
CPOS: A Real-Time Operating System for the IRCAM Musical Workstation
Author(s): Eric Viara
Source: Computer Music Journal, Vol. 15, No. 3 (Autumn, 1991), pp. 50-57
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680765
Accessed: 11/04/2010 06:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3680765?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Eric Viara
IRCAM: Institut de Recherche et Coordination
Acoustique/Musique
31, rue Saint-Merri
F-75004 Paris, France
eric.viara@ircam.fr

The IRCAM Musical Workstation, or IMW (Linde-
mann et al. 1991), combines one or more NeXT
computers with several real-time coprocessors
(CPs), and includes an extensive software package
that takes advantage of this multiprocessing envi-
ronment. The part of the software that runs on the
CPs requires a special operating system. Not only
must the processors work together in real time, but
they must pass dozens or hundreds of channels of
digital sound among themselves at low latencies,
as well as sporadic messages defining real-time
control. The processors may also require access
to real-time sound and MIDI inputs and outputs via
a Motorola DSP56001 digital signal processor.

The Role of the Coprocessor Operating System

The IMW design breaks new ground on three differ-
ent levels: its high-level user interface; its func-
tional capabilities and performance; and its hard-
ware architecture. Each of these levels puts certain
constraints on the operating system design. The top
level raises such issues as the control and specifica-
tion of digital signal processing; the ease of devel-
opment on dedicated boards (one needs a good soft-
ware production environment including debugging);
and the desire for transparency with respect to the
hardware architecture. At the functional level, cer-
tain DSP algorithms that are recurrent on computer
music applications (e.g., frequency modulation syn-
thesis or digital filtering) need to be executed very
efficiently, whether in real time or not. Their exe-
cution may depend on external events, and they
might require the dynamic loading of object files
not known to the software in advance. Finally, at
the hardware level, the choice of processor and

Computer Music Journal, Vol. 15, No. 3, Fall 1991,
? 1991 Massachusetts Institute of Technology.

CPOS: A Real-Time

Operating System for the
IRCAM Musical

Workstation

memory architecture has to be taken into account.
These requirements lead to a stringent set of

specifications for the operating system. It is neces-
sary to support real-time tasks (involving signals
sampled at 44.1 kHz or faster) controlled by exter-
nal events (hundreds of transactions per second); to
minimize the response time to external interrupts;
to take advantage of the hardware architecture's ca-
pability for parallel and pipelined computation; to
furnish a set of debugging primitives for real-time
tasks; to be as deterministic and controllable as
possible; to offer transparency between host and
coprocessor boards; to take advantage of such fea-
tures of the hardware as local memories; and to of-
fer compatibility with a reasonable subset of the
UNIX operating system. We have found no existing
operating system which meets these specifications
completely, so we were obliged to develop our own,
which is called the "CoProcessor Operating Sys-
tem" (CPOS).

Table 1 shows a breakdown of CPOS's function-
ality into five major areas: process management;
memory management; interprocess communica-
tion (IPC); event handling; and file I/O. These func-
tional areas are based on the following abstractions:
CPU, task, thread (process management), region
(memory management), port, message, PFIFO,
packet (interprocess communication), event (the
event handler), and file and filesystem (file I/O).
Each of these will be described below.

The CPOS design permits kernel configuration at
compile time by choosing among the functionali-
ties listed above. The minimum kernel configura-
tion consists of the process and memory manage-
ment modules for a monoprocessor environment to
which one may add the IPC module for a multi-
processor environment. The System V UNIX layer
is implemented by kernel code written on top of
the CPOS-specific layer. It is possible to suppress
the UNIX interfacing code (at compile time) or

Computer Music Journal 50

Table 1. CPOS abstractions

Section Abstraction

Process management CPU
Task
Thread

Memory management Region
Interprocess communication Port

Msg
PFIFO
Pocket

Event unit Event
Filesystem unit File

Filesystem

to write a different operating system interface, or
even to support the coexistence of several operating
systems.

Process Management

Like the Mach and Chorus operating systems,
CPOS introduces two abstractions related to pro-
cess management: tasks and threads. A task is de-
fined as an environment in which a program is exe-
cuted, including a protected virtual memory space
and communication ports to and from other envi-
ronments. A thread is an execution context running
within a task. A thread's virtual memory is shared
with all other threads in the same task. A process is
defined as a task in which at least one thread is
running.

