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Figure 1.  Three stages of progressive alignment: (1) distance matrix; (2) 

guided tree; (3) profile-profile progressive alignment. 
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Abstract—Progressive alignment is a widely used approach for 
computing multiple sequence alignments (MSAs). However, 
aligning several hundred or thousand sequences with popular 
progressive alignment tools such as ClustalW requires hours or 
even days on state-of-the-art workstations. This paper presents 
MSA-CUDA, a parallel MSA program, which parallelizes all 
three stages of the ClustalW processing pipeline using CUDA 
and achieves significant speedups compared to the sequential 
ClustalW for a variety of large protein sequence datasets. Our 
tests on a GeForce GTX 280 GPU demonstrate average 
speedups of 36.91 (for long protein sequences), 18.74 (for 
average-length protein sequences), and 11.27 (for short protein 
sequences) compared to the sequential ClustalW running on a 
Pentium 4 3.0 GHz processor. Our MSA-CUDA outperforms 
ClustalW-MPI running on 32 cores of a high performance 
workstation cluster. 

Keywords-multiple sequence alignment; CUDA; GPU; 
ClustalW 

I.  INTRODUCTION 
Multiple Sequence Alignments (MSAs) are one of the 

primary research areas in bioinformatics, involving aligning 
three or more biological sequences at the same time. 
Exhaustive dynamic programming is a straightforward way 
to compute optimal MSAs. However, the cost of this 
approach is expensive in terms of both computing time and 
memory space.  This becomes especially evident with the 
rapid growth of biological sequence databases demanding 
more powerful high-performance computing solutions.  To 
overcome these constraints, some heuristics such as 
progressive alignment [1], have been suggested.  Progressive 
alignment is a widely used heuristic for MSA. Many popular 
MSA software packages have been developed based on this 
approach, including T-Coffee [2], MUSCLE [3], and 
ClustalW [4]. ClustalW has more than 26,000 citations in the 
ISI Web of Science and is considered the most popular MSA 
tool.  

Typically, progressive alignment consists of three stages 
(see Fig. 1): pairwise distance computation, guided tree 
generation and profile-profile progressive alignment along 
the guided tree.  Stage 1 computes a distance matrix 
comprised of the distance value between each pair of 

sequences using pairwise alignment. Stage 2 generates a 
guided tree from the distance matrix using distance-based 
phylogenetic tree reconstruction methods. Stage 3 performs 
progressive alignment of the various profiles to form the 
final MSA along the guided tree. 

Even though, the progressive alignment is much more 
efficient than dynamic programming, it still suffers from a 
high computational complexity. Much research work has 
been done to accelerate the execution of progressive 
alignment tools, especially ClustalW, using parallelization. 
These solutions can be compared from the aspects of 
granularity, target architecture, ClustalW stages parallelized 
and parallel programming model used.  

Coarse-grained parallel versions of ClustalW have been 
designed to target shared memory multiprocessors, 
distributed memory workstation clusters, symmetric 
multiprocessors (SMPs) and SMP clusters. A commercial 
parallel version of ClustalW presented by SGI [5] is 
designed for expensive SGI shared memory multiprocessor 
machines. ClustalW-MPI [6], Ebedes et al. [7] and 
pCLUSTAL [8] all target distributed memory workstation 
clusters using MPI but parallelize only Stages 1 and 3 of 
ClustalW. ClustalW-SMP [9] is an SMP version of ClustalW 
designed for SMP machines, which is written using the 
Pthreads library and parallelized all the three stages of 
ClustalW. Tan et al. [10] presented a parallel ClustalW 
running on an SMP cluster by means of a mixed approach 
using both MPI and OpenMP, but only parallelized Stages 1 
and 3 of ClustalW. 

Fine-grained parallelization approaches focus on multi-
core processors and accelerators such as FPGAs and GPUs. 
MT-ClustalW [11] is designed to target multi-core 
processors but merely re-parallelized Stage 2 using the 
Pthreads library on the basis of ClustalW-SMP. Oliver et al. 
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Figure 2.  Cells on the same minor diagonal (dashed line) can be 

computed in parallel and the alignment matrix can be computed in minor 
diagonal order. 

[12] [13] constructed a linear systolic array to perform Stage 
1 of ClustalW on a standard FPGA using Verilog HDL. 
GPU-ClustalW [14] reformulated the dynamic programming 
pairwise alignment algorithm and is implemented using 
OpenGL on commercial graphics cards but only parallelized 
Stage 1 of ClustalW.  

