
 A Parallel PCG Solver Based on OpenMP for Three-dimensional Heat Equation
Dandan Li, Tangpei Cheng, Qun Wang*

School of Information Engineering

China University of Geosciences (Beijing)
P.R.China

xingyunnancy@sina.com

Abstract—Heat equation has been widely used in engineering,
such as numerical simulation of groundwater flow. The parallelism
of heat equation is an important means of accelerating the
simulation process. In order to solve the three-dimensional heat
equation problem more rapidly, the OpenMP was adopted to
parallelize the preconditioned conjugate gradient (PCG) algorithm
in this paper. A numerical experiment on the three-dimensional
heat equation model was carried out on a computer with four cores.
Based on the test results, it is found that the execution time of the
original serial PCG program is about 1.61 to 2.53 times of the
parallel PCG program executed with different number of threads.
The experiment results also demonstrate that using OpenMP to
parallelize the PCG algorithm is an effective way for solving the
three-dimensional heat equation.

Keywords- three-dimensional heat equation; precondintioned
conjugate gradient; compiler directives; OpenMP

I. INTRODUCTION
Heat equation is one of the most important mathematic

equations, which is widely applied in engineering application.
However, traditional serial programs take large
computational efforts when they are applied to solve the heat
equation problems with massive grids or three-dimensional.
For instance, adopting traditional serial programs are quite
difficult to solve large-scale three-dimensional ground water
flow models. Thus, the parallel solution of the three-
dimensional heat equation is extremely important.
Meanwhile, preconditioned iterative methods and parallel
computing methods have been proved to be two efficient
ways to shorten execution time. For this reason, considerable
effort is being expanded into parallel computing and
preconditioned iterative methods for heat equation[1-7].
Although much research has been undertaken on increasing
the stability and convergent rate of iterative methods, less
work has focused on adopting high performance
parallelization toolkits to parallelize the preconditioned
iterative methods for solving the three-dimensional heat
equation.

Nowadays, OpenMP, one of the most well-known
application programming interfaces is increasingly adopted
as a high performance parallelization toolkit. The OpenMP
can deliver good parallel performance for small number of
threads. And with the OpenMP compiler directives, the
parallelization is divided among multiple threads without
changing the rest of the serial program. Thus, the main goal
of this paper is to present the OpenMP parallelization toolkit

to parallelize the preconditioned conjugate gradient (PCG)
algorithm. Based on the three-dimensional heat equation
model, experiment results show that the execution time for
solving the large-scale heat equation is remarkably shortened
by applying parallel PCG algorithm.

II. THREE-DIMENSIONAL HEAT EQUATION MODEL

In general, the three-dimensional heat equation can be

expressed as

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥Ω∂∈=
==

>Ω∈
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

0,),,(,
0,

0,),,(,

0

2

2

2

2

2

2

tzyxgu
tuu

tzyx
t
u

z
u

y
u

x
u

),0(),0(),0(LNM ×

on the domain = ×Ω .

Finite difference method is used for discretizing the
three-dimensional heat equation. For space discretization, we
apply the seven-point stencil finite difference method. For
time discretization, the heat equation is handled by the
backward Euler method which is a fully implicit method.
Consequently, we obtain a sparse linear algebraic system

bAx = , in which A is symmetric positive definite. For
details about the deduction, readers can refer to our previous
work[8].

III. OPENMP MULTIPLE THREADS PROGRAMS

OpenMP is a standard and portable application
programming interface (API) for writing multiple threads
programs on a shared memory computer. It is comprised of
three primary API components: compiler directives, runtime
library routines and environment variables. OpenMP is
supported by Fortran and C/C++ compilers and is available
for a variety of platforms, from PCs to high performance
computers[9].

As described in Fig.1, OpenMP provides the fork-and-
join execution model. At the beginning of a program
execution, only a single thread is active. This thread executes
sequentially unless a parallel construct is found. At the
moment, the thread creates a team of threads and it becomes
the master thread. During the parallel region, the master

*Corresponding author Tel:+8601082322116
Email address: qunw@cugb.edu.cn

2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science

978-0-7695-4110-5/10 $26.00 © 2010 IEEE

DOI 10.1109/DCABES.2010.40

172

thread and derived threads will work together. Upon
completion of the parallel region, those derived threads will
quit or hang up, and only the master thread continues, which
is called a join.

