
Message Passing Interface Support for the Runtime
Adaptive Multi-Processor System-on-Chip

RAMPSoC

Diana Göhringer1, Michael Hübner2, Laure Hugot-Derville1, Jürgen Becker2
Fraunhofer IOSB, Germany1

ITIV, Karlsruhe Institute of Technology (KIT), Germany2
{diana.goehringer, laure.hugot-derville}@iosb.fraunhofer.de1

{michael.huebner, becker}@kit.edu2

Abstract— Parallel processor architectures are a promising
solution to provide the required computing performance for
current and future high performance applications. Certainly, the
impact on the computational power of such a parallel computer
system is related to the inherent parallelism of the algorithm to
be implemented. The implementation of an algorithm onto a
parallel computer architecture, requires from the developers a
good knowledge of the underlying hardware in order to exploit
the effect of the parallelization most beneficial. In order to hide
as good as possible the complexity of the hardware from the
developers, novel programming languages for parallel computers
were developed. For example the programming models CUDA,
OpenMP, OpenCL, Open GL and MPI are targeting novel
multiprocessor system-on-chip architectures like the Intel Single
Chip Cloud Computer with 48 cores or the Nvidia Tesla
processors with hundreds of processor cores. If a new hardware
architecture is invented and developed, it is always beneficial to
follow standards in programming models in order to keep a
compatibility to already developed programs. A novel runtime
adaptive multiprocessor system-on-chip is the RAMPSoC.
RAMPSoC combines the benefits of multiprocessors and
reconfigurable hardware in one system and is therefore of high
importance for future system design. In order to align the
RAMPSoC approach to current standards, a support for
Message Passing Interface (MPI) was included recently. This
important step allows now to re-use already existing source code
written with MPI extensions on a runtime adaptive platform.

Keywords- Message Passing Interface (MPI); MPSoC; FPGA;
Reconfigurable Computing; Runtime Reconfiguration; Network-
on-Chip (NoC)

I. INTRODUCTION
Efficient process intercommunication on Multi-Processor

System-on-Chip (MPSoC) is a crucial requirement, if
algorithms were implemented on numerous processor cores in
a parallel computer system. Since multiprocessors, like e.g. the
Intel Single Chip Cloud (Intel SCC) Computer [1] with its 48
x86 compatible processors or the Nvidia Fermi processor with
512 CUDA cores, became state-of-the-art, researchers from
industry and academic investigate on novel programming
models and languages. The general goal is to hide the hardware
complexity from the user by simultaneously keeping traditional

standards like C or C++. Certainly these programming
standards need to be extended by methods, which allow to
exploit the parallelism on the underlying hardware. However,
the communication and task distribution is hidden by a library
of functions which are standardized in order to enable a re-use
of software on different multiprocessors. Another important
requirement of the programming model is to enable and
support scalability of the underlying hardware. No developer
will accept the burden to re-design the proven software in case
that the number of processors for this application will vary
from one series of a multiprocessor chip to the next one.
Exactly this argument encouraged the developer of the
RAMPSoC approach to support also a well established
programming language. RAMPSoC, which especially benefits
through a runtime scalable architecture, definitely requires such
programming models. Since the RAMPSoC approach is based
on a distributed memory model, the choice was to support MPI
(Message Passing Interface) [2]. As RAMPSoC provides a
specialized, highly flexible and runtime adaptive Network-on-
Chip, the integration suitable to the hardware was created and
developed fully new, but provides the identical methods on the
programming layer, which allows to start immediately any MPI
compatible software. The following sections in this paper
describe the process of integrating MPI on RAMPSoC and
show the benefit with an application example from
bioinformatics. The paper is organized in the following
manner: In Section II related work is presented. Section III
presents the hardware architecture and the design methodology
of RAMPSoC. The design and implementation of the MPI
support for RAMPSoC is described in Section IV. The
application integration and the results of RAMPSoC-MPI using
a well-known bioinformatics algorithm programmed with the
MPI standards are presented in Section V. Finally, the paper is
closed by presenting the conclusions and future work in
Section VI.

II. RELATED WORK
MPI is the programming standard used for describing a

parallel program for a multiprocessor system with a distributed
memory, e.g. computer clusters, supercomputers and parallel
computers.

978-1-4244-7938-2/10/$26.00 ©2010 IEEE 357

 There exist several different implementations for MPI.
TABLE I. shows the most well known implementations, like
OpenMP [3][4] and MPICH [5], and two MPI implementations
for embedded systems and compares them against the in this
paper described RAMPSoC-MPI implementation.