Besides ClustalW, parallel solutions for other MSA tools 
have also been developed. Zola et al. [15] presents a parallel 
implementation of T-Coffee running on workstation clusters 
using MPI, which parallelizes the library generation stage 
and the progressive alignment stage. Deng et al. [16] 
parallelized three modules (FRA, PMC and CT) which take 
most of the runtime of MUSCLE with OpenMP. Boukerche 
et al. [17] designed an FPGA-based hardware accelerator to 
execute the most compute-intensive part of DIALIGN. 

In this paper, we show how the CUDA programming 
model can be used to parallelize all three stages of ClustalW 
in Sections 2 to 5.  Section 6 evaluates the performance of 
the CUDA-based approach to ClustalW 2.0.9 and ClustalW-
MPI. Finally, Section 7 concludes the paper. 

II. CUDA PROGRAMMING MODEL 
CUDA (Compute Unified Device Architecture) is an 

extension of C/C++ which enables users to write scalable 
multi-threaded programs for CUDA-enabled GPUs [18]. 
CUDA programs can be executed on GPUs with NVIDIA’s 
Tesla unified computing architecture [19].  

CUDA programs contain a sequential part, called a 
kernel. The kernel is written in conventional scalar C-code. It 
represents the operations to be performed by a single thread 
and is invoked as a set of concurrently executing threads. 
These threads are organized in a hierarchy consisting of so-
called thread blocks and grids. A thread block is a set of 
concurrent threads and a grid is a set of independent thread 
blocks. The total size of a grid (dimGrid) and a thread block 
(dimBlock) is explicitly specified in the kernel function-call: 

kernel<<<dimGrid, dimBlock, … >>> (parameters); 
The hierarchical organization into blocks and grids has 

implications for thread communication and synchronization. 
Threads within a thread block can communicate through a 
per-block shared memory (PBSM) and may synchronize 
using barriers. However, threads located in different blocks 
cannot communicate or synchronize directly. Besides the 
PBSM, there are four other types of memory: per-thread 
private local memory, global memory for data shared by all 
threads, texture memory and constant memory. Texture 
memory and constant memory can be regarded as fast read-
only caches. 

The Tesla architecture supports CUDA applications 
using a scalable processor array. The array consists of a 
number of streaming multiprocessors (SMs). Each SM 
contains eight scalar processors (SPs), which share a PBSM 
of size 16 KB. All threads of a thread block are executed 
concurrently on a single SM. The SM executes threads in 
small groups of 32, called warps, in single-instruction 
multiple-thread (SIMT) fashion. Thus, parallel performance 
is generally penalized by data-dependent conditional 
branches and improves if all threads in a warp follow the 
same execution path.  

III. PARALLELIZATION OF PAIRWISE DISTANCE 
COMPUTATION 

Given two sequences Sa and Sb of lengths la and lb 
respectively, their distance d(Sa, Sb) is defined as: 

                              
( , )

( , ) 1
min{ , }

a b
a b

a b

nid S S
d S S

l l= −  (1) 

where nid(Sa, Sb) denotes the number of exact matches in the 
optimal local alignment of Sa and Sb.  The value nid(Sa, Sb) 
can be computed in linear space using three passes: a 
forward score-only pass using Smith-Waterman (SW) 
algorithm [20] [21],  a reverse score-only pass using SW 
algorithm and a traceback computation pass using Myers-
Miller algorithm [22]. 

We are using the following notations for the SW 
algorithm: a substitution table sbt, a gap opening penalty ρ, 
and a gap extension penalty σ, the following recurrences for 
1 ≤ i ≤ la, 1 ≤ j ≤ lb: 

         

( , ) max{ ( 1, ) , ( 1, ) }
( , ) max{ ( , 1) , ( , 1) }
( , ) max{0, ( , ), ( , ), ( 1, 1)

( [ ], [ ])}a b

E i j E i j H i j
F i j F i j H i j
H i j E i j F i j H i j

sbt S i S j

σ ρ σ
σ ρ σ

= − − − − −
= − − − − −
= − −

+   (2) 

The recurrences are initialized as H(i, 0) = H(0, j) = E(0, j) = 
F(i, 0) = 0 for 0 ≤ i ≤ la and 0 ≤ j ≤ lb. The maximum local 
alignment score maxScore is defined as the maximal value in 
matrix H. The three arrows in Fig. 2 show the data 
dependencies in the alignment matrix: each cell depends on 
its left, upper, and upper-left neighbors. This dependency 
implies that all cells on the same minor diagonal in the 
alignment matrix are independent from each other and can be 
computed in parallel (also shown in Fig. 2). Thus, the 
alignment can be computed in minor-diagonal order from the 
top-left corner to the bottom-right corner in the alignment 
matrix. Note that, in order to calculate minor diagonal i only 
the results of the minor diagonal i−1 and i−2 are necessary 
and therefore maxScore can be found in linear space.  

