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The IRCAM Musical Workstation (IMW) is the first 
real-time computer music synthesis system based 
on a general-purpose processor, the Intel i860. The 
IMW's hardware consists of one or more NeXT host 
computers together with between 2 and 24 i860 
coprocessors (CPs) running at 40 MHz, nominally 
capable of 80 million floating-point operations per 
second (MFLOPS) apiece. The CoProcessor Operat- 
ing System (CPOS), has been written specifically to 
fill the requirements this hardware poses for real- 
time musical synthesis and control. A distributed 
computer program, FTS (faster than sound), which 
runs under CPOS, manages the real-time calcula- 
tions required both for control and for synthesis. 
This paper describes FTS and how it interacts with 
application software running on the host. 

The i860 is the first inexpensive general-purpose 
processor powerful enough that we could consider 
basing a real-time computer music system on it. 
Before now, one had to resort to special digital sig- 
nal processing (DSP) architectures, as was done for 
the 4X, IRCAM's previous adventure in real-time 
music synthesis (Favreau 1986). The 4X combines a 
general-purpose "control processor" with special 
synthesis hardware. A 4X application thus consists 
of two programs that must communicate in real 
time: the "patch," which defines the numerical cal- 
culations involved in computing sounds; and the 
"control program," which provides parameters for 
the patch, usually as a function of real-time control 
inputs. This separation was made out of necessity, 
not by choice. Forcing the user to maintain two 
programs, in different languages, whose state must 
nonetheless be kept coherent, greatly increases the 
effort required to develop a new application or to 
merge two existing ones. 
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Because of the IMW's homogeneous hardware de- 
sign, a single distributed program running on the 
CPs, such as FTS, can do almost all of the real-time 
processing required (the exception is that a host 
computer is needed as a server to provide certain 
I/O). A great part of the difficulty of making mu- 
sic on the 4X and similar machines drops away 
instantly when using the IMW. The problems of 
synchronization between a "smart" control pro- 
cessor and a "dumb" sound processor disappear en- 
tirely, leaving only the easier and more interesting 
problem of coordinating several, equal, high-level 
processors. 

It is in the merging of preexisting applications 
that this unification between control and synthesis 
makes the biggest difference. Users of the 4X have 
traditionally spent more time putting together new 
configurations of known techniques than in devel- 
oping those techniques originally. Making a new 4X 
"patch" (the sound-making part of the application), 
which merely rearranges existing elements, typi- 
cally requires heavy reworking of source code. The 
control programs, in C, cannot simply be concate- 
nated either; and their edition must agree with the 
edition of the patch. One of the most fundamental 
requirements that we have placed on the IMW is a 
much greater facility to juxtapose working pieces 
into working wholes. In FTS, the low-level real- 
time software base for the IMW, we have tried to 
lay a foundation which permits this kind of build- 
ing-block functionality. 

The greatest single difficulty in programming the 
IMW is that it is still, after all, a multiprocessor. 
FTS provides an explicit remote message-passing 
feature and an explicit mechanism for sending a 
continuous stream of samples from one processor 
to another, but it leaves it up to application soft- 
ware to try to hide the existence of the machine 
boundary-or simply to leave it explicitly visible. 
FTS does, however, confront the problem of syn- 
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chronizing many processors in real time in a deter- 
ministic way. 

The Design Goals of FTS 

A music workstation should be a good platform for 
rapid experimentation with new ideas. In the ideal, 
musicians with only a user's knowledge of comput- 
ers could invent and experiment with their own 
techniques for synthesis and control. The "let-me- 
help-you" approach to user interface design, in 
which the computer tries to hide the implementa- 
tion-level details of a given synthesis or composi- 
tional algorithm, is unsuitable here, since it ulti- 
mately takes the computer out of the musician's 
control. It is better to invite the user to understand 
everything, down to the level of an oscillator or a 
live control input. The level of user training re- 
quired is lower, and the result better reflects the 
personality of the musician rather than the system. 

