
The Synonym Lookaside Buffer: A Solution to
the Synonym Problem in Virtual Caches

Xiaogang Qiu and Michel Dubois, Fellow, IEEE

Abstract—To support dynamic address translation in today’s microprocessors, the first-level cache is accessed in parallel with a

translation lookaside buffer (TLB). However, this current approach faces mounting problems as more concurrency is exploited in the

processor core, as multiprocessors are becoming more and more prevalent, and as the memory demand of emerging applications is

growing. This paper introduces new ideas to enable the use of virtual addresses in the cache hierarchy, thus removing the TLB from

the critical path of the processor core. The major idea is the replacement of the on-chip TLB by a synonym lookaside buffer (SLB). The

SLB translates synonyms into a primary virtual address, which is a unique identifier resolving all ambiguities due to synonyms in

the memory system. We introduce various system configurations with SLBs and discuss all functional issues associated with them.

An SLB is much more scalable than a regular TLB. It scales with memory data set sizes, physical memory sizes, and number of cores

in a multiprocessor. Moreover, SLB entry flushes and shootdowns due to physical memory management are eliminated. We show

performance data resulting from the simulation of several applications as diverse as scientific computing, database, and JAVA virtual

machines. These evaluations target SLB miss rates and flushes as well as the impact of the SLB on cache miss rates. They show that

small SLBs of 8-16 entries are sufficient to solve the synonym problem in virtual caches and that their performance overhead is

negligible.

Index Terms—Microprocessor, virtual memory, cache, virtual address cache, synonyms, aliasing, translation lookaside buffer,

multicore.

Ç

1 INTRODUCTION

THE execution rate of modern microprocessors improves
relentlessly due to faster clock rates, deeper pipelines,

instruction-level parallelism (ILP), and thread-level paralle-
lism (TLP). To match this computing power, the memory
hierarchy must satisfy multiple memory accesses in every
clock cycle in the face of a growing gap between processor
execution rate and main memory access time, and of the
growing memory demand of emerging applications. Virtual
address translation both for instructions and data is an
additional hurdle. In the process of accessing memory, the
virtual (effective) address issued by the processor must be
translated at some point into a physical address to access
main (physical) memory.

This dynamic translation is currently supported by a

translation lookaside buffer (TLB), a cache for virtual-to-

physical address translations. Typically, the TLB and the

first-level cache are accessed in parallel. This access is done

in two steps. In the first step, the virtual page number is

translated in the TLB and the tags and data of the first-level

cache set are fetched (cache set indexing). Then, the physical

page number obtained from the TLB is compared with the

tags in the set to detect a hit. When the virtual address bits

used to index the cache set are part of the page displace-
ment and thus are physical address bits as well, the first-
level cache is called “physical” and the memory hierarchy is
accessed with physical addresses throughout. However,
when the first-level cache size is too large, some bits from
the virtual page number must be used to index the cache
set, although the cache tags are still physical. These caches
are called “virtual” to reflect the fact that bits from the
virtual address are used to access them [4].

In these caches, the TLB is a hardware bottleneck because
it must be accessed in parallel with time-critical accesses to
the first-level cache integrated very closely with the
processor core where the chip real-estate is very precious.
This is the case for high-end out-of-order issue processors
[14] as well as for multithreaded cores [18]. Because of this,
the TLB size is usually small (64-512 entries) and translation
misses trigger expensive “walks” through levels of page
tables located in the main memory. On the other hand,
technology trends and the growing working set demands of
applications put more and more pressure on the address
translation hardware [27], [29]. Moreover, the TLB, which is
built inside the microprocessor chip, does not scale well
with various main memory sizes and with the number of
processing nodes in multiprocessor configurations.

Virtual caches may also be tagged with virtual address
bits. When the first-level cache is virtually indexed and
tagged, most memory accesses are completed without TLB
involvement. The actual address translation is performed
only when needed and can be done at various locations in
the memory hierarchy [4], [15], [32], where its access time
and bandwidth are no longer critical. Moving the TLB after
the virtual cache hierarchy can dramatically reduce the
number of TLB misses because most memory accesses do
not reach the TLB. Moreover, when TLBs are shared among

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008 1585

. X. Qiu is with NVIDIA Corporation, 2701 San Tomas Expressway, Santa
Clara, CA 95050. E-mail: xqiu@nvidia.com.

. M. Dubois is with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA 90089-2562.
E-mail: dubois@paris.usc.edu.

Manuscript received 15 Aug. 2006; revised 10 June 2008; accepted 24 June
2008; published online 16 July 2008.
Recommended for acceptance by A. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0318-0806.
Digital Object Identifier no. 10.1109/TC.2008.108.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

processors in a multiprocessor system such as a Chip
Multiprocessor (CMP), TLB misses can become insignificant
because of sharing and prefetching effects [26]. In [26], we
showed that by moving the TLB down the hierarchy huge
savings in TLB misses and large execution time reductions
are achievable, even if the TLB is removed altogether and all
translations are performed in page tables through processor
exceptions or with table walking hardware.

Unfortunately, reaping the benefits of a virtual cache
hierarchy is not easy because virtual caches are plagued by
the synonym (or alias) problem: multiple virtual addresses
may map to the same physical address. This problem
complicates cache management and cache coherence be-
cause of the lack of a unique systemwide identifier for each
memory location. Complex, anti-aliasing hardware that
detects synonyms dynamically must be implemented. We
propose a simple and efficient extension to a system with
virtual address caches to expose synonyms dynamically
throughout the memory hierarchy of a microprocessor.

This extension is called a synonym lookaside buffer
(SLB). It is a translation buffer organized as a traditional
TLB but whose role is to translate synonyms into a unique
virtual address called the primary virtual address. The
primary virtual address is a virtual address selected in
each set of synonyms sharing the same page. It plays the
role of a unique, systemwide identifier for the set of
synonyms. The systemwide existence of such an identifier
solves intra- and intercache coherence problems due to
naming. Synonyms of primary virtual addresses are called
secondary virtual addresses. An SLB is attached to each core
and dynamically translates secondary virtual addresses into
their primary virtual address.

We show in this paper that an SLB is much more scalable
than a TLB (by orders of magnitude) so that very small SLBs
of 16 entries or less suffice in general. The coverage of each
entry in the SLB is much better than the coverage of entries
in a regular TLB for two reasons. First, each SLB entry
covers an entire segment containing a large number of
pages and its coverage scales up with application data set
sizes, physical memory sizes, and the number of processor
nodes in a multiprocessor system. Second, the SLB only
maps secondary virtual addresses. In general, the use of
synonyms is not widespread, and therefore, the SLB only
keeps translations in the rare cases where a virtual address
has an alias. Because it is very small, the SLB can be
accessed in parallel or serially with the first-level cache.

