
Optimally Universal Parallel Computers
Author(s): L. G. Valiant
Source: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, Vol. 326, No. 1591, Solving Scientific Problems on Multiprocessors (Sep. 26,
1988), pp. 373-376
Published by: The Royal Society
Stable URL: http://www.jstor.org/stable/38052
Accessed: 11/04/2010 06:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=rsl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

http://www.jstor.org

http://www.jstor.org/stable/38052?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=rsl

Phil. Trans. R. Soc. Lond. A 326, 373-376 (1988) [373]

Printed in Great Britain

Optimally universal parallel computers

BY L. G. VALIANT

Harvard University, Cambridge, Massachusetts 02138, U.S.A.

It is shown that any program written for the idealized shared-memory model of
parallel computation can be simulated on a hypercube architecture with only
constant factor inefficiency, provided that the original program has a certain amount
of parallel slackness.

A key property of the von Neumann architecture for sequential computers is efficient

universality. It can simulate arbitrary programs written in appropriate high-level languages in
time proportional to that which they would take if special-purpose sequential machines were
built for each of them. This makes possible standardized languages and transportable software,
without which the level of pervasiveness that computers have now reached would be difficult
to imagine.

The future of parallel computation may be strongly influenced by the extent to which
efficient universality can be found and harnessed in that context also. To formulate such

questions we denote a machine architecture by M, the class of programs to be simulated by U,
and the efficiency function, the ratio of the total computational operation count of the original
program to the total computational operation count of the simulation, by E. Thus a

universality statement is of the form 'M can simulate any program P in U with efficiency at
least E'. This is a quantative assertion expressed in terms of the relevant parameters such as
the runtime of P and the number of processors used by M and by P. We shall say that optimal
universality is achieved if the efficiency is a consant factor independent of the program P and
of the number of processors.

Our task is to find appropriate choices of U and M. Some choices would seem to be overly
optimistic in the light of current knowledge. For example, choosing U to be arbitrary
sequential programs and M any parallel architecture parametrized by the number of

processors seems hopeless because the only parallelization techniques known for general
models of computation achieve minute factors of runtime reduction at enormous cost in

processors. Similarly there seems to be little hope of choosing U and M in such a way that in
the simulation locality in M can be exploited in any generality although, of course, locality is

exploitable and beneficial for more limited applications.
The purpose of this note is to point out that a powerful optimal universality result for parallel

computation is already largely implicit in existing results in theoretical computer science.
Further details of this result and of the relevant background can be found elsewhere (Valiant
I989).

Our choice of M is a sparse network of communication lines with a universal sequential
processor and a memory block at each node. As network topology we shall assume the binary
n-dimensional cube (or hypercube) which is conceptually the simplest amongst those that are
known to suffice.

27-2

Our choice of U are classes of programs written for synchronized shared-memory
multiprocessors or PRAMs. This has proved a convenient language for describing parallel
algorithms and is in widespread use for this purpose (Karp & Ramachandran 1989). The

advantage of the shared-memory model as a language is that it assumes that communication
and memory management are automated and hidden from the programmer, much as
conventional high-level languages and virtual memory hardware hide storage allocation. We

distinguish among different classes of PRAM in a vein similar to that of Borodin & Hopcroft
(I985). The basic results are the same for all classes, but the constructions and algorithms
differ.

Because the results concern comparisons with M, it is sufficient to say that the set of local
instructions of each processor is the same in U as in M, without the need for further

specification.
In a shared-memory system we ideally expect any number of processors to read or write into

any word of any memory unit concurrently. (Note that for concurrent writing one needs some
convention to resolve conflicts.) This is called the concurrent PRAM. We also distinguish two
restrictions. An exclusive PRAM is one where concurrent 'reads' or 'writes' into the same
word are forbidden. A seclusive PRAM is one where concurrent 'reads' or 'writes' by more
than one processor into the same memory block is forbidden. We can enrich any one of these
models by hypothesizing global operations other than reading or writing. For example, the

products of all prefixes of a sequence of associative operations can be implemented efficiently on
cubes and other networks, and are useful in parallel algorithms (Schwartz I980; Blelloch I988).

To achieve optimal efficiency we also need the extra condition of parallel slackness, that the
PRAM program has larger parallelism than available in M. The results that can be achieved
for the above varieties of PRAMs are of the following form.

