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In the field of electronic music today, computers of 
many different types and sizes are in use. The musi- 
cian is often hindered, however, by a steep learning 
curve, rigid system architecture, and limited appli- 
cation fields of the available music software. This 
document presents the design of a music develop- 
ment system that provides the committed musician 
with a creative tool for conventional music compo- 
sition and production and for the realization of un- 
conventional ideas such as algorithmic music or 
sound processing. 

The CAMP-system (Nieberle et al. 1988) runs on 
personal computers linked by a network we have 
developed. A flexible, system-wide message-passing 
system for communication processes provides full 
network capability. Important system components, 
such as the output buffers and process table, are 
distributed. This architecture allows several musi- 
cians simultaneous utilization in a communicative, 
interactive way and increases the available comput- 
ing power. More than one computer can control 
clusters of synthesizers simultaneously. The result 
is a distributed, real-time-oriented, interactive mu- 
sic development system that provides powerful tools 
easy to handle. The CAMP-system music software 
is written in the Forth programming language. 

The CAMP-Forth music language includes sev- 
eral modern concepts and software engineering 
tools for easy development of music such as object- 
oriented elements (Nieberle and Orberger 1989) 
that provide a more abstract and therefore easier 
way to code compositional ideas and complex al- 
gorithms. One application of these tools is the 
implementation of device-independent drivers and 
on-line editors for MIDI-instruments and special 
DSP-hardware developed by our group. 

The expansion of existing language elements for 
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new musical composition tools is a straightforward 
process enabling us to build a multiparadigm sys- 
tem in the future. A built-in real-time LISP inter- 
preter for interactive music processing has already 
been provided. 

The "Forth Music System" 

The underlying multitasking language for the "Forth 
music system" is based on the Forth dialect Forth- 
Macs, written and distributed by Mitch Bradley. 
The CAMP-system uses parts of Formula the Forth 
Music Language (Anderson and Kuivila 1986a), a 
music system written in ForthMacs. Special oper- 
ating system components for controlling MIDI de- 
vices and language tools for the formulation of mu- 
sical sequences and events are provided. 

Features of the Formula System 
Formula provides a programming environment (An- 
derson and Kuivila 1986b; c; d) for the creation, 
manipulation, and control of musical events. All 
music generation and output is implemented via 
concurrent processes. Music is generated and played 
in real time under interactive control. Powerful 
means to articulate and synchronize music are built 
in. Because the system in Forth-based, users can ex- 
pand the language. Finally, the user has full access 
to all levels of the Formula system, even the device 
drivers and other components written in assembly 
language. 

Extensions to Formula 

Introduction of Object-Oriented Language Features 

Objects (Pountain 1987) make it easier to imple- 
ment and handle complex musical processes. The 
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Fig. 1. The process struc- 
ture of Formula. 

mechanisms of data encapsulation and inheritance 
support stepwise system development and allow 
the development of concepts for the algorithmic 
generation of music in an evolutionary way. Stan- 
dard Forth, however, does not support a data type 
concept. 

Implementation of a Subset of the 
Lisp-Dialect "Scheme" 

In many cases music can be represented or pro- 
cessed in a natural way with list-oriented languages. 
The ForthMacs process paradigm makes it impos- 
sible to treat a music score as a data object. Our 
Scheme-implementation Ylem (Freericks 1989) 
makes it possible to write programs that analyze 
inputs and generate output in a pattern-matching 
or rule-oriented way. 

Tools for Handling and Integrating the Network 

Access to the resources (output devices, file system, 
'computing time,' etc.) of any other computer are 
available over the network (Koschorreck 1989; Ko- 
sensky 1989). It is possible to model complex com- 
munication structures using connections of soft- 
ware input/output ports. 

Process Structure 

Formula distinguishes between two basic types of 
process: the general and the active process. The 
general processes mainly accomplish tasks of the 
operating system, such as the managing of input de- 
vices (e.g., keyboard and MIDI input). The Forth in- 
terpreter is a general process, too. The scheduling of 
this process group proceeds by a round-robin strat- 
egy in a nonpreemptive way. We do not provide pre- 
emptive scheduling for processes as in the latest 
Formula version 3.4 (Anderson and Kuivila 1989) 
at present. 