A major drawback of TLBs stems from the fact that the
TLB must be flushed every time a translation between
virtual and physical addresses is broken, e.g., on page
swap-in or swap-out or on page migrations. In multi-
processors, from large-scale CC-NUMAs [19] to single-chip
CMPs [18], each TLB flush must be global to prevent the
existence of stale translations [5], [30]. This TLB consistency
requirement is often maintained by a TLB shootdown, a
complex software algorithm, which introduces significant
overheads and does not scale well with the number of
processors. The content of an SLB does not keep track of
physical addresses and hence is not affected by most
demapping and remapping of virtual to physical addresses.
An SLB entry must only be flushed when synonyms are
eliminated, e.g., when entire objects accessed with more
than one virtual address are destroyed. Such events are
much less frequent than changes of virtual-to-physical

address mappings. We show through extensive simulations
that flushes of SLB entries are extremely rare. Finally, we
show that caches accessed with an SLB have a better hit rate
than caches accessed with a TLB.

The SLB is part of the puzzle to support virtual address
caches systemwide. To support an SLB, the operating
system must identify and keep track of primary and
secondary virtual addresses. Other classical issues with
virtual address caches remain such as access right enforce-
ment and interactions with I/O devices. Some of these
issues have been solved in other contexts. Although we do
not purport to present a complete systemwide solution to
virtual address caches in this paper, we point out solutions
to these issues exploiting the SLB throughout this paper.

The rest of this paper is structured as follows: Section 2
covers background material, including a brief summary of
common usage of synonyms in current computer systems
and an overview of cache/TLB architectures in modern
processors. In Section 3, we propose the SLB to solve the
synonym problem for virtually addressed caches and
memories. A quantitative evaluation of SLBs is given in
Section 4. After a brief overview of some related work in
Section 5, we conclude this paper in Section 6.

2 BACKGROUND

In this section, we first review the properties and usage of
synonyms, and then, we review briefly the current memory
architectures with TLBs and physical/virtual caches.

2.1 Synonyms

When multiple virtual addresses are mapped to the same
physical address, these virtual addresses are called
synonyms. Because virtual memory is managed in page
granularity, synonyms are at least aligned on page
boundaries. Two synonyms cannot exist within the same
page and synonyms in two different pages must be located
at the same address within each page.

Synonyms are very convenient to the kernel and user
software in many situations. Synonyms are often used to
implement shared memory semantics across different user
virtual address spaces. Many read-only segments such as
libraries and text segments are widely shared. In many
operating systems, the kernel is globally shared at a fixed
location in different virtual address spaces. Users may even
define synonyms within the same thread for convenience.

Besides the true sharing semantics, synonyms are critical
to optimize various memory operations. For example, copy-
on-write avoids unnecessary memory copy operations and
reduces the consumption of physical memory. In copy-on-
write, two processes use the same page but do not really
share it. They use different virtual addresses to access the
same physical page until one of the processes modifies the
page. At this time, a physical copy of the page is made and
the new page is remapped in one of the process spaces.
Copy-on-write is a compression optimization and is not
part of shared memory semantics.

It is also very frequent that a physical page P can be
remapped from one virtual page V1 to another virtual
page V2. In this case, we consider that V1 and V2 are
synonyms although the V1-P and V2-P mappings may not
coexist at the same time. Traditional message passing
semantics can be optimized using this remapping operation

1586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

to avoid physical memory copies. As an example, if process 1
wants to send a message at virtual address V1 to process 2 at
virtual address V2, the system can simply remap the physical
page P containing the message from V1 to V2. The old V1-P
mapping can either remain valid as copy-on-write or may be
destroyed depending on the message passing semantics. As a
special case, the operating system kernel usually buffers an I/
O transfer in physical memory through kernel addresses and
remaps them to user space when needed.

Finally, it is also very common that V1 and V2 share the
resource of the physical page instead of its content. For
example, in demand-paging systems, V1 may be swapped
out and physical page P is freed and reallocated to another
virtual page V2. V1 and V2 do not have any logical
connection. Physical page P must be overwritten with new
content before it is allocated to V2.

2.2 Caches with Translation Lookaside Buffers

Physical caches are accessed only with bits of the physical
address, which is a unique systemwide identifier for each
memory location. Accesses to TLB and L1 cache are done in
parallel using physical address bits only. Physical caches
are often preferred because they do not face the complica-
tions due to synonyms. However, keeping the L1 cache
physical limits the possible L1 cache sizes to the size of a
page times the degree of associativity [4]. Because of this,
some microprocessors [14] adopt first-level caches with
wide associativity, which is not necessarily the best choice
from a design standpoint.

Several microprocessors employ virtual caches tagged
with physical addresses. In virtual caches, there is no
restriction on cache sizes, but the same memory block may
be accessible with different synonyms and the ensuing

coherence problems must be solved. Fig. 1 shows a typical
architecture for a virtual L1 cache and a TLB accessed in
parallel. L1 cache blocks are tagged with their physical
address, but virtual addresses are used to index the cache.
After a cache set is indexed with the virtual address, all tags
in this set are compared with the physical page number
translated in parallel by the TLB. A miss in the set does not
guarantee that the data block is not in cache. The block may
still reside in another set previously indexed with a
synonym. If a memory access misses in the indexed cache
set but is found in another set, a short miss moves the cache
block to the indexed set.

As shown in Fig. 1, a common approach to detect the
presence of a synonym in a virtual L1 cache is a reverse
mapping implemented with backpointers [32] stored in the
L2 cache, which is indexed and tagged with physical
addresses. Inclusion is required: If a block is in the L1 cache,
then it must have a copy in the L2 cache. If an L1 cache miss
hits in the L2 cache and the backpointer points to an
L1 cache block, the block is moved to the new cache set, and
the backpointer in the L2 cache is updated to point to the
new location in the L1 cache (short miss). The penalty of a
short miss is similar to the penalty of a cache miss serviced
by the second-level cache.

To satisfy the access constraints, the latency and
bandwidth requirements of the TLB must scale up with
the clock rate, ILP, and TLP, which is getting more difficult
and costly. A recent example is the Niagara core. In
Niagara, a 64-entry TLB is shared by the four threads
running on the same core, and the TLB bandwidth and
latency requirements are pipeline bottlenecks [18].

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1587

Fig. 1. Access to a classical TLB and a virtual first-level cache tagged with physical addresses. The second-level cache is physical with inclusion and

a backpointer to the first-level cache helps locate synonyms in the first-level cache.

Notwithstanding the problems of access time and
bandwidth, the TLB size is fixed within the microprocessor
chip and does not adapt well to growing application sizes
and various system memory sizes. In a CMP, the effective
amount of TLB does not increase as fast as the aggregate
hardware dedicated to TLBs in all processor cores because
some entries are replicated. In turn, this replication creates
the problem of TLB consistency [30]. Maintaining TLB
consistency is very expensive and does not scale well. It is
done by TLB shootdown, which must be invoked every
time the mapping between virtual and physical addresses
must be broken.