One broad category of activity that we wish to 
encourage is the invention of new user interfaces, 
either by programmers or even by the "computer- 
literate musician." Work in this area has resulted in 
two graphical programming environments: MAX 
(Puckette 1991), and Animal (Lindemann and de 
Cecco 1991). These programs have placed fairly spe- 
cific demands on the communication facilities be- 
tween the CPs and the host. They also demand a 
great deal of flexibility from the CPs-which must 
support the incremental building and editing of a 
running application. This implies a heavy use of dy- 
namic interconnection between objects, and also 
the ability to load subroutines dynamically. MAX 
and Animal also bring the building-block structure 
of FTS to user level, using as metaphors the ideas of 
assembly and interconnection of smaller objects 
into larger ones. The sections below on MAX and 
Animal will illustrate this. 

Our desire for interactive modular construction 
of musical applications, and for the integration of 
synthesis and control, is consistent with a rela- 
tively straightforward multitasking approach to 
programming the IMW. We do not need all the 

usual ornaments of a real-time multitasking sys- 
tem; for example, we can do without context 
switching between tasks or explicit mutual exclu- 
sion. The only communication facility needed in 
the underlying operating system is access to a real- 
time "port" mechanism to send "datagrams" from 
one processor to another with bounded latency. 

Background 

Music languages in the "Music-N" style can be 
seen as very simple object systems. The input is 
usually divided into instrument definitions and a 
list of "note cards." In more current lingo, the note 
cards are instance-creation messages to the in- 
struments, which are classes with exactly one 
method-create-instance. There is no return value 
and the "voice" which is created runs without fur- 
ther control (there are usually tricks for getting 
around this restriction, such as starting another 
note, which changes a shared global variable). The 
"parameter fields" of the note card are arguments 
to the instance-creation method. 

This model is not well suited to situations in 
which some aspects of a sound are not defined at its 
beginning-that is to say, the majority of interest- 
ing situations. In as simple a case as a live keyboard 
performance, there is no way to predetermine the 
length of a note. The best answer to this problem 
that has been proposed so far is to consider the note 
as a process. This idea was partly formalized as part 
of the 4CED system (Abbott 1980), and more ele- 
gantly and completely in RTSKED (Mathews and 
Pasquale 1981). A "note" process can access a key- 
up event, for example, as a "trigger" that will cause 
it to turn off. 

Many variations on the RTSKED idea have been 
proposed. The one major improvement of recent 
systems such as FTS over RTSKED has been that 
the process no longer has the burden of specifying 
the next thing or things it wishes to wait for; it 
merely waits until someone tells it what to do 
next. This makes it much easier to build structures 
that can do things in a nonpredetermined order. 
Whether by coincidence or not, user interface de- 
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Fig. 1. The message 
system. 

sign philosophy has moved in much the same direc- 
tion in the last 10 years-a good user interface does 
not wait for a specific input at a given time, but 
rather accepts anything the user wishes to do in 
any reasonable order. 

The FTS Message-Passing Model 

FTS occupies some number of real-time tasks (one 
task per CP in the case of the IMW), and defines an 
object system specifically for real-time music appli- 
cations. In many respects it is much simpler than 
most object systems, but it provides a combination 
of services needed in the IMW that is not provided 
by other C-language message-passing systems. An 
object in FTS resides in a single task, and all code 
accessing it must run in that task. Intertask com- 
munication takes place by message-passing. 

The most distinctive feature of the FTS object 
system is that messages are objects which can be 
copied and stored, and whose arguments are typed. 
FTS can check the argument types of a message 
against the types taken by the receiving object's 
method for it. This is essential if one is passing a 
message to an object about which there may be 
no type information at compile time. The typing of 
message arguments also facilitates transmission 
across machine boundaries. For example, byte 
swapping is necessary when passing message argu- 
ments between the NeXT host and a CP; but it is 
essential to know the types of a message's argu- 
ments to byte-swap it properly. 

