
Parallel JPEG2000 Image Coding on Multiprocessors

Peter Meerwald Roland Norcen Andreas Uhl
RIST++ & Department of Scientific Computing

University of Salzburg, AUSTRIA
e-mail:

�
pmeerw,rnorcen,uhl� @cosy.sbg.ac.at

Abstract

In this paper, we discuss how the two reference im-
plementations of the upcoming JPEG2000 image coding
standard can be parallelized for the execution on shared-
memory multiprocessors. By runtime analysis, we identify
two major stages in the coding process of JPEG2000 where
parallelism can be exploited. We present techniques to ex-
ploit the parallelism within these two stages, and speedup
results obtained on several hardware platforms. We fo-
cus on OpenMP as well as JAVA threads for programming
within shared-memory environments.

1. Introduction

Many imaging applications demand execution times that
are not possible using a single serial microprocessor, which
leads to the use of high performance computers for such
tasks [9] (beside the use of DSP chips, FPGAs, media pro-
cessors, or application specific VLSI designs). In this con-
text, several papers have been published describing image
coding on general purpose parallel architectures – see for
example JPEG [2, 3], vector quantization [6], and fractal
compression [4].

Image and video coding methods that use wavelet trans-
forms [11] have been successful in providing high rates
of compression while maintaining good image quality and
have generated much interest in the scientific community as
competitors to DCT based compression schemes. With the
finalization of the wavelet based JPEG2000 standard [1] and
the inclusion of a wavelet algorithm for synthetic/natural
hybrid coding in MPEG-4 there is no doubt left that wavelet
image compression has to be considered state of the art
nowadays. Therefore, a thorough investigation of parallel
versions of these algorithms seems mandatory.

In this work, we discuss the parallelization of two
JPEG2000 reference implementations: the JJ2000 codec
(seehttp://jj2000.epfl.ch ) using JAVA threads
and the Jasper C codec (seehttp://www.ece.

ubc.ca/˜madams ) using OpenMP (seehttp://www.
openmp.org ). Section 2 is devoted to a short introduction
to JPEG2000 which highlights algorithmic properties and
improvements over JPEG. The following sections discuss
the parallelization approaches and present the correspond-
ing experimental results.

2. JPEG2000

The JPEG2000 image coding standard is based on a
scheme originally proposed by Taubman and known as
EBCOT (“Embedded Block Coding with Optimized Trun-
cation” [10]). The major difference between previously pro-
posed wavelet-based image compression algorithms such
as EZW or SPIHT (see [11]) is that EBCOT as well as
JPEG2000 operate on independent, non-overlapping blocks
which are coded in several bit layers to create an embed-
ded, scalable bitstream. Instead of zerotrees, the JPEG2000
scheme depends on a per-block quad-tree structure since the
strictly independent block coding strategy precludes struc-
tures across subbands or even code-blocks. These indepen-
dent code-blocks are passed down the “coding pipeline”
shown in Fig.1 and generate separate bitstreams. Trans-
mitting each bit layer corresponds to a certain distortion
level. The partitioning of the available bit budget between
the code-blocks and layers (“truncation points”) is deter-
mined using a sophisticated optimization strategy for opti-
mal rate/distortion performance.

Rate
Allocation

coded
image

inherently parallel on
indep. code blocks

Transform
Wavelet

Setup
I/O,

source
image

Entropy coding pipeline
in several stages (Quantization, 
ROI Scaling, Arithmetic Coding, ...)

Figure 1. JPEG2000 coding pipeline

The main design goals behind EBCOT and JPEG2000
are versatility and flexibility which are achieved to a large
extent by the independent processing and coding of image
blocks [1], and of course to provide a codec with a bet-

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



ter rate-distortion performance than the widely used JPEG,
especially at lower bitrates. The default for JPEG2000 is
to perform a five-level wavelet decomposition with 7/9-
biorthogonal filters and then segment the transformed im-
age into non-overlapping code-blocks of no more than�������
coefficients which are passed down the coding pipeline.

In Fig.2 we compare the time required for encoding dif-
ferently sized images using four image codecs: DCT-based
JPEG, wavelet-based SPIHT, Jasper, and JJ2000 (Jasper and
JJ2000 both implement the JPEG2000 standard). Note, that
JPEG, SPIHT, and Jasper are C/C++ based whereas JJ2000
is written in JAVA.

