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Abstract 

 
Many algorithms for image processing and pattern 

recognition have recently been implemented on GPU 
(graphic processing unit) for faster computational 
times. However, the implementation using GPU 
encounters two problems. First, the programmer 
should master the fundamentals of the graphics 
shading languages that require the prior knowledge on 
computer graphics. Second, in a job which needs much 
cooperation between CPU and GPU, which is usual in 
image processings and pattern recognitions contrary 
to the graphics area, CPU should generate raw feature 
data for GPU processing as much as possible to 
effectively utilize GPU performance. This paper 
proposes more quick and efficient implementation of 
neural networks on both GPU and multi-core CPU. 
We use CUDA (compute unified device architecture) 
that can be easily programmed due to its simple C 
language-like style instead of GPGPU to solve the first 
problem. Moreover, OpenMP (Open Multi-Processing) 
is used to concurrently process multiple data with 
single instruction on multi-core CPU, which results in 
effectively utilizing the memories of GPU. In the 
experiments, we implemented neural networks-based 
text detection system using the proposed architecture, 
and the computational times showed about 15 times 
faster than implementation using CPU and about 4 
times faster than implementation on only GPU without 
OpenMP.  
 
 
1. Introduction 
 

GPUs (graphic processing units) are much more 
effective in utilizing parallelism and pipelining than 
general purpose CPUs, as they are designed for high-
performance rendering where repeated operations are 
common. In result, the GPUs have recently attracted a 
lot of attention in the field of computer vision and 
image processing with many repeated operations. For 
example, since there are many repeated operations in 

implementing NNs (neural networks), it can be quickly 
and effectively performed in GPU. Moreover, GPUs 
have recently became increasingly competitive as 
regards speed, programmability, and price. Therefore, 
many algorithms used in the fields of computer vision 
and image processing are translated into 
implementation on GPU [1-5]. 

Moreland and Angel [2] implemented FFT (fast 
Fourier transform) on GPU, and performed the FFT by 
executing a fragment program on every pixel at each 
step in a SIMD (single instruction, multiple data)-like 
fashion. Mairal et al. [3] implemented stereo matching 
algorithm on GPU. Geys and Gool [4] implemented 
view synthesis, and the efficiency was accomplished 
by the parallel use of the CPU and the GPU. The input 
images were projected on a plane sweeping through 3D 
space, using the hardware accelerated transformations 
available on the GPU and a max-flow algorithm on a 
graph was implemented on the CPU to ameliorate the 
result by a global optimization. Yang and Welch [5] 
implemented image segmentation and smoothing that 
is basic arithmetic of computer vision on GPU taking 
advantage of register combiner and blending 
technology. Moreover, Oh and Jung [1] implemented 
neural networks on GPU, which is one of popular 
algorithm of pattern recognition algorithm, and the 
GPU was used to implement the matrix multiplication 
of a neural network to enhance the time performance. 

Above mentioned papers [1-5] showed faster 
computational performances compared with the 
implementations on CPU. However, implementation 
on GPU encounters two main problems. 

First, the programmer should master the 
fundamentals of graphics shading languages that 
require the prior knowledge on computer graphics, as 
the implementation should be programmed using the 
shading languages, such as HLSL included in Direct X 
[6], Cg included in nVIDIA [7], and GLSL included in 
OpenGL 2.0 [8]. Although languages that can program 
on GPU more easily, such as Brook [9], are recently 
announced, these languages showed a slower execution 
time than previous shading languages [6-8]. Moreover, 
the shading languages on the GPU cannot easily access 
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general memories involved in GPU, as they should 
access through only texture memory [10]. 

