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Abstract—Parallelism is one of fundamental concepts of recent 
years’ trend in developing cutting edge VLSI processors in 
order to achieve power conscious high performance. HCgorilla 
is a ubiquitous processor that does not make much of high 
clock speed, but seeks high performance by applying the 
architecture of multicore and multiple pipeline. Each of two 
symmetric cores is composed of Java compatible media pipes 
and cipher pipes for cipher streaming. Similarly to other 
processors, HCgorilla is also accompanied with the awkward 
issue of instruction pipelining. Focusing on this, this paper 
shows how H/S collaborative parallelism can be used to 
accelerate the processing speed of the HCgorilla. The novelty 
of utilizing media pipes as fully as possible owes to a triple 
scheme for a waved MFU (multifunctional unit), multistack, 
and interleaved issue of related codes. Since this is useful for 
out-of-order arithmetic issue in conjunction with parallel stack 
operation, the triple scheme achieves a processor system free 
from not only instruction scheduling but also pipeline 
disturbance. The triple scheme is applied for the improved 
version of an HCgorilla chip and parallelizing compilers. 
According to H/S collaboration, these parallelizing steps are 
moved to web servers. This surely lightens the burden of 
mobile platforms. 
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processor; instruction scheduling 

I.  INTRODUCTION1 
Parallelism has been dominating in the recent years’ 

processor market ranging from embedded to high-
performance VLSI systems, and the degree of parallelism 
continues increasing. This trend has been driven by the 
demand for power conscious high performance especially in 
ubiquitous fields. To take advantage of the increasing degree 
of parallelism, sophisticated H/S co-design scheme is 
indispensable. Actually, the hardware parallelism of 
multicore and multiple pipeline requires efficient software 
support for abstracting TLP (thread level parallelism) and 
ILP (instruction level parallelism). In addition, load 
balancing and instruction scheduling schemes are needed for 
cores and pipelines, respectively. 

HCgorilla is a ubiquitous processor that does not make 
much of high clock speed, but seeks high performance by 
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applying the architecture of multicore and multiple pipeline 
[1, 2]. Each of two symmetric cores is composed of Java 
compatible media pipes and cipher pipes for cipher 
streaming. HC is the abbreviation of hardware cryptography. 
In order to achieve effective media processing over internet, 
strong conscious has been paid for utilizing floating point 
arithmetic and Java IP (intellectual property). 

Floating point arithmetic is indispensable for basic 
algorithms of image processing, etc. Since the floating point 
arithmetic is used in conjunction with integer arithmetic, this 
requires complicated instruction scheduling to map codes 
with different latencies on arithmetic execution units. 
Although the previous version of HCgorilla needed 
instruction scheduling together with parallelizing executable 
codes [1], an improved version is free from such process [2]. 
This is due to the wave-pipelining of a multifunctional unit. 

On the other hand, Java IP is required to receive benefit 
for media processing so far developed. Thus, HCgorilla’s 
media pipe is able to execute Java bytecodes and do stack 
operation following JVM (Java virtual machine) style. 
However, stack machines have been generally recognized to 
be opposed to ILP due to in-order serial process [3]. That is, 
another kind of pipeline disturbance due to the stack 
machine’s serial processing has still remained even if the 
problem of instruction scheduling is solved. 

As a solution for the awkward issue of the instruction 
pipelining due to different latencies and the stack machine’s 
serial processing, H/S collaborative parallelism is really 
reasonable. Actually, the VLSI trend of parallelism owes 
both hardware and software techniques. However, software 
requires rather huge resource, power, cost, etc. This surely 
restricts the scale of systems, and is inconvenient for 
ubiquitous computing. Thus, hardware parallelism is rather 
practical in collaboration with software support in order to 
achieve a processor system free from not only instruction 
scheduling but also pipeline disturbance. 

According to this policy, a triple scheme for a waved 
MFU (multifunctional unit), multistack, and interleaved 
issue of related codes is exploited in this study. The waved 
MFU is free from the scheduling of arithmetic issue. Then, 
the combination of multistack and interleaved issue is useful 
for parallel stack operation. The triple scheme is applied for 
the improved version of an HCgorilla chip and parallelizing 
compilers. 
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II. H/S COLLABORATIVE PARALLELISM 
H/S co-design does not mean simply relying on software 

components for sophisticated multimedia processing, but 
implicitly supporting hardware activity by the potential of 
software. Table 1 summarizes the H/S collaborative scheme 
established in designing HCgorilla. This surveys hardware 
and software techniques, the object of collaboration, the 
effect of collaboration, and contribution for ubiquitous 
applications. Multicore architecture is basically promising 
for mobile processors as well as PC processors to achieve 
high performance with less power. 

