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Abstract—The advent of multi-core processors has made
parallel computing techniques mandatory on main stream
systems. With the recent rise of hardware accelerators, hybrid
parallelism adds yet another dimension of complexity to the
process of software development. This article presents a tool
for graphical program flow analysis of hardware accelerated
parallel programs. It monitors the hybrid program execution
to record and visualize many performance relevant events
along the way. Representative real-world applications written
for both IBM’s Cell processor and NVIDIA’s CUDA API
are studied exemplarily. To the best of our knowledge, this
approach is the first that visualizes the parallelism in hybrid
multi-core systems at the presented level of detail.

I. INTRODUCTION AND BACKGROUND

Multi-core technology ultimately found its way into main-

stream processor families. In order to fully utilize the

potential of modern computer systems, parallel program-

ming techniques have become mandatory for developers.

The growing popularity of hardware accelerated computing

further increases the complexity of the software development

process. Hardware accelerators often offer one order of

magnitude higher computing power, but this comes at the

cost of moving from homogeneous to heterogeneous (or

hybrid) parallelism. Especially the correct and efficient usage

of the increasingly complex memory hierarchy is mandatory

to obtain best application performance. Unfortunately, its

inner-working is normally well hidden from the application

developer. With traditional profilers, the impact of code

tuning activities can often only be observed from a rather

external point of view. The exact identification and location

of the culprit is often impossible and the real reasons behind

a performance deficiency remain obscure.
We decided to explain and verify our concepts for pro-

gram execution analysis in the scope of IBM’s Cell and

NVIDIA’s CUDA APIs due to their demanding program-

ming models. Both approaches entered the HPC arena as

product developments which were backed up by the com-

puter gaming mass market. The limitation on these two

products is a mere practical choice, the general observations

and principles also hold true for other accelerators.
While there exist several major architectural differences,

Table I reveals several similarities between the two acceler-

ators and traditional multi-core CPUs [1], [2]. We introduce

common terms for common architectural features to simplify

further discussions in this paper. These similarities are

important for our program monitoring approach that takes

the complexity of a program execution in both environments

into account (see Fig. 1).
There are also fundamental differences between the two

architectures, namely how the accelerators access the mem-

ory of the host processor. While Cell allows direct remote

memory access (also to other SPE’s local memory), the

CUDA API requires explicit data transfers between host and

device memory. Therefore, Cell DMA instructions can be

accelerator-initiated while CUDA memcpy instructions are

host-initiated. Both are intended to transfer large amounts

of data. Cell also offers a mechanism for small mailbox
messages that are limited to 32 bits in size. A multi-

core CPU provides a shared memory address space to all

participating threads.
The information sources mentioned above are most valu-

able when designing or porting a (hybrid) multi-core ap-

plication. They form the basis for the evaluation of three

general performance tuning topics:

1) Memory utilization (Data transfers, global/host mem-

ory access)

2) Core/Unit utilization

3) Task/Thread synchronization

However, acquisition, processing, presentation, and interpre-

tation of this information is not an easy task in many respects

as explained in the following paragraphs. Existing tools need

to be extended to deal with the new hardware and data

complexity if a realistic assessment is intended.
Our combined monitoring and visualization approach

makes the next step in tool evolution towards a highly

improved level of detail, precision, and completeness. While

our approach addresses a general problem we also demon-

strate the practical aspects of it in a hybrid real world

environment.
This paper is organized as follows: Section II outlines

our software tracing design for hardware accelerators and

the reference implementations for Cell and CUDA. A mon-

itoring overhead discussion as well as several case studies

for both the Cell and the CUDA platform are presented in

Section III. We use real-life applications to demonstrate how
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Table I
COMPARISON OF ARCHITECTURAL FEATURES FOR THE IBM CELL, THE NVIDIA G200B GPU AND A GENERAL PURPOSE MULTI-CORE CPU

Feature IBM Cell NVIDIA GPU Multi-core CPU
Host processor PPE CPU one core
Accelerator SPE GPU all cores
Local memory 256 KB local store 16 KB shared memory local cache (L1/L2)
Device memory – memory on the graphics board shared Cache (L3)
Host memory main memory (EIB attached) main memory of the host system main memory
Data transfer DMA transfers CUDA memcopy shared address space
Synchronization mailbox messages CUDA thread sychronization shared address space
Accelerated program SPE program CUDA kernel multi-threaded program

performance problems can be observed and analyzed with

our new monitoring technology. Section IV concludes this

paper and sketches future work.

