
The Lucasfilm Audio Signal Processor
Author(s): James A. Moorer
Source: Computer Music Journal, Vol. 6, No. 3 (Autumn, 1982), pp. 22-32
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680196
Accessed: 11/04/2010 06:25

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3680196?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress


James A. Moorer 
Lucasfilm Ltd. 
P.O. Box 2009 
San Rafael, California 94912 

Introduction 

The requirements of audio processing for motion 
pictures present several special problems that make 
digital processing of audio very desirable and also 
relatively difficult. The difficulties can be summa- 
rized as follows: 

1. Large amounts of numerical computation 
are required, on the order of 2 million in- 
teger multiply-adds per second per channel 
of audio, for some number of channels. 

2. The exact processing involved changes in 
real time but must not interrupt the flow 
of audio data. 

3. Large input/output (I/O) capacity is nec- 
essary, simultaneous with numerical 
calculation and changes to the running pro- 
gram, on the order of 1.6 million bits per 
second per channel of audio. 

To overcome these difficulties, the digital audio 
group at Lucasfilm is building a number of audio 
signal processors, the architecture of which reflects 
the special problems of audio. 

Motivation: What Is the Problem? 

The sound in motion pictures is usually divided 
into three and sometimes four categories: dialogue, 
music, and sound effects. Additionally, sound ef- 
fects are sometimes divided into two further cate- 
gories, Foley effects and special effects. Foley 
effects (after Jack Foley, who was with Universal 
Studios during the 1930s) are human nonvocal 
noises, such as footsteps. Special effects include 
pistol shots, explosions, and everything else. 

Although dialogue is generally recorded at the 
set, it is most often not of suitable quality and must 

Computer Music Journal, Vol. 6, No. 3, Fall 1982, 
0148-9267/82/030022-11 $04.00/00 
? 1982 Massachusetts Institute of Technology. 

The Lucasfilm Audio 

Signal Processor 

be recreated in the studio. This entails an actor 
watching a print of the film and speaking the lines 
in synchrony with the film. The actor, however, 
usually hears little or no other sound cues, such as 
other voices, music, or sound effects while he or 
she is trying to speak the lines. Needless to say, it 
requires actors of substantial talent to give convinc- 
ing performances under these conditions. Some 
actors are unable to do this, necessitating use of re- 
cordings from the set regardless of their quality. 

Consider now the problem faced by dialogue edi- 
tors. They are presented with stacks of recordings, 
some from a studio (an acoustically dead environ- 
ment), some from a stage (which can be very rever- 
berant), and some garbled or poorly recorded (with 
the actor facing away from the microphone, for in- 
stance). The editors must make all these recordings 
sound as if they are coming from the same environ- 
ment and as if they are coming from the environ- 
ment that the viewer is seeing on the screen. This 
consistency and apparent authenticity is usually ac- 
complished with the use of ad hoc combinations of 
signal processing devices such as filters, reverbera- 
tors, modulators, and other tools of the analog au- 
dio studio. The art of the dialogue editor lies in the 
skillful use of such equipment. 

Sound effects production is a complete art in it- 
self. Take the simple example of a "nose crunch." A 
real fist hitting a nose sounds a lot like someone 
hitting a side of beef. Sometime in the 1930s this 
was deemed to be insufficiently spectacular for 
movies, and since that time nose crunches (as well 
as all other sound effects) have been made by com- 
bining several sounds. There is a smack, sometimes 
taken from the sound of a pistol shot, and then a 
crunch, usually made by dropping a watermelon 
out of a second-story window. Other sounds, like 
the whizzing of the fist through the air, are added 
to produce the final sound. Often, signal processing 
is added, the most common forms probably being 
pitch shifting and phasing (feedback delay lines). 
Each sound must then be synchronized with the 
picture, which is typically done by splicing bits of 

Computer Music Journal 22 



sound (with silence in between) into reels. As if 
this were not enough, the sound editors are gen- 
erally doing this work while the film editors are 
still making changes in the movie. Needless to say, 
when a film editor decides to, for instance, delete 
three frames from a scene, the poor sound editor 
must go through every reel of sound for that scene 
and cut out three frames. This is not so bad in most 
cases, but if a scene that has a background noise 
(like a factory or a train) is lengthened, generally it 
means that that sound must be reedited (copied and 
spliced anew) to fit properly. 