An FTS message consists of a selector, which is 
a pointer to a symbol, and zero or more typed ar- 
guments. The fundamental operation defined for 
a message is to pass it to an object; as shown in 
Fig. 1. In its most dynamic (i.e., least precompiled) 
form, this takes place as follows. The caller as- 
sembles the arguments for the method into a con- 
tiguous data structure and calls FTS's message- 
passer. The message-passer looks up the receiving 
object's entry for the message's selector in a table 
pointed to by the first slot of the receiving object's 
data structure (its "class"). This entry contains a 
pointer to the object's method for that selector and 
an argument type template. The FTS message- 
passer checks that the types of the message ar- 

message(. . .) 

. . M 

MESSAGE 

f3(obj, argi, arg2) 
syclass *obj; 
float argl, arg2; 

guments are the same as, or can be coerced into, 
the types in the message entry. If the conversion 
succeeds, the method is called with the coerced 
arguments. 

The arguments of messages can be integers, 
floating-point numbers, pointers to symbols, or 
pointers to other FTS objects. Arguments are also 
defaultable-numbers default to zero and symbols 
default to the symbol whose name is the empty 
string; there is no default object pointer. Alterna- 
tively, the receiving object may declare that a 
method should simply be passed the message struc- 
ture itself as an argument, complete with type in- 
formation, in order to take a variable argument list. 

The receiving object can catch a message for 
which it has no method by declaring a method for 
the symbol named "anything;" the FTS message- 
passer, after failing to find a method for a given 
message, searches for an "anything" method and 
calls that if available. If the method search still 
fails, or if type checking fails, a run-time error 
results. 

Passing a message in this way entails much more 
overhead than the object systems of C+ + or Objec- 
tive C. The intention is to use it for user-built con- 
nections, not for internal coding, for which, if mes- 
sage-passing is needed, one can use C+ +. It is also 
possible to prefetch a method and preestablish cer- 
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tain argument lists (those that consist of only one 
argument). These features are used by the intercon- 
nection facility of MAX to reduce message-passing 
overhead to an acceptable level. 

Message-passing is only defined to work between 
objects within the same FTS task. To pass a mes- 
sage to an object on a different FTS task it is neces- 
sary to set up a remote message-passing channel, 
which is handled by the "remote_send" and "re- 
mote_receive" classes described below. It is left to 
the host application either to show remote mes- 
sage-passing explicitly, or to set it up implicitly 
when a connection is made across a machine boun- 
dary (of course, the ideal would be to hide the ma- 
chine boundary altogether, but that is probably 
unrealistic). 

The FTS object system can be directed to install 
new classes dynamically, and (with some care) 
change a class's instance data structure, or meth- 
ods, or both. This facility is needed to make the 
IMW environment extensible; it is used by the 
MAX and Animal graphical editors. Implementing 
dynamic classes requires incremental linking and 
loading of program segments. Obviously, when a 
method is changed, other objects that may have 
prefetched it and prechecked argument types must 
be notified, and if the instance structure of a class 
is changed, it is then necessary to track down every 
existing instance of the class to bring it up to date. 
This cleanup is the responsibility of whoever 
changes the method (see, for example, the section 
on Animal below). 

To load an external object file, memory is allo- 
cated and the object file is linked, taking as defined 
the symbols provided in the FTS executable, and 
handing the linker the address of the allocated 
memory as the virtual base address of the code 
object to create. The object file is read into the 
memory of every CP at the same virtual address; 
special CPOS support is needed to allow a CP to al- 
locate memory at a prespecified address. External 
object files may not access symbols defined by 
other external files; anything that is shared by 
more than one external object file (such as the in- 
let/outlet feature used by all MAX classes) must be 
part of FTS. 

