
Solving the Langford problem in parallel

Christophe Jaillet
Université de Reims Champagne-Ardenne

Département de Mathématiques et Informatique
Moulin de la Housse - BP 1039

F-51687 Reims Cedex 2
Email : christophe.jaillet@univ-reims.fr

Michaël Krajecki
Université de Reims Champagne-Ardenne

Département de Mathématiques et Informatique
Moulin de la Housse - BP 1039

F-51687 Reims Cedex 2
Email : michael.krajecki@univ-reims.fr

Abstract— In this paper, the parallel resolution of the
Langford problem is studied. Two different approaches
are developed.

First, an explicit construction of all the solutions is done
using a shared memory. The application associated to this
approach is written in C using the standard OpenMP
library.

Second, a parallelization of the algebraic method intro-
duced by Godfrey is proposed. The application is taking
advantage of MPI and has revealed efficient up to 128
processors. This solution opens up some new perspectives
such as solving the already resolved instances of the
problem more quickly and solving the next two open
instances of the problem in a near future.

Index Terms— Langford problem, OpenMP, MPI, par-
allel algorithm

I. INTRODUCTION

The Langford problem is a typicaly hard combinatorial
problem. The last open instance to be solved took one
week CPU time on a pool of 3 PCs with quite a specific
search algorithm in 2002. It represents a real challenging
problem especially for parallel combinatorial search.

Although parallelization seems to be a good candidate
to obtain further practical improvements, the research in
this direction is not very developed. In a previous work,
we have studied parallel resolution of CSP (Constraint
Satisfaction Problems) with a shared memory [1]. The
conclusions of that work provided a general approach to
solve combinatorial problems in parallel and conducted
the first choices made to solve the Langford problem.

The first part of this paper presents a general frame-
work for parallel resolution of combinatorial problems.
A first step consists in a simple decomposition strategy
of the Tree Search. This enables the choice of initial
variables to generate independent tasks. The scalability
of this approach is studied within the shared memory
model using the standard OpenMP library. Because of

its irregularity the load balancing question is crucial
for parallel combinatorial search. Different static and
dynamic policies offered by OpenMP are studied.

The second part is dedicated to the parallelization
of the algebraic method introduced by M. Godfrey.
A simple client/server scheme has been developed in
C/MPI to solve large Langford problems using up to
128 processors. The experiments show that L(2, 20) can
now be solved in less than 40 minutes.

The paper is organized as follows: the first section is
dedicated to the Langford problem and introduces the
two classical approaches which are the enumerative and
algebraic ones.

The next section proposes a parallel shared memory
enumerative solution to the Langford problem. An im-
plementation using OpenMP is introduced. The use of
the schedule clause of the parallel for loop and of the
OpenMP parallel region is discussed in detail. Some
experiments on L(2, 16) conclude this part of the work.

Section IV details the MPI parallel version of the
algebraic approach. The impact of the granularity is
discussed as the number of processors increases. The
experiments provided clearly show that the next open
instances (L(2, 23) and L(2, 24)) will be solved in a near
future.

The paper ends with some conclusions on this work,
and some perspectives are introduced.

II. THE LANGFORD PROBLEM

C. Dudley Langford gave his name to a classic prob-
lem of permutation [2], [3]. While observing his son
manipulating blocks of different colors, he noticed that it
was possible to arrange three pairs of blocks of different
colors (yellow, red, blue) in such a way that only one
block separates the red pair, two blocks separate the blue
pair and finally three blocks separate the yellow one (see
figure 1).

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

Yellow Red Blue BlueRed Yellow

Fig. 1. L(2,3): arrangement for 6 blocks of 3 colors: yellow, red
and blue

The problem has been generalized to any number of
colors n and any number of blocks having the same
color s. L(s, n) consists in searching for the number of
solutions to the Langford problem. In November 1967,
Martin Gardner presented L(2, 4) (two cubes and four
colors) as being part of a collection of small mathemat-
ical games and stated that L(2, n) has solutions for all
n such that n = 4k or n = 4k − 1 for k ∈ N \ {0}.