Each sound editor (of music, dialogue, sound 
effects) will then mix down (combine) several reels 
of sound into single, composite reels. Each editor 
shows up at the final mix session with a stack of 
reels of sound for each reel of film. This occasion is 
often the first on which anyone has heard the mu- 
sic, the dialogue, and the sound effects all together. 
It is usually scheduled for just a few months before 
the film's release, and much too late to change any- 
thing substantial. The final mix usually has several 
tracks of dialogue, several tracks of music, and sev- 
eral tracks of sound effects. The mixing boards for 
commercial film work are quite large-a 72-track 
mixing console is not unusual. A console of this 
size is operated by a team of two to six people. The 
most common arrangement is for the "head" mixer 
to handle the dialogue, while two other mixers 
handle the music and sound effects. Typically, the 
mixing consoles have no automation, so level and 
filter settings must be "rehearsed" in much the 
same way that musicians rehearse their perfor- 
mances. Balancing the various elements so that im- 
portant aspects are brought out at the right times 
without distracting from the action on the screen is 
a delicate art. 

If we gauge the number of reels of sound needed 
for every reel of film by multiplying the number of 
premixed reels by the number of reels that have 
gone into the premix and summing over all reels, 
we find that a complicated scene can entail as 
many as 130 separate reels or tracks of audio. Pre- 
mixing is essential, then, as a way of reducing this 
to a manageable number, even at the cost of intro- 
ducing additional noise during the copying process. 

This is the way movie sound has been made, vir- 

tually as long as there has been movie sound. What 
we wish to do here at Lucasfilm is to put a com- 
puter in the middle of all of this, so that each ma- 
nipulation is precisely recorded and memorized and 
there can be complete (and semiautomatic) sharing 
of information among the different mixers, includ- 
ing the film editor. To this end, we have designed, 
built, programmed (Abbott 1981), and are currently 
debugging an audio signal processing station that 
we hope will be able to perform these tasks with 
great efficiency and clarity of sound. 

This system can only affect the production of 
sound for the film. We cannot now expect to have a 
strong influence on how the sound is presented in 
the theater. (Obviously, to reap the benefits of digi- 
tal processing fully, theater sound systems have to 
be thoroughly overhauled also.) Our aim is to re- 
duce the tremendous amount of hand work (splic- 
ing and resplicing all those little pieces together) 
and consequently lower the cost of film production 
(at least in the sound department). With costs 
down, we hope funds will become available to 
bring new talent and creativity into the field. 

This, then, is the background for our project. 
Since most of us on the team come from the com- 
puter music synthesis world, we have also embed- 
ded a great deal of music processing and synthesis 
capability into the system, with the feeling that 
when sound editors, particularly those involved 
with sound effects and music production, learn the 
true potential of the system, they will be seduced 
into using it more and more. 

And In Signal Processing Terms... 

The implications of this scenario for the signal pro- 
cessor are numerous. We plan to store the sound 
itself on standard 300-Mbyte disks. They offer sev- 
eral advantages, such as the fact that they are ma- 
ture products that are easily available and easily 
maintained. The packs may be mounted and dis- 
mounted, giving us the flexibility we need in face of 
the startling realization that we cannot afford to 
keep all the sound for an entire movie on-line all 
the time. With a 50-KHz sampling rate, an entire 
300-Mbyte disk pack, when formatted in a standard 

Moorer 

III 

23 



way (32 sectors per track at 512 bytes per sector), 
holds 42 min of monaural sound. Since the 70-mm 
print of a film uses six magnetic tracks, a single 
pack only holds between 6 and 7 min of six-track 
sound, and this is in finished form. Many, many 
disk packs have been used to produce these tracks. 
Until storage systems several orders of magnitude 
more dense (such as optical storage) are readily 
available, we must accept the need to mount and 
dismount large numbers of disk packs. 