The object file may contain several functions, but 
has only one entry point. When FTS loads an object 

file to define a new class, the function at the entry 
point informs FTS of the instance structure and re- 
lated data, and supplies all the methods that will 
belong to the class (usually functions defined in the 
object file), along with their selectors and argument 
types. This style of class definition is also used for 
the classes predefined by FTS. No extensions to the 
C language are necessary to support the object sys- 
tem; all definitions are made functionally. This 
message system is therefore compatible, in a re- 
stricted sense, with either Objective C or C+ +; 
to make a C+ + class appear as an FTS class, for 
instance, one need only give FTS the information 
it needs to call C+ + methods. The procedure for 
modifying a class that already exists is tailored to 
the needs of Animal, and will be described in the 
Animal section of this paper. 

The dynamic type-checking capability of FTS al- 
lows one to create message-passing connections be- 
tween objects at run time. The "inlet" and "outlet" 
classes are provided to support connections as they 
are defined in MAX; other types of connection, 
with different semantics, could easily coexist with 
this one simply by defining new classes to imple- 
ment them. The MAX experience has shown that 
the notion of dynamic message-passing connec- 
tions is useful. Many musical algorithms can be de- 
scribed by interconnecting preexisting objects; dy- 
namic connection allows these algorithms to be 
prototyped without writing and compiling new 
code. The ability to create or change the classes 
that are connected in this way offers a "program- 
ming escape" for those operations which are more 
conveniently expressed in C than graphically, or in 
cases where the overhead of the connection mecha- 
nism is too great. The inlet/outlet mechanism de- 
scribed in the section on MAX below is an example 
of this. 

Calculation of signals (periodic streams of samples, 
of either sound or continuous controls) requires 
communication bandwidths too large to be handled 
by the message-passing mechanism on a sample-by- 
sample basis. Objects that do signal computation, 
called "signal objects," resort to a special mecha- 
nism to schedule their computations and transmit 
information between themselves. Each signal object 
has a particular "duty-cycle" action which is car- 
ried out regularly to calculate a new set of signal 
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Fig. 2. The DSP duty cycle 
for a simple network. 

outputs, assuming the existence of new data on all 
signal inputs. The signal information is carried as 
vectors of floating-point samples, and the duty cy- 
cle is the vector size divided by the sample rate of 
the inputs and outputs. In its currrent state, FTS 
makes the restriction that all signal calculation on 
a given processor must take place at the same duty 
cycle, and that all signal vectors have the same 
length. This duty cycle is taken as the "tick," the 
fundamental unit of time in FTS. 

A DSP handler object, global to each processor, 
maintains a list of signal processing actions to be 
carried out on each tick, as shown in Fig. 2. Each 
action in the list corresponds to some signal ob- 
ject's duty-cycle method, which is called with poin- 
ters to the signal inputs and outputs, as well as 
other pertinent information kept by the DSP han- 
dler, as arguments. Special signal objects are de- 
fined to send signals between processors, to and 
from DACs and ADCs, or to and from sound files, 
which are kept on the host. Signal objects can send 
and receive messages other than the duty-cycle 
message; thus, from a control standpoint, there is 
nothing special about them. 

Real-Time Behavior 

All messages in FTS have a "logical time," which is 
kept globally. The logical time increases in regular, 
discrete increments, each equal to one tick, or DSP 
duty cycle. While an object is servicing a message 
at a given logical time, any message it sends to an- 
other object (which must be in the same FTS task) 
arrives at the same logical time. Physical outputs 
are arranged to have the minimum jitter possible 
with respect to this logical time; in other words, 
the difference between a real output and the logical 
time at which it was requested is allowed to vary as 
little as possible. In the case of sound, this jitter is 
the jitter of the A/D/A clock and in the case of out- 
put to the serial port, it is usually dominated by the 
pileup of queued output messages. Output to the 
NeXT host is quite jittery because of the non-real- 
time character of the NeXT itself. 

