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Optimally universal parallel computers 

BY L. G. VALIANT 

Harvard University, Cambridge, Massachusetts 02138, U.S.A. 

It is shown that any program written for the idealized shared-memory model of 
parallel computation can be simulated on a hypercube architecture with only 
constant factor inefficiency, provided that the original program has a certain amount 
of parallel slackness. 

A key property of the von Neumann architecture for sequential computers is efficient 

universality. It can simulate arbitrary programs written in appropriate high-level languages in 
time proportional to that which they would take if special-purpose sequential machines were 
built for each of them. This makes possible standardized languages and transportable software, 
without which the level of pervasiveness that computers have now reached would be difficult 
to imagine. 

The future of parallel computation may be strongly influenced by the extent to which 
efficient universality can be found and harnessed in that context also. To formulate such 

questions we denote a machine architecture by M, the class of programs to be simulated by U, 
and the efficiency function, the ratio of the total computational operation count of the original 
program to the total computational operation count of the simulation, by E. Thus a 

universality statement is of the form 'M can simulate any program P in U with efficiency at 
least E'. This is a quantative assertion expressed in terms of the relevant parameters such as 
the runtime of P and the number of processors used by M and by P. We shall say that optimal 
universality is achieved if the efficiency is a consant factor independent of the program P and 
of the number of processors. 

Our task is to find appropriate choices of U and M. Some choices would seem to be overly 
optimistic in the light of current knowledge. For example, choosing U to be arbitrary 
sequential programs and M any parallel architecture parametrized by the number of 

processors seems hopeless because the only parallelization techniques known for general 
models of computation achieve minute factors of runtime reduction at enormous cost in 

processors. Similarly there seems to be little hope of choosing U and M in such a way that in 
the simulation locality in M can be exploited in any generality although, of course, locality is 

exploitable and beneficial for more limited applications. 
The purpose of this note is to point out that a powerful optimal universality result for parallel 

computation is already largely implicit in existing results in theoretical computer science. 
Further details of this result and of the relevant background can be found elsewhere (Valiant 
I989). 

Our choice of M is a sparse network of communication lines with a universal sequential 
processor and a memory block at each node. As network topology we shall assume the binary 
n-dimensional cube (or hypercube) which is conceptually the simplest amongst those that are 
known to suffice. 
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Our choice of U are classes of programs written for synchronized shared-memory 
multiprocessors or PRAMs. This has proved a convenient language for describing parallel 
algorithms and is in widespread use for this purpose (Karp & Ramachandran 1989). The 

advantage of the shared-memory model as a language is that it assumes that communication 
and memory management are automated and hidden from the programmer, much as 
conventional high-level languages and virtual memory hardware hide storage allocation. We 

distinguish among different classes of PRAM in a vein similar to that of Borodin & Hopcroft 
(I985). The basic results are the same for all classes, but the constructions and algorithms 
differ. 

Because the results concern comparisons with M, it is sufficient to say that the set of local 
instructions of each processor is the same in U as in M, without the need for further 

specification. 
In a shared-memory system we ideally expect any number of processors to read or write into 

any word of any memory unit concurrently. (Note that for concurrent writing one needs some 
convention to resolve conflicts.) This is called the concurrent PRAM. We also distinguish two 
restrictions. An exclusive PRAM is one where concurrent 'reads' or 'writes' into the same 
word are forbidden. A seclusive PRAM is one where concurrent 'reads' or 'writes' by more 
than one processor into the same memory block is forbidden. We can enrich any one of these 
models by hypothesizing global operations other than reading or writing. For example, the 

products of all prefixes of a sequence of associative operations can be implemented efficiently on 
cubes and other networks, and are useful in parallel algorithms (Schwartz I980; Blelloch I988). 

To achieve optimal efficiency we also need the extra condition of parallel slackness, that the 
PRAM program has larger parallelism than available in M. The results that can be achieved 
for the above varieties of PRAMs are of the following form. 

THEOREM Any time T/log2 N algorithm on an N log2 N-processor PRAM can be simulated in time 
cT on an N-processor hypercube, where c is a constant independent of T and N. 