Sounds for movies vary from very short (pistol 
shots) to very long (background noise or music). 
During the mix-down process, deliberate steps 
must be taken to prevent these sounds from being 
scattered around the disks in unpredictable ways, 
which would require a great deal of head motion to 
recover them all. Since the disk rotates at 60 revo- 
lutions per second and each track contains 16 
Kybtes, a mean transfer rate of about 980,000 bytes 
per second could theoretically be obtained (despite 
the fact that the burst rate is about 1.2 Mbytes per 
second). Since we only need 800,000 bytes per sec- 
ond to provide eight channels of audio at 50 KHz, 
some margin is provided for head motion, but then 
the buffer space must be quite large to allow large, 
contiguous transfers to proceed in an uninterrupted 
manner. 

The processing of the signal can be easily formu- 
lated using digital techniques, since it consists 
mostly of various kinds of filtering. Each sound, 
however, usually has its own "private" processing 
that must be applied, which is different from the 
processing of other sounds that might be going on 
at the time. For example, we might have two simul- 
taneous pieces of dialogue, one of which was re- 
corded in a studio and the other of which was 
recorded on the set. When the sound is started, mi- 
crocode must be loaded to perform the particular 
processing that is necessary for this sound and 
must be unloaded when the sound is done (or 
somewhat after the sound is done if, for instance, 
the reverberation is to persist after the sound). For 
the duration of a sound, the microcode for that 
sound typically does not change, but various pa- 
rameters (loudness, filter frequencies) will often 
change slowly with time. This means that we must 
be able to load a bunch of microcode at or near a 

particular time without disturbing any other pro- 
cessing (microcode) that is happening at the time. 
Not all the microcode changes at once; more often, 
relatively small bits of it flow in and out of exis- 
tence at various (precise) times. 

The Audio Signal Processor 

The audio signal processing station is a semimodu- 
lar, self-contained unit composed of several major 
subassemblies. The control computer is a Motorola 
68000 with Winchester disk, 1 Mbyte of main 
memory, and a high-resolution, bit-map, graphic 
display screen. The audio signal processor (ASP) is 
composed of two parts: the controller and up to 
eight digital signal processors (DSPs). The console 
is a stand-alone 68000 with a custom-built panel 
that has various kinds of control devices, such as 
slide potentiometers and knobs (Snell 1982). We al- 
low up to seven independent control processors to 
forward updates (changes to microcode and param- 
eter memories) to the ASP simultaneously. There is 
a priority system for arbitration of simultaneous re- 
quests. The remainder of this article will be con- 
cerned with the architecture of the ASP itself, since 
this is where any innovation in audio signal pro- 
cessing is to be found. Figure 1 shows the block 
diagram of the entire system. 

A DSP is designed to handle 8 channels of audio 
at a sampling rate of 50 KHz. Since movie sound 
does not normally have a full 20-KHz bandwidth, 
we may be able to reduce the sampling rate to 35 
KHz and thus increase the number of channels to 
12. For professional music applications, however, 50 
KHz is considered to be standard. Since up to eight 
DSPs can be connected to a single DSP controller, a 
maximum of 64 channels for an ASP is achievable. 
Each DSP is capable of a computation rate of about 
18 million 24-bit integer multiply-adds per second, 
simultaneous with a sustained disk transfer rate of 
6.4 million bits per second (800 Kbytes per second) 
and a sustained analog-to-digital or digital-to-analog 
converter (ADC or DAC) transfer rate of 6.4 million 
bits per second. 

The DSP is a horizontally microcoded device 
with 4K 96-bit microcode words. The device is a 

Computer Music Journal 24 



Fig. 1. Block diagram of 
the Lucasfilm audio signal 
processor (ASP) system. 

% II 
, x ll 

Console (up to 8 
knobs, consoles) 
sliders, 

switches, 
joysticks, 
displays, 

etc. 