At the moment, the instances solved in practice, in a
merely combinatorial manner, limit themselves to a small
number of colors. In this case, one mentions the instance
L(2, 19) that was solved in 2 years and a half on a DEC
Alpha to 300MHz in 1999. In 2002, L(2, 20) was solved
with the help of a new algorithm and the intensive use
of a cluster of 3 PCs during one week.

Recently, Toby Walsh and Barbara Smith formulated
this problem as a Constraint Satisfaction Problem [4],
[5].

The Langford Problem has been approached in dif-
ferent ways (discrete mathematics results, specific algo-
rithms, specific encoding, . . .) [6].

A. A tree search approach

The Langford problem can be modelized as a tree
search problem. In order to solve L(2, n), we consider
the tree of height n and width 2n − 2 (see figure 2):

• every node of the tree corresponds to the place in
the sequence of the cubes of a determined color;

• to the depth p, the first node corresponds to the
place of the first cube of color p in first position
and it ith node corresponds to the investment of the
first cube of color p in position i, i ∈ [1, 2n−1−p];

• every leaf of the tree symbolizes the positions of all
cubes;

• a leaf is a solution if it respects the color constraint
defined by the Langford problem.

It is now sufficient to propose a walk through the
search tree, in depth first, to get a simple sequential
algorithm solving the Langford problem.

To be efficient, this algorithm should avoid the
recursive tree traversal. Moreover, the use of
arrays as elementary data structure is strongly

(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(1,4) (2,5) (3,6) (1,4) (2,5) (3,6)

(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(4,6)(2,4)(1,3)

....

...

Positions of both

color 2 cubes

Positions of both
color 3 cubes

Positions of both

color 1 cubes

...

Fig. 2. Search tree for L(2, 3)

recommended. A Sequential Array-Based, Non-
recursive Algorithm (written in C) is accessible on
page http://www.lclark.edu/~miller/
langford/langford-algorithm.html.

It may be taken into consideration that this algorithm
constructs explicitly all the solutions to count them,
which is not the case in Godfrey’s algorithm.

B. Godfrey’s algorithm

In 2002, an algebraic representation of the Langford
problem has been proposed by M. Godfrey. Consider
L(2, 3) and X = (X1,X2,X3,X4,X5,X6). It pro-
poses to modelize L(2, 3) by F (X, 3) = (X1X3 +
X2X4 + X3X5 + X4X6)× (X1X4 + X2X5 + X3X6)×
(X1X5 + X2X6). In this approach, each term repre-
sents a position for both cubes of a given color and
a solution to the problem is equal to the polynomial
coefficient of X1X2X3X4X5X6 in the development.
More generally, a solution to L(2, n) can be deduced
from X1X2X3X4X5...X2n.

If G(X,n) = X1 . . . X2nF (X,n) then it has been
shown that:

∑

(x1,...,x2n)∈{−1,1}2n

G(X,n)(x1,...x2n) = 22n+1L(2, n)

So :

∑

(x1,...,x2n)∈{−1,1}2n

(
2n∏

i=1

xi)
n∏

i=1

2n−i−1∑

k=1

xkxk+i+1 =

22n+1L(2, n)

The computation of L(2, n) is in O(4n × n2) and an
efficient long integer arithmetic is needed. This principle
can be optimized by taking into account the symmetry
of the problem and using the Gray code[7].

By using this approach, M. Godfrey has solved
L(2, 20) in one week on three PCs in 2002.

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

III. SOLVING THE LANGFORD PROBLEM USING

OPENMP

In [8], we proposed to formalize the Langford problem
as a CSP (Constraint Satisfaction Problem) and showed
that an efficient parallel resolution is possible. In this
section, we propose to develop a specific algorithm
taking into account the conclusions of our previous
works (management of the memory and load balance).

A. How to solve in parallel the Langford problem

The tree traversal induced by the explicit construction
of all solutions can be made in parallel while introducing
the following definition for the notion of task: it is
associated to the traverse of a particular subtree. While
choosing to develop all subtrees to a depth k, at most
(2n − 2)k independent tasks can be defined and are
accessible using a unique identifier (numbering of the
nodes in 2n − 2 basis).