II. MICROSCOPIC PROGRAM OBSERVATION

The advantages and disadvantages of sampling versus log-

ging with respect to performance analysis of parallel appli-

cations have been well examined [3]. A general conclusion

can be that tabular execution profiles are good at identifying

dominant program sections at the cost of a constant overhead

for acquiring the performance data. Especially for parallel

applications more insight into execution of the identified

code region is needed. The logging approach, also known

as “event tracing”, in combination with a sophisticated

event browser enables a microscopic view on the temporal

execution of parallel programs including the exact timing

information of specific events.

A. Accelerator-aware Program Logging

Monitoring the host processor of an application that uses

hybrid parallelism is straight forward as it can be handled

with standard technology. One example is the Open Source

software monitor VampirTrace [4] that we use to conduct

the case studies presented in this article. With several new

extensions, VampirTrace also monitors specific events of the

two accelerator APIs that we focus on in this paper, namely

IBM’s Cell and NVIDIA’s CUDA.

First of all, the thread creation on the respective cores

needs to be detected and propagated to the host processor

which acts as a control unit and supervisor. This includes

the synchronization of the individual hardware timers across

multiple processors and their cores. During program ex-

ecution, data transfers, remote access, and user functions

(kernels) are logged by customized wrapper libraries. Accel-

erated program sequences are logged by customized accel-

erator monitors. The fact that host processor and accelerator

use disjoint memory regions is an additional challenge. Thus,

log entries that are generated on the accelerator have to be

transferred to the host memory and merged into the context

of the execution log of the whole application.
The limited amount of local memory on Cell’s SPEs re-

quires sophisticated techniques such as double buffering and

post-mortem log generation to keep program perturbation

low [5]. GPUs, on the other hand, do not offer logging

interfaces for local memory accesses. While they offer large

amounts of device memory to capture time stamps for

occurring events, the available performance critical events

are currently limited to start- and end times of CUDA kernels

and non-coalesced device memory accesses. This is due to

the fact that more detailed performance hooks into CUDA

are not yet publicly available.

B. Visualization
The program flow and performance graphics in this article

were generated by the Vampir visualization tool [6]. For

a better understanding, some aspects of the accelerator

architectures have to be explained with respect to the applied

visualization. Our general proposal for accelerated hybrid

program flow visualization is outlined in Fig. 2. The host

process and its accelerated parts are individually assigned

to horizontal bars that change in color to reflect different

program regions (e.g. function calls). An important point is

Fig. 1. Cell processor (left) and a GPU compute node (right) block diagram surrounded by the software monitor components for Host, Accelerator,
Memory, and I/O. The log data flow is indicated by a dashed line.
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Fig. 2. Visualization of different Cell (left) and CUDA (right) communication primitives

to correctly display the target of a data transfer. Cell and

GPU differ in this respect due to their different data transfer

techniques as discussed in Section I.

A DMA access that is triggered on an SPE may access the

main memory as well as another SPE’s local memory. The

latter case can be depicted as a connecting line between

two SPE bars as illustrated in Phase 4 of Fig. 2. For the

former case we introduce an additional horizontal bar that

represents the main memory. Consequently, a main memory

access of an SPE is illustrated by a line connecting the SPE

and the memory bar (Phase 1). Lines between a PPE process

and an SPE thread refer to mailbox communication between

these two partners (Phases 2 and 3 of Fig. 2). A very similar

visualization is used to depict CUDA data transfers between

host and device memory (Phases 5 and 7). An application

may of course use multiple host processors with hardware

accelerators and traditional MPI parallelism for the host

processor communication as depicted in Fig. 2 (right).