OpenMPI supports around 300 MPI standard commands
and is available as open source. The drawback is the huge code
size of 47 MB, which is not feasible for an embedded system
like RAMPSoC.

MPICH is also available as open source and it supports as
well 300 commands. Also here the drawback is the huge code
size of 40 MB, which is required for this implementation.

TMD-MPI [6], on the other hand, was especially designed
for embedded systems. Therefore, it only requires 9KB of
memory. The drawbacks are that it is a proprietary
implementation and that it only supports 11 MPI commands.

Finally, SoC-MPI [7] is another example for a lightweight
MPI implementation for embedded systems. It is proprietary
and requires 13 KB of memory. It supports only 6 MPI
commands, which are fewer functions than TMD-MPI.

In summary, none of these implementations fulfill all the
requirements of the RAMPSoC system, which are a lightweight
implementation, the support of sufficient MPI standard
functions to port existing MPI applications onto RAMPSoC
and finally the support of the runtime adaptive Network-on-
Chip called Star-Wheels. Therefore, a custom MPI
implementation called RAMPSoC-MPI was developed. It
supports the most frequently used 18 MPI standard commands
and requires only 43 KB of memory. The implementation is
divided into separate layers. This way it can be easily ported to
other MPSoCs and other communication infrastructures.

III. RAMPSOC
RAMPSoC [8] was designed to provide the flexibility and

performance needed for embedded high performance
computing applications, such as image processing in
surveillance systems. As shown in Figure 1. , RAMPSoC is an
MPSoC with a distributed memory approach consisting of a
combination of heterogeneous processors and finite state
machines (FSM). The processors as well as the FSMs can be
closely coupled with one or several hardware accelerators.
Different communication infrastructures like point-to-point,
buses, network-on-chips (NoC) or a hybrid of these are
supported. It further provides a scalable, heterogeneous and
runtime adaptive NoC called Star-Wheels Network-on-Chip
[9], which is described in detail in the next subsection. Figure

1. shows how the processing elements of RAMPSoC are
connected over an incomplete version of the Star-Wheels NoC.

Figure 1. RAMPSoC architecture at one point in time with a
incomplete Star-Wheels Network-on-Chip [9].

FPGA

Subnet 1

FSL-ICAP

CAP-OS+

RTOS+

M icroprocessor

External

M emory

Micro-

Processor

(Type 2)

Micro-

Processor

(Type 1)

Accelerator

2

Accelerator

1
Accelerator

3

FSM

+

Hardware

Function

Micro-

Processor

(Type 1)

Accelerator

Virtual-

I/O

User

applications

Subnet 4

Incomplete Star-Wheels NoC

�Subnet 2 and Subnet 3 are

missing

�Subnet 1 and Subnet 4 only

use a subset of the possible

switches

Key:

: subswitch

: superswitch

: rootswitch

The processors, the accelerators and the communication
infrastructure can be adapted at runtime to the requirements of
the application. For controlling and supervising the runtime
adaptation a special purpose operating system called CAP-OS
[10] (Configuration Access Port-Operating System) has been
developed. As shown in Figure 1. CAP-OS receives task
graphs of the partitioned application from the user together
with the partial bitstreams of the processors and the
accelerators and the compiled software programs for the
processors. All data (task graphs, partial bitstreams and the
compiled software programs) has been generated using the
novel semi-automatic design methodology of the RAMPSoC
approach [11]. CAP-OS is responsible for the runtime
scheduling of the tasks to the available processors and for
managing the available hardware resources in such a way that
the real-time requirements are fulfilled, while the used
hardware resources and therefore the power consumption are
minimized.

A. Star-Wheels Network-on-Chip
To provide an efficient and flexible communication

structure for runtime adaptive MPSoCs for dataflow intensive
applications such as image processing the Star-Wheels
Network-Chip was developed. It has to fulfill several
requirements. First, it needs to support the runtime adaptation
of the PEs by recognizing, if a PE has been exchanged, added
or removed at runtime. Second, it needs also to support the
runtime adaptation of the network. This means the topology
and the number of switches need to be adaptive. Therefore, the
network needs to be modular and scalable. It should be
organized in a decentralized fashion. This means, there is no
centralized arbiter. Each switch decides on its own over the

TABLE I. COMPARISON OF DIFFERENT MPI IMPLEMENTATIONS AGAINST RAMPSOC-MPI

 OpenMPI [3][4] MPICH [5] TMD-MPI [6] SoC-MPI [7] RAMPSoC-MPI
Availability Open-Source Open-Source Proprietary Proprietary Proprietary