A vital advantage of the OpenMP is the parallelization
can be done incrementally, that is, the majority of the serial
code is not changed and the user only needs to identify and
parallelize just the most time-consuming parts of the code,
which are usually loops[9]. This feature is very helpful for
parallelizing the PCG algorithm[10]. As the OpenMP
supports the incremental parallelization, it has been widely
adopted in the scientific computing community.

Figure 1. Fork-Join Model in OpenMP

IV. PARALLELIZATION OF THE PCG ALGORITHM

As stated in sectionⅡ, the heat equation is discretized to
a linear algebraic system , where bAx = A is a symmetric
positive definite matrix. For solving the positive definite
linear algebraic system bAx = , the conjugate gradient (CG)
method is an effective iterative method[11]. Meanwhile,
both the roubustness and efficiency of the CG can be
improved by empolying preconditoning techniques. Thus,
the conjugate gradient combined with a preconditoner has
proved to be one of the most efficient ways among the
simple iterative methods[11].

A. Preconditioned Conjugate Gradient Algorithm
The main operation for PCG is loop iterations. Specific

calculation steps of the PCG are as follows.
STEP1. Choose an arbitrary , set

, where

0x ，00 Axbr −=
0100 rPzp −== P is a preconditioner. In our study,

the P is obtained by adopting Cholesky factorization
method.

STEP 2. Iterate i ----0,1,2,.., until convergence for
kk Apw = ⑴

),(
),(

kk

kk

k wp
rz

=α ⑵

k
k

kk pxx α+=+1 ⑶
k

k
kk wrr α−=+1 ⑷

kkk rPz 11 ++ = ⑸
If ()<11, ++ ii rr ε , stop

),(
),(11

1 kk

kk

k rz
rz ++

+ =β ⑹

pzp k
kk

1
11

+
++ += β ⑺

B. Parallelization of Serial PCG Program
The time of solving the linear algebraic system bAx =

with PCG algothrim occupies most of execution time.
Hence, in this paper, our parallel work mainly focus on
parallelizing PCG algorithm.

By analyzing the PCG algorithm, the most time-
consuming are three parts: matrix-vector multiplication,
vector inner product and solving preconditoned equations.
Hence, the OpenMP is applied to parallelize the three parts
in order to improve the computational efficiency.

Master Thread

Nested
Parallel
Region

Parallel
Region

1) Parallelization of Matrix-vector Multiplication

forend
forend

colxAelementiAx
Aelementgcalculatin
colgcalculatin

iArowiArowjfor
nifor

tefirstprivaprivateforparallelpragmaomp

];[*][
;

;
]1[][:

0:
(...)(...)#

=+

+→=
→=

Figure 2. The Code of Matrix-vector Multiplication

In order to save memory overhead, we adopt the
compressed sparse row (CSR) format to store the matrix. In
this CSR format, we need to create three arrays. The first
array stores the values of all nonzero elements of the matrix.
The second array stores the column indexes of the elements
in the first array. The third array stores the locations in the
first array that start a row. In the block code shown in Fig.2,
the array Arow is the third array. The value of n is the
dimensions of the vector. The variable is an array
which is used to store the results of multiplying matrix by
vector.

Ax

As shown in Fig.2, there are two level loops in the code
of matrix-vector multiplication. In order to improve the
computational efficiency, simply direct the compiler to
execute the iterations of the loop indexed by i . However,
extra attention should be paid to the variables. All variables
except the loop index variables are shared by default. That
makes it easy for threads to communicate with each other,
but it also cause data race problems. We add the private()
clause to OpenMP compiler directives for avoiding
problems of data race. Besides, we adopt the firstprivate()
clause to state those temporary private variables whose
values are initialized by using their original values in the
master thread.