In contrast to typical MPI “two-sided” communication,

a DMA transfer on the Cell processor is one-sided, i. e.,

starting of transfers and waiting for their completion happens

on the same core. We therefore introduce a dotted vertical

line that helps to identify the active and the passive partner

of the transfer as depicted in Phase 4 of Fig. 2.

A number of host processor and accelerator commu-

nication routines (e.g. CUDA kernel invocations or Cell

DMA operations) have an asynchronous nature. Their trigger

functions are non-blocking and immediately return after the

communication has been initiated. Each asynchronous com-

munication has to be concluded by a proper wait command

prior to using its payload. This wait command stalls until

the transfer is finished or returns immediately if it has

already been finished before. Therefore, we measure the

time before (t1) and after (t2) the call. Figure 3 illustrates

time

lo
ca

tio
n

t0 t1 blocking wait

t_0 = time();
nonblocking_put(...);
do_compute();
t_1 = time();
blocking_wait();
t_2 = time();

t2

Fig. 3. Logging asynchronous events, e.g. data transfers between host
processor and accelerator core

this concept. If t1 and t2 differ by more than one clock

cycle, we can conclude that t2 − t1 reflects the real waiting

time. Consequently, a bandwidth calculation based on t0 and

t2 is correct (unless the wait command refers to multiple

data transfers). Furthermore, we can introduce a new time

period between t1 and t2 that represents the actual wait

phase. If the wait call returned immediately (t2 − t1 ≤ 1),

we can conclude that the data transfer most likely finished

before t1. Bandwidth calculations based on those events can

be inaccurate as they only indicate a lower bound of the

physical transfer rate.

The hybrid character of Cell and GPU performance data

often requires selective visualization, e. g., host processor

only, accelerators only, or a visualization that filters data

transfers. Vampir’s hierarchical display capabilities for hy-

brid message passing/thread parallelization and its customiz-

able event filters offer this functionality to visualize tradi-

tional (MPI) parallel application logs. They are as effective

when confronted with performance data originating from

multiple host processors and their accelerators.

III. FROM THEORY TO PRAXIS

The presented multi-core software monitor infrastructure

was tested, verified, and benchmarked on a representative set

of real-world and test applications. First, we briefly introduce

the applied performance data browser with the discussion of

the program log of a Cholesky factorization that we ran on an

IBM QS21 Cell blade. The algorithm solves dense systems

of linear equations and is highly optimized, achieving more

than 80% of Cell’s theoretical peak performance [7]. We

introduce several other applications that run on Cell- or

GPU-accelerated systems to demonstrate the power of this

form of program analysis to detect and optimize typical

performance bottlenecks.

The most commonly used display is the timeline as

depicted in Fig. 4 (left). The control unit (PPE, running Pro-

cess 0), eight accelerator cores (SPEs), and the main memory

are displayed according to the description in Section II-B.

We can identify a typical startup phase with all accelerator

cores waiting for messages from the control unit. It is

followed by a first computational stage and the beginning

of a second computational stage. We can also identify

short synchronization phases in between these stages. Many
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Fig. 4. Cholesky factorization on Cell: timeline (left), message statistics (center), message profile (right). Since DMA transfers overlay the underlying
timeline activity, a lot of communication can lead to a solid black box hiding everything underneath. To avoid this, the superposed horizontal arrows
illustrate that there is communication hidden. The size of the black circle in the middle of the circle indicates the number of hidden lines.

typical aspects of the algorithm can be discovered with little

effort by navigating and zooming into different phases of the

program.

The monitor collects detailed information of every indi-

vidual communication operation. The center frame in Fig. 4

shows the average duration of transfers, broken down by

individual communication pairs. It can be used to analyze

communication patterns and identify irregularities. The bar

chart at the right provides a statistical representation of

message properties, for example the number of transfers

broken down by message sizes.