THEOREM Any time T/log2 N algorithm on an N log2 N-processor PRAM can be simulated in time
cT on an N-processor hypercube, where c is a constant independent of T and N.

Optimality is achieved because the time-processor product TN is preserved in the simulation

up to a constant factor. The simulation that achieves this assigns the functions of log2 N distinct
PRAM processors, as well as all their memory blocks, to each processor or node of the cube.
To simulate one step of the N log2 N processor PRAM each node of the cube has to perform
log2 N computational operations as well as up to log2 N fetch and store operations to memories
contained in other nodes. Because O(log2 N) time is available the only problem is to arrange
the data routing so that all the long distance messages, numbering up to N log2 N, get delivered
to their destinations in O(log2 N), steps.

The simplest case is that of seclusive PRAMs because this restriction ensures that the traffic

pattern that has to be realized is such that at most log2 N messages are issued from each node
and at most log2 N are to be received at each node. This corresponds to log2 N simultaneous

permutations being realized. Certain two phase algorithms for routing single permutations in

0(log2 N) time were given by Valiant & Brebner (1981) and Valiant (1982). That log2N
permutations could be routed simultaneously in the same time bound is implicit in the work
of Upfal (1984).

Note that these algorithms perform randomization, to avoid the danger of 'hot spots'.
Nevertheless they provably deliver the last packet in the required time with overwhelming
probability, independent of the permutation being realized. Thus the latency and hence the

response time of the whole system can be tightly controlled.

374 L. G. VALIANT

OPTIMALLY UNIVERSAL PARALLEL COMPUTERS

For exclusive PRAMs there is no bound on how many processors may access the same

memory block simultaneously. To simulate these efficiently a successful approach is that of

randomizing the address space by a pseudo-random hash function in the manner of Mehlhorn
& Vishkin (1984). Karlin & Upfal (I986) showed how hashing can be combined with routing
to achieve the required performance. Their result is for the butterfly, but is easily adapted to
the hypercube. We note that the required performance is achieved only in an amortized sense
because, in theory, the address space has to be rehashed, sometimes at considerable cost, but

fortunately very rarely.
Lastly, for concurrent PRAMs the switching functions of the cube have to be enhanced by

a 'combining' capability. For example, when many read requests are sent to the same word
these need to be coalesced as they, meet and trace left of the tree of paths of the incoming
requests. The content of the word read is broadcast back along the tree with replication at the
branch points. An O(log2 N) time sorting algorithm (Reif & Valiant 1987) is sufficient to
convert a simulation of the exclusive PRAMs to one for the concurrent case (see Ullman 1984,

p. 239).
The above results are proved for a 'store and forward' packet routing regime, with a queue

for each directed network edge for storing the packets waiting to be sent. The methods of
Ranade (1987) enable the queues to be replaced by finite buffers for the packets in all three
cases.

The results quoted can be interpreted, in the first instance as providing an existence proof
that the necessary routing algorithms exist, and with modest constant multipliers in the
runtimes. They also suggest numerous algorithmic ideas for actual implementation, only some
of which are currently analysable, and some experimentally testable in the sense of Valiant

(1982). The trade-offs that have to be considered become especially complex if the machine is
to be tuned for other modes of operation also, such as particular algorithms or processor farms.
Note that we are assuming here that on-chip communication time does not have to be
accounted for because it is dominated by off-chip communication. This tends to conceal the
fact that as the PRAM increases in power, the costs in hardware and time (e.g. for combining
networks) can both increase substantially.

It is natural to ask whether substantially more economical solutions to the universality
problem exist also. In the hypercube the number of network edges grows faster than the
number of nodes by a logarithmic factor. It is easy to argue, however, that this is unavoidable.
Consider

time to transmit one word between adjacent nodes
time to perform one basic computational operation'

In our formulation, we assume that the simulation has no locality and hence that a typical
message traverses about d edges where d is the diameter of the network. Then in an N-processor
machine in any one time unit there will be one N computational operations performed. If there
is not to be a communication bottleneck there will have to be d times this many, or dN word
transmissions performed in the same period. We conclude that in any universal simulation with
no locality, in the system overall

number of communication lines
y = > Kd. number of processors

It follows that as the machines scale up the investment in communication has to exceed that
in computation by a factor of at least d (because K will not decrease). As long as log2 N is

375

L. G. VALIANT

essentially the smallest diameter that can be hoped for, y has to grow as log2 N at least, as it
does for the hypercube.