The actual optimal alignment path can be found in linear 
space by computing a traceback with the Myers-Miller 

122



typedef struct tagNode
{

int A, B, M, N;
int tb, te, branch, type;

} Node;
typedef struct tagStack
{

int  top;
nodes [MAX_STACK_DEPTH];

}Stack;
#define NONE (-1) //nothing to do
#define PREFIX 0 //upper-left section of the “optimal midpoint”
#define SUFFIX 1 //lower-right section of the “optimal midpoint”
#define TYPE1 1 //type 1 “optimal midpoint”
#define TYPE2 2 //type2 “optimal midpoint”
Iterative procedure diff ( A, B, M, N, tb, te)
{

Stack stack;
Node node;

stack_init ( &stack);
node_init ( &node, A, B, M, N, tb, te, NONE,NONE);
stack_push (&stack, &node);
while (!stack_empty (&stack)) {

Node* tmp = stack_pop(&stack);
A = tmp->A;  B = tmp->B; M = tmp->M;  N = tmp->N; tb = tmp->tb;  te = tmp->te;
//if the type of the mid point is TYPE2
if (tmp->type == TYPE2 && tmp->branch = SUFFIX) {

del (2);  //deleting “amini amini + 1“
}

Handle the boundary cases N=0 and M≤1 by examining all possible optimal alignments;
//compute and find the “optimal midpoint” (midi, midj)
midi = M/2;
Compute HH and DD in a forward phase using the enhanced SW Algorithm;
Compute RR and SS in a reverse phase using the Enhanced SW Algorithm;
Find minj [0, N] by minj [0, N] {min (HH[j]+RR[j], DD[j]+SS[j]-_gapOpen)};

//divide and conquer around the “optimal midpoint” (midi, midj)
type = the type of the “optimal midpoint” (midi, midj);
if (type == TYPE1){

node_init (&node, A+midi, B+midj, M–midi, N–midj, _gapOpen, te, type, SUFFIX);
stack_push(&stack, &node);
node_init (&node, A, B, midi, midj, tb, _gapOpen, type, PREFIX);
stack_push (&stack, &node);

}else{ //definitely TYPE2
node_init (&node, A+midi+1, B+midj, M–midj–1, N–midj, 0, te, type, SUFFIX);
stack_push(&stack, &node);
node_init (&node, A, B, midi – 1, midj, tb, 0, type, PREFIX);
stack_push(&stack, &node);

} 
}

}
 

Figure 3.  Pseudocode of the stack-based iterative implementation of the 
Myers-Miller algorithm. 

algorithm. The central idea of Myers-Miller is to find the 
“optimal midpoint” of an optimal alignment using a forward 
and a reverse pass. By recursively calculating optimal 
midpoints on both sides of this “optimal midpoint”, the 
complete traceback path can be found. The sequential 
implementation of this algorithm uses a recursive divide-
and-conquer method. However, CUDA does not support 
recursion. Therefore, we have developed a new stack-based 
iterative implementation shown in Fig. 3. MSA-CUDA uses 
this implementation for both pairwise alignments in Stage 1 
and profile-profile alignments in Stage 3.  

Considering the pairwise distance computation of one 
pair of sequences as a task, we have investigated two 
approaches for parallelizing Stage 1 using CUDA. 

• Inter-task parallelization. Each task is assigned to 
exactly one thread and dimBlock tasks are performed 
in parallel by different threads within the thread 
block. 

• Intra-task parallelization: Each task is assigned to a 
whole thread block and all dimBlock threads in the 
thread block cooperate to perform the task in 
parallel, exploiting the parallel characteristics of 
cells in the minor diagonals as shown in Fig. 2. 