A. Tackling the Memory Wall

One of the most challenging problems we face on todays

processors is the so called memory wall [8]. It refers to

the growing disparity between computational power and

memory performance, the latter being characterized by the

two parameters bandwidth and latency. Both bandwidth

and latency of memory chips improve at a much lower

speed than processor speeds. Conventional CPUs provide

built-in prefetching and caching mechanisms to address this

problem. Accelerators typically provide a more fundamental

approach: programmers need to manage all transfers be-

tween global (host) memory and local (accelerator) memory

in software. This allows to conveniently overlap device

memory accesses (and communication in general) with

computation, thus hiding the memory latency. For algorithms

with sufficiently predictable memory access patterns this

is a very effective way to significantly reduce the latency

problems. The challenge for accelerator-aware performance

tools is to gather, process and display data that can help

programmers to exploit these new possibilities.

Our performance monitor automatically logs phases when

an accelerator core stalls due to waiting for a software-

controlled memory access. This can be phases when GPUs

are idle because memcpy operations have not finished.

Likewise, phases when SPEs stall while waiting for DMA or

mailbox transfers will be recorded. In turn, the visualization

allows to intuitively find attractive targets for optimization of

memory accesses. Figure 5 shows a parallel sparse matrix-

vector multiplication on Cell. Calculations (calc) and stalls

due to DMA transfers (dma_wait) can be easily identified.

The unoptimized case (Fig. 5 left) even shows phases where

not a single accelerator core accesses main memory.

We apply two optimizations that overlap DMA transfers

with computation (double buffering) and improve the mem-

ory bandwidth (128 Byte buffer alignment). The result in

Fig. 5 (center) shows no dma_wait phases anymore. Such

an observation shows that a program is computationally

bound. In a next step, an computational optimization is

likely to improve the overall performance. We choose loop

unrolling as it typically has a significant effect on SPE

programs. After this optimization the algorithm is memory

bound again as indicated by the numerous dma_wait
phases in Fig. 5 (right). The visualization helps to quickly

understand that another computational optimization would

have no effect. Further improvements would require to

optimize or minimize the memory access.

Fig. 5. Matrix vector multiplication on Cell: prior optimization (left), after memory optimization (center), and after computational optimization (right)
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With software managed memory accesses on hardware ac-

celerated systems, properly designed tools have the potential

to resolve the obscurity of the memory wall that is usually

generated by complex memory subsystems with hardware

managed caches. In our case, the dma_wait phases allow

programmers to actually “see” the memory wall and its

effects within their applications.

It is important to note a unique feature of program

logging compared to statistical approaches. Program logs

allow to distinguish different stages as they occur in almost

every real-life application. Take for example the Cholesky

factorization depicted in Fig. 4 (left). The first stage of

the algorithm (ppu_convert_d2s) is computationally

bound while the second stage has a significant percentage of

dma_wait phases. This insight can be easily gained with

program logging and visualization. It is virtually impossible

to achieve the same with a “sampling” approach.

B. Hybrid Analysis: Multi-Threading, Message Passing, and
Accelerators

Hybrid programs that combine multiple paralleliziation

paradigms like message passing and/or multi-threading with

an accelerator library are still relatively rare. Their impor-

tance, however, has increased as hybrid HPC systems like

Roadrunner [9] and large GPU cluster installations [10], [11]

require this programming approach.

We use a scalable, parallel Particle-in-Cell (PIC) code

[12] that was ported to CUDA as a showcase. Figure 6

shows the interaction of three GPUs and their corresponding

host CPUs, which in turn also use MPI and pthreads to

communicate and distribute work. Processes 1, 2 and 3

refer to the main program thread that transfers data be-

tween the GPU and the main memory. It is dominated

by CUDA_MEMCPY_SYNC calls because the main program

waits for the execution of the GPU kernels when calling a

blocking operation such as CUDA_MEMCPY_SYNC. Threads

Fig. 6. Event log visualization of a 1024×3072 cells Particle-in-Cell (PIC)
simulation run with three GPUs on two cluster nodes

1:2, 2:3 and 3:2 are responsible for visual data output

of the GPU memory while threads 1:3, 2:2 and 3:3 are

solely responsible for inter-node communication via MPI.