Second, it is essential to avoid data transfer between 
the CPU and GPU as much as possible to take 
advantage of efficiency of GPU. Almost all 
applications or algorithms used in computer vision and 
image processing, which involve a high capacity of 
data, cannot be completed in one step on GPU due to 
the limited memory of the GPU. Due to this reason, 
Fung and Mann [11] explored the creation of a parallel 
computer architecture consisting of multiple GPU built 
entirely from commodity hardware to simultaneously 
process all the data on multiple memories of GPUs. 
However, the architecture is not general, as almost all 
computers have only one graphics hardware. As an 
another approach, the algorithms implemented on CPU 
and GPU can be executed in parallel by using a multi-
threaded implementation, which means the next 
operation can be processed while the previous one is 
still processed [4]. However, it also has a significant 
problem that the computational time on GPU is much 
faster than on CPU, and thus the GPU waits for 
completing the process on CPU. Therefore, it is 
essential to transfer data as much as possible from 
CPU to GPU to take advantage of efficiency of GPU. 
However, in this case, many overheads should be 
occurred when the CPU generates the data as much as 
possible. 

This paper proposes more quick and efficient 
implementation on both commodity graphics hardware 

and multi-core CPU. We use a new GPU language 
CUDA (compute unified device architecture) recently 
released from NVIDIA, as the CUDA code is C 
language style and has less computational restriction, 
while the traditional GPGPU could be programmed 
through only a graphics API that requires much special 
knowledge on computer graphics. Moreover, we 
design the NN using inner product operation in parallel 
to be suitable to the CUDA. To reduce the 
computational time on CPU, which generates data as 
much as possible that will be performed in GPU, we 
implement feature extraction module for the NNs using 
OpenMP (Open Multi-Processing), which can help to 
concurrently process multiple data with single 
instruction on multi-core CPU while processing only 
one data on GPU. Therefore, the proposed method 
minimizes differentiation between two computational 
times on only one graphics hardware. 

Based on the proposed architecture, we implement a 
NN, involving the main problem that is the 
computational complexity in the testing stage. Fig. 1 
shows an overall flow chart. Given input image, the 
function GetConfiguration() extracts features. Here, 
feature extraction is processed on the multi-core CPU, 
which is performed in parallel to reduce the 
computational time on CPU, and the set of extracted 
features is transferred to the CUDA. CUDA performs 
main operations of NN composed of inner-product 
operations and an active function, and we design two 
operations using multi-thread and shared memories to 

 

 
Fig. 1. Overall flow of neural networks using CUDA and Open MP. 
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be suitable to the CUDA. In the experiments, we 
implemented NN-based text detection using the 
proposed architecture, and the computational times 
showed about 20 times faster than implementation 
using CPU and about 5 times faster than on only GPU. 

The remainder of this paper is organized as follows. 
The brief introductions of CUDA and OpenMP are 
described in section 2, and implementation of NN on 
the proposed architecture is described in section 3. 
Some experimental results are presented in section 4, 
and the final conclusions are given in section 5. 
 
2. Proposed Architecture 
 

The proposed architecture mainly consists of CUDA 
that allows us to program an algorithm executed on 
GPU in a C programming language style and OpenMP 
that concurrently processes multiple data with single 
instruction. Therefore, brief introductions of CUDA 
and OpenMP are described in section 2.1 and 2.2, 
respectively. 
 
2.1. CUDA 
 

The mechanism of general computation using a 
GPU is as follows. The input data is transferred to the 
GPU as textures or vertex values. The computation is 
then performed by the vertex shader and pixel shader 
during a number of rendering passes. The vertex shader 
performs a routine for every vertex that involves 
computing its position, color, and texture coordinates, 
while the pixel shader is performed for every pixel 
covered by polygons and outputs the color of the pixel. 
The reason why the programmer used texture or vertex 
values and vertex or pixel shader is the GPU could 
only be programmed through a graphics API, imposing 
complex knowledge on computer graphics and the 
overhead of an inadequate API to the non-graphics 
application. 