Messages originate in four distinct ways: as a re- 
sult of asynchronous on-board I/O completion (i.e., 
the serial port); after a time-out (an event indicating 

DSP / 
duty / . 

cycle I I 
list 

SIGNALS S S2 S3 

the end of a time delay); from another FTS task; or 
from the host. Messages incur a delay in crossing 
machine boundaries, which is reflected in logical 
time; other sorts of external input (i.e., from the se- 
rial port or the host) are stamped with the time of 
arrival, with roughly the same amount of jitter as 
in the corresponding outputs. 

The FTS task and its relation to the rest of the 
world are shown in Fig. 3. The task's inputs all ap- 
pear as time-tagged queues. Except for the serial in- 
put queue and the time-out queue, they all share 
the same structure, which is shown in Fig. 4. This 
general queue structure treats messages and sound 
differently. In each queue slot (the contents of a 
queue for a specific tick), there is a variable-length 
subqueue of messages and a prearranged number of 
signal buffers. In the sound input queue, the mes- 
sage part is empty. 

The serial input queue contains time-stamped 
MIDI messages. FTS objects may arrange to be noti- 
fied either for every MIDI byte that arrives, or only 
for a certain class of standard MIDI messages. The 
time-out queue contains callback requests; an 
FTS object that has placed a request in the queue 
may later cancel it or change its scheduled time. 

For each tick, the FTS carries out its (message 
and DSP) duty cycle as follows. The task empties 
out, in sequence, the message contents of each of 
its queue slots for that tick, passing each message 
to its destination. (In the case of the serial port and 
time-out queues, this is not an FTS message but a 
prearranged function call.) Before FTS processes the 
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Fig. 3. An FTS task and its 
external communications. 

Fig. 4. The structure of a 
standard queue. 

LOGICAL TIME T 

messages and sound 

tick, it waits until all the queue slots for that tick 
have been filled, that is, until the task or device 
which fills each queue has promised that no more 
information will be added to the queue slot for that 
tick. The queue slot associated with sound input is 
processed last; instead of looking in the (empty) 
message portion of the slot, FTS runs the DSP duty 
cycle for that tick. 

As the tick is being processed, the task can in 
turn send messages or signals to other tasks (or, in- 
deed, to itself). Messages may be sent sporadically; 
a signal is sent, on each tick, to a particular signal 
buffer in the appropriate queue slot. Sound output 
to DACs is treated as if the DACs associated to a 
board were a separate task. MIDI output is by sub- 
routine call, implicitly time-stamped. 

Each FTS task is assigned a latency d, a positive 
number of ticks about which we can make the fol- 
lowing assertion: assuming that the task's input 
queues are all filled on time, the duty cycle for any 
given tick t will be finished by real time t + d. This 
latency defines the jitter in calculation time which 
we will arrange to absorb, so that there is no uncer- 
tainty about the time at which an operation takes 
effect. This absorption is done by time-stamping all 
outputs of the task at t + d. That will determine the 
logical time at which another task will respond to a 

MESSAGE MESSAGE 

destination destination 

selector selector 

type datum type datum 

type datum type datum 

type datum 

message, or the real time at which physical output 
will start. The assertion that the tick t will be fin- 
ished by time t + d at the latest implies that these 
output messages, time-stamped to t + d, will all ar- 
rive on time. 

Figure 5 shows the relation in a task between real 
and logical times, assuming the case in which each 
tick becomes runnable only at its corresponding 
real time. This is the worst case, assuming all other 
tasks keep their own deadlines. Figure 5 shows a 
pileup of computaton; whenever a tick is not fin- 
ished at the moment the next one becomes runna- 
ble, the task starts to get behind. The assertion of 
the latency of the task is that it will not get so far 
behind as to cross the rightmost diagonal line. 

A task can run at latency d if, in every interval 
[s,t) of logical time, the processing required for all 
the ticks in the interval does not exceed d + t - s. 
If one or more task is late, there is still hope that 
the lateness will not propagate to an output, but 
there is no evident way to take advantage of this to 
loosen the latency specification for a given task. 

