
FTS: A Real-Time Monitor for Multiprocessor Music Synthesis
Author(s): Miller Puckette
Source: Computer Music Journal, Vol. 15, No. 3 (Autumn, 1991), pp. 58-67
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680766
Accessed: 11/04/2010 06:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3680766?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Miller Puckette
IRCAM: Institut de Recherche et Coordination
Musique/Acoustique
31, rue Saint-Merri
F-75004 Paris, France
miller.puckette@ircam.fr

The IRCAM Musical Workstation (IMW) is the first
real-time computer music synthesis system based
on a general-purpose processor, the Intel i860. The
IMW's hardware consists of one or more NeXT host
computers together with between 2 and 24 i860
coprocessors (CPs) running at 40 MHz, nominally
capable of 80 million floating-point operations per
second (MFLOPS) apiece. The CoProcessor Operat-
ing System (CPOS), has been written specifically to
fill the requirements this hardware poses for real-
time musical synthesis and control. A distributed
computer program, FTS (faster than sound), which
runs under CPOS, manages the real-time calcula-
tions required both for control and for synthesis.
This paper describes FTS and how it interacts with
application software running on the host.

The i860 is the first inexpensive general-purpose
processor powerful enough that we could consider
basing a real-time computer music system on it.
Before now, one had to resort to special digital sig-
nal processing (DSP) architectures, as was done for
the 4X, IRCAM's previous adventure in real-time
music synthesis (Favreau 1986). The 4X combines a
general-purpose "control processor" with special
synthesis hardware. A 4X application thus consists
of two programs that must communicate in real
time: the "patch," which defines the numerical cal-
culations involved in computing sounds; and the
"control program," which provides parameters for
the patch, usually as a function of real-time control
inputs. This separation was made out of necessity,
not by choice. Forcing the user to maintain two
programs, in different languages, whose state must
nonetheless be kept coherent, greatly increases the
effort required to develop a new application or to
merge two existing ones.

Computer Music Journal, Vol. 15, No. 3, Fall 1991,
? 1991 Massachusetts Institute of Technology.

FTS: A Real-Time Monitor

for Multiprocessor Music

Synthesis

Because of the IMW's homogeneous hardware de-
sign, a single distributed program running on the
CPs, such as FTS, can do almost all of the real-time
processing required (the exception is that a host
computer is needed as a server to provide certain
I/O). A great part of the difficulty of making mu-
sic on the 4X and similar machines drops away
instantly when using the IMW. The problems of
synchronization between a "smart" control pro-
cessor and a "dumb" sound processor disappear en-
tirely, leaving only the easier and more interesting
problem of coordinating several, equal, high-level
processors.

It is in the merging of preexisting applications
that this unification between control and synthesis
makes the biggest difference. Users of the 4X have
traditionally spent more time putting together new
configurations of known techniques than in devel-
oping those techniques originally. Making a new 4X
"patch" (the sound-making part of the application),
which merely rearranges existing elements, typi-
cally requires heavy reworking of source code. The
control programs, in C, cannot simply be concate-
nated either; and their edition must agree with the
edition of the patch. One of the most fundamental
requirements that we have placed on the IMW is a
much greater facility to juxtapose working pieces
into working wholes. In FTS, the low-level real-
time software base for the IMW, we have tried to
lay a foundation which permits this kind of build-
ing-block functionality.

The greatest single difficulty in programming the
IMW is that it is still, after all, a multiprocessor.
FTS provides an explicit remote message-passing
feature and an explicit mechanism for sending a
continuous stream of samples from one processor
to another, but it leaves it up to application soft-
ware to try to hide the existence of the machine
boundary-or simply to leave it explicitly visible.
FTS does, however, confront the problem of syn-

Computer Music Journal 58

chronizing many processors in real time in a deter-
ministic way.

The Design Goals of FTS

A music workstation should be a good platform for
rapid experimentation with new ideas. In the ideal,
musicians with only a user's knowledge of comput-
ers could invent and experiment with their own
techniques for synthesis and control. The "let-me-
help-you" approach to user interface design, in
which the computer tries to hide the implementa-
tion-level details of a given synthesis or composi-
tional algorithm, is unsuitable here, since it ulti-
mately takes the computer out of the musician's
control. It is better to invite the user to understand
everything, down to the level of an oscillator or a
live control input. The level of user training re-
quired is lower, and the result better reflects the
personality of the musician rather than the system.