256 576 1024 2304 4096 9216 16384
00

55

10

15

20

25

30

35

40

45

50

JPEG

SPIHT

Jasper

jj2000

image size (Kpixel)

ru
nt

im
e 

(s
)

Figure 2. Compression timings

Evidently, JPEG is the by far fastest algorithm, whereas
both JPEG2000 implementations are slowest. Interestingly,
there is not much difference between the C and JAVA im-
plementations (the IBM JDK 1.1.8 just-in-time compiler is
used for JJ2000). Fig.3 shows a runtime analysis of the se-
quential execution of JJ2000 and Jasper. The wavelet trans-
form part (intra-component transform) is clearly the most
demanding part of the algorithm, followed by the encoding
stage (tier-1 coding). Fortunately, both stages can be par-
allelized with little effort. Intrinsically sequential parts of
the algorithm are image and bitstream I/O and R/D alloca-
tion which all show relatively low complexity. Obviously,
high parallelization potential was one of the design goals of
JPEG2000.

3. Parallel JPEG2000

The multiprocessor architecture (i.e. shared memory and
virtual shared memory MIMD) – often also denoted SMP
– is an interesting alternative to multicomputers for image
processing tasks due to the high memory requirements of
these applications. Also, the availability of comfortable
programming environments for parallel processing on such

256 256 1024 1024 4096 4096 16384 16384
00

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

2478

7890
11373

32420

44218

4550

2982

2970

2610

8437

3000

2200bitstream I/O

tier−2 coding

tier−1 coding

quantization

intra−component 
transform

inter−component 
transform

pipeline setup

image I/O

image size (Kpixel)

ru
nt

im
e 

(m
s)

Jasper

jj 2000

Figure 3. Serial Runtime Analysis of JJ2000
and Jasper on Intel Pentium II Xeon, 500 MHz

architectures (e.g. OpenMP, JAVA Threads) is an impor-
tant aspect. Finally, the excellent prize-performance ratio
of Intel-based SMPs makes such systems very popular for
many applications involving visual data processing [8]. In
this section, we describe a “straightforward” SMP paral-
lelization of two JPEG2000 reference implementations: the
JJ2000 codec using JAVA threads and the Jasper C codec
using OpenMP.

3.1. Parallelization using image tiling

Traditional parallelization approaches for JPEG such as
[2] and [3] include tiling the image and distributing the tiles
among separate CPUs. As JPEG performs the DCT on�
	��
image blocks, this straightforward tile-based parallelization
approach does not impair image quality because tiles are
generally much larger than the transform blocks.

JPEG2000 employs the wavelet transform for image
decorrelation. The wavelet decomposition is usually com-
puted on the entire image, which inhibits annoying com-
pression block artifacts that occur at low bit rate coding.
However, in spite of the quality impact, JPEG2000 also
supports the concept of image tiling for operation in low
memory environments. In this case, the wavelet transform
is performed on each image tile independently. Figure 4 il-
lustrates the subjective image degradation due to tiling. In
figure 5, we show the impact of parallelizing JPEG2000 us-
ing this simple image tiling approach: Obviously, the pro-
cessing of independent image tiles in parallel leads to a sig-
nificant rate-distortion loss and severe blocking artifacts as
the number of tiles and processors is increased.

In this paper, we do not follow this simple tiled-based
parallelization idea but propose to distribute the global
wavelet transform, as well as the code-block processing,

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



(a) JPEG (b) JPEG2000 (c) JPEG2000 with tiling

Figure 4. The center part of the Lena image coded with a bitrate of �������� bpp, on the left using JPEG,
in the middle employing JPEG2000 without tiling, and on the right using JPEG2000 with a tile size of
����	�����

among several CPUs.

2.00 1.00 0.50 0.2500 0.1250 0.0625
15

18

20

23

25

28

30

33

35

38

40

43

45

1 CPU (512 x 512 tile)
4 CPUs (256 x 256 tiles)

16 CPUs (128 x 128 tiles)

 64 CPUs (64 x 64 tiles)

256 CPUs (32 x 32 tiles)

bitrate (bpp)

P
S

N
R

 (
dB

)

Figure 5. The impact of tile-based paralleliza-
tion on JPEG2000 image quality.

3.2. Parallelization of JJ2000 using JAVA Threads

The approach followed in this work is to change as little
as possible in the original JJ2000 code for parallelization.
JAVA multi-threading is employed in the wavelet transform
and encoding stage. For a multi-threaded wavelet trans-
form, different parts of the data are assigned to different
threads, the deterministic workload allows a static load al-
location. However, synchronization is required at each de-
composition level between vertical and horizontal filtering.

