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Abstract—In this paper we propose CUDA-based implemen-
tations of two 3D point sets registration algorithms: Softassign
and EM-ICP. Both algorithms are known for being time
demanding, even on modern multi-core CPUs. Our GPUbased
implementations vastly outperform CPU ones. For instance,
our CUDA EM-ICP aligns 5000 points in less than 7 seconds on
a GeForce 8800GT, while the same implementation in OpenMP
on an Intel Core 2 Quad would take 7 minutes.

I. MOTIVATION

Registration (alignment) of 3D point sets is one of the

most important problems in computer vision and several

methods have been developed over the last two decades.

The widely used Iterative Closest Point (ICP) algorithm

[1] provides quick registration, but requires a good initial

alignment in order to prevent local minima and produce a

plausible match. Softassign [2] and EM-ICP [3] represent

efforts to overcome such limitations: instead of looking

for ”hard” correspondences between points (each point in

one of the sets has to uniquely map to another point in

the other set), the latter two algorithms focus on ”soft”

correspondences (each point in one of the sets corresponds

somehow to every point in the other set by some weight). Al-

though these algorithms can handle any initial arrangement,

their associated computational cost has been preventing their

practical usefulness even for moderately large number of

points.

Recent advances in graphics hardware and software [14],

[15] have motivated us to implement Softassign and EM-ICP

on a GPU and evaluate their corresponding behavior and

performance. Our contribution is twofold: we introduce the

GPU implementations and also demonstrate that most steps

of these algorithms are GPU-friendly, consisting of either

vector-matrix multiplications or element-wise operations.

The rest of the paper 1 is organized as follows. In

section 2, we review alignment algorithms: ICP, Softassign,

and EM-ICP. Also, estimations of optimal transformation

using Horn’s method are described. Then we discuss how

these algorithms are implemented in CUDA in section 3.

Performance evaluations are given in section 4 and section

5 concludes the paper.

II. ALGORITHM REVIEW

The goal of alignment algorithms is to find rotation matrix

R and translation vector t that align two sets of 3D points

1The developed software was presented at CVPR2010 Demo [13].

X = {x1,x2, . . . ,xnx
} and Y = {y1,y2, . . . ,yny

}: the

rigid transformation minimizes the residual error between

X (fixed) and Y (transformed by R and t).

Here we describe three alignment algorithms, ICP [1],

Softassign [2], and EM-ICP [3]. These methods differ in

their strategies for point correspondence establishment: ICP

employs hard correspondence while Softassign and EM-ICP

use soft correspondence. Once point correspondences are

established, the rigid transformation R and t are estimated

by using a rigid transformation estimation method such as

Horn’s quaternion method [10].

A. ICP

Iterative closet point (ICP) algorithm [1] is an alignment

method proposed for free form surface registration. It takes

two point sets X and Y and find R and t as following

procedure.

Algorithm 1 ICP

1: R0 ← I , t0 ← 0.

2: for k = 1, . . . , maxIterations do

3: for each point xi in X do

4: find the closest point yi∗ in Y :

i∗ = argmin
j=1,...,ny

||xi − (Rk−1yj + tk−1)||. (1)

5: end for

6: build the ordered correspondence set Y ∗ =
{y1∗, . . . ,ynx∗

}.
7: find the rigid transformation R∗, t∗ that minimizes

mean squared error between X and Y ∗.

8: Rk ← R∗, tk ← t∗.

9: end for

Some implementations of ICP on GPUs [7], [8], [9],

however, main problem of ICP is the convergence is not

satisfactory.
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B. Softassign

Softassign [2] takes two point sets X and Y ′ and find R
and t that minimizes the error function:

E =

nx
∑

i=1

ny
∑

j=1

mij ||xi − (Rk−1y′

j + tk−1)||

− α

nx
∑

i=1

ny
∑

j=1

mij −
1

β

nx
∑

i=1

ny
∑

j=1

mij(logmij − 1), (2)

where mij is the i-jth element of a weight correspondence

matrix M , and α and β are constants. Note that M has

additional row and column for dealing with outliers in

correspondences.

The algorithm of Softassign is as follows:

Algorithm 2 Softassign

1: R0 ← I , t0 ← 0, k ← 0.

for all i, mi,ny+1 ← moutlier, for all j, mnx+1,j ←
moutlier.