One broad category of activity that we wish to
encourage is the invention of new user interfaces,
either by programmers or even by the "computer-
literate musician." Work in this area has resulted in
two graphical programming environments: MAX
(Puckette 1991), and Animal (Lindemann and de
Cecco 1991). These programs have placed fairly spe-
cific demands on the communication facilities be-
tween the CPs and the host. They also demand a
great deal of flexibility from the CPs-which must
support the incremental building and editing of a
running application. This implies a heavy use of dy-
namic interconnection between objects, and also
the ability to load subroutines dynamically. MAX
and Animal also bring the building-block structure
of FTS to user level, using as metaphors the ideas of
assembly and interconnection of smaller objects
into larger ones. The sections below on MAX and
Animal will illustrate this.

Our desire for interactive modular construction
of musical applications, and for the integration of
synthesis and control, is consistent with a rela-
tively straightforward multitasking approach to
programming the IMW. We do not need all the

usual ornaments of a real-time multitasking sys-
tem; for example, we can do without context
switching between tasks or explicit mutual exclu-
sion. The only communication facility needed in
the underlying operating system is access to a real-
time "port" mechanism to send "datagrams" from
one processor to another with bounded latency.

Background

Music languages in the "Music-N" style can be
seen as very simple object systems. The input is
usually divided into instrument definitions and a
list of "note cards." In more current lingo, the note
cards are instance-creation messages to the in-
struments, which are classes with exactly one
method-create-instance. There is no return value
and the "voice" which is created runs without fur-
ther control (there are usually tricks for getting
around this restriction, such as starting another
note, which changes a shared global variable). The
"parameter fields" of the note card are arguments
to the instance-creation method.

This model is not well suited to situations in
which some aspects of a sound are not defined at its
beginning-that is to say, the majority of interest-
ing situations. In as simple a case as a live keyboard
performance, there is no way to predetermine the
length of a note. The best answer to this problem
that has been proposed so far is to consider the note
as a process. This idea was partly formalized as part
of the 4CED system (Abbott 1980), and more ele-
gantly and completely in RTSKED (Mathews and
Pasquale 1981). A "note" process can access a key-
up event, for example, as a "trigger" that will cause
it to turn off.

Many variations on the RTSKED idea have been
proposed. The one major improvement of recent
systems such as FTS over RTSKED has been that
the process no longer has the burden of specifying
the next thing or things it wishes to wait for; it
merely waits until someone tells it what to do
next. This makes it much easier to build structures
that can do things in a nonpredetermined order.
Whether by coincidence or not, user interface de-

Puckette 59

Fig. 1. The message
system.

sign philosophy has moved in much the same direc-
tion in the last 10 years-a good user interface does
not wait for a specific input at a given time, but
rather accepts anything the user wishes to do in
any reasonable order.

The FTS Message-Passing Model

FTS occupies some number of real-time tasks (one
task per CP in the case of the IMW), and defines an
object system specifically for real-time music appli-
cations. In many respects it is much simpler than
most object systems, but it provides a combination
of services needed in the IMW that is not provided
by other C-language message-passing systems. An
object in FTS resides in a single task, and all code
accessing it must run in that task. Intertask com-
munication takes place by message-passing.

The most distinctive feature of the FTS object
system is that messages are objects which can be
copied and stored, and whose arguments are typed.
FTS can check the argument types of a message
against the types taken by the receiving object's
method for it. This is essential if one is passing a
message to an object about which there may be
no type information at compile time. The typing of
message arguments also facilitates transmission
across machine boundaries. For example, byte
swapping is necessary when passing message argu-
ments between the NeXT host and a CP; but it is
essential to know the types of a message's argu-
ments to byte-swap it properly.

An FTS message consists of a selector, which is
a pointer to a symbol, and zero or more typed ar-
guments. The fundamental operation defined for
a message is to pass it to an object; as shown in
Fig. 1. In its most dynamic (i.e., least precompiled)
form, this takes place as follows. The caller as-
sembles the arguments for the method into a con-
tiguous data structure and calls FTS's message-
passer. The message-passer looks up the receiving
object's entry for the message's selector in a table
pointed to by the first slot of the receiving object's
data structure (its "class"). This entry contains a
pointer to the object's method for that selector and
an argument type template. The FTS message-
passer checks that the types of the message ar-

message(. . .)