This separation of a UNIX-like process into two
different abstractions offers the advantage that a
thread can be created much faster than a UNIX pro-
cess. Moreover, threads of a single task in a multi-
processor environment may run on different proces-
sors, sharing a single address space. In CPOS, the
mapping of threads to processors is under the con-
trol of the program (but the kernel can choose the
mapping automatically if the parent thread directs
it to do so). When a thread is created, it is associ-
ated with a context belonging to its parent. This
context includes values for all general- and special-
purpose registers. Upon creation, a thread is in the
"sleeping" state; execution starts upon receipt of an
event (see below).

Every thread has a mode and a priority, which

are initially inherited from the parent thread. The
mode specifies the range of priorities attainable by
the thread, a set of privileges, and a preemption
policy. Two fundamental modes are defined by
CPOS: lambda and real-time. A real-time thread
may reach priority levels higher than those avail-
able to a lambda thread, and may even control ker-
nel parameters such as clock frequency and inter-
rupt masking.

External Interrupts, Scheduling, and Preemption

When the processor is interrupted by an external
event, the interrupts are automatically cached by
the processor. A status word, made up of the pro-
cess's status register and certain I/O registers, is
saved on the interrupt stack. Interrupts are then
immediately re-enabled; only then is the current
thread context saved. The few lines of code that
save this status word comprise the only critical
code section in the CPOS kernel.

If the action coupled with an interrupt is simple
(i.e., does not try to access any global resource), the
interrupt may be serviced immediately. If the as-
sociated action does require access to global re-
sources, the interrupt is deferred as long as those
resources are locked. A resource is generally not
kept in the locked state for longer than necessary to
traverse a short linked list.

CPOS scheduling policy differs for real-time and
lambda mode threads. The handling of an inter-
rupt can result in the selection of a higher priority
thread than the current one; if the current thread is
in real-time mode, it may be preempted only if an
interrupt selects a higher-priority real-time mode
thread. For lambda mode threads, the scheduling
policy is non-real-time; at regular intervals of a few
milliseconds, the kernel selects one of the runnable
lambda-mode threads.

Memory Management

Memory management is based on the notion of a
virtual region. A virtual region is a contiguous area
of virtual memory, endowed with a set of attributes

Viara 51

and attached to a process. A virtual region is deter-
mined by the virtual address at the beginning of the
memory area; this address is used to identify the re-
gion during kernel-user communication. This ad-
dress remains constant throughout the life of the
virtual region. The virtual regions attached to a
process are disjoint.

Region Attributes

The attributes of a region are initialized at the time
of its creation. Some of these attributes are static,
that is, they may not be modified after creation;
others are dynamic and may be modified at any
time. Table 2 summarizes the CPOS memory re-
gion attributes. The simplest region attribute is
the size; it is dynamic and its value ranges (theo-
retically) between 0 and 4 GBytes. The size of a re-
gion may be increased or decreased under program
control.

Another region attribute is the type, which may
be one of the constants, TEXT, DATA, STACK,
DYNAMIC HEAP, SYSTEM or IO, specifying the
way the region is used. In contrast with UNIX in
which only the heap-corresponding to a DYNAMIC
HEAP region in CPOS-is explicitly resizable,
CPOS offers the possibility to allocate or modify
the attributes of a TEXT, DATA or STACK region.
The type attribute is static. The IO type is used for
memory that may be shared between a CP and an I/
O device. The physical mapping of an I/O region is
fully controllable. (A similar feature is available on
some UNIX operating systems through the
"mmap" system call.)

When the region is created, the shareable attri-
bute is initialized to either PRIVATE or PUBLIC.
A PRIVATE region may only be shared between
threads of one task whereas a PUBLIC region may
be shared between threads of different tasks. PUB-
LIC regions are useful for interprocess communi-
cation, whether inside or outside of the IPC sup-
port provided by the CPOS kernel. Shareability is a
static attribute; however, a task may attach or de-
tach a PUBLIC region at any time. At least for the
time being, a PUBLIC region is not protected; any
thread can access it.