In the encoding stage, on the other hand, no synchroniza-
tion is necessary due to the processing of independent code-
blocks. The load balance problem caused by the different
runtime for each code-block is solved by using a pool of
worker threads and a staggered round robin assignment of
the code-blocks to these threads. Whereas the JJ2000 code
already contains the necessary thread invocation calls for a
parallel encoding stage, the transform part is covered in this
work.

Fig.6 displays the runtime analysis of a multi-threaded
execution on a 4 processor SMP system (a Compaq server
with Intel Pentium II Xeon processors running at 500 MHz
which is used for all subsequent experiments in this sec-
tion). An overall speedup of������� is achieved only. When
analyzing the chart in more detail, we find that the speedup
corresponding to the encoding stage is about����� whereas
the wavelet transform speedup is����� at most. Therefore,
we investigate the wavelet transform part in more detail.

Fig.7 shows the timings for the filtering procedures, bro-
ken down into the vertical and horizontal parts, respectively.
The vertical filtering step requires more than�! times the
execution time of the horizontal counterpart. Surprisingly,
also the speedup for the vertical filtering is significantly
lower than this for the horizontal case (compare Fig.8).

This unexpected behaviour suggests the existence of a
severe cache-miss problem (see also [5] for similar effects
in an MPI implementation for a 3-D wavelet decomposi-
tion). In fact, it turns out that when using large images with
width equal to a power-of-two and the filter length is longer
than " (this corresponds to the" -way associative cache),
an entire image column is mapped onto a single cache-set.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



256 1024 4096 16384
00

5000

10000

15000

20000

25000

30000

35000

40000

1243

6080

26698

1127

3249

bitstream I/O

R/D allocation

encoding

DWT

pipeline setup

image I/O

# Kpixel

tim
e 

(m
s)

Figure 6. Parallel Runtime Analysis of JJ2000
on SMP (four processor Compaq, Intel Pen-
tium II Xenon, 500 MHz)

11 22 33 44
00

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

32500 32158

23650

17145 17209

4770

2485
1670 1295

vertical

vert. improved

horizontal

horiz. improved

# CPUs

tim
e 

(m
s)

Figure 7. Original and improved filtering

Consequently, during the execution of vertical wavelet fil-
tering an enormous amount of cache misses occur. We have
considered two approaches to improve the cache hit rate
(see [7] for more details). First, the image width is forced
to be not a power-of-two (e.g. by inserting dummy data,
compare [5]). This technique does not require any mod-
ification in the filter code and results in the use of more
cache sets and consequently allows cache hits on vertically
adjacent pixels. Second, several adjacent columns are fil-
tered concurrently within a single processor. When loading
the first data points of an image column into the cache, the
corresponding data of adjacent columns are situated within
the same cache line. Therefore, computing the products of
pixels and filter coefficients of all these columns can be per-
formed without any cache misses (except the initial access
which triggers the cache load). Here, a modification of the
filter code is required – the results of the different columns

have to be buffered. The second approach has turned out to
be more effective [7].

11 22 33 44
00

0.5

11

1.5

22

2.5

33

3.5

44

linear

vertical

vert. improved

horizontal

# CPUs

sp
ee

du
p

Figure 8. Speedup of filtering routines

A significant improvement is observed in Fig.7 – almost
factor �!� is gained by our technique, horizontal and vertical
filtering are now almost identical with respect to runtime.
Additionally, the speedup of the improved vertical filtering
routine is significantly higher (Fig.8) and now equals that
of horizontal filtering. Note that the constrained speedup of
the original filtering routine is due to the congestion of the
bus caused by the high number of cache misses.

256 1024 4096 16384
00

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

615
1976426

1250

2915

421

1131

3249

528

2241

566
bitstream I/O

R/D allocation

encoding

DWT

pipeline setup

image I/O

# Kpixel

tim
e 

(m
s)

Figure 9. Parallel Runtime Analysis of JJ2000
with improved filtering (Intel SMP)

Finally, Fig.9 shows the runtime analysis of JJ2000 with
the improved filtering routine. We notice an overall speedup
of ����#�� with respect to the original JJ2000 implementation
(see Fig.3). Of course, the superlinearity is due to the im-
proved filtering routine. A further significant increase of
parallel efficiency can not be expected, since the intrin-
sically sequential stages contribute already about 40% to

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



the overall execution time and the efficiency of the parallel
parts can hardly be improved without massively changing
the code, which is not the scope of this work.