. . M

MESSAGE

f3(obj, argi, arg2)
syclass *obj;
float argl, arg2;

guments are the same as, or can be coerced into,
the types in the message entry. If the conversion
succeeds, the method is called with the coerced
arguments.

The arguments of messages can be integers,
floating-point numbers, pointers to symbols, or
pointers to other FTS objects. Arguments are also
defaultable-numbers default to zero and symbols
default to the symbol whose name is the empty
string; there is no default object pointer. Alterna-
tively, the receiving object may declare that a
method should simply be passed the message struc-
ture itself as an argument, complete with type in-
formation, in order to take a variable argument list.

The receiving object can catch a message for
which it has no method by declaring a method for
the symbol named "anything;" the FTS message-
passer, after failing to find a method for a given
message, searches for an "anything" method and
calls that if available. If the method search still
fails, or if type checking fails, a run-time error
results.

Passing a message in this way entails much more
overhead than the object systems of C+ + or Objec-
tive C. The intention is to use it for user-built con-
nections, not for internal coding, for which, if mes-
sage-passing is needed, one can use C+ +. It is also
possible to prefetch a method and preestablish cer-

Computer Music Journal 60

tain argument lists (those that consist of only one
argument). These features are used by the intercon-
nection facility of MAX to reduce message-passing
overhead to an acceptable level.

Message-passing is only defined to work between
objects within the same FTS task. To pass a mes-
sage to an object on a different FTS task it is neces-
sary to set up a remote message-passing channel,
which is handled by the "remote_send" and "re-
mote_receive" classes described below. It is left to
the host application either to show remote mes-
sage-passing explicitly, or to set it up implicitly
when a connection is made across a machine boun-
dary (of course, the ideal would be to hide the ma-
chine boundary altogether, but that is probably
unrealistic).

The FTS object system can be directed to install
new classes dynamically, and (with some care)
change a class's instance data structure, or meth-
ods, or both. This facility is needed to make the
IMW environment extensible; it is used by the
MAX and Animal graphical editors. Implementing
dynamic classes requires incremental linking and
loading of program segments. Obviously, when a
method is changed, other objects that may have
prefetched it and prechecked argument types must
be notified, and if the instance structure of a class
is changed, it is then necessary to track down every
existing instance of the class to bring it up to date.
This cleanup is the responsibility of whoever
changes the method (see, for example, the section
on Animal below).

To load an external object file, memory is allo-
cated and the object file is linked, taking as defined
the symbols provided in the FTS executable, and
handing the linker the address of the allocated
memory as the virtual base address of the code
object to create. The object file is read into the
memory of every CP at the same virtual address;
special CPOS support is needed to allow a CP to al-
locate memory at a prespecified address. External
object files may not access symbols defined by
other external files; anything that is shared by
more than one external object file (such as the in-
let/outlet feature used by all MAX classes) must be
part of FTS.

The object file may contain several functions, but
has only one entry point. When FTS loads an object

file to define a new class, the function at the entry
point informs FTS of the instance structure and re-
lated data, and supplies all the methods that will
belong to the class (usually functions defined in the
object file), along with their selectors and argument
types. This style of class definition is also used for
the classes predefined by FTS. No extensions to the
C language are necessary to support the object sys-
tem; all definitions are made functionally. This
message system is therefore compatible, in a re-
stricted sense, with either Objective C or C+ +;
to make a C+ + class appear as an FTS class, for
instance, one need only give FTS the information
it needs to call C+ + methods. The procedure for
modifying a class that already exists is tailored to
the needs of Animal, and will be described in the
Animal section of this paper.

The dynamic type-checking capability of FTS al-
lows one to create message-passing connections be-
tween objects at run time. The "inlet" and "outlet"
classes are provided to support connections as they
are defined in MAX; other types of connection,
with different semantics, could easily coexist with
this one simply by defining new classes to imple-
ment them. The MAX experience has shown that
the notion of dynamic message-passing connec-
tions is useful. Many musical algorithms can be de-
scribed by interconnecting preexisting objects; dy-
namic connection allows these algorithms to be
prototyped without writing and compiling new
code. The ability to create or change the classes
that are connected in this way offers a "program-
ming escape" for those operations which are more
conveniently expressed in C than graphically, or in
cases where the overhead of the connection mecha-
nism is too great. The inlet/outlet mechanism de-
scribed in the section on MAX below is an example
of this.