For a given application, the miss rate of the TLB is
primarily determined by the TLB reach or coverage, which
is the aggregate memory area mapped by all the TLB
entries. One way to improve the performance and scal-
ability of a traditional TLB is to use superpages [29]. The size
of a superpage is a power-of-two multiple of the size of the
base page. Each entry of the TLB can be configured to map
superpages of various sizes, effectively increasing the
coverage of each TLB entry. One major drawback of
superpages is that physical pages inside a superpage must
be contiguous in physical memory. The operating system
must allocate a contiguous area of physical memory to
accommodate the superpage size and must swap in the
entire superpage. In order to allocate large pieces of
contiguous physical memory, it is necessary to dynamically
reallocate physical pages, which requires the remapping of
virtual-to-physical translations, a very expensive operation
in multicore systems due to the TLB consistency overhead.
In general, the size of a superpage cannot be determined
easily at the time when the virtual address is first allocated,
which leads to suboptimal allocations.

Fig. 2 shows a cache hierarchy in which L1 and L2 caches
are indexed and tagged with virtual addresses. The TLB is
accessed on L2 misses only. This configuration has several
advantages. First of all, the TLB is off the critical path and thus
may be very large without slowing down the processor.
Second, the TLB benefits from a filtering effect by the caches
above it, because the TLB does not need to cover all blocks
stored in the L1 and L2 caches. A new entry needs to be
brought into the TLB on L2 cache misses only. Additionally,
the TLB can be moved further down the hierarchy. In a
multicore system such as a CMP, the TLB could be moved to
shared memory or to a shared cache [18], in which case the
TLB is shared by all the cores. In this case, TLB shootdown is
avoided within the CMP and the TLB benefits from sharing
and prefetching effects. The sharing of TLB entries increases
the effective TLB size by avoiding replications. A thread
running on a different core may load an address translation in
the shared TLB before a thread accesses it, thus in effect
prefetching or preloading the entry.

To conclude this section, in a virtual cache with physical
tags, synonyms are exposed by comparing their physical
tags to the TLB entry accessed in parallel with the cache.
When the cache tags are virtual, the virtual-to-physical
address translation is postponed until an access reaches
some point in the memory hierarchy (e.g., right after the
L2 cache in Fig. 2). There are many advantages to this, but,
since the cache tags are virtual, synonyms cannot be
exposed by their tags, even if they index the same cache
set. Synonyms can be eliminated by software or by
organizing the virtual space into a single virtual address

space shared by all processes, as is done in the PowerPC
architecture [16], [21] in which synonyms are supported at
the segment level. Otherwise, synonyms must be dynami-
cally detected to avoid ambiguities in the memory
hierarchy. The hardware to do this is often referred to as
anti-aliasing hardware. One form of anti-aliasing is to keep L2
physical and have a backpointer to L1, as shown in Fig. 1. In
Fig. 2, on a miss in L2, all the sets in L2 in which the block
could reside must be searched line by line with the help of
the TLB. To simplify this complex procedure and enable the
use of virtual addresses throughout the memory hierarchy,
we propose a new form of anti-aliasing hardware: the
addition of a small SLB to each core.

3 SYNONYM LOOKASIDE BUFFER (SLB)

The coherence of any memory hierarchy is greatly
simplified (both in single core and multicore systems) if a
unique identifier exists for each page. In traditional memory
hierarchies, the unique identifier is given by the physical
page number. In a virtual address memory hierarchy, this
identifier must remain virtual. The SLB relies on operating
system support to identify and maintain a unique virtual
address identifier for each page.

3.1 Primary Virtual Address as Unique Virtual
Address Identifier

The unique identifier for each page is the primary virtual
address. When a page is accessed with a single virtual address
(no synonyms), then its virtual address is also its primary
virtual address. When a page is accessible with multiple
synonyms, then one of the virtual addresses among all the
synonyms is selected as the primary virtual address. Any
virtual address that is not a primary virtual address is called a
secondary virtual address. Table 1 illustrates the concept of
primary and secondary virtual addresses. In this example,
there are eight virtual addresses mapping to four physical
pages. Pages P1 and P3 are each accessed with a single virtual
address, while P2 and P4 can be accessed with four and two
virtual addresses, respectively. W and Y are primary virtual

1588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 2. Virtual L1 and L2 caches. L1 and L2 are indexed and tagged with

virtual addresses. The TLB is accessed on an L2 miss only.

addresses and have no synonyms. For P2 and P4, virtual
addresses X and Z have been selected as primary virtual
addresses. X1, X2, and X3 are synonyms of X, and Z1 is a
synonym of Z. X1, X2, X3, and Z1 are secondary virtual
addresses.

The operating system must be involved in identifying
and maintaining the primary and secondary virtual
addresses. The operating system keeps track of page
sharing information in the virtual memory system. The
virtual memory system is made of several layers. The
bottom layer is responsible for physical activities such as
demand paging. The information on page sharing is mostly
kept in the logical segment layer. A few modifications
should be made to the operating system in the logical
segment layer to take advantage of an SLB. The major
modification is to integrate into the internal page manage-
ment tables the information related to primary and
secondary addresses for each page.

The primary virtual address must be selected among all
the virtual addresses sharing the same page. The operating
system should select the address with the longest lifetime as
the primary address, because the overhead to remap a
primary virtual address is much higher than the overhead
to remap a secondary virtual address. Allocating primary
virtual addresses by first touch is both simple and effective
because of the way the operating system forks processes.

We have mostly used first touch to assign primary
virtual addresses in our simulation experiments. There are
situations when the first touch policy is not the best. For
example, the remap of physical addresses is widely used by
the kernel to communicate with user processes and to
optimize message passing. In one very common scenario,
the kernel prepares a page on behalf of a user process in
kernel space and then remaps the page to user space. The
kernel address is then freed and reused by other pages.
Since this is a primary virtual address change, the current
first touch policy may generate excessive cache flushing for
this very common case. Thus, we propose an optimization
for remap-based message passing, especially for kernel
buffer handling. We call this optimization the lock-bit
optimization. Suppose V2 is a user receiver buffer expecting
a message from V1, which is mapped to a physical page P.
The operating system demaps V1-P and remaps V2-P to
pass the page. Under first touch, V1 is the primary virtual
address and its frequent demapping is very costly. To
reduce the overhead, V2 is deemed the primary virtual
address and V1 a secondary virtual address. In order to
synchronize, V2 accesses must be locked out before the

page is actually transferred. A lock bit is added in the page
table and in the TLB for the V2-P translation. This lock bit is
part of the access right bits and is also copied in the virtual
caches. While the lock bit is set, any access via V1 proceeds
as usual and an access to the page via V2 is locked out by
the page table. This lock-bit optimization was implemented
in all our simulation experiments.