A CUDA is a new GPU programming language 
recently released from NVIDA [10]. The CUDA code 
is written in the standard C language with some 
extensions related to GPU computation, and thus it can 
help to easily program the general computation on 
GPU if a programmer has basic knowledge on the 
standard C language. Moreover, since the CUDA do 
not use the graphics API generally, the overhead for 
the non-graphics application, such as basic operations, 
should also be reduced. 

Moreover, GPU programs can gather data elements 
from any part of DRAM, but could not be written in a 
general way, which means GPU programs cannot 
scatter information to any part of DRAM. It results in 

removing a lot of the programming flexibility readily 
available on the CPU[10]. 

The CUDA provides general DRAM memory 
addressing for more programming flexibility: both 
scatter and gather memory operations. From a 
programming perspective, this translates into the 
ability to read and write data at any location in DRAM, 
like on a CPU. CUDA features a parallel data cache or 
on-chip shared memories with very fast general read 
and write access, that threads use to share data with 
each other. Thus, applications can take advantage of it 
by minimizing overfetch and round-trips to DRAM. 

We explain basic terminologies to easily understand 
the CUDA. As a thread is a basic execution unit, many 
threads on GPU are created, and they execute a same 
function in parallel. A thread block is a batch of 
threads that can cooperate together by efficiently 
sharing data through some fast shared memory and 
synchronizing their execution to coordinate memory 
accesses. 

However, CUDA cannot share two memories of 
CPU and GPU, which means GPU receives input data 
from the CPU to implement operations. To take 
advantage of efficiency of GPU, it is essential to avoid 
data transmission between the CPU and GPU as much 
as possible, and to do this, CPU should generate data 
as much as possible. However, in this case, many 
computation times to make maximum data in CPU are 
required, and thus hinder the effective use of CPU and 
GPU architecture. We solve this problem by using 
OpenMP that performs the operations in parallel 
implementation of CPU, which will be described in 
section 2.2. 

 
2.2. OpenMP 

 
The OpenMP is a set of directives for C, C++, and 

Fortan programs that make it easier to express shared-
memory parallelism, which was released in 2005 [12]. 
The advent of commodity inexpensive multi-core 
processors and corresponding OpenMP-capable 
complier has recently increased the popularity of 
OpenMP. The OpenMP consists of two teams: Master 
and Slave, and an implementation of multithreading 
whereby the master “thread” forks a specified number 
of slave “threads” and a task is divided among them. 
The threads then run concurrently, with the runtime 
environment allocating threads to different processors. 
Fig. 2 shows an illustration of multithreading where 
the master thread forks off a number of threads that 
execute blocks of code in parallel. 

The OpenMP indicates how to process the code 
block by compiler indicators. The most basic indicator 
is ‘#pragma omp parallel’ to indicate parallel regions. 
The OpenMP uses a fork-join model as a parallel 
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operation model. The fork-join model starts with initial 
single thread, and then two procedures are iteratively 
performed; if the parallel regions are reached, 
additional thread is constructed, and then operations 
are performed on the thread, and if the parallel regions 
are closed, the constructed thread are destroyed. 
Moreover, the OpenMP provides several useful 
routines for the thread: information of activated threads, 
setting the number of threads to be used for 
parallelization, and the number of maximum threads. 
Above mentioned functionalities are collectively 
defined in the specification of the OpenMP API. This 
specification provides a model for parallel 
programming that is portable across shared memory 
architectures from different vendors. Compliers from 
numerous vendors support the OpenMP API. More 
information about OpenMP can be found at the 
following web site: http://www.openmp.org/ 
 

 
Fig. 2. Architecture of OpenMP. 

 
In the experiments, when using only CUDA without 

OpenMP, computational times that gather data to be 
transferred to the GPU take 4/5 of total computational 
times. Therefore, the gathering times need to be 
reduced as many as possible. The solution to do this is 
the OpenMP, as it can help to process multiple data 
with same operations in parallel, and thus it can reduce 
the overhead for gathering times. In the case of NN, 
one operation to extract features is concurrently run 
with multiple input data using OpenMP, and then 
extracted features are simultaneously sent to the 
CUDA. 