Calculation of signals (periodic streams of samples,
of either sound or continuous controls) requires
communication bandwidths too large to be handled
by the message-passing mechanism on a sample-by-
sample basis. Objects that do signal computation,
called "signal objects," resort to a special mecha-
nism to schedule their computations and transmit
information between themselves. Each signal object
has a particular "duty-cycle" action which is car-
ried out regularly to calculate a new set of signal

Puckette 61

Fig. 2. The DSP duty cycle
for a simple network.

outputs, assuming the existence of new data on all
signal inputs. The signal information is carried as
vectors of floating-point samples, and the duty cy-
cle is the vector size divided by the sample rate of
the inputs and outputs. In its currrent state, FTS
makes the restriction that all signal calculation on
a given processor must take place at the same duty
cycle, and that all signal vectors have the same
length. This duty cycle is taken as the "tick," the
fundamental unit of time in FTS.

A DSP handler object, global to each processor,
maintains a list of signal processing actions to be
carried out on each tick, as shown in Fig. 2. Each
action in the list corresponds to some signal ob-
ject's duty-cycle method, which is called with poin-
ters to the signal inputs and outputs, as well as
other pertinent information kept by the DSP han-
dler, as arguments. Special signal objects are de-
fined to send signals between processors, to and
from DACs and ADCs, or to and from sound files,
which are kept on the host. Signal objects can send
and receive messages other than the duty-cycle
message; thus, from a control standpoint, there is
nothing special about them.

Real-Time Behavior

All messages in FTS have a "logical time," which is
kept globally. The logical time increases in regular,
discrete increments, each equal to one tick, or DSP
duty cycle. While an object is servicing a message
at a given logical time, any message it sends to an-
other object (which must be in the same FTS task)
arrives at the same logical time. Physical outputs
are arranged to have the minimum jitter possible
with respect to this logical time; in other words,
the difference between a real output and the logical
time at which it was requested is allowed to vary as
little as possible. In the case of sound, this jitter is
the jitter of the A/D/A clock and in the case of out-
put to the serial port, it is usually dominated by the
pileup of queued output messages. Output to the
NeXT host is quite jittery because of the non-real-
time character of the NeXT itself.

Messages originate in four distinct ways: as a re-
sult of asynchronous on-board I/O completion (i.e.,
the serial port); after a time-out (an event indicating

DSP /
duty / .

cycle I I
list

SIGNALS S S2 S3

the end of a time delay); from another FTS task; or
from the host. Messages incur a delay in crossing
machine boundaries, which is reflected in logical
time; other sorts of external input (i.e., from the se-
rial port or the host) are stamped with the time of
arrival, with roughly the same amount of jitter as
in the corresponding outputs.

The FTS task and its relation to the rest of the
world are shown in Fig. 3. The task's inputs all ap-
pear as time-tagged queues. Except for the serial in-
put queue and the time-out queue, they all share
the same structure, which is shown in Fig. 4. This
general queue structure treats messages and sound
differently. In each queue slot (the contents of a
queue for a specific tick), there is a variable-length
subqueue of messages and a prearranged number of
signal buffers. In the sound input queue, the mes-
sage part is empty.

The serial input queue contains time-stamped
MIDI messages. FTS objects may arrange to be noti-
fied either for every MIDI byte that arrives, or only
for a certain class of standard MIDI messages. The
time-out queue contains callback requests; an
FTS object that has placed a request in the queue
may later cancel it or change its scheduled time.

For each tick, the FTS carries out its (message
and DSP) duty cycle as follows. The task empties
out, in sequence, the message contents of each of
its queue slots for that tick, passing each message
to its destination. (In the case of the serial port and
time-out queues, this is not an FTS message but a
prearranged function call.) Before FTS processes the

Computer Music Journal 62

Fig. 3. An FTS task and its
external communications.

Fig. 4. The structure of a
standard queue.