One of CPOS's distinctive features is that one can

Table 2. CPOS Memory Region attributes

Attributes Possible Values Dynamic

Size 0-4 GBytes Yes
Type TEXT, DATA,

STACK, DY-
NAMIC HEAP,
or IO No

Shareable PRIVATE or PUBLIC No
Physical sector LOCAL MEMORY,

BOARD MEM-
ORY, or ANY-
WHERE No

Wired down TRUE or FALSE Yes
Cacheable TRUE or FALSE Yes
File/Offset File Descriptor and

Offset No
Protection READ ONLY,

WRITE ONLY, or
READ/WRITE Yes

specify the physical sector on which a virtual re-
gion will be mapped. This is essential because of
the asymmetrical architecture of IMW's local
memories and the varying access times to those
memories. The physical area of a virtual region may
be specified as any of the constants LOCAL MEM-
ORY (anywhere on local memory), BOARD MEMORY
(anywhere on the board), and ANYWHERE. The wired
down attribute is defined to specify whether or not
physical memory pages associated with a virtual re-
gion may be swapped to secondary storage.

The cacheable attribute of a region is dynamic. A
region may be cacheable or not; but all pages of a
region must have the same cacheability. Modifi-
cation of the cacheable attribute causes a global
flush of the data and instruction caches and of the
"Translation Lookaside Buffer."

A region may be associated with a file-offset
couple. This allows direct memory mapping of all
or part of a file. For instance, the text and data re-
gions of a program correspond to areas in the exe-
cutable file. Finally, the protection attribute speci-
fies whether a region is readable, writable, or both.

A region is created by calling the regionAlloc
system call, giving its initial attributes as argu-
ments. Any dynamic attribute change (i.e., size,
wired, cacheable, or protection) is specified using

Computer Music Journal 52

the regionControl system call. A task may at-
tach or detach a PUBLIC region to or from its vir-
tual memory region using the regionAttach or
regionDetach system calls.

A precise diagnostic is given by the kernel in
case of memory management system call failure,
such as the constant K_REGION NO_PHYSICAL
(if not enough physical pages were available to
carry out a system call), or K_REGION_UNKNOWN_
-PROT (if an unknown protection attribute was
specified). The programming interface for mem-
ory allocation is via the functions MemAlloc and
Mem Free, which implement a multimap allocator
interfaced to the CPOS region system calls.

File System

CPOS file system management is built around two
abstractions, file and filesystem, which are similar
to their UNIX equivalents. As in UNIX, a file may
represent either a collection of data or an interface
to a kernel driver. A file system is a hierarchical
collection of files.

File systems in CPOS are typed, since in the fu-
ture the IMW might use specialized file systems
adapted to real-time applications. Such a file sys-
tem might permit speedy sequential access to
sound files by storing them contiguously. A set of
control functions would be provided to fill the spe-
cial needs of a given file system; for instance, to
pack the set of files to recover contiguous space in
memory. At the time of this writing, CPOS does
not support any file system; all file system requests
are filled by host servers, using IPC communication
between the CPOS kernel and the host.

A file is opened and closed by way of the CPOS
system calls fileOpen and fileClose; the
fileRead and fileWrite system calls provide
sequential access to files; the open, close, read
and write UNIX system calls are written in terms
of CPOS system calls. The fileControl CPOS
system call provides services as in the Iseek and
fcntl UNIX system calls. The f s tat UNIX
system call is written using fileInfo. Finally,
fileSystemControl and fileSystemInfo
offer all the necessary functionality to implement
such UNIX system calls as m o u n t and us t at.

Interprocess Communication

Interprocess communication (IPC) in CPOS takes
two forms: formatted message-based communica-
tion using ports; and packed data communication
using packed first-in, first-out queues (PFIFOs).

Communication Ports

A port is an object attached to a task that supports
the exchange of formatted messages to or from
other tasks. A formatted message is a typed seg-
ment of structured data of fixed length. If the mes-
sage to be sent is too long, one may either split the
message into submessages (an expensive and some-
times inadequate solution), or else include in the
message body a reference to a larger data structure
in a shared region of memory.