 

TABLE I.  OVERVIEW OF THE H/S COLLABORATION SCHEME 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Although software parallelism has put much emphasis on 

TLP, ILP is still an important subject even for multithreaded 
processors. Actually, multithreaded and multicore processors 
include scalar units that execute arithmetic instructions in 
parallel. With respect to this viewpoint, the hardware 
parallelism of multiple pipeline is more important to fully 
utilize software parallelism. Multiple pipeline is inevitably 
encumbered by instruction scheduling. This is one of the 
most important issues to fully utilize multiple pipeline like a 
regular scalar unit. 

The essence of H/S collaborative parallelism for the 
awkward instruction pipelining lies in how to merge scalar 
units and issue executable codes in parallel. Incorporating 
MFU in EX stage frees anxious instruction scheduling, 
because it takes the same latency to execute any function. 
However, it surely reduces clock speed. This is caused by the 
scale up of a multifunctional circuit. Such degradation can be 
recovered by wave-pipelining, because it has potential to 
achieve higher speed with less occupied area. Thus, this 
study finds usefulness in the wave-pipelining of the resultant 
MFU. 

In order to fully utilize the waved MFU, further 
improvement is required. The waved MFU access stacks to 
cover Java, which is well suited to follow the global 
engineering of platform neutrality, multithreading for 
dynamic interaction over Internet, etc. Thus, multistack is 
crucial for both fully utilizing the waved MFU and 

sustaining stack machine’s IPC. The multistack is achieved 
by providing stacks equal to the wave degree of the waved 
MFU. Each stack is provided with a dedicated arithmetic 
code. Then, those arithmetic codes are interleaved in order to 
fully utilize the waved MFU. Both the instruction fetch 
according to an LIW (Long Instruction Word) mode and the 
operation of multistack are interleaved to achieve 
disturbance free pipelined arithmetic processing. 

Fig. 1 exactly illustrates multiple pipeline structure in 
conjunction with multistack and waved-MFU. The parallel 
degree of the multistack is made correspond to the wave 
degree of the execution stage. In this case the degree is three 
for convenience sake. The executable codes are output from 
an LIW compiler that extract ILP, and is stored in an 
instruction cache. The issue of stack-related codes like load, 
store, arithmetics are interleaved. Also, the stack operations 
of pop up and push down are interleaved. The twofold 
interleaving makes the stack related codes occupy a single 
stack continuously by one clock. 

 
 

 
 
 
 
 
 
 

 
Figure 1.  Multiple pipeline structure in conjunction with multistack and 

waved-MFU. 

 
Fig. 2 illustrates the interleaved LIW issue in the case of 

simple summation. Although more practical summation is 
carried out for floating point numbers, integer summation is 
shown to focus on interleaving. Anyway, the simple 
summation is frequently used, for example, as a part of a 
normalized correlation factor. This factor is used in stereo 
matching, which is a basic obstacle detection algorithm for 
the image processing of ASV (advanced safety vehicle) and 
ITS (intelligent transport system). Since the parallel degree is 
three corresponding to Fig. 1, the source code is unfolded 
into three stack codes, and these are interleaved. Here, 
“1iadd” is an executable code that adds the stack’s first top 
and the second top, and pushes down the stack’s first top. 

III. HARDWARE DESIGN 
HCgorilla is a processor architecture designed for the 

ubiquitous computing of media processing and cipher 
streaming as well. Basically, HCgorilla is composed of two 
symmetric cores to cover bidirectional communication. Fig. 
3 shows the hardware organization of HCgorilla,5 that is the 
fifth version of HCgorilla designed in this study. Each core 
has two arithmetic media pipes and a cipher pipe. The 
arithmetic pipe has a double stack and a two-waved MFU. 
Since the parallel degree of the media pipe is two, each core 
is able to execute four stack-related codes in parallel 
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following JVM style. The cipher pipe with a random number 
generator executes a SIMD mode cipher codes. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.  Interleaved issue. 

 

 
 
 

 
 
 
 

 
 
 

 
Figure 3.  Hardware organization of HCgorilla. 

 
HCgorilla.5 has been implemented by using a 0.18-μm 

CMOS chip [2]. Table 2 summarizes the architectural 
aspects of the HCgorilla.5 chip compared with those of 
dominant versions so far developed. Although HCgorilla.4 
improves the HCgorilla.3 chip [1] that lacks floating point 
units, it requires instruction scheduling between floating and 
integer units. HCgorilla.5 is free from this issue due to the 
use of the two-waved MFU and the double stack. Interleaved 
issue to the double stack is useful for sustaining IPC or full 
utilization of the waved MFU. The HCgorilla.5’s instruction 
set is composed of 2 cipher codes and 102 media codes. 58 
media codes are Java compatible. The parallel execution of 
media codes and cipher codes is indispensable for the basic 
ability of HCgorilla that unifies Java features, strong 
security, low power, and high throughput. 
 