LOGICAL TIME T

messages and sound

tick, it waits until all the queue slots for that tick
have been filled, that is, until the task or device
which fills each queue has promised that no more
information will be added to the queue slot for that
tick. The queue slot associated with sound input is
processed last; instead of looking in the (empty)
message portion of the slot, FTS runs the DSP duty
cycle for that tick.

As the tick is being processed, the task can in
turn send messages or signals to other tasks (or, in-
deed, to itself). Messages may be sent sporadically;
a signal is sent, on each tick, to a particular signal
buffer in the appropriate queue slot. Sound output
to DACs is treated as if the DACs associated to a
board were a separate task. MIDI output is by sub-
routine call, implicitly time-stamped.

Each FTS task is assigned a latency d, a positive
number of ticks about which we can make the fol-
lowing assertion: assuming that the task's input
queues are all filled on time, the duty cycle for any
given tick t will be finished by real time t + d. This
latency defines the jitter in calculation time which
we will arrange to absorb, so that there is no uncer-
tainty about the time at which an operation takes
effect. This absorption is done by time-stamping all
outputs of the task at t + d. That will determine the
logical time at which another task will respond to a

MESSAGE MESSAGE

destination destination

selector selector

type datum type datum

type datum type datum

type datum

message, or the real time at which physical output
will start. The assertion that the tick t will be fin-
ished by time t + d at the latest implies that these
output messages, time-stamped to t + d, will all ar-
rive on time.

Figure 5 shows the relation in a task between real
and logical times, assuming the case in which each
tick becomes runnable only at its corresponding
real time. This is the worst case, assuming all other
tasks keep their own deadlines. Figure 5 shows a
pileup of computaton; whenever a tick is not fin-
ished at the moment the next one becomes runna-
ble, the task starts to get behind. The assertion of
the latency of the task is that it will not get so far
behind as to cross the rightmost diagonal line.

A task can run at latency d if, in every interval
[s,t) of logical time, the processing required for all
the ticks in the interval does not exceed d + t - s.
If one or more task is late, there is still hope that
the lateness will not propagate to an output, but
there is no evident way to take advantage of this to
loosen the latency specification for a given task.

The FTS approach to real-time multiprocessor
programming differs from the standard approach in
which tasks frequently compete for resources con-
trolled by some exclusion mechanism. This compe-

T+l T+2

Puckette 63

Fig. 5. Logical versus real
time in a single processor.

Fig. 6. The accumulation
of latency through two
processors.

logical
time

real time

V waiting to run

srim,ms, running
- . finished

tition makes the timing of the execution of a given
task heavily dependent on the state of other tasks;
it can be hard simply to avoid deadlock. On the
other hand, the reliance of the setup described here
on messages between tasks puts each task at the
mercy of all others in another way-it cannot regu-
late the number of messages, and hence requests
for actions, that might fall in a given time period.
Thus, the latency that a task can achieve depends
on what the other tasks are doing.

The interdependence of tasks, illustrated in
Fig. 6, shows that the propagation delay of a mes-
sage accumulates the latency of each task boundary
it crosses. Any intertask loop incurs a similar delay.
Loops within a single task, if they involve DSP, in-
cur a delay equal to the vector length. This is the
main reason we wish in the future to maintain
variable DSP vector lengths; longer vectors can be
more efficient, but certain DSP loops require short
delays.

Communication with the Host

The host acts as a front-end and as a disk server for
FTS. As a front-end, its role is to maintain a rep-
resentation of certain objects (on FTS tasks) as

graphic objects on the host. A graphic object may
interpret mouse and keyboard input as requests to
send messages to a corresponding CP object, or
change its appearance to reflect changes in the state
of the CP object.

When a host-user interface application wishes to
create an object, it suplies a unique key by which
the object is identified. The host can use the key to
pass any message to the object. Since the arguments
of the message are typed, FTS can automatically
perform any needed data translations. Integers and
floating-point numbers are byte-reversed, and sym-
bols are passed as strings and reconverted to sym-
bols (that is, a unique address containing the given
string and a possible binding) on a CP. One par-
ticular CP, the "master," carries out the transla-
tion of a key to a CPU identifier and a local mem-
ory address, and also the generation of symbols
from strings; all traffic between the host and the
CPs is routed through this master CP. In the case of
a symbol, any binding as seen on a given CP must
point to an object on that same CP; hence, if a new
symbol is created by the master CP, copies of it are
created on all other CPs at the same virtual address.