The thread that sends a message is referred to as
its emitter and the thread receiving it as the re-
ceiver. When an emitter sends a message on a port,
one of the threads waiting on this port will catch it;
normally, it will be caught by the one with the high-
est priority. The message will be deleted from the
message queue unless the receiver tells the kernel
to keep the message in the queue. To date, no real
protection is implemented; that is, any thread can
communicate (either as the emitter or receiver) via
any port for which the identifier is known. A task
could even "eavesdrop" on one or more ports to
keep a record of transactions between other tasks.

Messages may be received synchronously or asyn-
chronously; if they are received asynchronously,
the receiver is blocked only for the local kernel's
processing time. To receive a message synchro-
nously, the receiver is blocked until a message of
the specified type arrives. A UNIX remote proce-
dure call is carried out synchronously; the initiator
is blocked until a response to the request arrives.
A receiver may optionally specify a time-out value
for the blocking.

At its creation a task is given a global port to
which any thread may send messages. This port is
intended mainly for setup communication to ob-
tain a thread or port identifier or a PUBLIC region
address. Ports may be shared between several tasks

Viara 53

running on different processors; their implementa-
tion uses a lock mechanism (test-and-set) to ensure
data coherency. As several emitters and receivers
may share a single port, message ports sometimes
incur a heavy overhead in coherency control.

A port is created using the system call port-
Create. The kernel returns an identifier that will be
used for subsequent communications on this port. The
system calls m s gSend and m s gR cv permit sending and
receiving of messages; the function ms gRp permits
sending of a message and (synchronous) receipt of a reply.
Finally, portDelete deletes a port from a task.

PFIFO Communications

A PFIFO supports unidirectional transmission of
packed data between two tasks either synchro-
nously or asynchronously. A PFIFO sends untyped
packets between tasks; a packet may be any collec-
tion of unstructured data. When an emitter sends a
packet on a PFIFO, it specifies the packet's size-
the receiver will receive either a whole packet or
nothing. An attempt to send a packet on a PFIFO
may result in an error if the PFIFO does not have
enough buffer space to hold the packet. PFIFOs
have a very simple and efficient implementation
that does not require a lock mechanism, even if the
emitting and receiving tasks are not on the same
CPU. This communication strategy is intended for
use between real-time tasks.

The attributes of a PFIFO include the size of its
communication area, a task to which the PFIFO is
attached, and the status of the owning task (emit-
ter or receiver). A PFIFO is created by calling the
pfifoCreate system call with arguments including
the communication buffer size. Packets are sent and re-
ceived using packSend and pack Rev. PFIFOs are
deleted using pf if oDelete.

Events

An event in CPOS is anything that can alter the
chain of execution of a thread. External interrupts,
instruction or data access faults, floating-point

exceptions, system calls, and software signals
(whether originating from the kernel or from an-
other thread) are all considered events. CPOS per-
mits an event to be associated dynamically with a
function to execute within a thread. Except for soft-
ware signals, this function is executed in the con-
text of a thread in the kernel (i.e., a thread running
in the kernel's virtual address space). A function as-
sociated with a hardware interrupt event acts as an
interrupt handler; since it may be changed dynami-
cally, CPOS processes many affect CPOS's own in-
terrupt servicing.

Except for hardware interrupt handlers, all events
are treated on a per-process basis; a task initially
inherits the event handlers of its parent task. Asso-
ciating a user function with a software signal is
similar in effect to UNIX's signal facility. Treating
system calls as events allows different processes to
handle system calls differently; for instance, one
process could use UNIX system calls while another
used VMS.

In the case of a real-time process all of whose vir-
tual memory is wired down, the page fault handler
(called on data or instruction access faults), appears
to the process as a software signal, which it treats
as desired. A thread may wait for the arrival of an
event; in this case only hardware interrupts and
software signals may arrive; a sleeping thread can-
not generate a data access fault or floating-point
exception.

In CPOS, events are described by data structures
maintained in a task's virtual space, and the kernel
is handed a pointer to any event structure relevant
to a system call. The eventHandle system call
associates an event with a function to be executed
in the user's context; eventWait causes the call-
ing task to wait for an event; eventSend sends an
event to a given thread; and finally, eventInfo
gets information concerning the function associ-
ated with an event.