2: for iterationJ = 1, . . . , JMAX do

3: for iterationI = 1, . . . , I0 do

4: for each i, j compute

mij ← exp

(

−β
(

∂E

∂mij

− α

))

, (3)

where

∂E

∂mij

= xi − (Rk−1yj + tk−1). (4)

5: for iterationShinkhorn = 1, . . . , I1 do

6: normalize rows i:

mij ←
mij

ny+1
∑

j=1

mij

(5)

7: normalize columns j:

mij ←
mij

nx+1
∑

i=1

mij

(6)

8: end for

9: find the rigid transformation R∗, t∗ that minimizes

E error weighted by M between X and Y .

10: Rk ← R∗, tk ← t∗, k ← k + 1.

11: end for

12: end for

C. EM-ICP

EM-ICP [3] takes two point sets X and Y and find R and

t that minimizes the error function:

E =

nx
∑

j=1

ny
∑

i=1

αijd
2
ij , dij = ||xj − (Ryi + t)||, (7)

where αij is the probability that xj matches to yi and given

by

αij =
1

Ci

exp

(

−d2ij
σ2
p

)

, (8)

Ci =exp

(−d20
σ2
p

)

+

nx+1
∑

k=1

exp

(

−−d
2
ik

σ2
p

)

, (9)

where σp and d0 are constants.

The error function can be rewritten as [4]:

E =

ny
∑

i=1

λ2
i ||x′

i − (Ryi + t)||, (10)

where

λi =

nx
∑

j=1

√
αij , x

′

i =
1

λi

nx
∑

j=1

√
αijxj . (11)

By following [5] the algorithm of EM-ICP is as follows:

Algorithm 3 EM-ICP

1: R0 ← I , t0 ← 0, k ← 0. σp ← sigam p. σrecon ←
sigam inf. d20 ← d 02.

2: while σp > σrecon do

3: for each i, j compute αij with Rk−1, tk−1.

4: find the rigid transformation R∗, t∗ that minimizes E
error weighted by λi.

5: Rk ← R∗, tk ← t∗, k ← k + 1.

6: σp ← σp × sigma factor

7: end while

III. ESTIMATION OF R AND t

Given correspondences of points with or without weights,

the rigid transformation is usually computed by Horn’s

method [10] using quaternions. Readers who are interested

in other methods, refer a review [12]. First we describe the

original version that does not take weights and requires hard

correspondences.

A. Horn’s method

Assume that two corresponded point sets X =
{x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn} are given.

Then the optimal rigid transformation minimizes the fol-

lowing function:

n
∑

i=1

||xi − (Ryi + t)||. (12)

Usually t is estimated by the difference between centers of

point sets. R is then estimated separately.

Horn [10] proposed a method for estimating R between

X̂ and Ŷ by using quaternions.
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K =









Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syz Szx + Sxz

Szx − Sxz Sxy + Syz Syy − Sxx − Szz Syz − Szy

Sxy − Syx Szx + Sxz Syz − Szy Szz − Sxx − Syy









. (15)

Algorithm 4 Estimation of R and t

1: Let X̂ = {x̂1, x̂n} and Ŷ = {ŷ1, ŷn}. Here, x̂i =
xi − x̄ and x̄ = 1

n

∑n

i=1
xi is the center of gravity of

the point set.

2: Estimate R between X̂ and Ŷ .

3: Let t← x̄−Rȳ.

Algorithm 5 Horn’s quaternions method

1: Let

S =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 , (13)

where

Sab =
n
∑

i=1

xiayib, a, b ∈ {x, y, z}. (14)

Here, xiz means the z coordinate of point xi, and so

on.

2: Construct the following real-symmetric matrix K in

Eq.(15).

3: Compute the eigenvector q corresponding to the maxi-

mum eigenvalue of K. This is a unit quaternion.

4: Convert the unit quaternion q to rotation matrix R.

B. Weighted version

Horn’s method can be extended to handle with weights

for each correspondences of difference size of point sets.

Assume that two corresponded point sets X =
{x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn} are given, and

also given weights λi for each correspondence {xi,yi}.
Then the Horn’s method is modified [11] in following two

points:

1) centers of point sets: computing the center of X now

takes into the weights as

x̄ =
1

∑n

i=1
λi

n
∑

i=1

λixi, (16)

and so as ȳ.