Code size MPI layer 25 MB 7 MB 9 KB 13 KB 37 KB
Code-size all layers 40 MB 47 MB -- -- 43 KB

Number of supported
MPI standard commands

300 300 11 6 18

358

routing strategy. Furthermore, each switch can check the
existence and the addresses (ID number) of its direct neighbors.
The size of the switches has to be reasonable in order to be area
efficient for FPGAs. As the network will be used for runtime
adaptive MPSoCs, it should support different clock domains.
Moreover a low latency and a high data throughput are
demanded by the target applications. To get a good tradeoff
between area and performance constraints a novel
heterogeneous topology as shown in Figure 2. was developed.
All shown connections are bidirectional. It uses the novel
Wheel topology to provide many parallel communication
channels within each subnet. For communication between
different subnets the Star topology is used. The Wheel topology
combines the benefits of the ST Spidergon [12] and the star
topology. This means, that the routing algorithm is much
simpler compared to the Spidergon and the central switch is not
as complex and high in area utilization as it would be for a
simple Star topology. Furthermore, the number of switches
between a sender and a receiver varies between two for
neighboring and three for not neighboring switches. This
results in a reduced latency compared to the Star topology,
which always has three switches between a sender and a
receiver. The benefits compared with a full connection
topology are fewer connections and less area consumption. The
Star-Wheels NoC is scalable and runtime adaptive by
exploiting the dynamic and partial reconfiguration feature of
Xilinx FPGAs. Therefore, if the full featured Wheel topology is
not needed, each subnet could also be implemented or modified
at runtime into a line, ring or star topology.

Due to this heterogeneous topology three different types of
switches exist. The subswitch connects the different processing
elements (PEs) to the network. Seven subswitches form the
peripheral ring of one subnet, but not all of them have to be
present at one point of time. The subswitches have the simplest
structure as they have a maximum of four bidirectional
connections. One to the PE, one to the left and one to the right
neighbor subswitch in the peripheral ring and one to the
superswitch, which is the central switch of each subnet. The
superswitch allows the communication between subswitches,
which are not direct neighbors. Neighboring subswitches can
communicate directly with each other using the peripheral ring.
This way the complexity and therefore also the required area of
the superswitch can be reduced. It has a maximum of nine
connections and is therefore the most complex one. Seven
bidirectional connections are for the seven subswitches and two
additional connections are used to communicate with other
subnets over the central rootswitch. In the current
implementation four subnets are connected via two
bidirectional connections to the rootswitch. The number of
subnets and connections between the subnets and the
rootswitch can be increased at the cost of higher resource
requirements for the rootswitch as well as for the superswitch.
To support different clock domains the buffers within each
switch are asynchronous.

Figure 2. Heterogenous topology of the Star-Wheels
Network-on-Chip

FPGA

2

4

6

3 5

1 7

42

4

6

3 5

1 7

4

2

4

6

3

5

1

7

3

2

4

6

3

5

1

7

3

2

4

6

35

17

2 2

4

6

35

17

2

2

4

6

3

5

1

7

1

2

4

6

3

5

1

7

1 0

PE3

PE4

PE2

PE1

: subswitch

: superswitch

: rootswitch

Key:

: Processing

Element
PE

To achieve a high data throughput combined with a low
latency, a heterogeneous communication protocol combining
the benefits of circuit- and packet-switching was chosen. For
control purposes, such as establishing and freeing a
communication channel a packet-based communication
protocol is used. To exchange data between to processing
elements over the communication channels a circuit-switching
communication protocol is used. The packet-switching and the
circuit-switching are physically separated. This means for each
type of communication protocol different communication ports
are used, so that they will not interfere with each other. This
synergy of two communication principles is beneficially for
image processing applications, as circuit-switching offers the
required performance for transferring large amounts of data,
such as images or tiles of images, between two processing
partners. Furthermore, no additional data buffers are required to
reorder the incoming packages of a PE. This way the size of the
switches can be kept small.

The control-packets support also the runtime adaptation of
the network and the multiprocessor system. They are used to
recognize, if the network topology or the number or addresses
of the PEs has been changed at runtime. This runtime
adaptation is feasible in e.g. Xilinx FPGAs, which provide a
feature called dynamic and partial reconfiguration. With this
feature a part of the configuration memory of the FPGA can be
exchanged, while the rest continues to process undisturbed.
Each switch has an internal timer. If within the user-specified
time interval no communication has occurred between a switch
and one of its neighbors or the PE, the switch sends a control-
packet to them to check if they still exist. If he does not receive
an answer within a second user-specified time interval, it
assumes that the neighbor has been removed and it updates its
internal routing table. If on the other side the switch receives an
answer, it checks if the address of this communication partner
is still the same. If not the routing table is updated accordingly.
The control-packets are processed within each switch using a
round robin scheme.