Optimality is achieved because the time-processor product TN is preserved in the simulation 

up to a constant factor. The simulation that achieves this assigns the functions of log2 N distinct 
PRAM processors, as well as all their memory blocks, to each processor or node of the cube. 
To simulate one step of the N log2 N processor PRAM each node of the cube has to perform 
log2 N computational operations as well as up to log2 N fetch and store operations to memories 
contained in other nodes. Because O(log2 N) time is available the only problem is to arrange 
the data routing so that all the long distance messages, numbering up to N log2 N, get delivered 
to their destinations in O(log2 N), steps. 

The simplest case is that of seclusive PRAMs because this restriction ensures that the traffic 

pattern that has to be realized is such that at most log2 N messages are issued from each node 
and at most log2 N are to be received at each node. This corresponds to log2 N simultaneous 

permutations being realized. Certain two phase algorithms for routing single permutations in 

0(log2 N) time were given by Valiant & Brebner (1981) and Valiant (1982). That log2N 
permutations could be routed simultaneously in the same time bound is implicit in the work 
of Upfal (1984). 

Note that these algorithms perform randomization, to avoid the danger of 'hot spots'. 
Nevertheless they provably deliver the last packet in the required time with overwhelming 
probability, independent of the permutation being realized. Thus the latency and hence the 

response time of the whole system can be tightly controlled. 
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For exclusive PRAMs there is no bound on how many processors may access the same 

memory block simultaneously. To simulate these efficiently a successful approach is that of 

randomizing the address space by a pseudo-random hash function in the manner of Mehlhorn 
& Vishkin (1984). Karlin & Upfal (I986) showed how hashing can be combined with routing 
to achieve the required performance. Their result is for the butterfly, but is easily adapted to 
the hypercube. We note that the required performance is achieved only in an amortized sense 
because, in theory, the address space has to be rehashed, sometimes at considerable cost, but 

fortunately very rarely. 
Lastly, for concurrent PRAMs the switching functions of the cube have to be enhanced by 

a 'combining' capability. For example, when many read requests are sent to the same word 
these need to be coalesced as they, meet and trace left of the tree of paths of the incoming 
requests. The content of the word read is broadcast back along the tree with replication at the 
branch points. An O(log2 N) time sorting algorithm (Reif & Valiant 1987) is sufficient to 
convert a simulation of the exclusive PRAMs to one for the concurrent case (see Ullman 1984, 

p. 239). 
The above results are proved for a 'store and forward' packet routing regime, with a queue 

for each directed network edge for storing the packets waiting to be sent. The methods of 
Ranade (1987) enable the queues to be replaced by finite buffers for the packets in all three 
cases. 

The results quoted can be interpreted, in the first instance as providing an existence proof 
that the necessary routing algorithms exist, and with modest constant multipliers in the 
runtimes. They also suggest numerous algorithmic ideas for actual implementation, only some 
of which are currently analysable, and some experimentally testable in the sense of Valiant 

(1982). The trade-offs that have to be considered become especially complex if the machine is 
to be tuned for other modes of operation also, such as particular algorithms or processor farms. 
Note that we are assuming here that on-chip communication time does not have to be 
accounted for because it is dominated by off-chip communication. This tends to conceal the 
fact that as the PRAM increases in power, the costs in hardware and time (e.g. for combining 
networks) can both increase substantially. 

It is natural to ask whether substantially more economical solutions to the universality 
problem exist also. In the hypercube the number of network edges grows faster than the 
number of nodes by a logarithmic factor. It is easy to argue, however, that this is unavoidable. 
Consider 

time to transmit one word between adjacent nodes 
time to perform one basic computational operation' 

In our formulation, we assume that the simulation has no locality and hence that a typical 
message traverses about d edges where d is the diameter of the network. Then in an N-processor 
machine in any one time unit there will be one N computational operations performed. If there 
is not to be a communication bottleneck there will have to be d times this many, or dN word 
transmissions performed in the same period. We conclude that in any universal simulation with 
no locality, in the system overall 

number of communication lines 
y = > Kd. number of processors 

It follows that as the machines scale up the investment in communication has to exceed that 
in computation by a factor of at least d (because K will not decrease). As long as log2 N is 
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essentially the smallest diameter that can be hoped for, y has to grow as log2 N at least, as it 
does for the hypercube. 