173

2) Parallelization of Vector Inner Product

forend
iyixanswer

nifor
reductionforparallelpragmaomp

];[*][
0:

)(#

=+
→=

K

Figure 3. The Code of Vector Inner Product

The code of vector inner product is shown in Fig.3. In
the block code, array x and y are used to indicate vectors.
The value of n is the dimensions of the two vectors. The
result of computing vector inner product is stored in the
variable answer . To parallelize the code, we use the
OpenMP compiler directives to parallelize the iterations of
loop. When parallelizing the code, we encounter a problem
that the variable answer must be both private and shared
for avoiding data race and ensuring the proper
implementation of multiple threads. This problem can be
solved by employing the OpenMP reduction() clause to
declare the variable answer . The OpenMP reduction()
clause creates a private copy of the variable answer for
each thread. At the end of the reduction, the variable
answer is applied to all private copies of the shared
variable, and the final result is written to the global shared
variable.

3) Parallelization of solving preconditioned equations

forend
dpotrs

nifor
privateforparallelpragmaomp

();
0:

(...)#
→=

Figure 4. The Code of Solving Preconditioned Equations

In the original serial program, we adopt the Cholesky
factorization method to construct the preconditioner. In the
block code described in Fig.4, the value of is the number
of the equations. And the is a function which can
solve the linear algebraic system with a symmetric
positive definite matrix

n
()dpotrs

bAx =
A using the Cholesky factorization.

Obviously, the main time-consuming of the code is
iterations of the loop indexed by k . Hence, for the sake of
shortening the execution time of solving precondtioned
equations, we resort to the OpenMP complier directives to
execute interations of the loop in parallel. Similarly, we
should pay attention to variables in order to avoid the data
race problems. We employ private() clause to state those
variables which occure in the k loop. Other variables are
shared except the loop index variable by default.

V. NUMERICAL EXPERIMENT
In this paper, we carried out a numerical experiment on

the four cores computer with 8 Gb memory, 4 Intel(R)
Xeon(R) 5110 1.6GHz cores and Windows 2003 Operating
System. The experiment with discretization of 200*200*120
spatial grids by finite difference method focused on
investigating the execution time of the parallel program by

using OpenMP to parallelize the PCG algorithm. Part of the
test results are shown in TABLEⅠ.

TABLE I. EXECUTION TIME OF THE PARALLEL PROGRAM WITH
DIFFERENT NUMBER OF THREADS

the number of threads 1 2 3 4
execution time(s) 57.05 35.44 28.17 24.24
speedup 1.00 1.61 2.23 2.53
efficiency(%) 100% 80.5 74.3 63.3
According to the statistics provided by TABLEⅠ,it is

easy to see that the parallel PCG can shorten the execution
time for solving the large-scale three-dimensional heat
equation problem. With the number of threads increases, the
speedup increases while the execution time and the
efficiency decline. Because the speedup is defined as the
ratio of the serial PCG program execution time and the
parallel PCG program execution time, the speedup increases
with the number of threads. The efficiency declination
mainly due to the system overhead brought by making the
PCG paralleled increases with the number of threads. The
system overhead involves the overhead of synchronization
between threads, data race problems, creation threads as
well as hang up threads.

TABLE II. THE SPEEDUP OF PARALLELIZING DIFFERENT PARTS OF
PCG

the number of threads 1 2 3 4
Matrix-vector multiplication 1 1.98 2.95 3.60
Vector inner product 1 1.95 2.53 2.91
Solving preconditioned equations 1 1.31 1.54 1.72
The second line of data in the TABLEⅡ show the

speedup of parallelizing matrix vector multiplication. From
the test results it follows that the measuring speedup
increases with the number of threads. Moreover, the
measuring speedup is very close to the theoretical speedup.
The parallelization of matrix-vector multiplication can
achieve a desirable speedup mainly due to itself has a high
level parallelism. And the reason measuring speedup can not
reach the theoretical value is that making the code paralleled
also brings some system overhead like the overhead of
copying, creation threads and hang up threads. The test
results indicate that the parallelization of matrix-vector
multiplication is very effective.