B. Design Methodology
To program such a complex hardware structure a design

methodology was developed to hide the complexity of the
hardware architecture from the user. Figure 3. shows this

359

design methodology, which consists of a combination of
commercial and custom tools. In this first version still some
manual steps are required. The design methodology requires an
application written in C, C++ as an input. It is separated in 3
phases. Phase 1 partitions the application on a functional basis
using a hierarchical clustering algorithm. Therefore, the timing
of the different functions is profiled using a commercial
profiling tool like e.g. the AMD CodeAnalyst. After that, the
call graph is generated using a own developed tracing library.
The communication analysis still had to be done manually in
this version. As an alternative a novel neighborhood
relationship was developed, which is explained in detail in
[11]. The results from the application analysis step are used in
the closeness function of the hierarchical clustering algorithm.
The results of phase 1 are a suggested partitioning of the
application as well as a suggested MPSoC architecture. This
suggestion includes a definition of the number of processors
and their required communication infrastructure. The MPSoC
architecture then can be designed with the GUI of the Xilinx
Platform Studio (XPS).

In Phase 2 a line by line profiling, with e.g. the AMD
CodeAnalyst, has to be done for the code fragment of each
processor separately. The output of the profiling is then used by
the custom HW/SW partitioning tool called ProfileAnalyzer.
This tool calculates the execution times within each function
and each loop and also illustrates these results and their relation
to each other graphically to the user. Finally, it generates a list
of possible hotspots, which would be good candidates for one
or several accelerators.

Phase 3 is the implementation phase. Here, the code of the
application has to be manually partitioned. Inter-processor
communication has to be inserted manually. The C-code,
which shall be outsourced in a hardware accelerator, needs to
be adapted depending on the requirements of the commercial
C-to-FPGA compiler, e.g. ImpulseC [13]. Then the Xilinx tools
are used for hardware synthesis and the GCC compiler is used
for generating the binaries for the processors. Finally, a custom
tool called GenerateRCS is used for generating the full and
partial bitstreams.

Figure 3. Design methodology of RAMPSoC without MPI
support

Commercial Tools Custom tools Manual steps

Key

Profiling

C/C++ Program

Profiling

Tracing

SW / SW Partitioning

HW / SW Partitioning

System-
architecture

Communication
Analysis

HW-Synthesis

System integration: GenerateRCS

Compiler

SW code

Inter-Processor
Communication

C-to-FPGA
Compiler

A
n

a
ly

s
is

HW code

Phase 1

Phase 2

Iteration

Phase 3

Results:

• Suggested partitioning for the

application

• Suggested MPSoC architecture

(number of processors,
communication infrastructure)

Results:

• Identified hotspots for each

processor

Results:

• Partitioned application

• FPGA bitstream for the
complete MPSoC (number of

processors, communication
infrastructure, hardware

accelerators) including software

executables for each processor

Even though in this first version several steps are manually,
no knowledge of hardware description languages is required.

IV. RAMPSOC-MPI
As many high performance computing (HPC) applications

are written using the MPI standard, it was desired to support
such a standard in RAMPSoC as well. This way, such
applications can be transferred fast and without knowledge of
the underlying hardware. Furthermore, applications written
with MPI provide a possibility for the user to suggest an
efficient partitioning and to insert user knowledge about the
application behavior into the C-code. Moreover, these
applications are very scalable, which is a desired feature for
such an adaptive MPSoC like RAMPSoC. Therefore, the
design methodology of RAMPSoC was extended to support
also C, C++ applications with MPI, as described in Subsection
IV.A. As the available open source MPI implementations are
too huge in terms of memory allocation, they cannot be used by
an embedded system. Therefore, an own modular MPI
implementation was developed, which is described in detail in
Subsection IV.B. This MPI implementation was developed to
support the communication mechanisms of the Star-Wheels
Network-on-Chip, but due to the usage of different
implementation layers it can be easily ported to other
communication infrastructures. Furthermore, the application
programmer does not need to know the specific protocols of
the underlying communication infrastructure, as these are
hidden.

A. Integration into the Design Methodology
The design methodology of RAMPSoC has been extended

to support also C, C++ applications using the MPI standard.
Two custom tools have been developed, which resulted in a
stronger automation of the design methodology as can be seen
in Figure 4.