3.2 Basic Design: Parallel SLB and L1 Cache
Accesses

Virtual caches can use the primary virtual addresses for
global naming purposes, a role commonly fulfilled by the
physical address. Secondary virtual addresses must be
translated dynamically into their corresponding primary
virtual addresses. This is the function of the SLB. The SLB
can be accessed in parallel with the L1 cache, as shown in
Fig. 3. This organization is similar to that of a system with a
traditional TLB shown in Fig. 1. Like a TLB, the SLB is
accessed with the virtual address and contains the same
state bits as a TLB. Backpointers in the L2 cache expose
synonyms in the L1 cache. The major differences between
the schemes in Figs. 1 and 3 are that

1. the SLB translates a virtual address into a primary
virtual address instead of into a physical address,

2. the SLB only translates secondary virtual addresses,
3. the L1 cache is indexed with virtual addresses and

tagged with primary virtual addresses,
4. the L2 cache and all virtual caches below it are

indexed and tagged with primary virtual ad-
dresses, and

5. the SLB does not always trap the processor on
a miss.

If a virtual address hits in the SLB, then it must be a
secondary virtual address. Its primary virtual address is
retrieved from the SLB and is used to check the L1 cache
tag. If the L1 cache hits, the value is returned. If it misses,
the primary virtual address is used to access the L2 cache,
resulting in a short miss (L2 hit with valid backpointer) or
in a reload of the block from the L2 cache or any lower level
memory.

When a virtual address misses in the SLB, the SLB is
bypassed and the virtual address is used to check the
L1 cache tag. The address could be either a primary or a
secondary virtual address. If the address hits in the
L1 cache, then it is a primary virtual address and the value
is returned. If the address misses in the L1 cache, the block
could be present in a different set. Consequently, the virtual
address is used to access the L2 cache. A hit in the L2 cache

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1589

TABLE 1
Primary and Secondary Virtual Addresses

with a valid backpointer indicates that the address is a

primary virtual address and triggers a short miss in the

L1 cache. Otherwise, the data is returned by the L2 cache or

by any memory below L2. If the address hits in any memory

above the TLB, then it was a primary virtual address and no

translation is loaded in the SLB. Synonyms are eventually

exposed at the TLB and the TLB indicates whether the

address is a primary or a secondary virtual address. If the

address is a secondary virtual address, a NACK is sent back

to the processor, a software trap handler fills the SLB with

the secondary/primary virtual address translation, and the

access is then retried.
These possibilities are illustrated in Table 2. The “TLB

Address” column indicates the type of virtual memory

address (primary or secondary) recorded in the TLB. We do

not show the case of a TLB miss to simplify. On a TLB miss,

the TLB must be reloaded from the page tables, possibly
resulting in a page fault.

It is important to note that an SLB reload only happens
whenever 1) the SLB misses and 2) the TLB detects that the
address is a secondary virtual address.

3.3 Serial SLB and L1 Cache Accesses

In fact, the SLB is so scalable that our results show that an
SLB of 8 to 16 entries is largely sufficient. Hence, it is
possible to envision the architecture in Fig. 4, in which the
first-level virtual cache and the SLB are accessed serially.

In this memory architecture, the first-level cache can only
hit on primary virtual addresses. If the SLB hits, then the
primary virtual address is used to access the L1 cache. If the
SLB misses, the address may be a primary or secondary
virtual address. If the address hits in any one of the virtual
caches, then it is a primary virtual address and the value is

1590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 3. Access to a virtual cache in parallel with an SLB.

TABLE 2
Action Taken on All Possibilities in Parallel SLB/L1 Cache Accesses

returned. At the point where the physical address is
needed, the TLB decides whether this is a primary or a
secondary virtual address. If it is a secondary virtual
address, an SLB miss trap is triggered, the SLB is reloaded
with the secondary/primary virtual address translation,
and the access is retried.

The L1 cache behavior and complexity are improved as
compared to the parallel access. The drawback is the
increased latency of L1 cache accesses. Note, however, that
the small SLB simply introduces an additional indirection
similar to a small segment register file in segmented
architectures. We will evaluate this architecture as well later.

A particular implementation may combine serial and
parallel accesses to the SLB. Serial and parallel accesses to
SLB are not exclusive. For example, a “micro-SLB” to map
primary addresses before L1 cache indexing, plus an SLB
accessed in parallel with L1 cache might be a good idea. The
addition of the micro-SLB reduces the number of short
misses without really affecting L1 access time.

3.4 SLB/TLB/Cache Flushes

In a virtual cache with physical tags and a TLB, every time a
virtual address is remapped to a different physical address
the TLB entry must be flushed. By contrast, in a system
equipped with an SLB, most virtual-to-physical address
mapping changes such as changes resulting from paging
activities (swap-in and swap-out) or from page migrations
do not flush the SLB.

The only mapping changes that affect the SLB or the
virtual caches are those where the content of a virtual page
is changed through the remapping. For example, when the
process image is overlapped through an exec() system call,
or when a process is terminated and its virtual space is
reclaimed by another process, the virtual caches must be
flushed for all demapped primary virtual addresses and the

SLB must be flushed for all demapped secondary virtual
addresses.

The TLB is not eliminated in a system with SLBs because,
at one point, possibly deep into the hierarchy, the virtual
address must be translated to a physical address to access
the main memory. Unless the TLB is shared at the memory
(which is the most aggressive approach), TLB shootdown in
multiprocessors is still needed when a virtual-to-physical
mapping is changed. However, the TLB shootdown (for
virtual-to-physical mapping changes) does not require
cache flushing (because all caches above the TLB use
virtual addresses).

3.5 Comparison with Segment Registers

Most current operating systems implement demand
paging virtual memory. On top of the machine-dependent
layer, which manages virtual-to-physical address transla-
tions, a machine-independent layer structures virtual
memory in logical segments. The sharing of synonyms is
decided in this logical layer independently of physical
paging. Shared synonym segments are identified in the
machine-independent layer of the virtual memory system
and are allocated in coarse granularity. Segmented
architectures such as the PowerPC architecture [16], [21]
take advantage of this to manage segment registers used to
translate logical addresses into virtual addresses.

This scheme is depicted in Fig. 5 and requires the
translation of a logical address into a virtual address
through a set of segment registers. Segment registers play a
similar role as the SLB and are supported by the same O/S
layer as the SLB. The major difference between an SLB
and segment registers is that the content of the SLB is
dynamically managed in hardware while segment regis-
ters are loaded and reclaimed in software, which puts an
additional burden on software and is less dynamic or
flexible. Furthermore, the SLB contains translations for
secondary virtual addresses only. Since synonyms are the
exception rather than the norm, we expect that SLBs
managed in hardware will be more effective than segment
registers managed in software. Because segment sharing is
already managed in the operating system, some minor
changes are only needed for current operating systems to
identify synonym segments and to support an SLB to
resolve ambiguities between virtual addresses at the
granularity of segments.