In order to achieve high efficiency for inter-task 
parallelization, the runtime of all threads in a thread block 

should be roughly identical. We therefore order the input 
sequences based on their lengths. Hence, for two adjacent 
threads in a thread block, the difference value between the 
products of the lengths of the associated sequences is 
minimized. 

During the execution of pairwise distance computation, 
additional memory is required to store intermediate 
alignment data. The size of this memory is O(min{la, lb}) for 
the two parallelization, given two sequences of length la and 
lb (e.g. Stage 1 requires about 16 × min{la, lb} bytes for inter-
task parallelization and about 40 × min{la, lb} bytes for intra-
task parallelization).  To support much longer sequences, the 
global memory is used to store the immediate results. The 
two approaches work in a multi-pass fashion, where in every 
pass, a grid consisting of thread blocks whose number is 
equal to or less than the number of SMs are bound to the 
corresponding kernel and launched, and the memory 
allocated for one pass is multiplexed by the successive 
following passes, reducing the requirements for global 
memory. For inter-task parallelization, the total amount of 
required memory for n input sequences of average length lave 
can be estimated as: 

                ( ) bytesavedimBlock SM number O l× ×  (3) 

For intra-task parallelization, the total amount of required 
memory for the same input sequences can be estimated as: 

                             ( ) bytesaveSM number O l×  (4) 

To gain maximum bandwidth and best performance, all 
threads in a half-warp should access the intermediate results 
in global memory in a coalesced pattern. A prerequisite for 
coalescing is that the words accessed by all threads in a half-
warp must lie in the same segment. The memory spaces 
referred to by the same variable names (not referring to same 
addresses) for all threads in a half-warp have to be allocated 
in the form of an array to keep them contiguous in address. 
Fig. 4 presents two global memory allocation patterns of a 
basic type vector variable of size N for M processing entities 
(threads or thread blocks, here). Inter-task parallelization 
exploits the pattern shown in Fig. 4 (a), where a memory slot 
is allocated to a thread in a thread block and is indexed top-
to-bottom, and the access to MemSlot using the same index 
for all threads in a half-warp is coalesced into one or two 
memory transactions depending on the compute capability of 
devices. Intra-task parallelization exploits the pattern shown 
in Fig. 4 (b), where a memory slot is allocated to a thread 
block and is indexed left-to-right, and the coalesced access is 
able to be obtained using the common global memory access 
pattern, i.e. that successive threads access the successive 
addresses in a memory slot. 

To maximize performance and to reduce the bandwidth 
demand of global memory, we propose a cell block division 
method for the forward score-only pass when using inter-
task parallelization, where the alignment matrix is divided 
into cell blocks of equal size. A cell block is a square matrix 
of size n × n. Assume that the lengths of a pair of sequences 
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Figure 4.  Two global memory allocation patterns of a basic type vector 

variable of size N for M processing entities (threads or thread blocks).

are la and lb, respectively. In this case, la and lb must be 
multiples of n. If the length is not a multiple of n, the 
sequence is padded with dummy symbols. To keep 
maxScore unchanged, the dummy symbol is added to the 
substitution table and the score between the dummy symbol 
and itself or a real symbol is set to zero. For simplicity, 
assume that la and lb are multiples of n. Without cell block 
division, the computation of H(i, j) results in one load 
operation and one store operation for the intermediate results 
stored in the global memory. We define the runtime of one 
load operation to be Tl, the runtime of one store operation to 
be Ts and the computation time of one cell value to be Tc. 
Then, without cell block division, the total runtime can be 
estimated as: 

                                 ( )a b l s cl l T T T× × + +  (5) 

However, when using the cell block division method, the 
computation of n cells in one column (or row) in a cell block 
only requires one load operation and one store operation on 
the global memory instead of n load operations and n store 
operations. In this case, the total runtime can be estimated as: 

                            ( )1
a b l s cl l T T T

n
⎛ ⎞× × + +⎜ ⎟
⎝ ⎠

 (6) 

Since one global memory access takes hundreds of clock 
cycles, the cell block division method leads to a signification 
reduction of the total runtime due to a reduction in the global 
memory accesses. However, the size of cell block is limited 
by the amount of shared memory (or registers) available per 
thread. Therefore, this leads to the optimal cell block size of 
8 × 8 for our implementation. 