2) elements in S: now Sxx, . . . are computed as

Sab =
n
∑

i=1

λixiayib. (17)

Modification is similar even when two point sets has

different number of points. Assume that two corresponded

point sets X = {x1,x2, . . . ,xnx
} and and Y =

{y1,y2, . . . ,yny
} are given, and also given weights mij

for each correspondence {xi,yj}. Then the Horn’s method

is modified in following two points:

1) centers of point sets:

x̄ =
1

N

nx
∑

i=1

ny
∑

j=1

mijxi, ȳ =
1

N

nx
∑

i=1

ny
∑

j=1

mijyi, (18)

where

N =

nx
∑

i=1

ny
∑

j=1

mij . (19)

2) elements in S:

Sab =
1

N

nx
∑

i=1

ny
∑

j=1

mijxiayjb. (20)

IV. GPU IMPLEMENTATION: KEY IDEA

Softassign and EM-ICP involve a lot of loops and sum-

mations. The key idea to achieve the best performance of

implementations Softassign and EM-ICP on GPU is separate

vector-matrix computation and element-wise computation in

the original algorithms. In our implementation, CUDA Basic

Linear Algebra Subprograms (CUBLAS) [17], an implemen-

tation of BLAS[16] on top of CUDA, is used to accelerate

the vector-matrix computation part, while CUDA kernel

computation is employed for element-wise computation.

In the following subsections, we describe how matrix S
is computed by Softassign and EM-ICP with CUDA.

A. Softassign with CUDA

The most computationally intensive parts of Softassign al-

gorithm is the Shinkhorn iteration as well as the computation

of M .

1) Computing M : Elements mij of M can be computed

in parallel since it just involves the distance between xi and

yj .

To maximize the use of the shared memory on a GPU,

two points for implementations should be taken into account.

First, R and t are first loaded on a shared memory because

they are common for computations of all elements. Second,

xi are fixed when computing mij for all yj (or vice versa).

Therefore, xi is loaded and stored in shared memory once

for each i in a block, which is a unit where streaming

processors on a GPU run in parallel.

181181



2) Shinkhorn iteration: Shinkhorn iteration repeats nor-

malization of rows and columns in turn. In terms of vector-

matrix computation, the normalization can be seen as the

multiplication of M and a vector whose elements are all 1.

We divide the normalization of rows i in M :

mij ←
mij

∑ny+1

j=1 mij

(21)

as follows.

1) M1 → RM , where 1 is a column vector with

all elements 1, and RM is a column vector whose

elements are the sums of each row of M . This can be

easily performed by sgemv in BLAS.

2) Ro + RM → RM , where Ro is a column vector

which corresponds to outliers. This can be performed

by saxpy in BLAS.

3) divide row i of M by i-th element of RM . This can be

implemented by CUDA kernel to compute in parallel.

The column normalization is also implemented in the

same way with the row normalization.

3) Centering point sets: To compute translation t, point

sets X and Y are centered by subtracting weighted centers

of gravity. This can be also done by using results of the

row/column normalizations.

By definition,

x̄ =
1

N

nx
∑

i=1

ny
∑

j=1

mijxi, (22)

=
1

N

nx
∑

i=1

(xi

ny
∑

j=1

mij) =
1

N

nx
∑

i=1

xiRMi, (23)

where RMi is the i-th element of RM . Also,

N =

nx
∑

i=1

RMi. (24)

Hence, x̄ can be computed by re-using RM that is stored at

the normalization step. Eq.(23) can be performed by using

element-wise computation with CUDA kernel (xiRMi →
xi) followed by summing up the elements by inner product

(xT
1 with sasum in BLAS). N can be also computed by

inner product (RT
M1).

Centered point sets X̂, Ŷ are then performed by subtract-

ing each element in X (or Y ) by x̄ (or ȳ) with CUDA kernel.

4) Computing S: If we arrange the way how the point

sets are stored in memory, computing matrix S is very

simple.

Elements in S are of the form as:

Sab =
1

N

nx
∑

i=1

ny
∑

j=1

mijxiayjb. (25)

Therefore, S consists of the following matrix and vectors:

S = X̂TMŶ , (26)

where X and Y are matrices of 3D points:

X̂ =











x̂
T
1

x̂
T
2

...

x̂nx











, Ŷ =











ŷ
T
1

ŷ
T
2

...

ŷny











. (27)

This format means that x coordinates of all points are stored

in the first (left most) column, then y and z coordinates

stored in the second (middle) and third column. Since it

facilitate the vector-matrix multiplication, S can be com-

puted by the use of BLAS sgemm twice: MŶ → D then

X̂TD → S, where D is a matrix temporary used.

5) Estimating R and t: Once S is computed, R is

computed by Horn’s method, then t is obtained as x̄−Rȳ.

Here, x̄ and ȳ are centers weighted by M .

