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The IRCAM Musical Workstation, or IMW (Linde- 
mann et al. 1991), combines one or more NeXT 
computers with several real-time coprocessors 
(CPs), and includes an extensive software package 
that takes advantage of this multiprocessing envi- 
ronment. The part of the software that runs on the 
CPs requires a special operating system. Not only 
must the processors work together in real time, but 
they must pass dozens or hundreds of channels of 
digital sound among themselves at low latencies, 
as well as sporadic messages defining real-time 
control. The processors may also require access 
to real-time sound and MIDI inputs and outputs via 
a Motorola DSP56001 digital signal processor. 

The Role of the Coprocessor Operating System 

The IMW design breaks new ground on three differ- 
ent levels: its high-level user interface; its func- 
tional capabilities and performance; and its hard- 
ware architecture. Each of these levels puts certain 
constraints on the operating system design. The top 
level raises such issues as the control and specifica- 
tion of digital signal processing; the ease of devel- 
opment on dedicated boards (one needs a good soft- 
ware production environment including debugging); 
and the desire for transparency with respect to the 
hardware architecture. At the functional level, cer- 
tain DSP algorithms that are recurrent on computer 
music applications (e.g., frequency modulation syn- 
thesis or digital filtering) need to be executed very 
efficiently, whether in real time or not. Their exe- 
cution may depend on external events, and they 
might require the dynamic loading of object files 
not known to the software in advance. Finally, at 
the hardware level, the choice of processor and 
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memory architecture has to be taken into account. 
These requirements lead to a stringent set of 

specifications for the operating system. It is neces- 
sary to support real-time tasks (involving signals 
sampled at 44.1 kHz or faster) controlled by exter- 
nal events (hundreds of transactions per second); to 
minimize the response time to external interrupts; 
to take advantage of the hardware architecture's ca- 
pability for parallel and pipelined computation; to 
furnish a set of debugging primitives for real-time 
tasks; to be as deterministic and controllable as 
possible; to offer transparency between host and 
coprocessor boards; to take advantage of such fea- 
tures of the hardware as local memories; and to of- 
fer compatibility with a reasonable subset of the 
UNIX operating system. We have found no existing 
operating system which meets these specifications 
completely, so we were obliged to develop our own, 
which is called the "CoProcessor Operating Sys- 
tem" (CPOS). 

Table 1 shows a breakdown of CPOS's function- 
ality into five major areas: process management; 
memory management; interprocess communica- 
tion (IPC); event handling; and file I/O. These func- 
tional areas are based on the following abstractions: 
CPU, task, thread (process management), region 
(memory management), port, message, PFIFO, 
packet (interprocess communication), event (the 
event handler), and file and filesystem (file I/O). 
Each of these will be described below. 

The CPOS design permits kernel configuration at 
compile time by choosing among the functionali- 
ties listed above. The minimum kernel configura- 
tion consists of the process and memory manage- 
ment modules for a monoprocessor environment to 
which one may add the IPC module for a multi- 
processor environment. The System V UNIX layer 
is implemented by kernel code written on top of 
the CPOS-specific layer. It is possible to suppress 
the UNIX interfacing code (at compile time) or 
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Table 1. CPOS abstractions 

Section Abstraction 

Process management CPU 
Task 
Thread 

Memory management Region 
Interprocess communication Port 

Msg 
PFIFO 
Pocket 

Event unit Event 
Filesystem unit File 

Filesystem 

to write a different operating system interface, or 
even to support the coexistence of several operating 
systems. 

Process Management 

Like the Mach and Chorus operating systems, 
CPOS introduces two abstractions related to pro- 
cess management: tasks and threads. A task is de- 
fined as an environment in which a program is exe- 
cuted, including a protected virtual memory space 
and communication ports to and from other envi- 
ronments. A thread is an execution context running 
within a task. A thread's virtual memory is shared 
with all other threads in the same task. A process is 
defined as a task in which at least one thread is 
running. 

This separation of a UNIX-like process into two 
different abstractions offers the advantage that a 
thread can be created much faster than a UNIX pro- 
cess. Moreover, threads of a single task in a multi- 
processor environment may run on different proces- 
sors, sharing a single address space. In CPOS, the 
mapping of threads to processors is under the con- 
trol of the program (but the kernel can choose the 
mapping automatically if the parent thread directs 
it to do so). When a thread is created, it is associ- 
ated with a context belonging to its parent. This 
context includes values for all general- and special- 
purpose registers. Upon creation, a thread is in the 
"sleeping" state; execution starts upon receipt of an 
event (see below). 