 
 
 

TABLE II.  SPECIFICATIONS OF HCGORILLA FAMILY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. SOFTWARE DESIGN 
The design of software for HCgorilla includes Java as is 

described in Table 1. Fig. 4 illustrates the flow of Java 
language processing for HCgorilla, which is compared with 
that for commercial processors. The turning point of the both 
flows is the processing of class files. While commercial 
processors directly receive them via Internet to take the 
benefit of platform neutrality, HCgorilla receives the product 
of class files produced in web servers. The processing of 
class files is supported by the software composed of a Java 
interface and parallelizing compilers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Java language processing flow for HCgorilla vs. commercial 

processors. 

 
A main idea shown in Fig. 4 is moving the necessary 

parallelizing steps from the processor to a web server. These 
are installed in web servers, and finally outputs executable 
parallel codes to Internet. They are directly run on HCgorilla. 
Since the small scale is imposed on ubiquitous clients, 
installing the software support in external large servers is 
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very convenient for HCgorilla-embedded small platforms. 
Although any processor is allowed to run Java by installing 
JVM and JIT (just-in-time compiler), this needs more 
software load and memory space. Such imposition surely 
degrades response time, power consciousness, usability, cost, 
and the performance of small mobile devices. 

Fig. 5 shows more clearly the physical arrangement of 
ubiquitous clients embedded with HCgorilla chip, web 
server, software support, and parallelizing compilers. Such 
architecture can be easily established by simply installing the 
software support in web servers. For example, the software 
support may run on proxy servers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Global architecture of HCgorilla, web server, software support, 
and parallelizing compiler. 

 
The one of anticipative drawbacks of this approach is 

web delays. Obviously, it will cost some time to transfer the 
executable code over the internet. However, the transfer of 
class files to commercial processors also takes some time. In 
addition, the transfer time is not so important for the 
evaluation of web delays [4]. The main factor of web delays 
is the response time of web servers. Another apprehension 
about this approach is to keep security during the transfer. 
However, getting the executable codes over the internet does 
not yield a problem of trust, because Java is basically seeks 
for global standard in Internet. 

Table 3 summarizes the granularity of parallelism of the 
software support. According to HCgorilla’s parallelism, the 
parallelizing compilers for HCgorilla are a multicore 
compiler and LIW compiler. Their role is to abstract media 
codes that are executable in parallel by the double core and 
multiple pipelines. In order to fully utilize the parallelism of 
multicore, TLP is taken into account of. Although 
multithreading is not always only one software technique for 
parallelizing applications run on multicore chips, it is not the 
main concern of this study. 

 
 

 

TABLE III.  GRANULARITY OF PARALLELISM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 shows the basic algorithm of the HCgorilla’s 
multicore compiler designed to abstract TLP from executable 
serial codes or the Java interface output. The multicore 
compiler judges threading by looking for return process that 
expresses the end of instructions sequence or thread. Other 
abstraction units like functions and loops should be 
incorporated in the next step of this study. Fig. 7 shows the 
basic algorithm of the LIW compiler that abstracts ILP from 
each thread and does reorder and renaming as shown in. The 
LIW compiler outputs the codes executable in parallel by the 
media pipes. The output is mapped on an instruction cache 
within each core. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  The algorithm of HCgorilla’s multicore compiler. 

Although main techniques illustrated in Figs. 6 and 7 are 
not so specialized, there exist some novelties. They are as 
follows. Firstly, the LIW compiler basically reflects the 
parallel structure of the execution stage and abstracts codes 
that use one of multiple execution units. Other codes that do 
not use execution units are not the target of the LIW 
compiler, because they are basically processed in serial. 
Secondly, HCgorilla’s jump codes do not need renaming. 
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Generally, renaming or the readdressing of parallelized code 
sequences is required for both TLP and ILP abstraction in 
order to avoid the conflict of data cache access. This 
complements the logical share of data cache by the cores. 
Some of jump codes direct absolute addresses, and such 
codes need renaming by modifying their destination 
addresses in parallelization. However, renaming is not 
necessary for HCgorilla’s jump codes, because all of the 
HCgorilla’s jump codes point destination indicated by the 
sum of the address of itself and the operand. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  The algorithm of HCgorilla’s LIW compiler. 

 
Table 4 summarizes the specifications of the 

implementation example of the software support. While the 
Java interface is written in C, the parallelizing compilers 
have been written in Java. These are combined within web 
servers as is shown in Fig. 5. 