Messages from the CP to the host are handled by
the "host queue" mechanism. If any messages flow
from the CP object back to the graphical one, the
connection established must be bidirectional. (The
host must at least send the CP messages to open
and close the connection; the host is always the
initiator of a connection between a graphical object

Computer Music Journal 64

Fig. 7. Communication be-
tween host and CPs.

and a CP object.) To receive messages from a CP ob-
ject, a graphical object sends the CP object pointers
to the graphic object, an update function, and an ex-
ception function. The CP object then places calls
to the update function on the host in the queue.

To free either the CP object or the host object in-
volved in a bidirectional connection, the connec-
tion must first be broken; otherwise update mes-
sages that have already been buffered between the
CP and the host might arrive for the (already de-
leted) object. This is the reason for the exception
message, which the CP object sends on closing the
connection. The host object is guaranteed that once
the exception function is called, no more update
messages will occur through that path. In order to
free the host object, a message is passed to the CP
to close the connection, and the host object then
waits for a callback to its exception function; typi-
cally it sets a "zombie" flag to warn it not to re-
spond to CP update messages which arrive in the
interval.

The case in which messages are passed only from
the host to the CP is simpler; the host can create
the object, send messages to it, and destroy it with
no danger. Messages arrive at the CP in the same
order they are sent from the host to ensure that
no message to the object will arrive outside its
life span.

An example of a bidirectional connection is a
"changing value" on the CP, a datum of constant
size that is tracked by the host. It is not necessary
for the host to be notified of every single change in
such a datum; it need only have a recent value of it.
On the CP, every time the value changes, the up-
date function is enqueued for the host. If a call to
the update function is enqueued before the CP has
sent the host a prior one, the new one replaces
the old one. The amount of memory needed is
thus bounded and can be allocated in advance, and
an object whose state changes quickly need not
swamp the host with updates. Overriding an al-
ready-enqueued update does not change its position
in the update queue; hence, updates in the host are
roughly round-robin.

More complicated situations are handled as they
arise. For example, a variable-sized ordered list
(such as a "sequence") might be viewed and edited
from the host, and "played" or "recorded" from the

Host

CPs

vWY ,/^^~ ~ host commands ->
<- graphics updates

multiplexing/

demultiplexing

Master CP CP 2 CP3

real-time interprocessor message-passing

CP. In situations like this, the graphics and CP ob-
jects must implement a protocol on top of the host
queue mechanism. This has been done for the
simple case of a list all of whose elements are of the
same size.

The FTS/System Interface

FTS sets up one task on each CP, and chooses one
CP task to be the master, through which all host-
CP communication is routed. FTS also sets up a
host task, which controls the allocation of CPs and
through which other host applications set up ports
of communication to the master CP. The host is
also responsible for servicing file I/O requests from
CPs, notably real-time sound file access.

The ports of communication among FTS tasks
and between them and host tasks are provided by
CPOS, the CP operating system (Viara 1990). FTS
sets up ports between each pair of FTS tasks (in
both directions) for real-time message-passing, and
each FTS task except the master gets a port back to
the master for queued updates to the host. Each
host task gets ports to and from the master FTS
task, obtained through the central host task as
shown in Fig. 7. The port to the CP is used to create
and pass messages to objects on a CP, and the re-
turning port multiplexes all host queue messages to
that particular host task.

A host application needing to access FTS must

Puckette 65

send a message to the central host task, which re-
turns a pair of ports to the requesting task. The
master CP is also notified of the existence of the
new ports. The host-CP port is included in the list
of ports the master CP selects to receive messages
from the host; each object can ask, when it is being
created, for an identifier for the port where return-
ing messages are to be sent.

Utilities Provided by FTS

FTS provides software packages for archiving
and recovery of objects, for automating inter-CP
message-passing, and for sound fie and host queue
access. An object can be archived by passing it a
"save" message with a pointer to a "binbuf," a sort
of stream it can write formatted messages onto. To
recover the object, the contents of the stream are
evaluated as a list of messages.