DISPLAY 

300- 300- 
Mbyte Mbyte 
disk disk 
drive drive 

lock-step, synchronous machine with no branching. 
The instruction counter starts at zero, goes to a 
fixed limit, then returns to zero. It was designed 
this way for several reasons, not the least of which 
is that branching is not generally necessary in this 
kind of sample-at-a-time "stream" processing, as 
long as logic and decision-making capabilities are 
provided in some other way. Another reason is that 
with a number of DSPs in the system, it is very 
convenient to have them all working on the same 
sample at the same time. This greatly simplifies in- 
terprocessor communication. For computing recur- 

rence relations, such as those involved in digital 
filtering, it is perfectly clear that the "program" is 
the same for each sample. (Note: we cannot readily 
make use of the Fast Fourier Transform [FFT] for 

realizing these digital filters, since most of these fil- 
ters have time-varying coefficients, and sometimes 
the rate of variation approaches the FFT frame rate. 
We are thus forced to use the time-domain recur- 
rence relation.) 

Inside the DSP itself, there are separate func- 
tional units for dealing with each of the main prob- 
lems in this kind of device: (1) transferring data to 

Moorer 

Audio 
channels 

(up to 8) 

(up to 8 
DSPs) 

Disk 
drive 

controller 
MSC 1010 

Disk 
drive 

controller 
MSC 1010 

300- 
Mbyte 
disk 
drive 

300- 
Mbyte 
disk 
drive 

25 



Fig. 2. Block diagram of 
the digital signal processor 
(DSP) subsystem of the 
ASP. 

MI 
I 

and from the disks continously at near the max- 
imum rate, (2) effecting the required numerical cal- 
culation rate, (3) transferring data to and from the 
ADCs and DACs, and (4) handling the synchronous 
changes to microcode and parameters. In addition, 
extensive diagnostic aids are distributed throughout 
the machine, allowing it to be single-stepped and 
allowing readback of most of its internal registers. 

The Numerical Engine 

The heart of the numerical part of a DSP is the 
multiply-accumulate unit, the scratchpad memo- 

ries, and the busses. Figure 2 shows a block dia- 
gram of the DSP itself. There are two 24-bit busses, 
called the ABUS and the BBUS, which supply data 
to each of the arithmetic units. Each microinstruc- 
tion has two 4-bit fields that specify the source for 
each bus, and a number of bits saying which arith- 
metic unit input latches are to receive the contents 
of these busses. On each 50-nsec instruction, two 
24-bit data are selected and forwarded, via the 
busses, to the input latches of some functional 
units. For ease of programming, the two 16-input 
multiplexers for the busses are identical. This 
makes the busses largely interchangeable, even 
though some of the combinations will be seldom 

Computer Music Journal 

MI 

26 



Fig. 3. Data flow through 
the multiply-accumulate 
unit. 

ABUS BBUS 

MPY FUNCTION EN 
DATA SEL 

MH 

AC A ZERO SEL 

ABUS 
MI 

AC B LATCH EN 

AC SEL 

AC SUB SEL 

AC H AC L 

used. We did it this way because every time in the 
past that we have attempted to anticipate which 
paths would be used and which paths would not be 
used, further developments in signal processing 
techniques have invariably proved us wrong. After 
gaining some experience with the machine, we will 
be able to look back over our programs and ask 
which combinations have not been used. Then we 
may reduce the width of the selectors in future ver- 
sions of the machine. 

The multiply-accumulate unit consists of a 24- 
by-24-bit, signed/unsigned multiplier that develops 
a full 48-bit product, followed by a shifter that is 
capable of shifting left up to three places and right 
up to four places, followed by a 48-bit accumulator. 
This allows the partial products for a digital filter 
to be summed in double precision, permitting later 
truncation to single precision or the use of even 
higher precision. There are pipeline registers in the 

multiplier so that a full multiply may be started 
every 50 nsec (that is, every instruction). If a multi- 
ply is started on instruction N, its results may be 
selected onto one of the busses on instruction 
N + 2, and the output of the accumulator may be 
selected on instruction N + 3. The output of the 
multiplier may be either added into or subtracted 
from the accumulator contents. 