In the CAMP system general processes must call 
a special function at regular intervals to activate 
the next runnable process. This guarantees a fair 
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distribution of computing time. General processes 
are usually deactivated. They are marked runnable 
by the corresponding interrupt handler only if they 
have something to do. The relations between the 
different processes and the interrupt handler are 
shown in Fig. 1. 

The second type of process, the active processes, 
are the true event-generating elements of Formula. 
They are scheduled by a special general process, the 
"deadline scheduler." All active processes are held 
in a queue ordered by their deadlines. The "dead- 
line" of a process is the moment when the process 
will generate its next event. The head of the queue 
is held by the process with the shortest deadline. 

When control flows to the deadline scheduler, it 
activates this process and resumes the control as 
soon as the process has generated one event. Then 
the process is placed back in the queue according 
to its new deadline. After that, the procedure starts 
over again. The deadline scheduler resigns control 
to the next general process only if no active process 
is held in the queue or it is notified by a special flag 
that another process wants to run. 

Every active process may have auxiliary processes 
(bound processes), which create additional parame- 
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Fig. 2. Buffered output in 
the event buffer. 

ters for event generation. They do not run by them- 
selves, but are called in the course of activation of 
the active process they are bound to. In fact, they 
behave like coroutines rather than forming inde- 
pendent processes. 

The Event Buffer 

Generally, the creation of a single event in a musi- 
cal piece cannot be done at the time of its output 
because its generation can demand considerable 
time. To separate the generation of events from 
their output (performance), Formula makes use of 
the so-called event buffer, a waiting queue. In the 
course of a musical piece, the deadline scheduler 
activates only that active process which will create 
the next temporal event. After it is computed, an 
event is inserted into the event buffer in a special 
form of representation-the event structure. The 
logical time of a process, that is, the time at which 
the performance of the event just computed will be 
inserted, will then be advanced and the next pro- 
cess is activated. 

The global logical time is described by the insert 
point, which marks the place at which events are 
inserted into the event buffer. The insert point moves 
in jumps. The length of every jump depends on the 
distance to the next event to be processed. 

Independent of the insert point, the performance 
point moves through the event buffer indicating 
real time. The event performance routine called by 
a timer interrupt at regular intervals takes each 
event at its current performance point and gives it 
to the appropriate device driver, which initiates its 
physical output. Subsequently, the performance 
point is moved to the next slot of the event buffer. 
The interval at which the event performance rou- 
tine is invoked determines the minimal temporal 
resolution of the output. 

Processes create events at some time before their 
scheduled performance. The temporal distance be- 
tween performance point and insert point (called 
buffer delay) represents this interval. It must not be 
too long to ensure that interaction will come through 
within a short period of time. This delay time is 
adjustable. 

Get events from Put events at 
current performance point current insert point 
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point point 
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E 
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On the other hand, the average time for comput- 
ing an event has to be shorter than the average dis- 
tance between two events. The performance point 
would otherwise overrun the insertion point. If this 
happens, the event performance routine wil not be 
invoked long enough for the event processing to 
catch up. 

Figure 2 shows the operations described above in 
simplified form. In particular, events pass through 
some intermediate states on their way through the 
event buffer. One of these states is the future ac- 
tion queues. With their help, events can be pro- 
cessed that have a performance time later than the 
current logical time of a process. 

Network Integration 

One of the central tasks in the course of distribut- 
ing Formula in a network was the creation of an 
event manager that is placed between the active 
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Fig. 3. The network as a 
link between the genera- 
tion and performance of 
events. 

processes and the event buffer. As before, the active 
processes create a sequence of events, which now 
are not inserted into the event buffer directly, but 
are first directed to the event manager. 

Using a link-table, this manager knows what 
device is connected to the currently active output 
channel of the process. A device-table specifies on 
what node in the network the appropriate device 
driver is installed. According to this information 
the event manager decides whether an event has to 
be directed to the local server or to a remote event 
server. In the latter case, the event manager on the 
destination computer receives the event from the 
network driver and hands it over to the event server 
there. 

Such an event server manages a local event buffer 
working in the ordinary way but containing only 
events for output devices connected to the given lo- 
cal network node. Therefore, the local event buffers 
are completely disjunct and have to be synchro- 
nized. Although there is no global event buffer any- 
more, the local performance points are moving syn- 
chronously, building a global performance point. 
These relations are illustrated in Fig. 3. 