The FTS approach to real-time multiprocessor 
programming differs from the standard approach in 
which tasks frequently compete for resources con- 
trolled by some exclusion mechanism. This compe- 

T+l T+2 
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Fig. 5. Logical versus real 
time in a single processor. 

Fig. 6. The accumulation 
of latency through two 
processors. 

logical 
time 

real time 

V waiting to run 

srim,ms, running 
- . finished 

tition makes the timing of the execution of a given 
task heavily dependent on the state of other tasks; 
it can be hard simply to avoid deadlock. On the 
other hand, the reliance of the setup described here 
on messages between tasks puts each task at the 
mercy of all others in another way-it cannot regu- 
late the number of messages, and hence requests 
for actions, that might fall in a given time period. 
Thus, the latency that a task can achieve depends 
on what the other tasks are doing. 

The interdependence of tasks, illustrated in 
Fig. 6, shows that the propagation delay of a mes- 
sage accumulates the latency of each task boundary 
it crosses. Any intertask loop incurs a similar delay. 
Loops within a single task, if they involve DSP, in- 
cur a delay equal to the vector length. This is the 
main reason we wish in the future to maintain 
variable DSP vector lengths; longer vectors can be 
more efficient, but certain DSP loops require short 
delays. 

Communication with the Host 

The host acts as a front-end and as a disk server for 
FTS. As a front-end, its role is to maintain a rep- 
resentation of certain objects (on FTS tasks) as 

graphic objects on the host. A graphic object may 
interpret mouse and keyboard input as requests to 
send messages to a corresponding CP object, or 
change its appearance to reflect changes in the state 
of the CP object. 

When a host-user interface application wishes to 
create an object, it suplies a unique key by which 
the object is identified. The host can use the key to 
pass any message to the object. Since the arguments 
of the message are typed, FTS can automatically 
perform any needed data translations. Integers and 
floating-point numbers are byte-reversed, and sym- 
bols are passed as strings and reconverted to sym- 
bols (that is, a unique address containing the given 
string and a possible binding) on a CP. One par- 
ticular CP, the "master," carries out the transla- 
tion of a key to a CPU identifier and a local mem- 
ory address, and also the generation of symbols 
from strings; all traffic between the host and the 
CPs is routed through this master CP. In the case of 
a symbol, any binding as seen on a given CP must 
point to an object on that same CP; hence, if a new 
symbol is created by the master CP, copies of it are 
created on all other CPs at the same virtual address. 

Messages from the CP to the host are handled by 
the "host queue" mechanism. If any messages flow 
from the CP object back to the graphical one, the 
connection established must be bidirectional. (The 
host must at least send the CP messages to open 
and close the connection; the host is always the 
initiator of a connection between a graphical object 
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Fig. 7. Communication be- 
tween host and CPs. 

and a CP object.) To receive messages from a CP ob- 
ject, a graphical object sends the CP object pointers 
to the graphic object, an update function, and an ex- 
ception function. The CP object then places calls 
to the update function on the host in the queue. 

To free either the CP object or the host object in- 
volved in a bidirectional connection, the connec- 
tion must first be broken; otherwise update mes- 
sages that have already been buffered between the 
CP and the host might arrive for the (already de- 
leted) object. This is the reason for the exception 
message, which the CP object sends on closing the 
connection. The host object is guaranteed that once 
the exception function is called, no more update 
messages will occur through that path. In order to 
free the host object, a message is passed to the CP 
to close the connection, and the host object then 
waits for a callback to its exception function; typi- 
cally it sets a "zombie" flag to warn it not to re- 
spond to CP update messages which arrive in the 
interval. 

The case in which messages are passed only from 
the host to the CP is simpler; the host can create 
the object, send messages to it, and destroy it with 
no danger. Messages arrive at the CP in the same 
order they are sent from the host to ensure that 
no message to the object will arrive outside its 
life span. 