The execution state of the CUDA kernels is visualized by

the green bars named CUDA[0] 1:1, CUDA[0] 2:1 and

CUDA[1] 3:1 where the number in brackets identifies the

corresponding node.

The timeline display reveals that the execution of the

CUDA kernels (and therefore the PIC computation on the

GPUs) is barely interrupted by communication calls and the

computational load on the GPUs is well balanced. This is

the result of our performance optimization efforts that were

facilitated by the program flow analysis presented in this

paper.

C. Fine-grained Synchronization

Synchronization of parallel processes is among the effects

that we intensely study using program logs and visualization.

When we deal with multi-core processors, some parts of

the traditional communication network move onto the chip.

Message latencies are significantly lower and we can expect

to see effects of much finer granularity.

Figure 7 (left) depicts a single, very short computational

loop of another computational biology code (Randomized

Accelerated Maximum Likelihood, RAxML) that has been

ported to Cell [13]. The timeline display of just 4 μs shows

the consecutive start of computations on each SPE. In fact,

we can clearly see that the loop achieves only very limited

parallelism due to the non-simultaneous start of the SPE

computations. Figure 7 (right) shows the same timeline

window after a small code modification that is intended to

start SPE calculations more synchronously, which clearly

is the case. However, we can also note that we introduced

significant new memory contention because multiple SPEs

access the main memory simultaneously. Therefore, the

modification does not improve the overall RAxML perfor-

mance. However, this example can serve as a showcase for

our new analysis methods that can easily display runtime

effects in the order of a few hundred nanoseconds.

D. Program Perturbation

Program logging generally introduces certain overhead

sources. It is important to keep program perturbation at a

minimum level to avoid destroying the runtime effects that

we intend to study. For our approach this always requires

a tradeoff between impact (runtime overhead) and outcome

(number of events, visualization detail). Besides the number

of events, the practical overhead is strongly determined by

the concept and implementation of the event data acquisition

and processing. Therefore, the performance impact on real-

life applications is an important indicator for the quality

of the monitor. Moreover, as the monitor implementations

for different accelerator APIs may differ significantly, the

program perturbation has to be determined individually.
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Fig. 7. Original (left) and modified (right) RAxML loop in a timeline window of 3.5 μs

On Cell, the transfer of SPE event buffers from local to

main memory consumes memory bandwidth depending on

the average event rate. Furthermore, the event buffers and

the monitor itself need local memory that cannot be used by

the application (currently less than 5%). If the trace events

occur at a very high rate, event buffers may not be flushed

quickly enough which would stall the SPE program until a

buffer is available. SPE events also requires a function call

into the trace library and the generation of the event log.

Overall, the typical runtime overhead is below 3% [5].
For our CUDA monitor, all logging is currently done

on the host processor. Thus, the impact on the kernel that

runs on the GPU is minimal. Since the event recording is

currently limited to kernel invocations, the log overhead is

typically below 1% [14]. Future implementations that also

generate events on the accelerator cores need to be designed

in a way that keeps the overhead at a minimum level.

IV. CONCLUSION AND OUTLOOK

Modern (hybrid) multi- and many-core processors are

a challenge to programmers who have to deal with an

increasing amount of parallelism and complexity. This paper

presents a software monitoring approach that provides de-

velopers with deep insights into their applications based on

the recording and visualization of fine-grained performance

logs. As proof of concept we have presented two monitor-

ing implementations for IBM’s Cell processor and CUDA

applications for NVIDIA GPUs. Critical aspects like multi-

threading, asynchronous communication and memory oper-

ations, and the invocation of user functions can be studied

individually over time and in the context in which they occur.

Additionally, hybrid scenarios with MPI communication and

heterogeneous processors are covered by a concept that

keeps program perturbation at a low level.
New software approaches such as the OpenCL frame-

work [15] abstract from the specific accelerator hardware

to gain more hardware independence for program codes.

OpenCL applications can for example run on Cell pro-

cessors, ATI and NVIDIA GPUs, or multi-core CPUs and

therefore offer a large portability advantage. We will focus

our future work on supporting such frameworks in order

to provide more developers with effective and efficient

performance optimization tools.
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