Kernel Control

CPOS provides dynamic control over some kernel
parameters and kernel policy choices (of course,
this feature must be used with care). For instance,

Computer Music Journal 54

in a very critical section of code for real-time digital
signal processing, a task might mask all external
interrupts. No other processing of any kind would
then take place in that processor; an infinite loop in
this program section would effectively freeze the
kernel, forcing a reboot.

An intermediate solution would be to mask clock
ticks so that a higher-priority thread could still pre-
empt the running thread in order to kill or debug it.
As described in the section on process management
above, scheduler policy choices can be dynamically
controlled by changing mode and priority levels. Fi-
nally, user-supplied event detection functions may
be used to "step inside" the kernel since the func-
tions are executed in kernel mode in the kernel's
virtual space.

UNIX Compatibility

CPOS provides partial compatibility with a subset
of AT&T UNIX System V, both in its system calls
and in its executable file ("COFF") format. The
compatibility is not perfect; some UNIX system
calls are not implemented, such as shared memory,
semaphoressemxxx), and the UNIX System V IPC
package. CPOS does provide alternatives to these
system V calls. The CPOS ptrace system call is
not fully compatible with UNIX since the CPOS
and UNIX "Uareas" are slightly different. At pres-
ent, about 40 UNIX system calls are compatibly
implemented in CPOS; in practice, they ensure bi-
nary compatibility for the great majority of UNIX
programs.

To date, we have tested UNIX compatibility at
the source and object level. We have ported such
UNIX commands as "cat," "grep," and "awk," as
well as such well-known computer music programs
as csound (Vercoe and Ellis 1990). All these pro-
grams ported easily and successfully. We have also
tested binary compatibility for programs for which
we only have executable files: for instance, the C
software development environment provided by
Intel including the Metaware C compiler, the In-
tel assembler and linker; and various other tools
such as an archiver and a name list dumper. They
all work.

All UNIX system calls are rewritten in terms of
CPOS system calls; this usually requires only a few
lines of code. This UNIX implementation is not as
modular as in the Mach or Chorus kernels, which
use their IPC packages to exchange requests be-
tween the kernel and their UNIX servers, which
may be dynamically loaded. On the other hand, the
UNIX interface in CPOS is a very small layer and is
therefore very efficient. As in Mach and Chorus,
subsystems can coexist in the operating system
(UNIX and VMS, for instance); however, this is not
a driving concern in CPOS development, and we
will see, as CPOS evolves, whether this feature
needs further development.

CPOS Architecture in the Context of IMW

CPOS consists mainly of a kernel running on the
IMW's Intel i860 coprocessors. For performance
reasons, copies of the kernel reside in each local
memory. Servers running on the NeXT host handle
file-related system calls from CPOS tasks. The host
and the processors running CPOS communicate
using a NeXT/Mach driver. This driver is fairly
complex; the whole CPOS IPC package is included
in it. This permits the host machine to act as a pro-
cessor running CPOS. Any request from the CPOS
kernel to the host is sent through a CPOS IPC
message.

The CPOS system calls taskCreate,
threadCreate, and so forth, are connected with
the IPC package in a run-time library running on
the host. Thus, CP tasks may be created and con-
trolled from the host using the same code as from
tasks running on the CP boards. This feature per-
mits a high level of uniformity in the host/CP ar-
chitecture. Figure 1 shows the structure of CPOS
in the IMW environment.

Measurement and Estimation of CPOS Performance

A set of operating system benchmarks has been run
in the IMW environment using the i860 processors.
From these measurements, we can estimate perfor-
mance for some other benchmarks. However, these

Viara 55

Remote Task Loader Table 3. Initial CPOS performance benchmarks

Time Range in
Operation Microseconds

External interrupt (25, 40)
System call (getid()) (1.5,3)
Context switch (40, 60)
Context switch in the same (25, 40)

virtual space
Duration of a critical section (5, 15)

Table 4. CPOS kernel size for typical configurations
Kernel Configuration Kernel Size

Process/memory management for a
monoprocessor kernel 150 kBytes

Process/memory management and IPC
for a multiprocessor kernel 180 kBytes

Process/memory management, IPC,
filesystem, event unit, and UNIX
interface for a multiprocessor kernel 240 kBytes

Remote System Call Servers

measurements give only a first approximation of
the operating system's real performance; a tally of
the measured and estimated minimal and maximal
performance for each benchmark has yet to be
made. Measurements were made for standard opera-
tions in the kernel such as context switching and
external interrupt processing.