Figure 4. RAMPSoC design methodology for MPI-based
C/C++ applications

Commercial Tools Custom tools Manual steps

Key

Profiling

C/C++ Application with MPI

Profiling

SW / SW Partitioning

HW / SW Partitioning

System-
architecture

HW-Synthesis

System integration: GenerateRCS

Compiler

SW code

C-to-FPGA
Compiler

A
n

a
ly

s
is

HW code

Phase 1

Phase 2

Iteration

Phase 3

Results:

• Suggested partitioning for the

application

• Suggested MPSoC architecture

(number of processors,
communication infrastructure)

Results:

• Identified hotspots for each

processor

Results:

• Partitioned application

• FPGA bitstream for the
complete MPSoC (number of

processors, communication
infrastructure, hardware

accelerators) including software

executables for each processor

Communication Analysis

Inter-Processor
Communication

1) Communication Analysis
The communication analysis has been automated in such a

way that it uses static code analysis for generating the call
graph and for extracting the communication costs between the
different functions. For MPI applications it further extracts the
communication costs of the MPI commands. The flow diagram
of the communication analysis tool is given in Figure 5. In this
first version of the tool only applications written in C are

360

supported, but the support for C++ is currently under
development.

Figure 5. Flow diagram of the communication analysis tool

Search all files for
MPI_Init

Search all files for
function declarations,
multiple keyword and
MPI commands and

parameters

Find related MPI-
commands, e.g.

MPI_Send MPI_Recv

List of functions
with MPI-

information

C files

Summary-file with
call graph and MPI

graph

Add parameters
and information

to list of functions

Add MPI-
information to list

of functions

Search all files for
function declarations
and multiple keyword

Search all files, store function parameters and
generate the call graph

Summary-file with
call graph

Add parameters
and information

to list of functions

List of functions

MPI applicationNo MPI application

First, the tool searches all C input files for the MPI_Init
command, which is used in all standard MPI applications for
initialization purposes. If this command is not found, it is
assumed, that the given application is not a MPI application. In
this case the tool follows the left path in the flow diagram. If
MPI_Init was found, then the tool follows the right path in the
flow diagram.

In the second step the tool searches in both paths for the
function declarations in all input files and generates a list with
a structure for each found function. In order to find the function
declaration, the user needs to declare the functions used within
a file at the beginning of this file and marking the functions
with a specific begin and end comment, as shown in Figure 6.
In addition, the tool searches for the multiple keyword, which
is specified by the following user comment “//multiple call
possible”. With this parameter the user can specify, if a specific
function can be multiplied and mapped onto several processors.
One example are the slave functions of the bioinformatics
algorithm, as this is only one function, which can be multiplied,
depending on the available number of processors, in order to
speed up the overall execution. This way, the knowledge of the
user about the application can be exploited by the tool. For MPI
applications the tool searches further for all MPI commands
and parameters used within each function and store this
information also in the structure of the each function.

Figure 6. Programming rules for function declarations

In the third step, the tool searches within the different C
input files for the parameters of each function and stores them
also in the structure of each function. This is done for both
types of applications. The function parameters are used to
extract the communication costs for each function. If a function

has pointers as parameters, the communication analysis tool
will ask the user to specify a typical size for this pointer. With
this information the tool generates the call graph for the
application. For non MPI applications the communication
analysis tool finishes after this step and generates a summary
file with the call graph of the application.

For MPI applications a fourth step is required in order to
find related MPI commands and to add this information as well
as the MPI communication costs into the structure of each
function. This means, to find for example for each MPI_Send
the corresponding MPI_Recv command. It also considers that
one MPI_Recv command can have several MPI_Send
commands. For each command it analyzes the communication
costs and stores them into the list of functions. Finally, a
summary file is generated, which is used by the SW/SW
partitioning tool, which executes the hierarchical clustering
algorithm. The original closeness function of the hierarchical
clustering algorithm was extended to support also MPI
applications, as can be seen in equation (1).