The event manager simply redirects events, but 
lacks other process communication facilities. Fur- 
ther development of the event manager will lead to 
a "communication manager," which provides ser- 
vices such as bidirectional data exchange between 
processes. Again, this service should not depend 
on the physical location of the communication 
partners. 

Output Devices 

To connect various types of synthesizers, synthesis 
hardware manufacturers created the MIDI-standard 
in 1983. Basically, MIDI describes a serial interface 
protocol with a data transmission rate of 31,250 
Baud. The protocol supports a channel concept. 
This allows the division of the data stream into 
16 logical channels with different operation modes 
of the receivers. The commands available are di- 
vided into four classes: system exclusive, system 
common, real time, and channel commands. Data 
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are transmitted in bytes and structured by a distinc- 
tion between command and data bytes. 

Figure 4 shows the synthesizer parameters that are 
controllable by MIDI. The parameters that can be 
controlled by Formula are shaded darker in Figure 4. 
The main advantages of MIDI are, apart from its 
standardization, simple data handling and (as a re- 
sult) low hardware costs. There are also some disad- 
vantages. First, there are possible signal distortions 
as MIDI devices are connected in serial. The low 
transmission rate, which leads to audible delays 
when transmitting large data quantities, has to be 
mentioned as well. This Problem, called "MIDI 
overload," can be avoided with the CAMP-system 
by suitable distribution of MIDI devices among net- 
work nodes. 

The original Formula version was consequently 
designed for use with MIDI devices. For example, 
the MIDI-typical representation of a single note by 
two separated events, "key-down" and "key-up," is 
found directly in the system architecture (in the fu- 
ture action queue for instance). Like Formula, the 
CAMP-system is based on the precondition that 
the performance of an event costs only a little com- 
puting time while its generation can consume a 
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Fig. 4. MIDI parameters 
(those in the darker boxes 
are controllable from 
Formula). 

Fig. 5. Exemplary configu- 
ration of a distributed mu- 
sic system. 
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great amount. As a result of the modular system de- 
sign, devices can be added and integrated in an easy 
way. Output drivers are not tied in firmly; rather, 
they are handled by the event manager as any other 
process. 

A Multicomputer Music Development System 

At this point, we will look more closely at the basic 
features of the distributed multicomputer music 
development system developed by CAMP. It is based 
on a homogeneous PC network containing Atari ST 
computers, which is accessible through a network 
operating system specially designed for musical 
purposes. The musical nucleus consists of a distrib- 
uted version of Formula that has been modified to 
allow integration into the network. Furthermore, 
several composition-oriented language extensions 
based on objects (e.g., abstract data types, including 
heap- and list-oriented programming environment) 
have been integrated into the music processing 
system. 

The system is written in Forth with minor por- 
tions of assembly language and therefore should be 
portable to other computers such as the Apple Mac- 
intosh or even a SUN workstation. An overview of 
the intended hardware architecture is given in Fig. 5. 

* e - 
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Network Hardware 

The control computers are connected with the net- 
work via their DMA-ports, which allow a data- 
transfer rate of up to 12 Mbit per second. The trans- 
mission protocol used is ASCI, a subset of the widely 
used SCSI protocol. SCSI is a universal interface de- 
veloped in 1979 according to the IBM input/output 
concept, managing an 8-bit, bidirectional interface 
with a transfer rate of about 3 MByte per second 
maximum. 

If the fast SCSI network-controllers developed by 
CAMP are not used, MIDI can be used as a substi- 
tute. In this case MIDI handles both synthesizer 
control and network communication via a special 
system exclusive protocol. Together with the slow 
data-transfer rate of MIDI, this will obviously result 
in decreased overall performance. For signal pro- 
cessing and sound synthesis a box with cascadable 
Motorola DSP 56001 boards was developed by CAMP, 
details of which are discussed in (Nieberle and 
Modler 1988). 
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Fig. 6. Distribution of the 
event buffer. 

Network Software 

The system does not meet "hard real-time" require- 
ments. Since delays below audibility level (22-3 

msec) are musically tolerable, it is sufficient to 
ensure that the response time remains very short. 
Should it be impossible to fulfill this condition due 
to system overload, the synchronization will be pre- 
served, keeping the musical output in time by sup- 
pressing some notes. This compromise allows the 

system to react in a musically-more-tolerable man- 
ner than losing control of timing. 