 
3. NN Implementation 
 

NN is based on the concept of the workings of the 
human brain. There are many different types of NN, 
with the more popular being a multilayer perceptron 

(MLP), learning vector quantization, radial basis 
function, Hopfiled, and self-organizing map. 
The current study focuses on implementing the test 
stage of the MLP using a CUDA and OpenMP. The 
MLP consists of one input layer, one output layer, and 
one or more than hidden layer. Nodes of adjacent 
layers are usually fully connected, and the mechanism 
of general computation for adjacent two layers in the 
testing stage consists of two steps: 1) inner-product 
operation between weights and input vectors of each 
layer (Eq. 1) and 2) then activate function (Eq. 2). ௝݉ ൌ ෍ ௜ݔ௜௝ݓ ൅ ௝ܾ                                                 ሺ1ሻ ݎ௝ ൌ ሺ1 ൅ ݁ି௠ೕሻିଵ                                                   ሺ2ሻ 
In the Eq (1) and (2), the subscript j indexes nodes in 
the current layer to be calculated, i indexes the node of 
the lower layer connected with the jth node, and wij 
denotes the weight at the connection between the ith 
and jth nodes. xi is value inputted to ith node, bj the is 
the bias term of the jth node, and rj is the output value 
of the jth node. This general operation is continually 
performed from the first hidden layer to the output 
layer. Since another NN is also calculated by the 
general operation, the inner-production operation and 
activate function, this operation can be easily applied 
to another NN. 
Moreover, since many inner-product operations can be 
replaced with a matrix multiplication, the MLP is more 
appropriate for CUDA implementation. As such, the 
computation-per-layer can be written as follows: 

ࣱ ൌ ൦ इଵ଴ इଵଵ ڮ इଵேइଶ଴ इଶଵ ڮ इଶேڭ ڭ ڰ इெ଴ڭ इெଵ ڮ इெே൪ ൌ ൦ ଵࣱࣱଶࣱڭெ൪, 
ࣲ ൌ ൦ 1 1 ڮ 1ईଵଵ ईଵଶ ڮ ईଵ௅ڭ ڭ ڰ ईேଵڭ ईேଶ ڮ ईே௅൪ 

     ൌ ሾ ଵࣲ ଶࣲ ڮ ௅ࣲሿ, 
M ൌ ࣱ ൈ ࣲ 

     ൌ ൦ ଵࣱ · ଵࣲ ଵࣱ · ଶࣲ ڮ ଵࣱ · ࣲேଶࣱ · ଵࣲ ଶࣱ · ଶࣲ ڮ ଶࣱ · ࣲேڭ ڭ ڰ ெࣱڭ · ଵࣲ ெࣱ · ଶࣲ ڮ ெࣱ · ࣲே൪ 

ൌ ൦ ݉ଵଵ ݉ଵଶ ڮ ݉ଵ௅݉ଶଵ ݉ଶଶ ڮ ݉ଶ௅ڭ ڭ ڰ ெଵ݉ڭ ݉ெଶ ڮ ݉ெ௅൪. 

ܴ ൌ sigmoidሺܯሻ 

     ൌ ൦ 1 ൅ ݁ି௠భభ 1 ൅ ݁ି௠భమ ڮ 1 ൅ ݁ି௠భಽ1 ൅ ݁ି௠మభ 1 ൅ ݁ି௠మమ ڮ 1 ൅ ݁ି௠మಽڭ ڭ ڰ 1ڭ ൅ ݁ି௠ಾభ 1 ൅ ݁ି௠ಾమ ڮ 1 ൅ ݁ି௠ಾಽ൪ 

where M is the number of nodes in the current layer, N 
is the number of nodes in the lower layer, and xij is the 
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ith feature value of the jth input vector. The result Rij is 
the output of the ith output node for the jth input vector. 
Here, the subscript 0 means the bias term, and this is to 
make one matrix multiplication without the summation 
term in Eq 1. 