An example of a bidirectional connection is a 
"changing value" on the CP, a datum of constant 
size that is tracked by the host. It is not necessary 
for the host to be notified of every single change in 
such a datum; it need only have a recent value of it. 
On the CP, every time the value changes, the up- 
date function is enqueued for the host. If a call to 
the update function is enqueued before the CP has 
sent the host a prior one, the new one replaces 
the old one. The amount of memory needed is 
thus bounded and can be allocated in advance, and 
an object whose state changes quickly need not 
swamp the host with updates. Overriding an al- 
ready-enqueued update does not change its position 
in the update queue; hence, updates in the host are 
roughly round-robin. 

More complicated situations are handled as they 
arise. For example, a variable-sized ordered list 
(such as a "sequence") might be viewed and edited 
from the host, and "played" or "recorded" from the 

Host 

CPs 

vWY ,/^^~ ~ host commands -> 
<- graphics updates 

multiplexing/ 

demultiplexing 

Master CP CP 2 CP3 

real-time interprocessor message-passing 

CP. In situations like this, the graphics and CP ob- 
jects must implement a protocol on top of the host 
queue mechanism. This has been done for the 
simple case of a list all of whose elements are of the 
same size. 

The FTS/System Interface 

FTS sets up one task on each CP, and chooses one 
CP task to be the master, through which all host- 
CP communication is routed. FTS also sets up a 
host task, which controls the allocation of CPs and 
through which other host applications set up ports 
of communication to the master CP. The host is 
also responsible for servicing file I/O requests from 
CPs, notably real-time sound file access. 

The ports of communication among FTS tasks 
and between them and host tasks are provided by 
CPOS, the CP operating system (Viara 1990). FTS 
sets up ports between each pair of FTS tasks (in 
both directions) for real-time message-passing, and 
each FTS task except the master gets a port back to 
the master for queued updates to the host. Each 
host task gets ports to and from the master FTS 
task, obtained through the central host task as 
shown in Fig. 7. The port to the CP is used to create 
and pass messages to objects on a CP, and the re- 
turning port multiplexes all host queue messages to 
that particular host task. 

A host application needing to access FTS must 
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send a message to the central host task, which re- 
turns a pair of ports to the requesting task. The 
master CP is also notified of the existence of the 
new ports. The host-CP port is included in the list 
of ports the master CP selects to receive messages 
from the host; each object can ask, when it is being 
created, for an identifier for the port where return- 
ing messages are to be sent. 

Utilities Provided by FTS 

FTS provides software packages for archiving 
and recovery of objects, for automating inter-CP 
message-passing, and for sound fie and host queue 
access. An object can be archived by passing it a 
"save" message with a pointer to a "binbuf," a sort 
of stream it can write formatted messages onto. To 
recover the object, the contents of the stream are 
evaluated as a list of messages. 

Inter-CP communication is handled through a 
pair of objects, "remote_send" and "remote_re- 
ceive." The send object (of which there may be sev- 
eral corresponding to one receive) can be given an 
extra delay beyond that which is implied by the 
machine boundary being crossed. Any message a 
send receives is sent on to the corresponding re- 
ceive, which sends it to a prearranged client. The 
receive keeps track of the number of existing sends 
so that it can delay being freed until all messages it 
might receive have arrived. 

Sound file I/O is provided by a circular-buffer 
mechanism. The FTS scheduler periodically checks 
the status of all known sound file I/O buffers and 
starts asynchronous disk I/O to service the "hun- 
griest" one. Subroutines are provided for a sound 
file user to synchronize with the I/O. 

A "host queue element" or "qelem" controls host 
queue access and contains the buffer space for a 
given object's slot in the queue. The client object 
tells the qelem when it needs to send an update; if 
an update is already pending this has no effect; 
otherwise the "qelem" inserts itself into the host 
queue. When the qelem's turn comes to be sent to 
the host, the qelem calls the client back to get the 
latest value to be sent, and formats and sends the 
message to the host. 