3.3. Parallel Jasper using OpenMP

With OpenMP we have another tool for programming
within shared-memory environments. Basically, OpenMP
and threads have a similar programming flexibility and va-
riety, since the first mentioned technique is based upon
threads. OpenMP can be seen as a programming interface
generalizing the usage of threads, hiding the pure thread
and its appliance, respectively the synchronization between
threads under macro constructs, so calledpragmas. These
pragmas provide more general constructs for performing
sections of a sequential program (i.e. loops) in parallel.

When analyzing the single coding stages of Jasper, we
see a very similar load distribution as the JJ2000 coder (fig-
ure 3). Zooming into the intra-component transform of
the Jasper coder we also face the analogous problem with
cache-misses. This cache problem increases with the di-
mensions of the image. Thus it is very convenient and
straightforward to apply a similar parallelization for the
Jasper codec as proposed in section 3.2. We enhance the
vertical filtering in the same fashion as done in the JJ2000
coder: Filtering of vertical columns is done in a ’parallel’
fashion, several neighbouring image columns are filtered
concurrently within a single processor. Additionally, we
employ OpenMP to parallelize the intra-component phase
as well as the tier-1 coding stage. Both stages of the cod-
ing phase can be parallelized easily and efficiently as in the
JJ2000 case.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16
#CPUs

original vertical filtering
modified vertical filtering

sp
ee

du
p 

(c
om

pa
re

d 
w

ith
 o

rig
in

al
 J

as
pe

r!
) 

Figure 10. Parallel Runtime Analysis of Jasper
(16384 Kpixel image, SGI): Speedup for origi-
nal and improved filtering with respect to the
original Jasper runtime

We have analyzed the parallel Jasper performance for
different architectures. On an Intel SMP architecture (4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14 16
#CPUs

OpenMP
OpenMP and modified vert. filtering

sp
ee

du
p 

(c
om

pa
re

d 
w

ith
 o

rig
in

al
 J

as
pe

r!
)

Figure 11. Parallel Runtime Analysis of Jasper
(16384 Kpixel image, SGI): Speedup for the
entire coding time with respect to the original
Jasper runtime

SMP Intel Pentium II Xeon running at 500 MHz), our re-
sults are similar to the JJ2000 thread-based parallelization.
Generally, the Jasper C code saves about 20 percent of the
JJ2000 computation time. The percentage of the parallel
parts with respect to the total execution times are very simi-
lar. We want to give also results for a SGI Power Challenge
(20 IP25 RISC processing units running at 194 MHz). The
proportions of execution times do not change significantly,
although we face very poor computation times when com-
pared to the fast Intel processors.

Figure 10 shows the speedups for the vertical wavelet
filtering part of the Jasper coder on the Power Challenge.
We clearly see the big gap between original and improved
vertical filtering speedup. Distributing the load of the mod-
ified wavelet decomposition with the aid of OpenMP to a
number of processors, we can increase the vertical filter-
ing over all resolution levels by a factor of 80. Considering
the overall runtime, including improved filtering, as well as
parallelizing the wavelet transform and the code-block pro-
cessing, we reduce the processing time by a factor of about
5 (figure 11). We must note, of course, that our comparisons
are made with respect to the runtimes of the original Jasper
source. This is the reason why we see these superlinear
speedups. Anyhow, we think that these figures give a good
feeling of how much the Jasper reference implementation
can be improved, when having a look at both, sequential
and parallel optimizations.

When taking the filtering optimized code as the reference
for speedup measurements, we can observe a total speedup
of little more than 2 only. Beside, we also parallelize the
quantization step, which is only applied in the lossy case,
since lossless compression doesn’t use quantization. Quan-
tization can be parallelized easily and very straightforward,
since every processor may have a chunk of coefficients from
the wavelet transform which it has to quantize. Extracting

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 



the needed time portion of the quantization and calculating
the speedup with respect to this time slice, we see speedups
of approximately 3.2 for performing the quantization stage
in parallel. However, the contribution of quantization to the
entire coding time is too small to result in an additional sig-
nificant performance imporvement.

Applying OpenMP within the stages of the most com-
putational effort, and optimizing the efficiency of vertical
filtering, we proofed a speedup of more than 5 compared
with the original Jasper reference implementation. This
gain is reached with the aid of 10 processors and mini-
mal implementation effort, meaning that only minor parts
of the Jasper source code had to be changed to get this per-
formance profit.