In the theorem we have assumed that K is a constant. Hence the main force of the result is
that it guarantees in that case the existence of a universal machine with optimal y (i.e. y =

o(log2 N)). The hypercube is not unique and we could have stated the result equally for the

butterfly when just one of the log2 N levels of nodes contains processors and the remainder only
communications functions. The hypercube does stand out, however, in being desirable as a

parallel architecture from other viewpoints also such as suitability for algorithms such as the
FFT, for performing grid computations, and for allowing efficient off-line or non-distributed

routing.
It is worth noting that in the definition of K we may choose to think of a computational

operation at any granularity that'is appropriate. Hence in applications where there is only
infrequent interprocessor communication in the PRAM the K can be thought of as very small,
and hence a machine with small y is sufficient. Thus any parallel machine can be regarded
as achieving universality over applications whose K is small enough that the y of the machine
can support that level of communication.

The main observation of this paper is a universality result for parallel computation that is
as efficient as the universality results that are implicitly exploited by all existing conventional

sequential machines. We do not wish to underestimate the hardware costs of realizing such a
concept. The costs, however, of building parallel machines that fail to realize any universality
concept, is considerable also. The programmer would then appear to be doomed to program
with explicit consideration for the structure of the particular machine on which his program
will run.

I am grateful to the Programming Research Group,- Oxford University, for their hospitality.
This work was partly supported by grants NSF-DCR-86-00379, ONR-N00014-85-K-0445,
and by the Science and Engineering Research Council.

REFERENCES

Blelloch, G. 1988 IEEE Trans. Comput. (In the press.)
Borodin, A. & Hopcroft, J. E. I985 J. Comput. Syst. Sc. 30, 130-145.
Karlin, A. & Upfal, E. I986 In Proc. ACM Symp on Theory of Computing, pp. 160-168. New York: Association

of Computing Machinery.
Karp, R. M. & Ramachandran, V. L. I989 In Handbook of theoretical computer science (ed. J. van Leeuwen).

Amsterdam: North Holland. (In the press.)
Mehlhorn, K. & Vishkin, U. 1984 Acta Informatica 21, 339-374.
Reif, J. H. & Valiant, L. G. I987 J. Ass. comput. Mach. 34, 60-76.
Ranade, A. G. I987 In Proc. IEEE Symp. on Foundations of Computer Science, pp. 185-194. Los Angeles: IEEE.
Schwartz, J. T. I980 ACM TOPLAS 2, 484-521.
Ullman, J. D. I984 Computational aspects of VLSI. Rockville, Maryland: Computer Science Press.
Upfal, E. 1984 J. Ass. comput. Mach. 31, 507-517.
Valiant, L. G. 1982 SIAM Jl Comput. 11, 350-361.
Valiant, L. G. 1989 In Handbook of theoretical computer science (ed. J. van Leeuwen). Amsterdam: North Holland. (In

the press.)
Valiant, L. G. & Brebner, G.J. 1981 In Proc. ACM Symp. on Theory of Computing, pp. 263-277. New York:

Association of Computing Machinery.

376

	Article Contents
	p.373
	p.374
	p.375
	p.376

	Issue Table of Contents
	Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 326, No. 1591, Solving Scientific Problems on Multiprocessors (Sep. 26, 1988), pp. 355-500
	Front Matter [pp.355-355]
	Computational Models for Parallel Computers [pp.357-371]
	Optimally Universal Parallel Computers [pp.373-376]
	The Influence of VLSI Technology on Computer Architecture [and Discussion] [pp.377-393]
	Reconfigurable Transputer Networks: Practical Concurrent Computation [and Discussion] [pp.395-410]
	The Physical Structure of Concurrent Problems and Concurrent Computers [pp.411-444]
	Global Scientific and Engineering Simulations on Scalar, Vector and Parallel LCAP-Type Supercomputers [and Discussion] [pp.445-470]
	Very-High-Performance Multiple-Instruction Multiple-Data Applications [and Discussion] [pp.471-479]
	Scientific Computation on SIMD and MIMD Machines [pp.481-498]
	General Discussion [p.499]
	Back Matter