3.6 SLB Scalability

The major advantage of an SLB over a TLB is its much better
scalability, as the performance evaluations will show. Here,
we explain why the SLB is so scalable.

Synonyms are allocated in very coarse granularity and
cover a large number of pages. Each SLB entry can cover an
entire segment. This has the same effect on the coverage of
SLBs as superpages have on the coverage of TLBs, but the
major difference is that all the pages of a superpage must be
collocated in physical memory. By contrast, pages in
segments accessed by synonyms do not have to be contiguous
or even allocated in physical memory. In the example shown
in Fig. 6, segments V1 and V2 are synonyms. The physical
address mapping is not contiguous and the virtual pages in
the synonym segments do not all map to a physical page.

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1591

Fig. 4. Serial accesses to an SLB and a virtual cache.

Nevertheless, the synonym can be represented in one single
SLB entry if it is appropriately aligned. The consumption of
SLB entries by each process depends on its synonym usage
instead of on its memory allocation. Increasing data set sizes
does not create more synonyms—the synonyms simply cover
larger memory areas. In fact, the size of the SLB is mostly
dictated by the operating system and the programming style
and not by application sizes, number of processors, or size of
physical memory.

Another advantage of the SLB boosting its scalability is
that it only maps secondary virtual addresses, whereas a
traditional TLB must translate all virtual addresses. In
general, the use of synonyms is not widespread, and
therefore, SLB entries are occupied by secondary/primary
virtual address translations in the rare cases where a virtual
address has an alias. This is an advantage over segment
registers as well (since segment registers must map all
segments).

3.7 Impact on Memory Exceptions

In a traditional TLB-based system, when a Load or a Store is
ready to issue to cache, it accesses the TLB and a TLB hit
guarantees that the access will be exception-free. A Store
can retire when it is placed in the Store buffer, since it is
then guaranteed to complete without exceptions. Stores are
then propagated to memory according to the memory
consistency model [9].

Unfortunately, the SLB cannot verify/resolve memory
trap conditions for virtual addresses as the traditional TLB
does. Accesses missing in the SLB are nonblocking and may
trigger memory traps inside the memory hierarchy (as was
explained in Section 3.2). Thus, the processor must be able
to execute late memory traps efficiently. This problem was

thoroughly discussed elsewhere [25]. The major issue is the

use of a Store buffer. Loads are not a problem because they

cannot retire before the value is returned, at which time the

exception condition is known. However, Stores could be

retired as soon as they enter the Store buffer if they are

exception-free. When memory exceptions can be triggered

deep in the memory hierarchy, the processor cannot retire

instructions until the exception condition on a previous

Store is returned from the memory hierarchy, rendering the

Store buffer all but ineffective.
This is not a problem for sequentially consistent systems

since the Store buffer is mostly ineffective in such systems.

However, it can greatly impact systems with a relaxed

memory model such as Total Store Order (TSO) or Release

Consistency (RC). To be able to take advantage of the Store

buffer in such systems, a tagged Store buffer that implements

deferred memory exceptions was proposed [25]. The tagged

Store buffer makes sure that Stores in the Store buffer will

complete even if they trigger memory exceptions later in the

memory hierarchy.

3.8 Synonym Coherence

In the rare instances when the same data are accessed with
different synonyms in close proximity (i.e., within the same
process)inprocessorder,coherencemaybeviolated.AStoreto
a secondary virtual address may miss in the SLB and in the
virtualaddresscachehierarchyeventhoughitsprimaryvirtual
addressispresentinthecachehierarchy.Inthiscase,afollowing
Loadaccessingthesamedatawiththeprimaryvirtualaddress
mayhitinavirtualcachebeforethetrapfortheStoreisdetected
deep in the memory hierarchy, thus bypassing the previous
synonym access. Coherence is violated.

1592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 5. Dynamic segment translation in a segmented system.

Fig. 6. A synonym example.

This is not an issue for processor architectures imple-
menting sequential consistency because memory operations
are retired one after another, after they are completed.
Loads are not retired until all previous Stores are retired
and globally performed, at which point the synonym
coherence problem has been resolved. However, for relaxed
memory models, the synonym coherence problem is real
because the Stores can be retired as soon as they reach the
local Store buffer. To solve the synonym coherence problem
in the context of relaxed memory models, one may restrict
synonym usage or alter the management of the SLB to
include some primary virtual addresses as well [24].
However, the synonym coherence problem can be solved
simply by taking advantage of the memory disambiguation
and memory forwarding hardware in the microarchitecture
and the fact that synonyms are aligned on page boundaries.

Typically, Loads and Stores are dispatched to a Load/
Store queue, waiting to be issued to the data cache [23].
Memory disambiguation and forwarding hardware is
needed to detect for each Load whether a previous Store
with the same address is currently pending so that the data
can be forwarded from the Store to the Load. Since the
Load/Store queue uses effective (virtual) addresses, syno-
nyms must be resolved in the Load/Store queue. An easy
way to do this is to check the page displacements and the
virtual page numbers separately. If the page displacements
and the virtual page numbers match, then the data should
be forwarded from the Store to the Load. If the page
displacements do not match, then the addresses point to
different data and no forwarding should occur (no
synonym). If the page displacements match but the virtual
page numbers do not match, then the two addresses may be
synonymous and the Load should not issue until the Store
is retired. A similar approach can be used for Stores in the
Store buffer.

3.9 Access Right Support

Just as in the traditional TLB, an SLB entry includes
protection bits associated with a secondary virtual address.
All virtual cache entries tagged with primary virtual
addresses must also contain protection bits associated with
the primary virtual address. Accesses to a secondary virtual
address are checked for protection twice, once in the SLB
and once in the cache. Therefore, access restrictions to a
primary virtual address should be less or equal to access
restrictions to all its synonyms, to avoid useless access right
violation traps.

4 PERFORMANCE EVALUATIONS

4.1 Methodology

Table 3 shows the benchmarks used in the simulations. The
column titled “Instructions” shows the total number of
instructions simulated, and the column titled “Loads/
Stores” indicates the total number of memory accesses.
These benchmarks represent applications from widely
different domains including a JAVA virtual machine, an
OLTP commercial workload, an architecture simulation, a
multiprogramming workload, and a compute intensive
Splash benchmark.

We use trace-driven simulations. Traces are collected by
running SimOS, a complete machine simulator developed
at Stanford University [13]. The simulated SGI workstation
has 64 Mbytes of main memory, 64 Kbytes of instruction
cache, 64 Kbytes of data cache, and a 1-Mbyte L2 cache, and
it runs the Irix 5.3 operating system. The page size is
4 Kbytes. All user and kernel memory accesses are recorded
in the trace.