It is noticed that, when introducing a backtracking
scheme on the inconsistent branches (for which the first
placed cubes do not already respect the color constraint),
we observe that the computations associated to these
tasks are especially irregular. Finally, it is easy to verify
that these tasks are independent and can be solved in any
order.

So, the algorithm can be summarized in c-like mode
by :

nbTasks = generateTasks(n,k);
nbSolutions=0;
for(task=0;task<nbTasks;task++)

nbSolutions+=solveTask(task);

Where nbTasks is the number of tasks deduced
by the development of all subtrees to the depth k
for n colors by the function generateTasks. The
function solveTask is in charge of traversing the
subtree associated with the task numbered task. At the
end, the variable nbSolutions contains the number
of solutions for L(2, n).

B. Parallel execution with OpenMP

The OpenMP environment has evolved to a standard
for shared memory parallelism [9], [10]. It is a complete
API for programming shared memory multiprocessors
systems. It enables to obtain a parallel code easily since it
is quite close to the sequential one. In addition, it makes
it possible to test different work distribution policies.
OpenMP derives from the ANSI X3115 efforts and is
a set of compiler directives and runtime library routines
that extend a sequential programming language (C or

FORTRAN) to express parallelism with a shared mem-
ory. It conforms to SPMD programming language style.
One key advantage of OpenMP, comparing with a Mes-
sage Passing implementation, is that the development
cost of an MPI version would be much more important.
It would potentially induce numerous additional pro-
gramming efforts to deal with the crucial load balancing
problem and especially for Irregular Applications which
is the case here.

The main feature of our proposal is as follows: it is
a Coarse-Grained parallelization which uses only one
level of parallel for loop or only one parallel section
consisting in the resolution of one subproblem.

C. Tasks allocation in a parallel loop

Within the OpenMP environment the tasks allocation
to the processors (threads) can be done very easily by
one compilation directive # pragma omp for schedule()
in the parallel for loop. We will study the three following
options:

1) The static repartition : each processor is in charge
of Nbtasks

Nbproc consecutive tasks. This solution seems
to be inadequate in our case because of the irreg-
ularity of the Langford tasks.

2) The Modulo Nbproc static repartition: the tasks
allocation to the processors is computed once at the
compiling time. Each processor receives Nbtasks

Nbproc
different subproblems following a repartition mod-
ulo the number of available processors Nbproc. Its
main advantage is to distribute the so-called search
tree irregularity among the processors.

3) The Dynamic repartition: the different tasks are
dynamically allocated to processors by the system
at the execution time ; there is no guarantee on
which thread the tasks are executed.

An experimental evaluation of the parallel resolution
of the Langford problem with the Search Tree decom-
position strategy was lead using a Silicon Graphics
Origin’3800 with 512 R14K 500 MHz processors. This
study was limited to 64 processors.

To have a parallel version of the program, an OpenMP
directive is added before the loop (here for a dynamic
schedule) :

nbTasks = generateTasks(n,k);
nbSolutions=0;
#pragma omp parallel

for schedule(dynamic)
for(task=0;task<nbTasks;task++)
nbSolutions+=solveTask(task);

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

The schedule clause takes three different values which
are static, (static,1) and dynamic. The reader
may notice that, thanks to OpenMP, the parallel version
is easy to define.

First, a comparison between the three repartition
policies for the Search Tree decomposition strategy is
provided. Table I shows the execution time for L(2, 14)
where k (the depth of subdivision) is equal to 5. As
expected, the static repartition is not very efficient when
the number of processors grows up. It is interesting to
notice that the modulo repartition is not so far from the
dynamic repartition which is the best in our experiment.

TABLE I

EXECUTION TIMES FOR L(2, 14) IN SECONDS

Procs Static Modulo Dynamic

1 223.13 224.26 234.7

2 119.5 116.4 114.72

4 63.56 58.58 56.67

8 57.24 29.33 28.19

16 33.49 14.72 14.05

32 22.81 7.42 7.03

64 16.46 17.45 4.24

Finally, the efficiency observed is very good. With 64
processors, the dynamic repartition obtains an efficiency
superior to 85%.