Every thread has a mode and a priority, which 

are initially inherited from the parent thread. The 
mode specifies the range of priorities attainable by 
the thread, a set of privileges, and a preemption 
policy. Two fundamental modes are defined by 
CPOS: lambda and real-time. A real-time thread 
may reach priority levels higher than those avail- 
able to a lambda thread, and may even control ker- 
nel parameters such as clock frequency and inter- 
rupt masking. 

External Interrupts, Scheduling, and Preemption 

When the processor is interrupted by an external 
event, the interrupts are automatically cached by 
the processor. A status word, made up of the pro- 
cess's status register and certain I/O registers, is 
saved on the interrupt stack. Interrupts are then 
immediately re-enabled; only then is the current 
thread context saved. The few lines of code that 
save this status word comprise the only critical 
code section in the CPOS kernel. 

If the action coupled with an interrupt is simple 
(i.e., does not try to access any global resource), the 
interrupt may be serviced immediately. If the as- 
sociated action does require access to global re- 
sources, the interrupt is deferred as long as those 
resources are locked. A resource is generally not 
kept in the locked state for longer than necessary to 
traverse a short linked list. 

CPOS scheduling policy differs for real-time and 
lambda mode threads. The handling of an inter- 
rupt can result in the selection of a higher priority 
thread than the current one; if the current thread is 
in real-time mode, it may be preempted only if an 
interrupt selects a higher-priority real-time mode 
thread. For lambda mode threads, the scheduling 
policy is non-real-time; at regular intervals of a few 
milliseconds, the kernel selects one of the runnable 
lambda-mode threads. 

Memory Management 

Memory management is based on the notion of a 
virtual region. A virtual region is a contiguous area 
of virtual memory, endowed with a set of attributes 
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and attached to a process. A virtual region is deter- 
mined by the virtual address at the beginning of the 
memory area; this address is used to identify the re- 
gion during kernel-user communication. This ad- 
dress remains constant throughout the life of the 
virtual region. The virtual regions attached to a 
process are disjoint. 

Region Attributes 

The attributes of a region are initialized at the time 
of its creation. Some of these attributes are static, 
that is, they may not be modified after creation; 
others are dynamic and may be modified at any 
time. Table 2 summarizes the CPOS memory re- 
gion attributes. The simplest region attribute is 
the size; it is dynamic and its value ranges (theo- 
retically) between 0 and 4 GBytes. The size of a re- 
gion may be increased or decreased under program 
control. 

Another region attribute is the type, which may 
be one of the constants, TEXT, DATA, STACK, 
DYNAMIC HEAP, SYSTEM or IO, specifying the 
way the region is used. In contrast with UNIX in 
which only the heap-corresponding to a DYNAMIC 
HEAP region in CPOS-is explicitly resizable, 
CPOS offers the possibility to allocate or modify 
the attributes of a TEXT, DATA or STACK region. 
The type attribute is static. The IO type is used for 
memory that may be shared between a CP and an I/ 
O device. The physical mapping of an I/O region is 
fully controllable. (A similar feature is available on 
some UNIX operating systems through the 
"mmap" system call.) 

When the region is created, the shareable attri- 
bute is initialized to either PRIVATE or PUBLIC. 
A PRIVATE region may only be shared between 
threads of one task whereas a PUBLIC region may 
be shared between threads of different tasks. PUB- 
LIC regions are useful for interprocess communi- 
cation, whether inside or outside of the IPC sup- 
port provided by the CPOS kernel. Shareability is a 
static attribute; however, a task may attach or de- 
tach a PUBLIC region at any time. At least for the 
time being, a PUBLIC region is not protected; any 
thread can access it. 

One of CPOS's distinctive features is that one can 

Table 2. CPOS Memory Region attributes 

Attributes Possible Values Dynamic 

Size 0-4 GBytes Yes 
Type TEXT, DATA, 

STACK, DY- 
NAMIC HEAP, 
or IO No 

Shareable PRIVATE or PUBLIC No 
Physical sector LOCAL MEMORY, 

BOARD MEM- 
ORY, or ANY- 
WHERE No 

Wired down TRUE or FALSE Yes 
Cacheable TRUE or FALSE Yes 
File/Offset File Descriptor and 

Offset No 
Protection READ ONLY, 

WRITE ONLY, or 
READ/WRITE Yes 

specify the physical sector on which a virtual re- 
gion will be mapped. This is essential because of 
the asymmetrical architecture of IMW's local 
memories and the varying access times to those 
memories. The physical area of a virtual region may 
be specified as any of the constants LOCAL MEM- 
ORY (anywhere on local memory), BOARD MEMORY 
(anywhere on the board), and ANYWHERE. The wired 
down attribute is defined to specify whether or not 
physical memory pages associated with a virtual re- 
gion may be swapped to secondary storage. 