A context switch requires saving the context of
the current thread, selecting a new thread, flushing
the processor's caches, changing the memory map-
ping, and restoring the context of the new thread.
Saving and restoring a thread's context on the i860
are time-consuming since the processor has 32 gen-
eral-purpose and 32 floating-point registers; further-
more, one must save and restore the state of the
floating-point and graphics pipelines, which re-
quires several dozen cycles. Table 3 summarizes
our CPOS performance measurements.

The kernel's size depends on the configuration.
Table 4 shows the kernel's size for typical configu-
rations such as the minimal configuration for a
monoprocessor, including process and virtual
memory management sections; minimal configura-
tion for multiprocessors, including also the inter-
process communication section; and finally, a stan-
dard multiprocessor configuration, including the
event unit and partial UNIX System V compati-
bility.

Conclusion

CPOS was designed to support real-time processes
for computer music as well as general-purpose pro-
grams such as compilers and debuggers. It provides

Computer Music Journal

Fig. 1. The structure of
CPOS.

56

all the features offered by a standard operating sys-
tem as well as real-time features such as its event
unit. Protection policies are sometimes relaxed
to give real-time processes more control over the
kernel. Although CPOS has been designed to take
particular advantage of the IRCAM Musical Work-
station architecture, its design and implementation
are modular enough that it could be ported to other
environments.

References

Lindemann, E., et al. 1991. "The Architecture of the IR-
CAM Musical Workstation." Computer Music Journal
(this issue).

Vercoe, B., and D. Ellis. 1990. "Real-Time CSOUND:
Software Synthesis with Sensing and Control." In Pro-
ceedings of the 1990 International Computer Music
Conference. San Francisco: Computer Music Associ-
ation, pp. 209-211.

Viara 57

	Article Contents
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57

	Issue Table of Contents
	Computer Music Journal, Vol. 15, No. 3 (Autumn, 1991), pp. 1-137
	Front Matter [pp. 1 - 2]
	Editor's Notes: The First Dilemma: The Marginalization of "Art Music" [pp. 3 - 4]
	Announcements [pp. 4 - 9]
	News [pp. 9 - 12]
	Letters
	Responses to the Editorial in "Computer Music Journal" 15:3 [pp. 13 - 15]
	Proposed MIDI Extension [p. 15]

	Machine Songs II: The "PRAESCIO" Series: Composition-Driven Interactive Software [pp. 16 - 26]
	Machine Tongues XIII: Real-Time Audio Conversion under a Time-Sharing Operating System [pp. 27 - 40]
	The IRCAM Musical Workstation
	The Architecture of the IRCAM Musical Workstation [pp. 41 - 49]
	CPOS: A Real-Time Operating System for the IRCAM Musical Workstation [pp. 50 - 57]
	FTS: A Real-Time Monitor for Multiprocessor Music Synthesis [pp. 58 - 67]
	Combining Event and Signal Processing in the MAX Graphical Programming Environment [pp. 68 - 77]
	Animal: Graphical Data Definition and Manipulation in Real Time [pp. 78 - 100]

	Reviews
	Performances, Exhibitions, and Conferences
	Two Views of the 1991 National Association of Music Merchants (NAMM) Convention [pp. 101 - 105]
	Summer Computer Music Festival, Frost Ampitheatre, Stanford University, Palo Alto, California, USA [pp. 105 - 107]
	LIM Computer and Art Festival, Lugano, Italy [pp. 107 - 108]
	Second International Symposium on Electronic Art (SISEA), Groningen, Holland [pp. 108 - 110]
	Bourges International Festival of Electronic Music 1988-1990, Bourges, France [pp. 110 - 115]

	Recordings
	untitled [pp. 115 - 118]
	untitled [pp. 118 - 120]

	Products of Interest
	Product Announcements [pp. 127 - 136]

	User's Reports
	Tascam DA-30 DAT Recorder [pp. 121 - 122]
	Play It by Ear: Ear-Training Software for IBM PCs [pp. 122 - 124]
	Voyetra Sequencer Plus Gold for IBM PCs [pp. 124 - 126]

	Back Matter [pp. 137 - 137]