D. Tasks allocation in a parallel region

OpenMP also provides another way to produce paral-
lel application. The parallel region is executed by all the
processors. The user is explicitly in charge of distributing
the load among the processors. In the new experiment,
we redefine the three different load balancing strategies
provided by the parallel loop.

The static repartition is defined by the following
statements :

nbTasks = generateTasks(n,k);
nbSolutions=0;
#pragma omp parallel

reduction(+:nbSolutions) {
int nbp, p, start, end, task;
nbp = omp_get_num_threads();
p = omp_get_thread_num();
start = p*nbTasks/nbp;
end = (p+1)*nbTasks/nbp;
for(task=start;task<end;task++) {
nbSolutions+=solveTask(task);}}

The variables start and end are introduced in order
to explicitly balance the load to the processors. Because
they are defined in the parallel region, each processor has
its own copy of these variables. The reduction clause is
necessary to ensure the correctness of the computation.

The definition of the modulo repartition is simpler
than the static distribution. In this solution, processor
Pi begins with task Ti, continues with Ti+nbp, and so
on :

nbTasks = generateTasks(n,k);
nbSolutions=0;
#pragma omp parallel

reduction(+:nbSolutions) {
int nbp, p, task;
nbp = omp_get_num_threads();
p = omp_get_thread_num();
for(task=p;task<end;task+=nbp) {

nbSolutions+=solveTask(task);
}

}

The dynamic repartition is implemented using a shared
variable nextTask which indicates the number of the
next task to be computed. When a processor needs a
new task, it accesses this variable in a critical way (only
one processor at the same time). The for loop is also
replaced by a while loop to take into account the load
balance factor.

nbTasks = generateTasks(n,k);
nbSolutions=0;
int nextTask;
#pragma omp parallel

reduction(+:nbSolutions) {
int nbp, p, task;
nbp = omp_get_num_threads();
p = omp_get_thread_num();
#pragma omp single
nextTask = nbp;
task=p;
while(task<nbTasks) {

nbSolutions+=solveTask(task);
#pragma omp critical (load)
task = nextTask++;

}
}

Figure 3 gives an overview of the different experi-
ments. The efficiencies observed are very good with a
dynamic load balancing scheme. The reader shall take
into account that the execution time for 64 processors

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

ef
fic

ie
nc

y

number of processors

for static
for dynamic
region mod

region dynamic

Fig. 3. Efficiency for L(2, 14)

is less than 5 seconds. For the Langford problem, these
experiments show that the best solution is to take ad-
vantage of the parallel for loop provided by OpenMP
with the dynamic schedule clause. The dynamic region,
using a shared variable accessed in a critical way, is
not very effective with more than 16 processors. To
observe good efficiency when the number of processors
is large, the programmer should be ready to define a
more accurate solution to manage the load avoiding the
bottleneck introduced by this critical variable.

To conclude, some remarks have to be made. First,
the Origin’3800 was not dedicated to these experiments,
other users compute at the same time on this architecture.
It is probably the reason why some bad results were
observed. Each computation has been repeated 50 times.
For example, L(2, 14) with the dynamic for loop and 2
processors is solved in 114-115 seconds 41 times and
in 224-250 seconds in 9 different experiments. When
the number of processors increases, this instability is
observed more often. Thus, L(2, 14) is solved on 32
processors using the modulo for loop in 7.42 seconds
only 1 time in 5 tries on average. On 50 tries, the
execution time was closed to 60-65 seconds for 21 tries.
An explanation can be proposed. As the architecture is
shared by different users, the Langford application has no
guaranty about the memory allocation : one job started
before the Langford one can consume a large part of the
whole memory and in particular the local memory of the
processors in charge of the Langford job. In this case,
the memory access time is very bad and this aspect is
very critical for the Langford application.