 

TABLE IV.  SPECIFICATIONS OF THE SOFTWARE SUPPORT 

 
 
 
 
 
 
 
 
 
 
 

 

V. EVALUATION 
The effectiveness of the idea described in this paper is 

shown in view of hardware and software aspects. Fig. 8 

shows the effect of the triple scheme for a waved MFU, 
multistack, and interleaved issue by using an arithmetic test 
program that sums integers. The running time is derived 
from the analysis on the space-time chart drawing the 
pipeline behavior of the media pipes. While HCgorilla.4 
executes four threads at 400 MHz, HCgorilla.5 does eight 
threads at 200 MHz. Since the effect of arithmetic 
parallelism is mostly dominant, HGgorilla.5 is faster 
excepting upper limit x is small. Small x reflects the 
dominancy of clock speed. In running practical application 
programs that repeat similar multimedia process, HCgorilla.5 
is more superior in view of parallelism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Running time of an arithmetic test program. 

 
The prototyping compilers shown in Table 4 have been 

evaluated by using arithmetic media codes for simple 
summation and combination, Tower of Hanoi, and a Java 
benchmark of SPEC JVM98. The metrics are memory space, 
running time, and the effect on performance. Fig. 9 shows 
IPC before and after parallelization of the test programs of 
simple summation and combination. The derivation of IPC is 
similar to that of running time shown in Fig. 8. 

Fig. 9 shows that IPC increases after parallelization. 
Thus, the feasibility of the parallelizing compilers in 
combination with multiple pipelines is obvious. Then, 60% 
improvement is achieved for Summation and 20% for 
Combination. The reason why the improvement of 
Summation is larger than Combination is because 
Summation’s ILP is more explicit. Since the target processor 
has only two cores, the data presented in Fig. 9 show not so 
large improvement. This implies that marginal improvement 
will surely increases as the number of cores in the case of 
simply structured programs easily divided into parallel 
codes. This is worth of effective feedback from the 
evaluation of parallelizing compilers to hardware design. 
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Figure 9.  IPC before and after parallelization. 

 
Table 5 summarizes the effect of parallelization. 

Although the evaluation is primitive, it shows the 
reasonability of the parallelizing compilers. Tower of Hanoi 
cannot be handled by the prototyping compilers. Occupied 
words are the total number of instruction cache addresses. 
The length of thread 1 or thread 2 is shorter than the length 
of serial codes before compilation due to the effect of 
parallelization. The occupied words of instruction cache have 
been determined by the great of thread1 and thread2. The 
occupied area of HCgorilla’s instruction cache has been 
measured to optimize the hardware chip performance like 
pipeline degree, clock speed, and power dissipation. The 
total number of clock cycles has been counted to measure 
running time. The number of clocks and running time have 
been derived by analyzing pipelined behavior on a time and 
space coordinates. 

 

TABLE V.  EFFECT OF PARALLELIZATION 

 
 
 
 
 

In view of the ubiquitous network shown in Fig. 5 that is 
a long term goal of this study, the overhead analysis about 
the cost for running the parallelizing compiler outside the 
mobile client should be performed. In addition, practical gain 
of using the parallelizing compiler must be clarified in more 
detail in a multimedia streaming environment. How much 
performance gain and power reduction can be achieved is 
desirable for the H/S collaborative development. 

VI. SUMMARY 
This article has described the triple scheme for the 

development of the ubiquitous processor HCgorilla free from 
not only instruction scheduling free but also pipeline 
disturbance. The triple scheme has been applied for the 
HCgorilla.5 chip and the development of parallelizing 
compilers according to H/S collaborative development 
strategy. Although more implementation examples and 
experiments are needed to prove the proposed approach, the 
effect of the triple scheme on performance and the feasibility 
of software support have been shown. 

The next step of this study will be a more in depth 
analysis on (1) HCgorilla.5’s advantage against that of the 
version 4 by using more practical test programs with floating 
point arithmetic operations, (2) practical gain of using the 
parallelizing compilers in a multimedia streaming 
environment, (3) quantitative feedback for the H/S 
collaborative development through the overall evaluation of 
the HCgorilla chip and the parallelizing compilers, (4) 
overhead about the cost for running the parallelizing 
compiler outside the mobile client. 

REFERENCES 
[1] M. Fukase, K. Noda, A. Yokoyama, and T. Sato, “Design and Chip 

Implementation of the Ubiquitous Processor HCgorilla,” Proc. of 
ASP-DAC 2009, pp. 129-130, Jan. 2009. 

[2] M. Fukase, R. Murakami, and T. Sato, “Design and Chip 
Implementation of an Instruction Scheduling Free Ubiquitous 
Processor,” ASP-DAC 2010 (In press). 

[3] S. Nakagawa and H. Yanagi, “Development of Realtime JavaTM 
Processor Execution Core,” OMRON TECHNICS, Vol. 40, No. 1, pp. 
38-42, 2000. 

[4] M. Zari, H. Saiedian, and M. Naeem, “Understanding and Reducing 
Web Delays,” Computer Magazine, Vol. 34, No. 12, pp. 30-37, Dec. 
2001. 

 

62