The Multiply-Accumulate Unit 

The multiply-accumulate unit consists of a 24- 
by-24-bit, signed/unsigned integer multiplier, a 48- 
bit combinational shifter (three left to four right, 
signed or unsigned), and a 48-bit accumulator (ad- 
der and latch). Figure 3 shows the data flow through 
this unit. There are pipeline registers so that a new 
multiply-accumulate can be started every instruc- 

Moorer 27 



tion (50 nsec). If the accumulate function is not 
needed, the direct multiplier output is available (to 
the bus multiplexers). The programmer may choose 
either the high-order or the low-order word, or may 
use the full 48-bit product. There are multiplexers 
on the accumulator input, so that three different 
functions may be selected: initialize to zero; accu- 
mulate (that is, use previous accumulator contents 
as input); and initialize to the contents of the ABUS 
and/or the BBUS. Similarly, the multiplier output 
can be inverted before it is accumulated to provide 
for subtraction as well as addition. If a multiply- 
accumulate is started on instruction N (that is, if 
instruction N specifies latching of either of the 
multiplier input latches), then the product may be 
selected into the bus multiplexers on instruction 
N + 2, and the accumulator output may be se- 
lected on instruction N + 3. 

Although the shift amount is normally specified 
by a microinstruction, it may also be latched from 
the ABUS. This allows a limited form of data- 
dependent shifting, such as is needed for normali- 
zation or alignment of floating-point or block- 
floating-point operations. Since the shift matrix has 
only a very limited range, large shifts must be syn- 
thesized in other ways, such as with multiplication 
by powers of two. For normalization, we must first 
determine the position of the high-order bit. In this 
machine, this is most easily accomplished by 
the use of table lookups for large shift amounts 
or of the compare/exchange unit for lesser shift 
amounts. 

The signed/unsigned feature of the multiplier al- 
lows simple extension to multiple precision opera- 
tions. It also simplifies table interpolation, which is 
used extensively in variable-length delay lines, 
such as those used in audio "phasers" or reverbera- 
tors. Multiple precision does not have direct appli- 
cation in garden-variety audio processing, but 
rather in certain exotic possibilities, such as linear 
prediction speech modification or deconvolution of 
room reverberation. In linear prediction, the filter 
itself can be easily realized in single precision, but 
the matrix inversion necessary for computing filter 
coefficients must be done in multiple precision for 
higher filter orders (such as order 45 or higher). 

Since the DSP does not have a divide unit as 

such, divides must be accomplished by other 
means. There are various schemes for doing this, 
but probably the most relevant is a reciprocal table 
for some number of the divisor bits, followed by 
some number of iterations of Newton's method for 
the low-order bits. Since the reciprocal is a seldom- 
used operation even in matrix processing, this is 
not expected to be a bottleneck, but merely an an- 
noyance. We have found that for a 24-bit number, a 
4096-word lookup table followed by one iteration of 
Newton's method gives us 23-bit accuracy for all 
but the smallest (i.e., less than 1/4096) numbers. In 
this range, the dynamic range of the reciprocal ex- 
ceeds the word length of the machine. If numbers 
spanning this range are expected, then some more 
comprehensive method must be used. 

The Logical Unit 

Even in a stream machine without program branches, 
decision making is necessary. Decision making is 
done by (1) the compare/exchange unit or (2) the 
conditional execution of a microinstruction. A con- 
dition code set by a microinstruction specifies the 
condition, such as arithmetic-logic unit (ALU) out- 
put compared to zero, or the relation of the two 
compare/exchange inputs. All eight logical combi- 
nations, including unconditional TRUE and FALSE, 

are possible. The result of the OR of all the bits 
showing through the condition mask forms the 
condition. Based on this condition, the current in- 
struction may be executed or not. Likewise based 
on this condition, the two inputs to the com- 
pare/exchange unit may be swapped. This latter 
feature is handy for control functions, such as filter 
frequencies that are being changed in real time. In 
this manner, we can specify a control function in 
piecewise-linear form, such that each segment has 
an increment, a current value, and a final value. 
When the current value passes the final value, the 
compare/exchange unit can be employed to sub- 
stitute the final value. Similarly, other piecewise- 
linear functions, such as the absolute value of a 
number, can be simulated. Figure 4 shows the data 
flow in the compare unit. 

The conditional execution of an instruction is 

Computer Music Journal 28 



Fig. 4. Data flow in the 
compare unit. 