With the trace, we then simulate a single-processor
system with a two-level cache hierarchy. The L2 cache is
fixed with a size of 1 Mbyte and is two-way set associative.
L1 cache sizes vary from 8 Kbytes to 1 Mbyte, and its
organization is either direct-mapped or four-way set
associative. The cache block size is 64 bytes for all caches.
The LRU policy is used whenever replacement is needed.

In order to support the SLB in the simulations, we
dynamically detect and construct sharings among virtual
addresses. We maintain a page table, a reverse page table,
and a segment table in the simulation. Every memory access
is first checked with these tables in an efficient way before it
is sent to the trace-driven modules. Any new mapping or
change of mapping between virtual and physical addresses
triggers an update of the table structures, where we
aggressively construct and merge virtual address segments
and sharings among the segments. We are very conserva-
tive with demaps. We always flush either the virtual caches
(demap of a primary virtual address) or the SLB (demap of
a secondary virtual address) on every page demapping,
even if some or most of these flushes could be avoided.

4.2 TLB/SLB Misses

Table 4 compares the number of TLB and SLB misses in our
experiments. The TLB column shows the number of TLB
misses for a 32-entry TLB, the SLB column shows the
number of SLB misses for a 16-entry SLB, and the last

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1593

TABLE 3
Benchmarks

column gives the ratio between the numbers of TLB and
SLB misses.

Even though the TLB has double the size of the SLB, the
number of TLB misses surpasses the number of SLB misses
by orders of magnitude. The only benchmark for which the
TLB could compare with the SLB is Pmake. Pmake consists
of many small and short-lived processes with small data
sets. It does not have big enough data sets to pressure the
TLB, while it creates a lot of cold misses because of remaps
and process termination/creation. Still, the ratio between
the miss rates is one order of magnitude.

Table 5 shows the distribution of SLB accesses in an SLB
of infinite size, excluding the accesses in kernel idle and
synchronization. The column titled “hit(16)” gives the
percentage of secondary virtual address accesses that hit
within the first 16 entries. This is the hit rate for a 16-entry
SLB with LRU replacement policy. (If kernel idle and
synchronization were included, this hit rate would be much
higher because their synonym accesses always hit.) The
column titled “hit(> 16)” gives the percentage of secondary
virtual address accesses that hit on SLB entries other than
the first 16 entries. The “miss” column is the percentage of
secondary virtual address accesses that miss in an SLB of
infinite size. It is clear that a very small SLB with 16 entries
can cover the overwhelming majority of synonym accesses
and that the remaining misses are largely due to cold misses
and remappings, which cannot be improved by increasing
the size of the SLB.

Fig. 7 compares the number of TLB and SLB misses in
our five benchmarks as a function of the number of entries.
At the low end of these graphs, we observe that the number
of TLB misses overwhelms the number of SLB misses by
orders of magnitude.

Fig. 8 shows the number of TLB and SLB misses as a
function of the TLB/SLB size for two SPLASH benchmarks,
namely RADIX and OCEAN, and for four different data set
sizes. These are the only benchmark we have for which we can
easily scale the data set size. From these graphs, the miss

curve for the TLB rapidly deteriorates as the data set size
increases, especially for RADIX. By contrast, an SLB of size 8
or bigger has a negligible amount of misses in all cases.

4.3 SLB Flushes

Table 6 shows the activity associated with page remaps in
our five benchmarks. In our simulations, we always flush
either the SLB entry (secondary virtual address access) or the
cache hierarchy (primary virtual address access) on a
remap, even if this is not always needed. Our counts do
not include the activity associated with reclaiming pages at
the end of the benchmark execution because they are not in
the application’s critical path. In the table, “Remaps” is the
number of virtual-physical page remaps in the execution.
Some of these remaps flush the SLB only, and the rest only
flush the caches. “SLB entry flushes” is the number of SLB
flushes. “L2-cache block flushes” is the total number of
L2 cache blocks flushed by all these remaps. L2 is accessed
with primary virtual addresses only.

These numbers are practically negligible, as compared to
the number of Loads and Stores in these benchmarks. The
majority of the remaps are for synonyms in kernel space,
which explains the tiny number of L2 cache blocks that are
flushed. User address remap is very rare even for Pmake,
which is a multiprogramming workload.

4.4 Cache Miss Rates

Because the cache index function is different in different
types of L1 caches, conflict misses are affected. Short misses
are also an issue in some caches. Their number grows with
the cache size (because indexes are spread over more sets),
contrary to conflict misses whose number tends to decrease
with the cache size.

We consider three different address indexings of an
L1 cache referred to as PHYSICAL, PRIMARY, and
VIRTUAL. In PHYSICAL, the cache is indexed and tagged
with physical addresses (case of Fig. 1 when the index is
part of the page displacement). PHYSICAL is not affected by

1594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

TABLE 4
Number of TLB/SLB Misses

TABLE 5
SLB Hit Rate Distribution (in Percent)

synonyms and has no short misses. PRIMARY is the case
where a cache is accessed with primary virtual addresses
only (case of Fig. 4). PRIMARY is not affected by synonyms
and has no short misses. Finally, in VIRTUAL, the cache
may be indexed with synonyms. This is the case where a
virtual cache is accessed in parallel with a TLB (see Fig. 1) or
where a virtual cache is accessed in parallel with an SLB
(see Fig. 3). VIRTUAL must deal with short misses.

4.4.1 Total Miss Rates

Fig. 9 shows the total miss rates, including kernel and user,
for direct-mapped and four-way set associative L1 caches.
All curves show the same trends. The index to the cache
only affects conflict misses, which are significant in direct-
mapped caches.

A very big gap exists between PHYSICAL on one hand
and PRIMARY or VIRTUAL on the other in the case of
direct-mapped caches for RSIM and TPC-C benchmarks.
This gap is clearly due to conflict misses. A closer look into
the RSIM trace exposes that one physical page for the stack
was aligned with one data page at a 1-Mbyte boundary.
This suggests that for low associativity, virtual caches are
more robust than physical caches. Although the operating
system can select the virtual-to-physical page mapping to

minimize cache conflicts, its effectiveness at doing so is
questionable, whereas virtual address indexing takes full
advantage of the spatial and temporal localities naturally
exhibited by most programs [20]. In four-way caches, all
methods of indexing the L1 cache exhibit similar miss rates.

4.4.2 Short Misses

The slight difference between the miss rates of VIRTUAL
and PRIMARY is due to short misses. Fig. 10 shows the
fraction of short misses in all the benchmarks, i.e., the
number of short misses divided by the total number of
misses in VIRTUAL. Again, we show the results for direct-
mapped and four-way set-associative caches.