When implementing the NN using CUDA, all input 
feature data for the NN cannot be transferred into the 
memories of the GPU, due to the limited memories of 
the GPU. Therefore, the proposed architecture divides 
the whole process into two parts. The first part is to 
make a suitable size of feature data for the memory of 
the GPU, and can also include a feature extraction step 
to extract features for the NN. However, this part is 
much slower than implementation on the GPU. 
Therefore, the OpenMP is used for parallel 
implementation of the first step, i.e. making feature 
data is concurrently performed on the multi-core CPU. 
The second step is to implement the NN using feature 
data received from the CPU. Then computational times 
of two parts are similar to each other, compared with 
implementation without OpenMP. Therefore, the 
efficiency of the proposed architecture is accomplished 
by the parallel use of the CPU and GPU. 

 

 
Fig. 3. Operations of NN using CUDA. 

 
Fig. 3 shows matrix multiplication and computation 

of sigmoid function using CUDA. Since the CUDA 
can effectively compute matrix multiplication by using 

shared memories. In general operation in GPU, about 
400-600 cycles are required to assess the global 
memories, but in memory environment of CUDA, only 
4 cycles is required to access the shared memories. 
Therefore, the shared memories of the CUDA help to 
effectively compute the operations. The sigmoid 
function can be performed in parallel by allocating 
thread equal to the number of elements of matrix and 
then compute the operation in each thread 
independently. 
 
4. Experimental Results 
 

All experiments were carried out on an Intel core 2 
Quad Q6600 CPU (2.4 GHz) and GeForce 8800 GTX 
graphics hardware. OpenMP help to process four sets 
of data on CPU in parallel. We evaluated the proposed 
method through the NN-based text detection 
application, section 4.1 describes the text detection, 
and section 4.2 shows result images and time 
complexity. 
 
4.1. NN-based Text Detection 

 
Recently, researchers have attempted text-based 

retrieval of image and video data using several image 
processing techniques [13]. As such, an automatic text 
detection algorithm for image data and video 
documents is important as a preprocessing stage for 
optical character recognition, and an NN-based text 
detection method has several advantages over other 
methods [13]. 

Therefore, this subsection briefly describes such a 
text detection method, and readers are referred to the 
author’s previous publication for more detail [13]. In 
the proposed architecture, an NN is used to classify the 
pixels of input images, whereby the feature extraction 
and pattern recognition stage are integrated in the NN. 
The NN then examines local regions looking for text 
pixels that may be contained in a text region. Therefore, 
1) gray values of the pixels at predefined positions 
inside an M×M window over an input frame is 
received as the input and 2) a classified image is 
generated as the output. After the feature passes the 
network, the value of the output node is compared with 
a threshold value and the class of each pixel 
determined, resulting in a classified image. 
Experiments were conducted using an 11×11 input 
window size, with the number of nodes in a hidden 
layer set at 30. 

In the proposed architecture, the first step of 
previous sentence was performed on the multi-core 
CPU using OpenMP for parallel implementation, and 
Fig. 4 shows pseudo codes for the first step. The 
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second step was performed on the GPU, and Fig. 5 
shows pseudo codes. In Fig. 5, two threads were 
allocated to perform the first step, thus the pseudo code 
including two indicators ‘#pragma omp section’ is to 
allocate the thread. 

 
for(check everyPixel of image) 
{     

//Parallel Implementation using OpenMP 
  #pragma omp parallel section  
  { 
      #pragma omp section 
      { 
          //pixel check in window range 
          GetConfigMatrix(cpuData1);  

} 
      #pragma omp section 
      { 
          //pixel check in window range 
          GetConfigMatrix(cpuData2);  
      } 

} 
//calculate neural net using CUDA 

  ForwardCUDA(cpuData1,outputCUDAData);  
SaveOutputData(outputCUDAData); 
ForwardCUDA(cpuData2,outputCUDAData); 
SaveOutputData(outputCUDAData); 

} 
Fig. 4. Pseudo code for OpenMP performed on 
multi-core CPU. 