IV. GODFREY’S ALGORITHM IN PARALLEL

In section II-B, the evaluation of L(2, n) by∑
(x1,...,x2n)∈{−1,1}2n(

∏2n
i=1 xi)

∏n
i=1

∑2n−i−1
k=1 xkxk+i+1

has been introduced.
It is quite obvious that a parallel version can be derived

from this formula. By choosing a value in {−1, 1} for
one or more of the xi in

∑
(x1,...,x2n)∈{−1,1}2n , a set of

independent tasks is introduced. Again, a depthlevel of
the parallelization can be defined. At depthlevel k, the
values of x1, x2, . . . , xk are fixed (either 1 or -1). Indeed,
at depthlevel k, a set of 2k tasks is generated.

A. Optimization using the Gray code
∑2n−i−1

k=1 xkxk+i+1 has to be calculated for each value
of the 2n-uple (x1, . . . , x2n) in {−1, 1}2n . But the
computation time for this sum might be very important.
So it is interesting to do that in a quick way, by changing
only one of the xi for each time (which allows to get
one sum from the previous one). The ordering of these
changes is made using the Gray code sequence, and it
would be interesting to pre-calculate it.

The sequence cannot be stored in an array because it
would be too large (it would contain 22n byte values).
This is the reason why only one part is stored in memory
and the values are calculated from this array.

The size of the stored part of the Gray code sequence
is chosen as large as possible to be contained in the
processor’s cache memory : so the accesses are fastened
and the computation of the Gray code is optimized.

For an efficient use of the SGI R14000 processors,
which dispose of 8 Mb of level-2 cache memory, the
Gray code sequence is developed recursively up to depth
22, though it uses 4 Mb ; the rest of the memory is used
for the computation itself.

B. A parallel version using a Message Passing Interface

Message passing is a programming paradigm used
widely on parallel computers, especially with distributed
memory. the Message Passing Interface (MPI) is a stan-
dard approach for message passing programming [11].
This standard defines the user interface and functionality
for a large number of message-passing capabilities. The
users expect form MPI a degree of portability compara-
ble to that given by programming languages such as C
or Fortran. They want the same message-passing source
code to be executed on a variety of architectures as long
as the MPI library is available.

The skeleton of the MPI program can now be intro-
duced. As in the parallelization of the first approach, the
simplest solution for the user has been chosen. The task
allocation is done during the execution by a client/server
scheme.

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nbp);
MPI_Comm_rank(MPI_COMM_WORLD, &p);
if (p == 0) { /* server */

nbTasks = localPow(2, k);
while ((nextTask < nbTasks)) {
/* get the result */
MPI_Recv(&noClient, 1,
MPI_INT, MPI_ANY_SOURCE,
1, MPI_COMM_WORLD, &ierr);
MPI_Recv(¤tTask, 1, MPI_INT,
noClient, 2, MPI_COMM_WORLD, &ierr);
MPI_Recv(&(sum.nbMots), 1, MPI_INT,
noClient, 4, MPI_COMM_WORLD, &ierr);
MPI_Recv(sum.sequence, NB_MAX_MOTS,
MPI_LONG, noClient,
5, MPI_COMM_WORLD, &ierr);

/* send the next task */
nextTask++;
MPI_Send(&nextTask, 1, MPI_INT,
noClient, 0, MPI_COMM_WORLD);

} /* end while */
MPI_Finalize();

} /* end of server */
else { /* client */

MPI_Recv(&task, 1, MPI_INT, 0, 0,
MPI_COMM_WORLD, &ierr);
while (task < nbTasks) {
sum=solveTask(task);

/* send the result */
MPI_Send(&p, 1, MPI_INT, 0,
1, MPI_COMM_WORLD);
MPI_Send(&task, 1, MPI_INT, 0,
2, MPI_COMM_WORLD);
MPI_Send(&(sum), 1, MPI_INT, 0,
4, MPI_COMM_WORLD);
MPI_Send(sum, NB_MAX_MOTS, MPI_LONG, 0,
5, MPI_COMM_WORLD);

/* receive next task */
MPI_Recv(&task, 1, MPI_INT, 0,
0, MPI_COMM_WORLD, &ierr);

} /* fin du while */
MPI_Finalize();

} /* end of client */

C. Solving L(2, 16)

Table II sums up the results obtained for L(2, 16) with
up to 16 processors. The depthlevel successively equals
6, 7, 8 and 9. The number of tasks is respectively 64,
128, 256 and 512.