The cacheable attribute of a region is dynamic. A 
region may be cacheable or not; but all pages of a 
region must have the same cacheability. Modifi- 
cation of the cacheable attribute causes a global 
flush of the data and instruction caches and of the 
"Translation Lookaside Buffer." 

A region may be associated with a file-offset 
couple. This allows direct memory mapping of all 
or part of a file. For instance, the text and data re- 
gions of a program correspond to areas in the exe- 
cutable file. Finally, the protection attribute speci- 
fies whether a region is readable, writable, or both. 

A region is created by calling the regionAlloc 
system call, giving its initial attributes as argu- 
ments. Any dynamic attribute change (i.e., size, 
wired, cacheable, or protection) is specified using 
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the regionControl system call. A task may at- 
tach or detach a PUBLIC region to or from its vir- 
tual memory region using the regionAttach or 
regionDetach system calls. 

A precise diagnostic is given by the kernel in 
case of memory management system call failure, 
such as the constant K_REGION NO_PHYSICAL 
(if not enough physical pages were available to 
carry out a system call), or K_REGION_UNKNOWN_ 
-PROT (if an unknown protection attribute was 
specified). The programming interface for mem- 
ory allocation is via the functions MemAlloc and 
Mem Free, which implement a multimap allocator 
interfaced to the CPOS region system calls. 

File System 

CPOS file system management is built around two 
abstractions, file and filesystem, which are similar 
to their UNIX equivalents. As in UNIX, a file may 
represent either a collection of data or an interface 
to a kernel driver. A file system is a hierarchical 
collection of files. 

File systems in CPOS are typed, since in the fu- 
ture the IMW might use specialized file systems 
adapted to real-time applications. Such a file sys- 
tem might permit speedy sequential access to 
sound files by storing them contiguously. A set of 
control functions would be provided to fill the spe- 
cial needs of a given file system; for instance, to 
pack the set of files to recover contiguous space in 
memory. At the time of this writing, CPOS does 
not support any file system; all file system requests 
are filled by host servers, using IPC communication 
between the CPOS kernel and the host. 

A file is opened and closed by way of the CPOS 
system calls fileOpen and fileClose; the 
fileRead and fileWrite system calls provide 
sequential access to files; the open, close, read 
and write UNIX system calls are written in terms 
of CPOS system calls. The fileControl CPOS 
system call provides services as in the Iseek and 
fcntl UNIX system calls. The f s tat UNIX 
system call is written using fileInfo. Finally, 
fileSystemControl and fileSystemInfo 
offer all the necessary functionality to implement 
such UNIX system calls as m o u n t and us t at. 

Interprocess Communication 

Interprocess communication (IPC) in CPOS takes 
two forms: formatted message-based communica- 
tion using ports; and packed data communication 
using packed first-in, first-out queues (PFIFOs). 

Communication Ports 

A port is an object attached to a task that supports 
the exchange of formatted messages to or from 
other tasks. A formatted message is a typed seg- 
ment of structured data of fixed length. If the mes- 
sage to be sent is too long, one may either split the 
message into submessages (an expensive and some- 
times inadequate solution), or else include in the 
message body a reference to a larger data structure 
in a shared region of memory. 

The thread that sends a message is referred to as 
its emitter and the thread receiving it as the re- 
ceiver. When an emitter sends a message on a port, 
one of the threads waiting on this port will catch it; 
normally, it will be caught by the one with the high- 
est priority. The message will be deleted from the 
message queue unless the receiver tells the kernel 
to keep the message in the queue. To date, no real 
protection is implemented; that is, any thread can 
communicate (either as the emitter or receiver) via 
any port for which the identifier is known. A task 
could even "eavesdrop" on one or more ports to 
keep a record of transactions between other tasks. 

Messages may be received synchronously or asyn- 
chronously; if they are received asynchronously, 
the receiver is blocked only for the local kernel's 
processing time. To receive a message synchro- 
nously, the receiver is blocked until a message of 
the specified type arrives. A UNIX remote proce- 
dure call is carried out synchronously; the initiator 
is blocked until a response to the request arrives. 
A receiver may optionally specify a time-out value 
for the blocking. 

At its creation a task is given a global port to 
which any thread may send messages. This port is 
intended mainly for setup communication to ob- 
tain a thread or port identifier or a PUBLIC region 
address. Ports may be shared between several tasks 
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running on different processors; their implementa- 
tion uses a lock mechanism (test-and-set) to ensure 
data coherency. As several emitters and receivers 
may share a single port, message ports sometimes 
incur a heavy overhead in coherency control. 

