4 nodes, but not for a larger number of nodes.
With NH1 nodes, the computation for both models are
larger than with WH2 nodes (according to respective clock
frequency) and the communication time are also slightly
larger: the situation is similar, except that MPI keeps advan-
tage until 8 nodes, but measures with 16 NH1 nodes would
give advantage to the hybrid model. For class B, the clock
frequency advantage of WH2 nodes only appears for 4 or 8
nodes, probably because some cache effects become signif-
icant. For less nodes, the frequency advantage is counter-
balanced by the worse performance of the memory system
(bus versus crossbar). With NH1 nodes, the gap between the
MPI communication time and the MPI+OpenMP commu-
nication time increases quickly and only the configuration
with one node shows an advantage for the MPI model. Re-
member that the communication time includes the synchro-
nization time. We have no clear explanation for the signif-
icant difference in MPI communication times between the
two hardware systems for the same number of nodes. One
reason might be that the communication time encompasses
a CPU part and a Network Interface Communication part.
In that case, slower CPUs would lead to larger communica-
tion times. Unfortunately, no hardware monitoring counters
are available on the SP systems. They would be needed to
precisely examine the behaviour of the memory hierarchy
for each hardware configuration and benchmark class.

4.3 Memory access patterns

The Amdahl’s law is not sufficient to explain the differ-
ence of computation times between the two models. As
for the communication patterns, the memory access pat-
terns are different for the two models. To go further, we
examine the parallel efficiency, which is defined as the mea-
sured speedup divided by the number of CPUs, on the Pn
part of the computation (part that can be parallelized with
OpenMP). Note that Pn part corresponds to the same code
for both models. However loop nests are executed differ-
ently by each model. Figure 10 shows the parallel efficiency
on the Pn part for the class A and class B benchmarks with
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WH2 nodes. FT and MG exhibits similar behavior: the par-
allel efficiency is approximately the same for the two ap-
proaches. For FT, it increases with the number of nodes
for small dataset sizes, which correspond to a better use of
caches or remains constant if the dataset size is too large
for the cache hierarchy. For MG, the parallel efficiency in-
creases when the number of nodes increases above a thresh-
old. For CG and LU, the MPI version has better parallel
efficiency. For CG, the parallel efficiency increases with
the number of nodes for large dataset sizes and reaches a
maximum with 4 nodes and then decreases: the dataset size
is too small for a full exploitation of the cache hierarchy.
This last situation exists for LU for class A and class B.
The decomposition of the computation time for the hybrid
version shows that two parameters govern its performance:
1) the time spent on the core of the loop nests and 2) the
overhead of thread management. Although, the hybrid ver-
sion reaches lower computation time on loop cores for some
benchmarks, it has higher computation time for the whole
loop nests due to the overhead of the thread management.

At this point, we should state that there is no reason why
the hybrid approach performs better on some loop nests ex-
cept because loop nest optimizations used in the original
MPI version do not match well the Power3 memory hierar-
chy.

Conversely, we should note that the OpenMP paralleliza-
tion has a severe limitation compared to the MPI version:
OpenMP cannot express multi-dimensional blocking when
using the easiest parallelization approach or simple loop
optimizations. Such kinds of patterns require a complete
rewriting of the loop nest (loop fusion), which means a time
consuming programming effort.

5 Related works

The performance of the IBM SP with Winter Hawk II
nodes is presented in [4]. The author compares this archi-
tecture to a AlphaServer SC for several kernels and applica-
tions that do not include the NAS benchmarks. The paper
does not compare unified and hybrid versions.

The performance issues of the NAS benchmarks have
been presented in [2]. Especially, Wong et al. have ex-
amined the architectural requirements and scalability. This
work is restricted to uniprocessor nodes and compares per-
formance of a cluster of workstations and the SGI Origin
2000 machine.

The performance of Message Passing has been detailed
in [5] for a cluster of SUN SMPs. Authors note that
the memory hierarchy and especially the population of the
memory banks have a significant impact on the perfor-
mance. The paper does not address the issue of hybrid pro-
gramming models.

A comparison of shared memory and message passing
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Figure 9. The execution time breakdown for CG according to the number of 4-way nodes for the MPI
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memory models has been previously presented in [6]. The
paper focuses on classical parallel architectures and does
not examine the CLUMP issues.

Several papers in the literature present the implementa-
tion of applications using a hybrid model like [7]. None of
them provides a deep understanding of why this model is
better or worst than a unified one.

Other programming models have been designed for the
CLUMPs. For example, the shared virtual memory envi-
ronments (DSVM) provide another alternative to unify the
memory model, as presented in [8] [9] [10][11]. Recently,
OpenMP [12] has been implemented on a cluster of SMPs
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on top of the Treadmark DSM system. As far as we know,
there is no comparison between these unified approaches
and some hybrid ones.

6 Concluding remarks

Based on the analysis of the NAS benchmarks running
on two different IBM SP systems, we have demonstrated
that the choice between unified or hybrid programming
models is not trivial from the MPI existing codes.

Several parameters must be considered. The first one is
the level of shared memory parallelization achievable for
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the loop nests of the original MPI program. From the origi-
nal MPI program, it is difficult to evaluate if the incremental
approach that parallelizes the loop nests with OpenMP (in-
cluding specific optimizations) is sufficient to improve per-
formance or if it is needed to reconsider the parallelization
of the application from scratch.

The second parameter concerns the communication cost.
For the same number of processors, this cost depends on
how the communication patterns of the application match
the communication architecture of the cluster. Gener-
ally, clusters of multiprocessors perform better with unified
MPI approach for latency sensitive programs and worse for
bandwidth sensitive programs.

A third parameter is the memory access patterns used
by each approach. Whereas MPI programming allows to
express multi-dimensional blocking, it is not natural for
OpenMP to do so. To perform the same memory patterns,
loop nests must be rewritten which may be complex for
long loop core or deep loop nests. Efforts for improving
OpenMP may provide a solution to this problem. Other pro-
gramming languages like Co-array [13] may also be consid-
ered as alternative to OpenMP for the hybrid programming
or even for the unified programming.

The last parameter is the performance balance of
the main components (CPUs, Memory, Network) of the
CLUMP. For the same network performance, fast proces-
sors may reduce the computation time compared to slow
processors up to the point that communication performance
becomes significant. In that case the communication per-
formance allows to select the right model. In the other case,
MPI seems to be always the best.

Note that that our results and analysis only concerns a
particular approach of hybrid programming, which consists
in loop level parallelization with a reasonable programming
effort after profiling to select the loop nests to parallelize.
Other hybrid approaches may lead to different results and
analysis conclusions.

We believe that selecting the appropriate model is a gen-
eral problem that is not specific to the applications ana-
lyzed in the paper. First, NAS benchmarks exhibit a large
set of communication, memory reference and computation
patterns. Except some irregular ones, real applications are
likely to encompass similar patterns. Second, we have
demonstrated that several important parameters distinguish
the performance of both approaches. Although the relative
impact of these parameters is application dependent, they
exist in any parallel application.

Future work will include performing the same analysis
for other clusters of multiprocessors like Compaq SC, com-
paring with the other hybrid approaches and especially the
coarse grain parallelization and deriving a general perfor-
mance model that may help choosing between unified and
hybrid models according to the characteristics of the archi-
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tecture and the application.
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