The multi-pass inter-task parallelization requires a large 
number of tasks to be efficient. If there are only a few tasks 
available (e.g. ≤ 100), intra-task parallelization is preferable. 
The intra-task parallelization executes in a model similar to 
the execution model of OpenMP. For a loop that can be 
parallelized between iterations, it is divided into separate 
iterations and distributes them to threads or warps in a thread 

block. For Stage 1, one pairwise distance computation is 
assigned to a whole thread block and computed by all 
threads in the thread block along the time axes from the top-
left corner to the bottom-right corner in the alignment matrix 
(shown in Fig. 2). In each pass, all cells on a minor diagonal 
are computed in parallel by all threads, one of which is 
assigned to compute a separate group of cells. Due to the 
independent execution of different warps, barrier 
synchronization is necessary before starting the computation 
of the next minor diagonal after the completion of the current 
one. 

Obviously, if the sequence length is relatively large and 
almost no threads in the thread block are idle, a good 
performance can be gained, albeit the irregular number of 
cells on different minor diagonals. However, if the sequence 
length is relatively small, many threads in the thread block 
will be idle for much of the runtime or even all the time, 
which results in a poor performance since the access latency 
of the global memory cannot be offset by overlapping with 
computing.  

Inter-task and intra-task parallelization both use constant 
memory to store read-only parameters and the substitution 
stable. The substitution table is loaded into shared memory, 
as the performance of constant memory degrades linearly if 
multiple addresses are requested by threads. This is because 
threads may frequently access different addresses in the 
substitution table. Texture memory is used to store the 
ordered input sequences. The symbols of a sequence are 
restricted to be stored in the same row of the texture array. 
All sequences are sequentially stored in the array row by row 
from top-left to bottom-right. A hash table records the 
location coordinate in the texture array and length of each 
sequence and provides the fast access to any sequence.  

IV. PARALLELIZATION OF NEIGHBOR-JOINING TREE 
In ClustalW, the guided tree is reconstructed using the 

neighbor-joining (NJ) method [23] [24]. Stage 2 can be 
further divided into two sub-stages:  

• Stage 2a: Reconstruction of the unrooted NJ tree (NJ 
tree reconstruction); 

• Stage 2b: Rooting the NJ tree and computing 
sequence weights (NJ tree rerooting).  

The improved compact memory algorithm, which we 
present in detail in [25], is used for the NJ tree reconstruction 
sub-stage. After the reconstruction of NJ tree, Stage 2b starts 
to reroot the unrooted NJ tree, to recalculate the weights of 
sequences and to traverse the rooted tree to identify the 
alignment steps for Stage 3. The unrooted NJ tree is rerooted 
using a “mid-point” method [26]. The root is placed at the 
position where the means of branch lengths on either side of 
the root are identical. The position is determined using the 
following algorithm: 

• Every node of the NJ tree is iteratively selected as 
the reference node; 

• Determine which leaf node is on the left or on the 
right of the selected node. If a leaf node is not a 
descendent of the selected node, it is positioned on 
the left; otherwise, on the right.  The distance 
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Figure 5.  Example of a rooted guided tree produced by the NJ method. 

 
Figure 6.  Three initial auxiliary vectors storing the dependency 

relationship with their left and right sub-trees and the aligned flags. 

between each leaf node and the selected node is then 
computed. If the selected node is an ancestor of a 
leaf node, the distance between them can be 
computed directly by summing the length of each 
branch along the path from the leaf node to the 
selected node; otherwise, the distance is the sum of 
the branch lengths from either of them to their 
common ancestor; 

• Compute the difference value between the means of 
branch lengths on the left and on the right of the 
selected node; 

• Exhaustively compute the difference values between 
the means of branch lengths on the left and on the 
right for all nodes and then select the node that gives 
the minimum positive difference value (including 0) 
and produces the shallowest tree; 

• Insert a new root as the ancestor of the node selected 
in the previous step. 

For the CUDA implementation, all the tree nodes are 
stored in a vector and the relationship between nodes is 
maintained through vector indices instead of pointers. Each 
node object stores the indices of itself, its parent and its left 
and right children, and accesses them using vector index. 
One thread block is assigned to compute the difference value 
of the means of branch lengths on the left and on the right of 
one node, which is selected as the reference. Every thread in 
the thread block is assigned to perform the computation on a 
separate sub-set of leaf nodes. For each leaf node in a sub-
set, the corresponding thread identifies on which side of the 
selected node this leaf node lies and computes the distance 
between this leaf node and the selected node. Shared 
memory is exploited to store the results of all threads in a 
thread block and texture memory is used to store the tree 
structure.  