Some data structures of the operating system 
(e.g., the process-table) and central components of 
Formula are distributed among the several comput- 
ers in the network. Processes can be started, influ- 

enced, and stopped on remote computers as well as 
on the local machine. 

Dynamic System Modification and Expansion 

Large software systems, especially for the quickly 
changing music market, should be easily expand- 
able to avoid any hindrance by unnecessary system 
limitations. Therefore, powerful mechanisms for 
the integration of new components must be pro- 
vided. For example, the flexible, object-based driver 

concept of the CAMP-system allows easy installa- 
tion of new devices. In this respect, the Forth im- 

plementation language proves to be of particular 
advantage; nearly all parts of the system may be 

changed quickly, some even at run time. 

Global Device Management 

All output devices are accessible from any com- 

puter in the network without considering which 
control computer they are actually connected with. 
To address devices, each of them has a globally 
known name. Using this technique, a high level of 
abstraction from physical locations, in combina- 
tion with the efficient utilization of expensive re- 
sources, is achieved. Besides that, a solution to the 
MIDI overload problem is offered by distributing 
the existing synthesizers, expanders, and so forth 
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among the control computers. This results in clus- 
ters of MIDI devices communicating via the fast 
network. 

Although MIDI devices will probably retain their 
dominating position in sound generating, other 
kinds of devices such as signal processing units are 
supported. 

Load Balancing 

To obtain maximum utilization of available capaci- 
ties, two methods of load balancing will be pro- 
vided. First, MIDI overload is prevented by switch- 
ing to the network. As a second method, processes 
that require large amounts of compute time (e.g., 
graphics) and cannot be executed in time on one 
single computer are transferred to a remote com- 
puter with spare CPU time. Figs. 6 and 7 illustrate 
these mechanisms. 

Inter-Process Communication 

Process I/O takes place through ports. Each output 
port can be connected (linked) to the input port of 
any other process and vice versa. Complex com- 
munication models (similar to UNIX) can thus be 
managed. Default links help to minimize the re- 
quired user action; e.g., note-generating processes 
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Fig. 7. Process migration in 
an overloaded situation. 
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Advantages of the Present Design 

Our system gives the user the ability to use a great 
variety of resources that ensure maximum applica- 
tion potential and allow realization of new ideas be- 
yond the standard. The programming interface, lan- 
guage, and underlying system are interactive. The 
real-time capabilities enable the musician to use 
the system like a conventional instrument; coop- 
eration of several musicians is supported as well. 
Lastly, the patch model of interprocess communica- 
tion is well known to many musicians. 

Advantages to the Developer 

are linked automatically to the appropriate MIDI 
driver. Output devices exclusively receive data in 
this model, whereas input devices are expected to 
only send data. As an additional advantage, many 
musicians are familiar with this technique from 
analog synthesizers or patch-bays. 

Inter-process communication (Puckette 1986) 
and data transfer are performed through a message- 
passing mechanism that automatically transfers 
messages to remote processes. This way there is no 
need for the user to care about physical locations; 
the distributed character of the system is hidden. 
Nevertheless, explicit access to resources located 
on remote computers (e.g., the file system) is sup- 
ported by special commands. 

Automatic System Initialization and Configuration 

On system startup, active computers and available 
I/O devices are automatically recognized. Any 
changes to this starting configuration at run time 
are taken into account. This feature is of special 
importance because at least some of the potential 
users are not experts and should not be concerned 
with problems of system administration. Besides 
this, music systems have to be as mobile as pos- 
sible, so their setup should need a minimum of user 
activity. 

The implementation language Forth permits exten- 
sive customization to user needs. The system archi- 
tecture is flexible. Due to the hierarchical system 
structure, the desired degree of complexity can be 
selected by the user depending on his or her knowl- 
edge. The integration of several elements particu- 
larly suitable for musical work (e.g., object- and 
list-oriented elements, networking, distribution), 
derived from different languages and architectures, 
form a multiparadigm system. 

System Availability 

The authors have set up a non-profit organization 
for the purpose of distributing the CAMP software. 
They can be contacted for more information at ei- 
ther of the addresses below. 

CAMP e.V. 
Paul Modler 
Liegnitzerstrasse 22 
D-1000 Berlin 36 
Germany 

Rupert C. Nieberle 
Skalitzerstrasse 62 
D-1000 Berlin 36 
Germany 
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