Closeness Function:

�
�
�

��
�

� �
�

unknown ,if else,
),(
),(

),(
),(_

),(
),(_

),(
Call_COM MPI_COM

yxT
yxNH

yxT
yxCOMCall

yxT
yxCOMMPI

yxC
CallMPI ��

T(x, y): Sum of the profiled runtimes of the two
 tasks to be clustered
MPI_COM (x, y): Communication costs between two tasks
 communicating via MPI
Call_COM(x, y): Communication costs between two tasks in
 the call graph
NH(x, y): Proximity of two tasks based on the call
 Graph
�MPI: Weighting factor for MPI communication
�Call: Weighting factor for call graph
 communication

(1)

The closeness function differentiates between
communication costs resulting from the call graph (Call_COM)
and communication costs resulting from MPI commands
(MPI_COM). Two weights were introduced �MPI and �Call. The
communication costs for the call graph receive a higher weight
(�Call) to assure, that they will be more likely clustered. The
communication costs for the MPI commands receive a lower
weight (�MPI), because the usage of MPI between two functions
is a signal given by the user, that these two functions should be
placed on two different processors.

Depending on the application programmer the values for
the weights can be adapted. Here for �MPI 0.2 and for �Call 0.8
have been used. If the application does not use MPI, then �MPI
will be set to 0 and for �Call will be set to 1.

If MPI_COM and Call_COM are unknown, the clustering
can still be done by using the own developed proximity
heuristic as mentioned in Subsection III.B.

2) Inter-Processor Communication
The inter-processor communication has been automated for

MPI applications through the development of an own MPI
implementation for RAMPSoC called RAMPSoC-MPI. It
currently supports the 18 most frequently used MPI standard
commands and translates them at runtime into the
corresponding commands required by the communication

361

protocol of the Star-Wheels NoC as described in the next
subsection.

B. OSI (Open System Interconnection) Model for RAMPSoC-
MPI
To abstract from the complexity of the underlying hardware

and to make the MPI implementation easily portable for other
communication infrastructures the layered approach of the OSI
standard model has been exploited, resulting in the RAMPSoC
model. As shown in Figure 7. six layers have been used.

Figure 7. Relation between the OSI model and the
RAMPSoC model.

OSI Model RAMPSoC Model

Applicat ion Layer

Presentat ion Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

MPSoC Layer

MPI Protocol Layer

MPI Implementat ion
Layer

FSL Layer

Star-Wheels NoC
Layer

Physical Layer

The layer with highest abstraction is the MPSoC Layer,
which corresponds to the combination of the Application- and
the Presentation Layer of the OSI model. The MPI Protocol
Layer corresponds to the Session Layer and the Physical Layer
is identical in both models. The Transportation Layer of the
OSI model is split into two layers in the RAMPSoC model:
MPI Implementation Layer and FSL Layer, which are
explained in detail in the next two subsections. Here, two layers
were used for the RAMPSoC model in order to adapt the MPI
implementation in the future easily to other communication
infrastructures. Finally, the Network- and the Data Link Layer
of the OSI model correspond to the Star-Wheels NoC Layer of
the RAMPSoC model.

1) MPI Implementation Layer
This layer implements the 18 different MPI commands for

the RAMPSoC. MPI_Broadcast calls for example
MPI_Comm_size, MPI_Comm_rank and several MPI_Send
commands. Within this layer, only virtual addresses are used
for the different application functions. These virtual addresses
are equal to the global rank, which represents the ID of each
function / task within the application.

2) FSL Layer
In this layer the virtual addresses and therefore the global

rank of the tasks / functions are transferred into the physical
addresses of the executing processor within the Star-Wheels
NoC. In the Star-Wheels NoC each processor has a specific
address consisting of 6 Bit, 3Bit specifying the ID of the subnet
and the other 3 Bit specifying the ID of the subswitch within
the subnet to which the processor is connected. Furthermore, in
this layer the establishment and freeing of a communication
channel using the in Subsection III.A described control packets

are done. In addition, incoming packets are analyzed and
processed accordingly.

V. APPLICATION INTEGRATION AND RESULTS
To evaluate the functionality of RAMPSoC-MPI, a

bioinformatics HPC application for DNA sequence alignment
was used. This application, called Z-align [14], is from the
research group of Prof. Alba de Melo. Z-align is a parallel
variant of the Smith-Waterman algorithm that runs in user-
restricted memory space and uses affine gap penalties. It is
programmed with MPI and was evaluated by the research
group of Prof. Alba de Melo on a cluster computer. The
algorithm was partitioned for the RAMPSoC using the new
version of the design methodology. Figure 8. shows the
resulting call graph consisting of 20 functions.

Figure 8. Call graph for the z-Align algorithm

0

3

7

8

6 5 4

2 1 9

12

15 14

13

13 16

10

11 17 18

19

20
x : Task/Funct ion x

The extracted MPI communications are shown in Figure 9.
On the top right are two MPI_Bcast functions and the others
are MPI_Send and MPI_Recv functions.