B. EM-ICP with CUDA

The implementation of EM-ICP algorithm is similar to

that of Softassign.

1) Computing dij: Elements dij can be computed in

parallel since it just involves the distance between xi and

yj . In the following, we denote a matrix A = (αij) =
(exp(−d2ij/σ2

p)). A can be computed with CUDA kernel in

the same way of computing M for Softassign.

2) Computing Ci: Coefficients Ci involve the computa-

tion of summing rows of A and adding a constant. This can

be done in two steps below. First, rows of A are summed

by BLAS sgemv: A1 → C, where C = (C1, . . . , Cny
)T .

Second, BLAS saxpy is used to compute exp(
−d2

0

σ2
p

)1 +

C → C.

Then, each row of A is divided by C and square-rooted

for performing A = (
√

αij/Ci) with CUDA kernel.

3) Pseudo correspondence x′: Unlike Softassign, EM-

ICP do not need row/column normalization of A. Instead,

correspondence to yi is established to all xi with weights

A.

First, A1→ λ = (λ1, . . . , λny
)T is computed with BLAS

sgemv. Also N =
∑n

i=1
λi is computed here with BLAS

sasum. Second, x′

i is computed by multiplication of A and

X: AX → X ′ with BLAS sgemm. Here points are stored

in X as described in “computing S” for Softassign. Then,

each element x′

i in X ′ is divided by λi with CUDA kernel.

4) Centering point sets: Centering of point sets for com-

puting translation t is similar to the way for Softassign.

The weighted center is now given as

x̄′ =
1

N

ny
∑

i=1

x′

iλi, ȳ =
1

N

ny
∑

i=1

yiλi, (28)

implemented with BLAS sgemv followed by the division

by N with BLAS sscal.

Centered point sets X̂ ′, Ŷ are then performed by sub-

tracting each element in X ′ (or Y ) by x̄′ (or ȳ) with CUDA

kernel.
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Figure 1. Computing time over different number of points.

5) Computing S: Since EM-ICP uses weights λi for

correspondence between yi and x′

i, computing S becomes

easier than that for Softassign.

If we would compute S in the same way for Softassign,

the following matrix multiplication is needed:

S = X̂Tdiag(λ)Ŷ , (29)

where diag(λ) is the diagonal matrix whose diagonal ele-

ments are λ1, . . . , λny
. This is valid, but not efficient.

Instead, we compute S in two steps. First, X̂ ′ is weighted

by λ: x̂
′

iλi → x̂′

i. This is done by CUDA kernel. Second,

S is computed by X̂ ′T Ŷ → S with BLAS sgemm.

6) Estimating R and t: Once S is computed, R is

computed by Horn’s method, then t is obtained as x̄−Rȳ.

Here, x̄ and ȳ are centers weighted by λ.

V. PERFORMANCE EVALUATION

We have tested our CUDA-based implementations of

Softassign and EM-ICP [13], and compared to CPU-

implementation of ICP and EM-ICP. We have used OpenMP

for CPU-implementation to compute element-wise opera-

tions on multiple threads in parallel. Two sets of points ran-

domly taken from one of the bunny dataset [6] are aligned to

measure the computing time. Movies of the convergence of

these registrations are available at http://home.hiroshima-u.

ac.jp/tamaki/study/cuda softassign emicp/. Code is also

available there.

As shown in Fig.fig:computingtime, our CUDA EM-ICP

aligns 5000 points in less than 7 seconds on a GeForce

8800GT, while the same implementation in OpenMP on an

Intel Core 2 Quad would take 7 minutes. ICP takes less

than 2 or 3 seconds, however, the alignment result is not

satisfactory.

VI. CONCLUSIONS

In this paper we have proposed CUDA-based implementa-

tions of Softassign and EM-ICP for 3D point sets alignment.

EM-ICP on CUDA is 60 times faster than OpenMP-based

implementations on a multi-core CPU.

It is worth to note two limitations of our implementations.

First, the number of points is limited due to the small

amount of memory on a consumer-price GPU. Even if a

GPU has 512MB memory, two sets of 10000 points are

not aligned. However, this is not problematic in practice

because randomly reducing the number of points allows the

implementations work fine. Second, the stopping condition

is not implemented. Softassign algorithm iteratively estimate

M as well as R and t, hence, the iteration can be stopped

when M converges. However, it requires storing the entire

M and checking whether the current estimate of M is close

to the previous M stored. This is obviously not efficient,

therefore we omit in our implementation.
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