A port is created using the system call port- 
Create. The kernel returns an identifier that will be 
used for subsequent communications on this port. The 
system calls m s gSend and m s gR cv permit sending and 
receiving of messages; the function ms gRp permits 
sending of a message and (synchronous) receipt of a reply. 
Finally, portDelete deletes a port from a task. 

PFIFO Communications 

A PFIFO supports unidirectional transmission of 
packed data between two tasks either synchro- 
nously or asynchronously. A PFIFO sends untyped 
packets between tasks; a packet may be any collec- 
tion of unstructured data. When an emitter sends a 
packet on a PFIFO, it specifies the packet's size- 
the receiver will receive either a whole packet or 
nothing. An attempt to send a packet on a PFIFO 
may result in an error if the PFIFO does not have 
enough buffer space to hold the packet. PFIFOs 
have a very simple and efficient implementation 
that does not require a lock mechanism, even if the 
emitting and receiving tasks are not on the same 
CPU. This communication strategy is intended for 
use between real-time tasks. 

The attributes of a PFIFO include the size of its 
communication area, a task to which the PFIFO is 
attached, and the status of the owning task (emit- 
ter or receiver). A PFIFO is created by calling the 
pfifoCreate system call with arguments including 
the communication buffer size. Packets are sent and re- 
ceived using packSend and pack Rev. PFIFOs are 
deleted using pf if oDelete. 

Events 

An event in CPOS is anything that can alter the 
chain of execution of a thread. External interrupts, 
instruction or data access faults, floating-point 

exceptions, system calls, and software signals 
(whether originating from the kernel or from an- 
other thread) are all considered events. CPOS per- 
mits an event to be associated dynamically with a 
function to execute within a thread. Except for soft- 
ware signals, this function is executed in the con- 
text of a thread in the kernel (i.e., a thread running 
in the kernel's virtual address space). A function as- 
sociated with a hardware interrupt event acts as an 
interrupt handler; since it may be changed dynami- 
cally, CPOS processes many affect CPOS's own in- 
terrupt servicing. 

Except for hardware interrupt handlers, all events 
are treated on a per-process basis; a task initially 
inherits the event handlers of its parent task. Asso- 
ciating a user function with a software signal is 
similar in effect to UNIX's signal facility. Treating 
system calls as events allows different processes to 
handle system calls differently; for instance, one 
process could use UNIX system calls while another 
used VMS. 

In the case of a real-time process all of whose vir- 
tual memory is wired down, the page fault handler 
(called on data or instruction access faults), appears 
to the process as a software signal, which it treats 
as desired. A thread may wait for the arrival of an 
event; in this case only hardware interrupts and 
software signals may arrive; a sleeping thread can- 
not generate a data access fault or floating-point 
exception. 

In CPOS, events are described by data structures 
maintained in a task's virtual space, and the kernel 
is handed a pointer to any event structure relevant 
to a system call. The eventHandle system call 
associates an event with a function to be executed 
in the user's context; eventWait causes the call- 
ing task to wait for an event; eventSend sends an 
event to a given thread; and finally, eventInfo 
gets information concerning the function associ- 
ated with an event. 

Kernel Control 

CPOS provides dynamic control over some kernel 
parameters and kernel policy choices (of course, 
this feature must be used with care). For instance, 
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in a very critical section of code for real-time digital 
signal processing, a task might mask all external 
interrupts. No other processing of any kind would 
then take place in that processor; an infinite loop in 
this program section would effectively freeze the 
kernel, forcing a reboot. 

An intermediate solution would be to mask clock 
ticks so that a higher-priority thread could still pre- 
empt the running thread in order to kill or debug it. 
As described in the section on process management 
above, scheduler policy choices can be dynamically 
controlled by changing mode and priority levels. Fi- 
nally, user-supplied event detection functions may 
be used to "step inside" the kernel since the func- 
tions are executed in kernel mode in the kernel's 
virtual space. 

UNIX Compatibility 

CPOS provides partial compatibility with a subset 
of AT&T UNIX System V, both in its system calls 
and in its executable file ("COFF") format. The 
compatibility is not perfect; some UNIX system 
calls are not implemented, such as shared memory, 
semaphoressemxxx), and the UNIX System V IPC 
package. CPOS does provide alternatives to these 
system V calls. The CPOS ptrace system call is 
not fully compatible with UNIX since the CPOS 
and UNIX "Uareas" are slightly different. At pres- 
ent, about 40 UNIX system calls are compatibly 
implemented in CPOS; in practice, they ensure bi- 
nary compatibility for the great majority of UNIX 
programs. 