In the theorem we have assumed that K is a constant. Hence the main force of the result is 
that it guarantees in that case the existence of a universal machine with optimal y (i.e. y = 

o(log2 N)). The hypercube is not unique and we could have stated the result equally for the 

butterfly when just one of the log2 N levels of nodes contains processors and the remainder only 
communications functions. The hypercube does stand out, however, in being desirable as a 

parallel architecture from other viewpoints also such as suitability for algorithms such as the 
FFT, for performing grid computations, and for allowing efficient off-line or non-distributed 

routing. 
It is worth noting that in the definition of K we may choose to think of a computational 

operation at any granularity that'is appropriate. Hence in applications where there is only 
infrequent interprocessor communication in the PRAM the K can be thought of as very small, 
and hence a machine with small y is sufficient. Thus any parallel machine can be regarded 
as achieving universality over applications whose K is small enough that the y of the machine 
can support that level of communication. 

The main observation of this paper is a universality result for parallel computation that is 
as efficient as the universality results that are implicitly exploited by all existing conventional 

sequential machines. We do not wish to underestimate the hardware costs of realizing such a 
concept. The costs, however, of building parallel machines that fail to realize any universality 
concept, is considerable also. The programmer would then appear to be doomed to program 
with explicit consideration for the structure of the particular machine on which his program 
will run. 

I am grateful to the Programming Research Group,- Oxford University, for their hospitality. 
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REFERENCES 

Blelloch, G. 1988 IEEE Trans. Comput. (In the press.) 
Borodin, A. & Hopcroft, J. E. I985 J. Comput. Syst. Sc. 30, 130-145. 
Karlin, A. & Upfal, E. I986 In Proc. ACM Symp on Theory of Computing, pp. 160-168. New York: Association 

of Computing Machinery. 
Karp, R. M. & Ramachandran, V. L. I989 In Handbook of theoretical computer science (ed. J. van Leeuwen). 

Amsterdam: North Holland. (In the press.) 
Mehlhorn, K. & Vishkin, U. 1984 Acta Informatica 21, 339-374. 
Reif, J. H. & Valiant, L. G. I987 J. Ass. comput. Mach. 34, 60-76. 
Ranade, A. G. I987 In Proc. IEEE Symp. on Foundations of Computer Science, pp. 185-194. Los Angeles: IEEE. 
Schwartz, J. T. I980 ACM TOPLAS 2, 484-521. 
Ullman, J. D. I984 Computational aspects of VLSI. Rockville, Maryland: Computer Science Press. 
Upfal, E. 1984 J. Ass. comput. Mach. 31, 507-517. 
Valiant, L. G. 1982 SIAM Jl Comput. 11, 350-361. 
Valiant, L. G. 1989 In Handbook of theoretical computer science (ed. J. van Leeuwen). Amsterdam: North Holland. (In 

the press.) 
Valiant, L. G. & Brebner, G.J. 1981 In Proc. ACM Symp. on Theory of Computing, pp. 263-277. New York: 

Association of Computing Machinery. 

376 


	Article Contents
	p.373
	p.374
	p.375
	p.376

	Issue Table of Contents
	Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 326, No. 1591, Solving Scientific Problems on Multiprocessors (Sep. 26, 1988), pp. 355-500
	Front Matter [pp.355-355]
	Computational Models for Parallel Computers [pp.357-371]
	Optimally Universal Parallel Computers [pp.373-376]
	The Influence of VLSI Technology on Computer Architecture [and Discussion] [pp.377-393]
	Reconfigurable Transputer Networks: Practical Concurrent Computation [and Discussion] [pp.395-410]
	The Physical Structure of Concurrent Problems and Concurrent Computers [pp.411-444]
	Global Scientific and Engineering Simulations on Scalar, Vector and Parallel LCAP-Type Supercomputers [and Discussion] [pp.445-470]
	Very-High-Performance Multiple-Instruction Multiple-Data Applications [and Discussion] [pp.471-479]
	Scientific Computation on SIMD and MIMD Machines [pp.481-498]
	General Discussion [p.499]
	Back Matter