V. PARALLELIZATION OF PROGRESSIVE ALIGNMENT 
The final stage performs profile-profile alignments 

following the rooted guided tree from the leaves up to the 
root. Every leaf node of the guided tree corresponds to a 
sequence and each internal node corresponds to a profile-
profile alignment produced from the aligned sequences in the 
left sub-tree and in the right sub-tree. The alignment 
corresponding to an internal node can be launched if and 
only if the alignments corresponding to the roots of its left 
and right sub-trees have been performed. Obviously, the 
alignments at the same level of the guided tree can be 
performed in parallel but even alignments that are not at the 
same level could also be parallelized. For example, in Fig. 5, 
all alignments with the same patterns can be performed in 
parallel. 

Initially, the rooted guided tree is depth-first traversed in 
post-order to number all the internal nodes and build the 
dependency relationship with their left and right sub-trees. 
All internal tree nodes are stored in a vector in traversal-
order. For all tree nodes, three auxiliary vectors are used to 
record the indices of their children, the indices of their right 
children and a flag indicating whether the corresponding 
alignments has been performed. For a leaf node, the indices 

of its left and right children are set to 0. For an internal node, 
if one child is a leaf, then the index of this child is also set to 
0. The dummy sub-tree numbered as 0 is always defined 
aligned since it corresponds to an input sequence for an 
alignment. Fig. 6 presents the three initial auxiliary vectors 
for the rooted guided tree shown in Fig. 5. 

In MSA-CUDA, the progressive alignment is conducted 
iteratively in a multi-pass way. For each pass, firstly, all 
undone alignments that are able to be performed in this pass 
are identified by checking the flag words of their left and 
right children stored in the flag-vector. If both of its left and 
right children have been aligned, this alignment is added to 
the ready alignment list managing all the alignments to be 
performed in this pass; otherwise, this alignment has to wait 
until both of its children have been aligned. After the 
completion of the ready alignment list, the pairs of profiles 
corresponding to those alignments are constructed. Secondly, 
the pairwise alignments of all pairs of profiles are performed 
on the GPU in parallel. Thirdly, gaps are added to the 
sequences corresponding to each pair of profiles by tracing 
back its optimal alignment. Finally, all the alignments 
performed in this pass will set their flag words in the flag-
vector to indicate that they are aligned. 

As illustrated in Fig. 5, the guided tree is seldom well-
balanced and the numbers of alignments that can be 
performed in one pass decreases as the alignments move up 
to the root of the tree. Therefore, MSA-CUDA uses the 
following parallelization strategy. When the number of 
alignments to be performed in one pass is relatively large, an 
inter-task parallelization method is utilized; and when it is 
relatively small, an intra-task parallelization method is 
superior. Thus, a combination of inter-task and intra-task 
parallelization is used to compute all the alignments to be 
performed in one pass. A threshold determines the branches 
of the program flow. If the total number of alignments or the 
remaining number of alignments after one or more passes is 
still greater than or equal to threshold, the inter-task 
parallelization method is used; otherwise, the intra-task 
parallelization method is used to compute those remaining 
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Figure 7.  Speedup comparison of inter-task and intra-task parallelization 

for Stage 1. 
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Figure 8.  Speedups for Stage 2. 

alignments. 
Constant memory is exploited to store all read-only 

parameters. Since any profile-profile alignment has a 
different substitution table, texture memory is used to store 
the substitution tables. Substitution tables are then loaded 
into shared memory from texture memory during the kernel 
runtime. Texture memory is also used to store the 2D 
profiles of each alignment. A hash table records the location 
coordinate in the texture array, the width and height of each 
profile, and provides fast access to any profile. 

VI. PERFORMANCE EVALUATION 
MSA-CUDA is benchmarked on an nVIDIA GeForce 

GTX 280 graphics card, with 30 SMs comprising 240 SPs 
and 1 GB RAM, installed in a PC with an AMD Opteron 248 
2.2 GHz processor running the Linux OS. The sequential 
ClustalW (version 2.0.9) program is profiled on a desktop 
PC with a Pentium 4 3.0 GHz processor and 1 GB RAM 
running the Linux OS. ClustalW-MPI [27] is benchmarked 
on a workstation cluster with 16 nodes connected through a 
fast 10 Gb/s InfiniBand switch. Each node is equipped with a 
dual-core Intel Xeon 3.0 GHz processor and 4 GB RAM 
running the Linux OS.  