When the cache size increases, more synonyms are
indexed into different sets (because there are more sets) and
tend to stay longer in the cache (because the miss rate
drops), leading to an increase in short misses. At the same
time, the number of capacity misses decreases sharply. In
our benchmarks, we observe a sharp increase of the fraction
of short misses for all benchmarks as soon as the cache size
reaches 128 Kbytes.

These results suggest that for small virtual caches there is
little difference between the hit rates of virtual and primary

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1595

Fig. 7. Number of TLB and SLB misses as a function of the number of entries.

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 8. Number of TLB and SLB misses versus number of entries in RADIX and OCEAN with various data set sizes. (a) RADIX. (b) OCEAN.

TABLE 6
Page Remaps and SLB/Cache Flushes

indexings. Thus, the organization in which the SLB and the
L1 cache are accessed in parallel may be preferable.
However, for large L1 caches, it may become advantageous
to access the SLB and the L1 cache serially, to avoid the
effect of short misses while the access time to SLB becomes
a smaller fraction of L1 cache access time. None of the
systems we have evaluated have short misses outside the
L1 cache.

5 RELATED WORK

Over the years, many researchers in both software and
hardware communities have advocated and proposed ideas
supporting virtual caches. On the software side, Opal [7]
was a novel approach to operating system (SASOS) running
on a single global virtual address space shared by all
procedures and all data. Synonyms do not exist in an
SASOS. However, the engineering community was clearly
not ready for such radical change.

Talluri et al. [29] and Romer et al. [27] looked at using
superpages to increase TLB coverage without enlarging the
TLB. They demonstrated that superpages dramatically cut
the TLB overhead by mapping physical memories in big
chunk. In [27], superpages are constructed dynamically by

promoting small pages to a large page. The promotion itself
requires copying physical pages, updating kernel data
structures, and TLB shootdowns. This operation is very
costly. The decision of when and how to promote super-
pages requires significant hardware and software efforts
and usually increases the data set size of applications. It is
unclear how these superpage schemes interact with other
memory allocation issues, especially in NUMA-oriented
memory system and in page coloring schemes for cache
friendly optimizations [2].

Impulse [28] attempts to increase TLB coverage by
backing up superpages with shadow physical memory. A
superpage can be constructed by mapping to contiguous
shadow physical pages, which will be translated into
noncontiguous real physical pages by the memory con-
troller. Although this can boost performance for particular
applications, it is not a general solution for superpages
because shadow memory is limited and has to be managed
like physical memory.

Qiu and Dubois [26] looked at the locations in the
memory hierarchy where virtual-to-physical address trans-
lations can be done. In their V-COMA architecture, virtual
memory management is combined with the cache coher-
ence protocol and distributed among processing nodes.
They advocated the virtualization of the memory hierarchy

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1597

Fig. 9. Total miss rate of L1 caches.

in order to simplify memory systems and move functions to
the memory side [24]. The SLB is a viable approach to
achieve these goals.

Teller [30] addressed the scalability issue of maintaining
TLB consistency in large-scale multiprocessors. In particu-
lar, she proposed a memory-based TLB scheme in the
context of UMA architecture. She demonstrated that TLB
consistency scales poorly in large-scale multiprocessors and
moving the TLB to memory can radically solve the problem.

Although virtual caches have been the topic of many
research papers, there are very few quantitative analysis
of virtual cache performance. Agarwal [1] analyzed
virtual address cache performance using traces from
VAX. Wu et al. [34] evaluated different virtual cache
types using an IBM System/370 trace. Although some of
these observations are similar to the ones in this paper,
the quantitative results are hard to compare because
of the different schemes adopted for virtual caches and of
the different workloads and operating systems used in the
experiments. Lynch [20] observed that physical cache
performance varies for each run depending on the
allocation of pages by the operating system, while, on
the other hand, the performance of virtual caches is not
sensitive to these implementation decisions. We also
observe that the miss rate of virtual caches is more

robust than that of physical caches, especially for caches
with low associativity.

6 CONCLUSIONS

In this paper, we have taken a new look at virtual caches.
Moving the virtual-to-physical translation down the cache
hierarchy presents some technical challenges. We show a
simple and effective solution to the synonym problem,
which is one of the major technical problems of virtual
caches. In this solution, one primary virtual address is used
to name each virtual page uniquely in the processor and in
the memory hierarchy and an SLB translates synonyms into
primary virtual addresses dynamically. We have given
reasons why a very small SLB is effective and we have
shown performance data to back this claim up. Using actual
applications from different domains, we have shown that
virtual cache flushing is very limited in practice and has
insignificant impact on performance. We have presented
extensive performance results comparing the miss rate
behavior of physical and virtual caches. Virtual caches have
better miss rates than physical caches and the solution using
a small first-level SLB in front of the caches avoids short
misses in larger caches, while safeguarding the benefits of
temporal and spatial localities in the virtual space.

1598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 10. Fraction of short misses in VIRTUAL.

REFERENCES

[1] A. Agarwal, Analysis of Cache Performance for Operating System and
Multiprogramming. Kluwer Academic, 1989.

[2] E. Bugnion et al., “Compiler-Directed Page Coloring for Multi-
processors,” Proc. Seventh Conf. Architecture Support for Program-
ming Languages and Operating Systems (APLOS ’96), Oct. 1996.

[3] M.J. Bach, The Design of the UNIX Operating System. Prentice Hall,
1986.

[4] M. Cekleov and M. Dubois, “Virtual-Address Caches, Part 1:
Problems and Solutions in Uniprocessors,” IEEE Micro, pp. 64-71,
Sept./Oct. 1997.

[5] M. Cekleov and M. Dubois, “Virtual-Address Caches, Part 2:
Multiprocessor Issues,” IEEE Micro, pp. 69-74, Nov./Dec. 1997.

[6] C. Chao, M. Machey, and B. Sears, “Mach on a Virtually
Addressed Cache Architecture,” Proc. First Mach USENIX Work-
shop, pp. 31-51, Oct. 1991.

[7] J. Chase, H. Levy, and M. Feeley, “Sharing and Protection in a
Single-Address-Space Operating System,” ACM Trans. Computer
Systems, pp. 271-307, Nov. 1994.

[8] D. Cheriton, G. Slavenburg, and P. Boyle, “Software-Controlled
Caches in the VMP Multiprocessor,” Proc. 13th Ann. Int’l Symp.
Computer Architecture (ISCA ’86), pp. 366-375, 1986.

[9] Y. Chou, L. Spracklen, and S.G. Abraham, “Store Memory-Level
Parallelism Optimizations for Commercial Applications,” Proc.
38th Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO), 2005.

[10] D.W. Clark and J.S. Emer, “Performance of the VAX-11/780
Translation Buffer: Simulation and Measurement,” ACM Trans.
Computer Systems, vol. 3, no. 1, Feb. 1985.