3.4. Theoretical versus Practical Speedup

Amdahl’s law gives an upper bound on the achievable
parallel speedup, assuming that for concurrent sections in
the code perfect parallelism can be obtained. It can be writ-
ten as

$&%('�'!)�*�%,+.- $0/1%(2
- $0/435 2�6

where$ is the runtime spent in inherently sequential code,%
is the time spent in code which can be potentially executed
in parallel and7 is the number of processors available.

On the SGI platform, only about 16 % of the original
Jasper encoding time is spent within sequential parts. The-
oretically, this would result in a speedup of almost 2.70 for
a 4 processor environment. Incorporating improved verti-
cal lifting, the percentage of sequential code is increased
obviously (32.5 %). In theory, this would give theoretical
speedups of 2.03, 2.44, and 2.72 for 4, 8, and 16 processors,
respectively. Our experimental results showed speedups of
1.78, 2.24, and 2.13.

Producing better speedups would require larger parts of
the code to be run in parallel. The way JPEG2000 is de-
signed, this could not be done without massively changing
the code.

4. Conclusion

The runtime performance of the upcoming JPEG2000
reference implementations can be improved significantly,
when operating in parallel and exploiting the features of
threads and shared-memory. We could show, that all this
can be done with minimal implementation effort, without
changing major parts of the sources. Applying an optimized
vertical filtering technique, we could additionally enhance
the performance, especially for large image data.

Acknowledgements

This work has been partially supported by the Austrian
Science Fund (project FWF-13903).

References

[1] C. Christopoulos, A. N. Skodras, and T. Ebrahimi. The
JPEG2000 still image coding system: an overwiew.IEEE
Transactions on Consumer Electronics, 46(4):1103–1127,
Nov. 2000.

[2] G. Cook and E. Delp. An investigation of scalable SIMD I/O
techniques with application to parallel JPEG compression.
Journal of Parallel and Distributed Computing, 30:111–
128, 1996.

[3] J. Falkemeier and G. Joubert. Parallel image compression
with JPEG for multimedisa applications. In J. Dongarra
et al., editors,High Performance Computing: Technologies,
Methods & Applications, number 10 in Advances in Parallel
Computing, pages 379–394. North Holland, 1995.

[4] J. Hämmerle and A. Uhl. Fractal image compression on
MIMD architectures II: Classification based speed-up meth-
ods. Journal of Computing and Information Technology
(Special Issue on Parallel Numerics and Parallel Comput-
ing in Image Processing, Video Processing, and Multime-
dia), 8(1):71–82, 2000.

[5] R. Kutil and A. Uhl. Hardware and software aspects for
3-D wavelet decomposition on shared memory MIMD com-
puters. In P. Zinterhof, M. Vajtersic, and A. Uhl, editors,
Parallel Computation. Proceedings of ACPC’99, volume
1557 of Lecture Notes on Computer Science, pages 347–
356. Springer-Verlag, 1999.

[6] M. Manohar and J. Tilton. Progressive vector quantization
on a massively parallel SIMD machine with application to
multispectral image data.IEEE Trans. on Image Process.,
5(1):142–146, 1996.

[7] P. Meerwald, R. Norcen, and A. Uhl. Cache issues with
JPEG2000 wavelet lifting. In C.-C. J. Kuo, editor,Visual
Communications and Image Processing 2002 (VCIP’02),
volume 4671 ofSPIE Proceedings, San Jose, CA, USA, Jan-
uary 2002. SPIE. to appear.

[8] C. Rothl̈ubbers and R. Orglmeister. Parallel image process-
ing using a Pentium based shared-memory multiprocessor
system. In H. Shi and P. Coffield, editors,Parallel and
Distributed Methods for Image Processing, volume 3166 of
SPIE Proceedings, pages 46–54, 1997.

[9] K. Shen, G. Cook, L. Jamieson, and E. Delp. An overview of
parallel processing approaches to image and video compres-
sion. In M. Rabbani, editor,Image and Video Compression,
volume 2186 ofSPIE Proceedings, pages 197–208, 1994.

[10] D. Taubman. High performance scalable image compres-
sion with EBCOT.IEEE Transactions on Image Processing,
9(7):1158 – 1170, 2000.

[11] P. Topiwala, editor.Wavelet Image and Video Compression.
Kluwer Academic Publishers Group, Boston, 1998.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