TABLE II

EXECUTION TIMES FOR L(2, 16) IN SECONDS

Procs k=6 k=7 k=8 k=9

1 972 991 972 993

4 339 334 330 333

8 153 147 140 142

12 121 132 130 108

16 78 71 73 75

These experiments show that the parallelization of
the Langford problem is also effective using Godfrey’s
approach. By using 16 processors, L(2,16) can be solved
in less than 80 seconds on SGI’3800.

The reader may remember that only p− 1 processors
on p effectively resolve the problem because of the server
defined to distribute dynamically the set of tasks. By
defining a static distribution or a fully distributed dy-
namic distribution, it should be possible to use effectively
the p processors to solve the problem.

Figure 4 shows the speed-ups. The server is taken into
account in the evaluation. This is the reason why they are
not so good with 4 processors, but when the number of
processors increases, the penalty induced by the server is
less important. Using 16 processors, the speed-up is near
14 and the efficiency is equal to 85% while the optimal
efficiency is equal to 94% taking the server into account.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

sp
ee

d-
up

number of processors

k=6
k=7
k=8
k=9

Fig. 4. Speed-up for L(2, 16)

D. Some interesting results on L(2, 19) and L(2, 20)

Considering the good results provided by the paral-
lelization of Godfrey’s method on L(2, 16), some exper-
iments have been conducted on L(2, 19) and L(2, 20).

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

Due to the long execution time for both problems, no
result can be exhibited with less than 8 processors on
the SGI’3800.

1) The impact of the depthlevel on L(2, 19): Table III
contains the execution times in seconds for 8, 12, 16,32
and 64 processors. The depthlevel k moves from 5 to
10. It is noticeable that for k = 5, only 32 tasks are
generated which is not enough to farm 64 processors.

TABLE III

EXECUTION TIMES FOR L(2, 19) IN SECONDS

Procs k=5 k=6 k=7 k=8 k=9 k=10

8 9720 9735 9307 8975 8987 8935

12 5950 5917 5941 5790 5697 5670

16 5790 4842 4392 4290 4251 4214

32 3859 2891 2433 2175 2083 2060

64 2031 1940 1473 1209 1094 1031

The depthlevel is quite important when the number of
processors increases. Using 64 processors, the execution
time is reduced by 2 when the depthlevel moves from 6
to 10.

This fact can be explained by two factors. First, the set
of tasks must be larger than the number of processors
to be able to correct the load imbalance. Second, by
fixing more values for the xi (which is the case when
the depthlevel increases), the memory needed to solve
the task (and especially to construct the Gray code) is
less important. Then a cache memory factor impacts the
results in a significant way.

The conclusion of these experiments is that L(2, 19)
can be solved in less than 20 minutes, to be compared
to the first results published by Miller on his web page.

2) L(2, 20) can be solved in 1 hour and even less:
To conclude the experiments, L(2, 20) has been solved
using 8, 16, 32, 64 and 128 processors. The depthlevel is
equal to 12, so 4096 tasks are generated and distributed
among the processors.

The average execution time of a task is close to
69 seconds. The minimum and maximum times are
respectively 67 and 80 seconds.

The execution time on 32 processors is 9208 sec-
onds and is reduced to 4530 with 64 processors. It is
interesting to note that the execution time is reduced by
half when the number of processors is doubled. Finally,
L(2, 20) is solved in 2274 seconds using 128 processors.

The use of parallelism and the algorithm’s improve-
ments have reduced the resolution time of L(2, 20)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140

ex
ec

ut
io

n
tim

e

number of processors

L(2,20)

Fig. 5. Execution times for L(2, 20) in seconds

from one week to 38 minutes ! This result opens the
perspective of L(2, 23) and L(2, 24).

V. CONCLUSION AND PERSPECTIVES

In this paper, the parallel resolution of the Langford
problem has been studied.