[11] J.R. Goodman, “Coherency for Multiprocessor Virtual Address
Caches,” Proc. Second Conf. Architecture Support for Programming
Languages and Operating Systems (ASPLOS), 1987.

[12] L. Gwennap, “Alpha 21364 to Ease Memory Bottleneck,” micro-
processor report, Oct. 1998.

[13] S.A. Herrod, “Using Complete Machine Simulation to Under-
stand Computer System Behavior,” PhD thesis, Stanford Univ.,
Feb. 1998.

[14] G. Hinton et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., pp. 1-12, Q1, 2001.

[15] B. Jacob and T. Mudge, “Software-Managed Address Transla-
tion,” Proc. Third Int’l Symp. High Performance Computer Architec-
ture (HPCA ’97), Feb. 1997.

[16] R. Kalla, B. Sinharoy, and J. Tendler, “IBM Power5 Chip: A
Dual-Core Multithreaded Processor,” IEEE Micro, pp. 41-47,
Mar./Apr. 2004.

[17] E.J. Koldinger, J.S. Chase, and S.J. Eggers, “Architecture Support
for Single Address Space Operating System,” Proc. Fifth Conf.
Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’92), pp. 175-186, Oct. 1992.

[18] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-
Way Multithreaded Sparc Processor,” IEEE Micro, pp. 21-29,
Mar./Apr. 2005.

[19] J.P. Laudon and D. Lenoski, “The SGI Origin: A CC-NUMA
Highly Scalable Server,” Proc. 24th Ann. Int’l Symp. Computer
Architecture (ISCA), 1997.

[20] W. Lynch, “The Interaction of Virtual Memory and Cache
Memory,” PhD thesis, Technical Report CSL-TR-93-587, Stanford
Univ., 1993.

[21] The PowerPC Architecture: A Specification for a New Family of RISC
Processors, C. May, E. Silha, R. Simpson, and H. Warren, eds.
Morgan Kaufmann, 1994.

[22] V. Pai, P. Ranganathan, and S. Adve, “RSIM Reference Manual,”
Technical Report 9705, Dept. of Electrical and Computer Eng.,
Rice Univ., Aug. 1997.

[23] I. Park et al., “Reducing Design Complexity of the Load/
Store Queue,” Proc. 36th Ann. Int’l Symp. Microarchitectures
(MICRO-36 ’03), pp. 411-422, 2003.

[24] X. Qiu and M. Dubois, “Towards Virtually-Addressed Memory
Hierarchies,” Proc. Seventh Int’l Symp. High Performance Computer
Architecture (HPCA ’01), pp. 51-62, Jan. 2001.

[25] X. Qiu and M. Dubois, “Tolerating Late Memory Traps in
Dynamically-Scheduled Processors,” IEEE Trans. Computers,
vol. 53, no. 6, pp. 732-743, June 2004.

[26] X. Qiu and M. Dubois, “Moving Address Translation Closer to
Memory in Distributed Shared Memory Multiprocessors,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 7, pp. 612-623,
July 2005.

[27] T.H. Romer, W.H. Ohlrich, and A.R. Karlin, “Reducing TLB and
Memory Overhead Using Online Promotion,” Proc. 22nd Ann. Int’l
Symp. Computer Architecture (ISCA ’95), pp. 176-187, 1995.

[28] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using
Superpages Backed by Shadow Memory,” Proc. 25th Ann. Int’l
Symp. Computer Architecture (ISCA ’98), pp. 204-213, 1998.

[29] M. Talluri, S. Kong, M.D. Hill, and D.A. Patterson, “Tradeoffs in
Supporting Two Page Sizes,” Proc. 19th Ann. Int’l Symp. Computer
Architecture (ISCA ’92), pp. 415-424, May 1992.

[30] P. Teller, “Translation Lookaside Buffer Consistency,” Computer,
vol. 23, no. 6, pp. 26-36, June 1990.

[31] M. Tremblay and J.M. O’Connor, “Ultrasparc I: A Four-Issue
Processor Supporting Multimedia,” IEEE Micro, pp. 42-50,
Apr. 1996.

[32] W.H. Wang, J.-L. Baer, and H.M. Levy, “Organization and
Performance of a Two-Level Virtual-Real Cache Hierarchy,” Proc.
16th Ann. Int’l Symp. Computer Architecture (ISCA ’89), pp. 140-148,
June 1989.

[33] D. Wood, S. Eggers, G. Gibson, M. Hill, and J. Pendleton, “An
In-Cache Address Translation Mechanism,” Proc. 13th Ann. Int’l
Symp. Computer Architecture (ISCA ’86), pp. 358-365, Jan. 1986.

[34] C.E. Wu, Y. Hsu, and Y.-H. Liu, “A Quantitative Evaluation of
Cache Types for High-Performance Computer Systems,” IEEE
Trans. Computers, vol. 42, no. 10, pp. 1154-1162, Oct. 1993.

Xiaogang Qiu received the PhD degree in
computer engineering from the University of
Southern California. He is currently a hardware
engineer at NVIDIA. Before joining NVIDIA in
2006, he was a staff engineer at Sun Micro-
systems. His research interests include compu-
ter architecture, design and verification of
microprocessors, and parallel systems.

Michel Dubois received the degree in electrical
engineering from the Faculte Polytechnique de
Mons, Mons, Belgium, the MS degree in
electrical engineering from the University of
Minnesota, and the PhD degree in electrical
engineering from Purdue University. He is a
professor of computer engineering in the De-
partment of Electrical Engineering-Systems,
University of Southern California (USC). Before
joining USC in 1984, he was a research

engineer at the Central Research Laboratory, Thomson-CSF, Orsay,
France. His main research interests are in computer architecture and
parallel processing. He has published more than 150 technical papers
on computer architectures and algorithms. He is well known for his early
work on cache coherence and memory consistency models. From 1993
to 2001, he led the RPM Project, a project funded by the US National
Science Foundation. RPM stands for “Rapid Prototyping engine for
Multiprocessors” and is a hardware platform used to implement
multiprocessor systems with widely different multiprocessor architec-
tures. In this project, a multiprocessor machine was built with off-the-
shelf components and FPGAs. Multiprocessor prototypes could be
developed by programming the FPGAs. His current research interests
are in CMPs and in the impact of technological trends on such
microarchitectures. He has edited two books, one on multiprocessor
caches and one on scalable shared memory multiprocessors. He has
been on numerous technical committees of leading conferences, as well
as program chair and general chair of several conferences. He is
currently an area editor of the Journal of Parallel and Distributed
Processing. He is a fellow of the ACM and the IEEE and a member of
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

QIU AND DUBOIS: THE SYNONYM LOOKASIDE BUFFER: A SOLUTION TO THE SYNONYM PROBLEM IN VIRTUAL CACHES 1599