Figure 9. MPI communications between the functions / tasks
of the z-Align algorithm. On the top right are two MPI_Bcast
functions, all others are MPI_Send and MPI_Recv functions.

16 4

210
6

5 3

9

7
20

11 13 15

x Task/Funct ion x

Figure 10. shows the summary, which is generated by the
communication analysis tool for the z-Align algorithm. There
are four columns. The first one shows the name of each
function, the second one shows the ID, the third one shows the
MPI communications (MPI_Com) of each functions and finally
the fourth column shows the call graph communication
(Call_Com) for each function. For MPI_Com and Call_Com
the sender, the receiver and the length of the message are
given. In Figure 10. two examples are given to show the
relation between the summary file and the MPI_Com graph
(see Figure 9.) and the call graph (see Figure 8.). This
summary is then used as an input for the hierarchical clustering
algorithm, which partitions the applications for the processors
of RAMPSoC.

362

The z-Align application was then partitioned for three
processors: One master and two slaves, as shown in Figure 11.
The processors were placed in different subnets to explore also
the behaviour of the Star-Wheels NoC. Before executing the z-
Align algorithm, the master processor sends to each slave its
global rank and its subnet – and subwitch ID within the Star-
Wheels NoC. Normally, this functionality would be done by
the CAP-OS processor together with the resource management,
scheduling and configuration management. As here the full
functionality of CAP-OS was not required, no additional CAP-
OS processor was added. The application was easily integrated
into RAMPSoC without modification and it was evaluated with
two sequences on a ML507 evaluation board from Xilinx with
a Virtex-5FX70T FPGA.

Figure 11. Implemented RAMPSoC system consisting of 3
Xilinx MicroBlaze processors connected over the Star-

Wheels NoC on a ML507 evaluation board from Xilinx with
a Virtex-5FX70T FPGA.

FPGA
MicroBlaze 1

Master

Subnet 1

Subnet 4

MicroBlaze 4
Slave

MicroBlaze 3
Slave

RAMPSoC System
with incomplete
Star-Wheels NoC

For each MPI command within RAMPSoC, the execution
time was measured on the MicroBlaze processors. It was
differentiated between the execution time of the MPI
Implementation Layer and the FSL Layer, because the FSL
Layer depends on the communication infrastructure. TABLE
II. shows the supported MPI commands and their execution
times for a system clock of 125 MHz. MPI_Comm_size,
MPI_Comm_rank and MPI_Bcast call other MPI commands.

MPI_Send and MPI_Recv are the two commands, which use
the FSL Layer to communicate between two processors.
MPI_Init and MPI_Finalize have the highest execution times,
because they initialize / free the data structures, which are used
within the RAMPSoC-MPI to store important information for
each function / task, e.g. the global rank.

TABLE II. IMPLEMENTED MPI COMMANDS AND THEIR
EXECUTION TIME ON A XILINX MICROBLAZE AT 125 MHZ

 MPI command Execution Time
@ 125 MHz(μs)

1 MPI_Init 47,04
2 MPI_Finalize 52,43
3 MPI_Initialized 0,43
4 MPI_Finalized 0,43
5 MPI_Comm_group 3,21
6 MPI_Group_size 0,52
7 MPI_Group_rank 1,02
8 MPI_Group_free 1,19
9 MPI_Comm_size

(calls 5,6,8)
5,9

10 MPI_Comm_rank
(calls 5, 7, 8)

6,23

11 MPI_Group_excl 11,37
12 MPI_Comm_create 5,65
13 MPI_Comm_free 1,17
14 MPI_Status_set_elements 0,54
15 MPI_Get_count 2,16
16 MPI_Send 0,79 (+ 2,59 for

FSL Layer)
17 MPI_Recv 1,47 (+3 for FSL

Layer)
18 MPI_Bcast

(calls 9, 10, 16/17)
18,33 /16,09

Functions

10
6

5

ID MPI_Com
(Sender, Receiver, Com. costs)

Call_Com
(Sender, Receiver, Com. costs)

1

Figure 10. Summary of the communication analysis tool

363

VI. CONCLUSIONS AND FUTURE WORK
This paper describes the integration of the MPI

programming standard to the RAMPSoC approach. It enables
to re-use existing applications on the novel runtime adaptive
hardware. The approach provides a further abstraction layer
over the complex hardware through the realization of the
traditional OSI / ISO layer model. The MPI standard is
supported by the RAMPSoC toolflow, which automatically
partitions the MPI application onto the RAMPSoC resources
consisting of multiple processor cores and an adaptive
Network-on-Chip. This feature is achieved through an
extension of the cost function in the hierarchical clustering
algorithm used within the toolflow. The approach is evaluated
with the z-Align algorithm from the bioinformatics domain.