 
//memory copy from CPU to GPU 
cublasSetMatrix(CPUData, CUDAData ); 
 
//Result 0 = Weight0 * GPUData 
//matrix multiplication of first layer 
cublasSgemm(Weight0, CUDAData, Result0);  
// sigmoid calculation of first layer 
Sigmoid(Result0);  
 
//Result1 = Weight1 * Result0; 
// matrix multiplication of second layer 
cublasSgemm(Weight1, Result0, Result1); 
//sigmoid calculation of second layer 
Sigmoid(Result1);  
 
//memory copy from GPU to CPU 
cublasGetMatrix(Result1, outputCPUData); 

Fig. 5. Pseudo code for NN performed on GPU. 
 
4.2. Result of Text Detection 

 
Fig. 6 shows the result images according to the 

image sizes: (a,b) 320×240, (c,d) 571×785, and (e,f) 

1152×15466. Figs. 6(b,d,f) show the pixel 
classification result for the input image Figs. 6(a,c,e), 
where a black pixel denotes a text pixel. The 
classification using a GPU produced almost the same 
results as without a GPU. 

 

    
(a)                                      (b) 

    
(c)                                    (d) 

  
(e)                                     (f) 

Fig. 6. Result images: (a,c,e) input images, and 
(b,d,f) result images. 

 
Fig. 7 shows the computational times of Fig. 6, 

where x-axis indicates image sizes and y-axis indicates 
computational times (sec). As shown in Fig. 7, the 
proposed architecture showed about 20 times faster 
than the CPU-only and about 5 times faster than the 
GPU-only, and the computational times for pixel 
classification were significantly reduced using the 
proposed method. The reason why the proposed 
method showed faster computational times than GPU-
only is we reduced the computational times to generate 
the data, which will be processed in GPU, in multi-core 
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CPU using OpenMP. Therefore, we analyzed the 
computational times when using OpenMP. 

Fig. 8 shows effectiveness of using OpenMP, where 
y-axis indicates computational times (msec). If only 
CUDA without OpenMP were used to implement NN, 
there is no little in differentiation of the computational 
times between CPU and GPU, i.e. computational times 
of GPU is 8 faster than CPU. The performance of GPU 
is maximized by accumulating a large number of input 
vectors that is dependent on the GPU configuration, 
thus the CPU generates the input vectors as much as 
possible, which will processed by GPU in one step. 
The OpenMP helped to reduce computational times 
processed in CPU, thus can reduce the differentiation 
of the computation times. Consequently, the OpenMP 
helped to reduce the bottleneck between the CPU and 
GPU. 

 

 
Fig. 7. Computational times of three 
architectures. 

 

 
Fig. 8. Differentiation of computational times 
with and without OpenMP. 

 
 
 
 
 

5. Conclusions 
 

This paper proposed faster and more efficient multi-
threaded implementation on both commodity graphics 
hardware and multi-core CPU. A CUDA was used, as 
the CUDA code is C language style and has less 
computational restriction while the traditional GPU 
could be programmed though only a graphics API that 
requires much special knowledge about computer 
graphics. Moreover, OpenMP, which can help to 
concurrently process more than two data with single 
instruction on multi-core CPU while processing only 
one data on GPU, was used to minimize difference 
between two computational times on only one graphics 
hardware. Based on the proposed architecture, we 
implemented neural network, where feature extraction 
is processed on multi-core CPU and main operation of 
NN consisting of inner-product operations and a 
activate function is processed on CUDA. The 
experiments evaluated the proposed implementation 
through NN-based text detection, and showed faster 
computational times on the proposed architecture than 
on only CUDA or CPU. 
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