The first part of this work consisted in a parallel
shared memory enumeration of all the solutions. The
application has been written in C using OpenMP. The key
advantage of OpenMP is the ease of its use to parallelize
the sequential algorithm. With minimum changes to this
algorithm, it has been possible to design an efficient
parallel version. The provided experiments on SGI’3800
show that the parallel for loop with the dynamic schedule
provided by OpenMP is an effective solution. The use
of parallel region is also possible, but the programmer
has to make some efforts to design an efficient paral-
lel application. The main drawback highlighted by the
experiments is that the execution times for the same
problem can be very different from one execution to
another. It is probably due to the memory management
in a multi-user environment.

The second part of this study proposed an MPI par-
allel application to solve the Langford problem using
the algebraic method. The granularity of the parallel
algorithm can be easily adjusted by a depthlevel factor.
A very simple client/server application written in C with
MPI has been developed. It has been shown that the
granularity of the application has a significant impact
on the execution time when the number of processors
increases. The experiments provided are conclusive : this
solution has reduced the resolution time of L(2, 20) from
one week to nearly 40 minutes using 128 processors.

The main perspective to this work is to write a hybrid
solution based and OpenMP and MPI to solve L(2, 23)

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

which is the next open problem. Based on experimental
observations, the execution time of L(2, 23) should be
120 to 200 times much more time consuming than
L(2, 20). This is the reason why the execution on a large
cluster of SMP (Symmetric Multi-Processor) should be
considered as an interesting alternative to solve L(2, 23)
in an acceptable range of time (one week or less). Inside
an SMP node, the parallelism should be managed in
a shared memory by OpenMP. Outside the nodes, a
message passing solution will allow the management of
the load between the nodes.

The Langford problem can be considered as a
prototype for the permutation problems class, as
suggested by T. Walsh and B. Smith. Therefore,
this work can be extended to other problems of this
interesting class.

ACKNOWLEDGMENTS

This work was partly supported by "Romeo"1, the
high performance computing center of the University
of Reims Champagne-Ardenne and the "Centre Informa-
tique National de l’Enseignement Superieur"2 (CINES),
France.

1http://www.univ-reims.fr/Calculateur
2http://www.cines.fr

REFERENCES

[1] Z. Habbas, M. Krajecki, and D. Singer, “Parallel resolution
of csp with openmp,” in Proceedings of the second European
Workshop on OpenMP, Edinburgh, Scotland, 2000, pp. 1–8.

[2] M. Gardner, Mathematics, Magic and Mystery, 1956.
[3] J. E. Simpson, “Langford sequences: perfect and hooked,”

Discrete Math, vol. 44, no. 1, pp. 97–104, 1983.
[4] T. Walsh, “Permutation problems and channelling constraints,”

APES Research Group, Tech. Rep. APES-26-2001, January
2001. [Online]. Available: http://www.dcs.st-and.ac.uk/∼apes/
reports/apes-26-2001.ps.gz

[5] B. Smith, “Modelling a Permutation Problem,” in Proceedings
of ECAI’2000, Workshop on Modelling and Solving Problems
with Constraints, RR 2000.18, Berlin, 2000. [Online]. Available:
http://www.dcs.st-and.ac.uk/∼apes/2000.html

[6] Langford’s Problem, J.E. Miller, 1999. [Online]. Available:
http://www.lclark.edu/∼miller/langford.html

[7] S. Ranka and S. Sahni, Hypercube Algorithms with Applications
to Image Processing and Pattern Recognation. Springer-
Verlag, 1990.

[8] Z. Habbas, M. Krajecki, and D. Singer, “Parallelizing Combina-
torial Search in Shared Memory,” in Proceedings of the fourth
European Workshop on OpenMP, Roma, Italy, 2002.

[9] OpenMP C and C++ Application Program Interface, OpenMP
Architecture Review Board, Oct. 1997, http://www.openmp.org.

[10] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
and R. Menon, Parallel Programming in OpenMP. Morgan
Kaufmann, 2000.

[11] P. Pacheco, Parallel Programming with MPI. Morgan Kauf-
mann, 1996.

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