CMP A LATCH EN --L I 

0 

Condition 

CMP A 
(To c 
exect 

useful in several different ways. It can be used to 
reset loop variables such as the span, the incre- 
ment, and the "twiddle" angle in an FFT calcula- 
tion. It can be used to interrupt conditionally the 
host processor after a calculation is complete. In 
general, it is the "escape" from the lock-step of the 
computing engine. 

The Arithmetic-Logic Unit 

For performing all the other operations that are 
needed, such as Boolean functions, a general- 
purpose ALU is included. This provides AND, OR, 
and EXCLUSIVE-OR, as well as addition and subtrac- 
tion operations. Furthermore, a second register is 
included for accumulation of high-order bits in 
multiple-precision operations (i.e., the carry bit is 
accessible), with optional sign-extension of either 
or both operands. 

Main Memory 

The main, bulk memory of the system is arranged 
in boards of two banks of 128K 24-bit words each. 

,on( 
itic 

I -- CMP B LATCH EN 

ALU 

atchi MI 

4 

CMP B 
ditional 
)n logic) 

Up to eight boards may be connected to each DSP. 
Each bank can be cycled simultaneously such that 
two 24-bit transfers may be accomplished each 450- 
nsec interval. Error detection and correction are 
pipelined with the memory cycle. 

There are two addressing schemes for the main 
memory. The first is the DSP's address-calculation 
engine, consisting of a shift matrix and an adder, 
which provides two-dimensional addressing capa- 
bilities. This is most useful for table lookup with 
tables of power-of-two lengths. The shift matrix 
scales down the address such that the entire 24-bit 
range is reduced to correspond to the length of the 
table, then the origin of the table is added in to pro- 
duce the final address. The high-order 17 bits of 
this combined number are used ag the memory ad- 
dress, and the low-order 14 bits (24 bits plus a pos- 
sible seven-position shift) are available to the 
multiplexers for interpolation. This makes opera- 
tions such as delays quite simple. Likewise, special 
functions such as computing square root or arctan- 
gent can be accomplished with limited precision by 
table lookup and interpolation. For interpolation, 
we might store the function values in one memory 
bank and the differences between adjacent values in 
the other bank, so that the difference and the low- 

Moorer 

ABUS BBUS 

29 



Fig. 5. Update queue 
mechanism. 

UPDate Bus 

UFREE TOP TMP 

UPD 

PTR 
UHEAD 

UPD , 
UFREE TOP TMP 

UTAIL TMP 

UFREE TOP. 
UPD - 

Ul UFREE TOP TMP' 
UHEAD TMP ' 

PTR 

UHEAD ^-M -^UHEAD ZERO 
UHEAD 

PTRD - UHEAD PTR 
UFREE TOP TMP 

UHEAD TMP 

UTI U- UTAIL ZERO 
UTAIL - 

UPD UP 
--- ---1 | UTAIL 0 

UFREE TOP TMP | 
UTAIL TMP 

UFREE TOP ZERO 
UFREE TOP J , 0 

UPD -j R 
UHEAD TMP - r UFRE TOP 

FREE U E TP 
E UFREE TOP TMP 

Transaction 
code 

UHEAD 
UFREE TOP TMP 

0 Opcode 

Sample 
counter 

FREE 

WAIT UNTIL 
satisfied 

order address bits may be forwarded directly to the 
multiplier for the interpolation calculation. 

The second addressing scheme is asynchronous 
and is not under the control of the DSP micro- 
engine. This is direct memory access (DMA) 
from the disk. There is a separate word count and 
memory-address counter for this data path. The 
DMA is operated on a cycle-stealing basis in that it 
uses cycles when the DSP is not referencing the 
memory. 

In the normal mode of operation, we plan to use 
four memory boards for a total of 1 million 24-bit 
words of storage. This gives enough room for ade- 
quate disk buffering with some space left for delay 
lines and table lookups. With the 450-nsec cycle 
time, somewhat more than 120 memory references 

could be made in the 20-/usec sampling interval 
if we started a memory cycle at every available 
opportunity. 