Three kinds of protein sequence datasets are used to 
evaluate the performance of MSA-CUDA. They are further 
subdivided into two representative datasets with different 
numbers of sequences. The datasets consist of sequences 
selected from the Human immunodeficiency virus dataset 
downloaded from NCBI [28], as given below: 

• Case 1: Small number of long sequences. 400 
sequences of average length 856 and 1,000 
sequences of average length 858; 

• Case 2: Medium number of average-length 
sequences. 2,000 sequences of average length 266 
and 4,000 sequences of average length 247; 

• Case 3: Large number of short sequences. 4,000 
sequences of average length 57 and 8,000 sequences 
of average length 73. 

Fig. 7 shows the performance comparison of the inter-
task and intra-task parallelization for Stage 1. The graph 
clearly shows that the inter-task parallelization outperforms 
the intra-task parallelization for all datasets. Using the inter-
task parallelization, the highest and the lowest speedups are 
47.13 and 23.82. The average speedups are 46.15, 25.94, and 
24.98 for Case 1, 2, and 3, respectively. Thus, if there are 
sufficient tasks and available large device memory capacity 
on the GPU, MSA-CUDA chooses inter-task parallelization 
for Stage 1. In general, the highest speedup is achieved for 
Case 1 datasets. This can be explained by the larger amount 
of computation performed compared to Cases 2 and 3. 

Speedups for the NJ tree reconstruction sub-stage 
generally increase with the number of input sequences, but 
grow more slowly for the larger datasets (see Fig. 8). 
Consequently, the highest speedup of 23.20 is achieved 
using the dataset of 8,000 sequences. As expected, the 
sequence length has little impact on the runtime. Speedups 
for the NJ tree rerooting sub-stage are relatively low, the 
highest and the lowest speedups are 4.03 and 2.49. The 

speedup of this sub-stage depends on the number of 
sequences as well as the tree topology. The overall speedup 
of Stage 2 is mainly subject to the speedup of the NJ tree 
reconstruction sub-stage since it dominates the total runtime. 

The speedups for Stage 3 vary largely (see Fig. 9), 
ranging from 1.35 to 5.94. There are several reasons for this. 
Firstly, the building of the profiles of each alignment is 
performed sequentially on the CPU, reducing the speedups 
achieved in the parallelized parts. Secondly, the speedup 
heavily depends on the topology of the guided tree. The 
topology greatly influences the number of alignments that 
can be processed in parallel. Thirdly, the lengths of the 
profiles of an alignment also have impact on performance. 
Generally, larger datasets and longer sequences mean better 
performances. 

Fig. 10 presents the speedups of MSA-CUDA and 
ClustalW-MPI compared to the sequential ClustalW. MSA-
CUDA achieves average overall speedups of 36.91, 18.74 
and 11.27, respectively for Case 1, 2 and 3, and outperforms 
ClustalW-MPI for all test cases. The speedup for ClustalW-
MPI is particularly poor for Case 3 since it exploits an older 
NJ tree reconstruction algorithm and does not parallelize it. 
However, even for Case 1 datasets, for which Stage 2 has a 
negligible runtime, MSA-CUDA on a single GPU is able to 
outperform ClustalW-MPI on 32 CPU cores by a small 
margin. 
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Figure 9.  Speedups for Stage 3. 
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Figure 10.  Speedup comparison between MSA-CUDA and ClustalW-

MPI. 

VII. CONCLUSIONS 
MSA-CUDA demonstrates that CUDA-compatible 

graphics hardware provides a cost-effective high-speed 
solution to MSA. Through parallelization of all three stages 
of ClustalW, we have achieved average speedups of 36.91 
(for long protein sequences), 18.74 (for average-length 
protein sequences), and 11.27 (for short protein sequences) 
on a single GPU, which is available for less than US$500 at 
any local computer outlet. These speedups also compare 
favorably to ClustalW-MPI on a high-performance compute 
cluster with 32 CPU cores. A comparison of these two 
parallelization approaches shows that GPU acceleration is 
clearly superior in terms of price/performance. The very 
rapid growth of biological sequence databases demands even 
more powerful high-performance solutions in the near future. 
Hence, our results are especially encouraging since GPU 
performance grows faster than Moore’s law as it applies to 
CPUs.  
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