Inter-CP communication is handled through a
pair of objects, "remote_send" and "remote_re-
ceive." The send object (of which there may be sev-
eral corresponding to one receive) can be given an
extra delay beyond that which is implied by the
machine boundary being crossed. Any message a
send receives is sent on to the corresponding re-
ceive, which sends it to a prearranged client. The
receive keeps track of the number of existing sends
so that it can delay being freed until all messages it
might receive have arrived.

Sound file I/O is provided by a circular-buffer
mechanism. The FTS scheduler periodically checks
the status of all known sound file I/O buffers and
starts asynchronous disk I/O to service the "hun-
griest" one. Subroutines are provided for a sound
file user to synchronize with the I/O.

A "host queue element" or "qelem" controls host
queue access and contains the buffer space for a
given object's slot in the queue. The client object
tells the qelem when it needs to send an update; if
an update is already pending this has no effect;
otherwise the "qelem" inserts itself into the host
queue. When the qelem's turn comes to be sent to
the host, the qelem calls the client back to get the
latest value to be sent, and formats and sends the
message to the host.

Example: Using FTS from MAX

The MAX program (Puckette 1991), originally writ-
ten for the Apple Macintosh computer, has been
ported to the IMW. A set of signal-processing ob-
jects has been written for MAX to allow patches to
mix signal generation with control.

The basic connection mechanism of MAX (inlets
and outlets) has been adopted without modification
to connect the image objects on the CPs. Inlets and
outlets are only defined to work between objects
on the same processor. All "patchable" objects in
MAX (i.e., the objects that can be manipulated on
the screen), maintain a list of inlets and one of out-
lets. Each outlet maintains a list of all connected
inlets; "connecting" an outlet to an inlet means
"putting the inlet in the outlet's list." The object
owning the outlet can then pass any FTS message
to it, which the outlet passes to the inlet, which
passes it on to the receiving object (after modifying
it to identify which inlet received it).

On the IMW, a box in MAX gives rise to two ob-
jects, one on the host and one on a CP. Whenever a
connection is made or broken between two objects
on the host, the corresponding change is made on
the appropriate CP. When the user originates a mes-
sage through the mouse or keyboard, the message is
passed to the CP object instead of the NeXT object,
so the host objects never do any message-passing
themselves.

Indicators in MAX all fall under the easy case in
the above discussion of CP-host communication, so
it is straightforward to support graphical updates
that follow the state of the patch on the CP. Certain
objects require more work, notably the standard ob-
ject "table" and the experimental object "explode"
(Puckette 1990), which maintain a vector and a
list, respectively. These are currently dealt with
manually; in the table or explode editor, "get" and
"send" buttons light up whenever the host and CP
versions of the data get out of sync; the user can
then choose either to copy "up" or "down" to re-
synchronize them. A more automatic mechanism
can easily be envisaged, but has not yet been tried.

At the time of this writing, only a single FTS task
may be accessed from MAX; Puckette (1991) de-
scribes an easy extension that could be made to
MAX to take advantage of multiprocessing.

Computer Music Journal 66

Example: Using FTS from Animal

Two classes, "animal" and "a_class" (i.e., "animal
class"), have been written in FTS to support the
Animal environment (Lindemann and de Cecco
1991). Here, animal will refer to the FTS class and
Animal to the host program. An instance of animal
has a fixed and a relocatable part. The relocatable
part holds the instance structure generated by Ani-
mal. Any instance of animal belongs to an instance
of a_class, which has methods to add or remove in-
stance variables and methods for all the animal
instances belonging to it. These editions are propa-
gated to the FTS class of the animals; thus, ani-
mals respond to standard FTS messages as specified
by Animal.

A function is provided to mark an animal in-
stance "dirty," which enqueues a host update via
the qelem mechanism. The host may add methods
to an a_class to allow it to update the contents of
the animal, for instance, as a result of mouse mo-
tion or typing.

If an animal has a method for the selector "tick,"
the method will be called at the DSP duty cycle. If
it has one for "midi" it will be called for each in-
coming MIDI byte. Animals may arrange time-outs
via virtual clocks in the same way any other FTS
object does.