For future work, it is envisioned to extend the MPI
commands and user defined data types in order to increase
compatibility to other application source codes. Furthermore,
multitasking will be supported in order to enable intra-
processor communication between tasks. Along with this, the
Star-Wheels NoC will be improved to support more
communication features of MPI.

The realization of standard programming models on novel
multiprocessor systems is a mandatory step to receive
acceptance from developers and researchers. However, it is still
a hot topic in research to find a proper way to program parallel
hardware efficient and from a high abstraction layer.
Programming models like e.g. MPI, OpenCL, OpenMP etc. are
a step forward in this direction and need to be evaluated on
several platforms like e.g. the RAMSoC system.

ACKNOWLEDGMENT
The authors would like to thank Prof. Alba Christina M. A.

de Melo, Rodolfo Batista and Felipe Scarel for providing us
with the source code of the z-Align algorithm.

REFERENCES
[1] J. Howard, S. Dighe, Y. Hoskote et al.: “A 48-Core IA-32

Message-Passing Processor with DVFS in 45nm CMOS”; In Proc.
ofIEEE International Solid-State Circuits Conference (ISSCC
2010), San Francisco, CA, USA, Feb. 2010.

[2] MPI: A Message-Passing Interface Standard, Version 2.2, Message
Passing Interface Forum, Sept. 4, 2009. Available at: www.mpi-
forum.org

[3] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra,
J.M.Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R.H. Castain, D.J. Daniel, R.L. Graham, T.S. Woodall: “Open
MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation”; In Proc. of 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97-104, Sept. 2004.

[4] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G.
Bosilca, A. Lumsdaine: “Open MPI: A High Performance,
Heterogenous MPI”; In Proc. of Fifth International Workshop on
Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks, Barcelona, Spain, September 2006.

[5] W. Gropp, E. Lusk, A. Skjellum: “Using MPI: Portable Parallel
Programming with the Message-Passing Interface”; MIT Press,
1999.

[6] M. Saldana, P. Chow: “TMD-MPI: An MPI Implementation for
Multiple Processors Across Multiple FPGAs”; In Proc. of the 16th
International Conference on Field-Programmable Logic and
Applications (FPL 2006), Madrid, Spain, 2006.

[7] P. Mahr, C. Lörchner, H. Ishebabi, C. Bobda: “SoC-MPI: A
flexible Message Passing Library for Multiprocessor Systems-on-
Chips”; In Proc. of IEEE International Conference on
ReConFigurable Computing and FPGAs (ReConFig'08), Cancun,
Mexico, December 2008.

[8] D. Göhringer, J. Becker: “High Performance Reconfigurable
Multi-Processor-Based Computing on FPGAs”; In Proc. of IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2010), Atlanta, USA, April, 2010.

[9] D. Göhringer, B. Liu, M. Hübner, J. Becker: “STAR-WHEELS
NETWORK-ON-CHIP FEATURING A SELF-ADAPTIVE
MIXED TOPOLOGY AND A SYNERGY OF A CIRCUIT- AND
A PACKET-SWITCHING COMMUNICATION PROTOCOL”;
International Conference on Field Programmable Logic and
Applications (FPL 2009), Prague, Czech Republic, September
2009.

[10] D. Göhringer, M. Hübner, E. Nguepi Zeutebouo, J. Becker: “CAP-
OS: Operating System for Runtime Scheduling, Task Mapping and
Resource Management on Reconfigurable Multiprocessor
Architectures”; In Proc. of Reconfigurable Architectures
Workshop (RAW 2010) der IPDPS Konferenz, Atlanta, USA,
April, 2010.

[11] D. Göhringer, M. Hübner, M. Benz, J. Becker: “A Design
Methodology for Application Partitioning and Architecture
Development of Reconfigurable Multiprocessor Systems-on-
Chip”; Annual International IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM
2010),Charlotte, USA, May, 2010.

[12] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, A. Scandurra:
“Spidergon: a novel on-chip communication network”; In Proc. of
Intern. Symposium on SoC, Nov. 2004.

[13] D. Pellerin, S. Thibault: “Practical FPGA Programming in C“;
Prentice Hall Professional Technical Reference, 2005.

[14] R. B. Batista, A. Boukerche, A. C. M. A. de Melo: “A parallel
strategy for biological sequence alignment in restricted memory
space”; Journal of Parallel and Distributed Processing, vol. 68, no.
4, pages 548-561, 2008..

364