Example: Using FTS from MAX 

The MAX program (Puckette 1991), originally writ- 
ten for the Apple Macintosh computer, has been 
ported to the IMW. A set of signal-processing ob- 
jects has been written for MAX to allow patches to 
mix signal generation with control. 

The basic connection mechanism of MAX (inlets 
and outlets) has been adopted without modification 
to connect the image objects on the CPs. Inlets and 
outlets are only defined to work between objects 
on the same processor. All "patchable" objects in 
MAX (i.e., the objects that can be manipulated on 
the screen), maintain a list of inlets and one of out- 
lets. Each outlet maintains a list of all connected 
inlets; "connecting" an outlet to an inlet means 
"putting the inlet in the outlet's list." The object 
owning the outlet can then pass any FTS message 
to it, which the outlet passes to the inlet, which 
passes it on to the receiving object (after modifying 
it to identify which inlet received it). 

On the IMW, a box in MAX gives rise to two ob- 
jects, one on the host and one on a CP. Whenever a 
connection is made or broken between two objects 
on the host, the corresponding change is made on 
the appropriate CP. When the user originates a mes- 
sage through the mouse or keyboard, the message is 
passed to the CP object instead of the NeXT object, 
so the host objects never do any message-passing 
themselves. 

Indicators in MAX all fall under the easy case in 
the above discussion of CP-host communication, so 
it is straightforward to support graphical updates 
that follow the state of the patch on the CP. Certain 
objects require more work, notably the standard ob- 
ject "table" and the experimental object "explode" 
(Puckette 1990), which maintain a vector and a 
list, respectively. These are currently dealt with 
manually; in the table or explode editor, "get" and 
"send" buttons light up whenever the host and CP 
versions of the data get out of sync; the user can 
then choose either to copy "up" or "down" to re- 
synchronize them. A more automatic mechanism 
can easily be envisaged, but has not yet been tried. 

At the time of this writing, only a single FTS task 
may be accessed from MAX; Puckette (1991) de- 
scribes an easy extension that could be made to 
MAX to take advantage of multiprocessing. 
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Example: Using FTS from Animal 

Two classes, "animal" and "a_class" (i.e., "animal 
class"), have been written in FTS to support the 
Animal environment (Lindemann and de Cecco 
1991). Here, animal will refer to the FTS class and 
Animal to the host program. An instance of animal 
has a fixed and a relocatable part. The relocatable 
part holds the instance structure generated by Ani- 
mal. Any instance of animal belongs to an instance 
of a_class, which has methods to add or remove in- 
stance variables and methods for all the animal 
instances belonging to it. These editions are propa- 
gated to the FTS class of the animals; thus, ani- 
mals respond to standard FTS messages as specified 
by Animal. 

A function is provided to mark an animal in- 
stance "dirty," which enqueues a host update via 
the qelem mechanism. The host may add methods 
to an a_class to allow it to update the contents of 
the animal, for instance, as a result of mouse mo- 
tion or typing. 

If an animal has a method for the selector "tick," 
the method will be called at the DSP duty cycle. If 
it has one for "midi" it will be called for each in- 
coming MIDI byte. Animals may arrange time-outs 
via virtual clocks in the same way any other FTS 
object does. 

Conclusion 

A reasonably simple message-passing system and 
interprocessor communication protocol can be 
defined to fill the real-time processing needs of 
such graphical programming environments as MAX 
and Animal. Message-passing delays between pro- 
cessors are nontransparent, as is the mapping of 

real-time programs onto the available processors. 
Since scheduling dependencies between objects 
are controlled explicitly via message-passing, we 
can avoid introducing mutual exclusion, context 
switching, and the like. The ability of the IMW to 
do signal processing and "control computations" in 
the same processor makes possible the very close 
cooperation between the two that real-time musical 
applications demand. 
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