Conclusion

A reasonably simple message-passing system and
interprocessor communication protocol can be
defined to fill the real-time processing needs of
such graphical programming environments as MAX
and Animal. Message-passing delays between pro-
cessors are nontransparent, as is the mapping of

real-time programs onto the available processors.
Since scheduling dependencies between objects
are controlled explicitly via message-passing, we
can avoid introducing mutual exclusion, context
switching, and the like. The ability of the IMW to
do signal processing and "control computations" in
the same processor makes possible the very close
cooperation between the two that real-time musical
applications demand.

References

Abbott, C. 1980. "The 4CED Program." In Proceedings of
the International Computer Music Conference. San
Francisco: Computer Music Association, pp. 278-304.

Favreau, E., et al. 1986. "Software Developments for the
4X Real-Time System." In Proceedings of the Interna-
tional Computer Music Conference. San Francisco:
Computer Music Association, pp. 369-373.

Lindemann, E., et al. 1991. "The Architecture of the
IRCAM Musical Workstation." Computer Music Jour-
nal (this issue).

Lindemann, E., and M. de Cecco. 1991. "Animal: Graphi-
cal Data Definition and Manipulation in Real Time."
Computer Music Journal (this issue).

Mathews, M., and J. Pasquale. 1981. "RTSKED, a Sched-
uled Performance Language for the Crumar General
Development System." In Proceedings of the Interna-
tional Computer Music Conference. San Francisco:
Computer Music Association, p. 286.

Puckette, M. 1990. "Amplifying Musical Nuance." Jour-
nal of the Acoustical Society of America 87 (supple-
ment 1): p. S39.

Puckette, M. 1991. "Combining Event and Signal Pro-
cessing in the MAX Graphical Programming Environ-
ment." Computer Music Journal (this issue).

Viara, E. 1991. "CPOS: A Real-Time Operating System
for the IRCAM Musical Workstation." Computer Mu-
sic Journal (this issue).

Puckette 67

	Article Contents
	p. 58
	p. 59
	p. 60
	p. 61
	p. 62
	p. 63
	p. 64
	p. 65
	p. 66
	p. 67

	Issue Table of Contents
	Computer Music Journal, Vol. 15, No. 3 (Autumn, 1991), pp. 1-137
	Front Matter [pp. 1 - 2]
	Editor's Notes: The First Dilemma: The Marginalization of "Art Music" [pp. 3 - 4]
	Announcements [pp. 4 - 9]
	News [pp. 9 - 12]
	Letters
	Responses to the Editorial in "Computer Music Journal" 15:3 [pp. 13 - 15]
	Proposed MIDI Extension [p. 15]

	Machine Songs II: The "PRAESCIO" Series: Composition-Driven Interactive Software [pp. 16 - 26]
	Machine Tongues XIII: Real-Time Audio Conversion under a Time-Sharing Operating System [pp. 27 - 40]
	The IRCAM Musical Workstation
	The Architecture of the IRCAM Musical Workstation [pp. 41 - 49]
	CPOS: A Real-Time Operating System for the IRCAM Musical Workstation [pp. 50 - 57]
	FTS: A Real-Time Monitor for Multiprocessor Music Synthesis [pp. 58 - 67]
	Combining Event and Signal Processing in the MAX Graphical Programming Environment [pp. 68 - 77]
	Animal: Graphical Data Definition and Manipulation in Real Time [pp. 78 - 100]

	Reviews
	Performances, Exhibitions, and Conferences
	Two Views of the 1991 National Association of Music Merchants (NAMM) Convention [pp. 101 - 105]
	Summer Computer Music Festival, Frost Ampitheatre, Stanford University, Palo Alto, California, USA [pp. 105 - 107]
	LIM Computer and Art Festival, Lugano, Italy [pp. 107 - 108]
	Second International Symposium on Electronic Art (SISEA), Groningen, Holland [pp. 108 - 110]
	Bourges International Festival of Electronic Music 1988-1990, Bourges, France [pp. 110 - 115]

	Recordings
	untitled [pp. 115 - 118]
	untitled [pp. 118 - 120]

	Products of Interest
	Product Announcements [pp. 127 - 136]

	User's Reports
	Tascam DA-30 DAT Recorder [pp. 121 - 122]
	Play It by Ear: Ear-Training Software for IBM PCs [pp. 122 - 124]
	Voyetra Sequencer Plus Gold for IBM PCs [pp. 124 - 126]

	Back Matter [pp. 137 - 137]