To date, we have tested UNIX compatibility at 
the source and object level. We have ported such 
UNIX commands as "cat," "grep," and "awk," as 
well as such well-known computer music programs 
as csound (Vercoe and Ellis 1990). All these pro- 
grams ported easily and successfully. We have also 
tested binary compatibility for programs for which 
we only have executable files: for instance, the C 
software development environment provided by 
Intel including the Metaware C compiler, the In- 
tel assembler and linker; and various other tools 
such as an archiver and a name list dumper. They 
all work. 

All UNIX system calls are rewritten in terms of 
CPOS system calls; this usually requires only a few 
lines of code. This UNIX implementation is not as 
modular as in the Mach or Chorus kernels, which 
use their IPC packages to exchange requests be- 
tween the kernel and their UNIX servers, which 
may be dynamically loaded. On the other hand, the 
UNIX interface in CPOS is a very small layer and is 
therefore very efficient. As in Mach and Chorus, 
subsystems can coexist in the operating system 
(UNIX and VMS, for instance); however, this is not 
a driving concern in CPOS development, and we 
will see, as CPOS evolves, whether this feature 
needs further development. 

CPOS Architecture in the Context of IMW 

CPOS consists mainly of a kernel running on the 
IMW's Intel i860 coprocessors. For performance 
reasons, copies of the kernel reside in each local 
memory. Servers running on the NeXT host handle 
file-related system calls from CPOS tasks. The host 
and the processors running CPOS communicate 
using a NeXT/Mach driver. This driver is fairly 
complex; the whole CPOS IPC package is included 
in it. This permits the host machine to act as a pro- 
cessor running CPOS. Any request from the CPOS 
kernel to the host is sent through a CPOS IPC 
message. 

The CPOS system calls taskCreate, 
threadCreate, and so forth, are connected with 
the IPC package in a run-time library running on 
the host. Thus, CP tasks may be created and con- 
trolled from the host using the same code as from 
tasks running on the CP boards. This feature per- 
mits a high level of uniformity in the host/CP ar- 
chitecture. Figure 1 shows the structure of CPOS 
in the IMW environment. 

Measurement and Estimation of CPOS Performance 

A set of operating system benchmarks has been run 
in the IMW environment using the i860 processors. 
From these measurements, we can estimate perfor- 
mance for some other benchmarks. However, these 
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Remote Task Loader Table 3. Initial CPOS performance benchmarks 

Time Range in 
Operation Microseconds 

External interrupt (25, 40) 
System call (getid()) (1.5,3) 
Context switch (40, 60) 
Context switch in the same (25, 40) 

virtual space 
Duration of a critical section (5, 15) 

Table 4. CPOS kernel size for typical configurations 
Kernel Configuration Kernel Size 

Process/memory management for a 
monoprocessor kernel 150 kBytes 

Process/memory management and IPC 
for a multiprocessor kernel 180 kBytes 

Process/memory management, IPC, 
filesystem, event unit, and UNIX 
interface for a multiprocessor kernel 240 kBytes 

Remote System Call Servers 

measurements give only a first approximation of 
the operating system's real performance; a tally of 
the measured and estimated minimal and maximal 
performance for each benchmark has yet to be 
made. Measurements were made for standard opera- 
tions in the kernel such as context switching and 
external interrupt processing. 

A context switch requires saving the context of 
the current thread, selecting a new thread, flushing 
the processor's caches, changing the memory map- 
ping, and restoring the context of the new thread. 
Saving and restoring a thread's context on the i860 
are time-consuming since the processor has 32 gen- 
eral-purpose and 32 floating-point registers; further- 
more, one must save and restore the state of the 
floating-point and graphics pipelines, which re- 
quires several dozen cycles. Table 3 summarizes 
our CPOS performance measurements. 

The kernel's size depends on the configuration. 
Table 4 shows the kernel's size for typical configu- 
rations such as the minimal configuration for a 
monoprocessor, including process and virtual 
memory management sections; minimal configura- 
tion for multiprocessors, including also the inter- 
process communication section; and finally, a stan- 
dard multiprocessor configuration, including the 
event unit and partial UNIX System V compati- 
bility. 

Conclusion 

CPOS was designed to support real-time processes 
for computer music as well as general-purpose pro- 
grams such as compilers and debuggers. It provides 
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Fig. 1. The structure of 
CPOS. 
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all the features offered by a standard operating sys- 
tem as well as real-time features such as its event 
unit. Protection policies are sometimes relaxed 
to give real-time processes more control over the 
kernel. Although CPOS has been designed to take 
particular advantage of the IRCAM Musical Work- 
station architecture, its design and implementation 
are modular enough that it could be ported to other 
environments. 
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