The third line of data in the TABLEⅡ describe the
speedup obtained by parallelizing vector inner product.
According to the statistics provided by TABLEⅡ, it can be
seen that the measuring speedup of parallelizing vector
inner product increases with the number of threads.
However, the implementation of parallelizing vector inner
product does not achieve a desirable scalability of the
speedup. One reason for the results is the data race problems.
When the code of vector inner product is executed with
multiple threads, the data race problems can be caused. As
the number of threads increases, the data race problems
occur more frequently. Another reason is that the reduction
operation which causes the overhead of synchronization
between threads. The synchronization overhead also
increases with the number of threads. Besides, some system
overhead like overhead of creation threads and hang up

174

threads could also influence the scalability of the measuring
speedup. The above mentioned factors has led to this
performance degradation.

The last line of data in the TABLEⅡ portray the
measuring speedup achieved by parallelizing the sloving
preconditioned equations. Although the measuring speedup
increases with the number of threads, the performance of
measuring speedup is deviation from the theoretical speedup.
One reason for affecting the peformance of parallelizing the
sloving preconditioned equations is the problems of data
race. When the code of solving preconditioned equations is
executed in parallel, it is easy to produce data race. And
with the number of threads increases, the data race problems
occur more frequently. Another reason is that making the
code of solving preconditioned equations paralleled brings a
lot of system overhead, such as the overhead of copying,
creation threads and hang up threads. The system overhead
could influence the parallel peformance.

VI. CONCLUSION

Preconditioned iterative methods and parallel computing
methods are two efficient ways for accelerating the
simulation process of the heat equation. This paper provides
an approach using OpenMP to parallelize the PCG
algorithm for solving the large-scale three-dimensional heat
equation on a multi-core computer. The parallel approach
produces an impressive reduction of the execution time and
this approach achieves great improvement in computational
efficiency. Based on the experimental results, it is evident to
conclude that the parallel PCG solver based on the OpenMP
parallelization toolkit is suitable for solving three-
dimensional heat equation problems with massive grids.

REFERENCES
[1] Jacques-Louis Lions, Yvon Maday, Gabriel Turinici, “A "parareal" in

time discretization of PDE's”, Comptes Rendus de l’Académie des
Sciences - Series I - Mathematics, 332(7), pp. 661-668, 2001.

[2] S. Contassot-Vivier, R. Couturier, C. Denis, F. Je´ze´quel,
“Efficiently solving large sparse linear systems on a distributed and
heterogeneous grid by using the multisplitting-direct method”, Fourth
International Workshop on Parallel Matrix Algorithms and
Applications, PMAA’06, pp. 21-22, 2006.

[3] P.R. Amestoy, I.S. Duff, S. Pralet, C. Vo¨mel, “Adapting a parallel
sparse direct solver to architectures with clusters of SMPs”, Parallel
Computing 29 (11-12), pp. 1645-1668, 2003.

[4] Hasan Dağ, “An approximate inverse preconditioner and its
implementation for conjugate gradient method”, Parallel Computing,
vol. 33, pp. 83-91, March 2007.

[5] Torsten Hoefler, Peter Gottschling, Andrew Lumsdaine, Wolfgang
Rehm, “Optimizing a conjugate gradient solver with non-blocking
collective operations”, Parallel Computing, vol. 33, pp. 624-633,
September 2007.

[6] V. Hernandez, J.E. Roman, A. Tomas, “Parallel Arnoldi eigensolvers
with enhanced scalability via global communications rearrangement”,
Parallel Computing, vol. 33 , pp. 521-540, August 2007.

[7] Zeyao Mo, Xiaowen Xu, “Relaxed RS0 or CLJP coarsening strategy
for parallel AMG”, Parallel Computing, vol. 33, pp. 174-185, April
2007.

[8] Tangpei Cheng, Qun Wang, “Parallel-Computing Strategy for Large-
scale Heat Equation based on PETSC”, Computer Science, vol. 36, pp.
160-164, 2009.

[9] M.T.F Cunha, J.C.F. Telles, A.L.G.A. Coutinho and J. Panetta, “On
the parallelization of boundary element codes using standard and
portable libraries,”

[10] Yanhui Dong and Guoming Li, “A Parallel PCG Solver for
MODFLOW,” GROUND WATER, vol. 47, pp. 845-850, November-
December 2009.

[11] ARANY, “The Preconditioned Conjugate Gradient Method with
Incomplete Factorization Preconditioners,” Computers Math. Applic.,
vol. 31, pp. 1-5, 1996.

175