The Update System 

Certainly the most unconventional part of the ma- 
chine is the update queue (Fig. 5). This is a linked 
list, implemented in hardware, of triples (opcode, 
address, and data). The opcodes specify for the most 
part which memory is to be written, but one of the 
opcodes is critically important for timing updates: 
the WAIT_UNTIL code. In this operation, the address 
and data are taken as a single 32-bit number and 
compared to a sample number counter that is "in- 

Computer Music Journal 30 



cremented" automatically each time the DSP pro- 
gram counter is reset to zero (i.e., at the beginning 
of each sample calculation). The operation of the 
queue is as follows. Up to eight computers may 
give update transactions. A priority arrangement 
selects one transaction and forwards it to the spec- 
ified DSP. The transaction code (different from the 
opcode) tells the disposition of this transaction. 
Some of the options are (1) insert at beginning of 
queue, (2) insert at end of queue, and (3) insert at 
specified address in queue (i.e., after a specified ele- 
ment of the queue). Normally, the master processor 
will insert at the end of the queue. At the end of 
the processing for a sample, all the DSPs will go 
into update mode. In this mode, triples are read 
from the head of the update queue (if it is non- 
empty) and the appropriate actions are taken at the 
rate of 50 nsec per update. If the operation code 
specified WAIT_UNTIL, then the datum is compared 
to the sample number. If the datum is greater than 
the sample number, then updates for that DSP will 
be halted, and the WAIT UNTIL will not be removed 
from the queue. If the datum is less than or equal 
to the sample number, then the WAIT_UNTIL is re- 
moved from the queue and updates proceed as 
described above. When all the DSPs have either 
emptied their queues or have hit an unsatisfied 
WAIT_UNTIL, they will all simultaneously exit up- 
date mode and start again at instruction zero. If 
there are no updates to do, all DSPs will spend a 
total of three instruction times (150 nsec) in update 
mode. The point of this complexity is that the 
68000 can forward changes to be made at a specific 
time to the DSP as fast as it can. When that time 
comes, the DSP will be held in update mode until 
all of those changes are made. The net result is that 
large amounts of changes can be made (up to 255 
per DSP) that appear to happen entirely between 
two samples. This occurs quite often in the audio 
processing case, since each time a new sound is be- 
gun, it typically requires an amount of processing 
(filtering, reverberation, etc.) that must be com- 
menced at the same time. This involves, as often as 
not, the "splicing" of new processing elements into 
the audio stream. As we might expect, there is a 
critical section problem here: if the splicing is done 
in the wrong order, discontinuities in the signal can 

result. We solve this problem by making a group of 
updates into an indivisible unit so that updates are 
all effected at the same "time." Likewise, in order 
not to slow down the ASP, the changes are accumu- 
lated and effected at the natural rate of the ASP 
rather than at the somewhat slower rate of the con- 
trolling computer. 

This update scheme has one problem, and that is 
with real-time manual intervention. What we have 
described above works quite well if the changes are 
known beforehand. If the changes are not known, 
such as when the operator is manipulating a poten- 
tiometer or some other input device, then the 
queue must be "short-circuited" so that the param- 
eter changes may be introduced ahead of any timed 
updates that are already in the queue. This is why 
we allow updates to be entered at the beginning of 
the queue, thus going ahead of any WAIT_UNTIL that 
might delay its effect. Of the eight computers that 
can access the update queue, only one can be the 
queue master and insert WAIT UNTIL instructions. 
All the others must insert untimed changes at the 
beginning of the queue. Otherwise, two computers 
that are not perfectly synchronized could insert 
WAIT UNTILS that were not in order. 

There is no substantial hardware limit to the rate 
at which updates can be forwarded to the DSP. The 
only limit is how fast the 68000 processors can de- 
liver them, which is a maximum of about 100,000 
updates per second, per 68000 processor. The DSP 
can handle more than 1,200,000 updates per second 
as a sustained maximum rate. 

The SBUS 

The SBUS is the catch-all for data transfer. It is 
used to communicate among DSPs and to send data 
to the DACs and read data from the ADCs. To com- 
municate with other DSPs, one DSP merely writes 
a 24-bit word into its SBUS output port on instruc- 
tion N. All other DSPs can then read this word on 
instruction N + 2. To communicate with a DAC, a 
DSP places the converter number (a 6-bit quantity) 
and an opcode into an SBUS function register, then 
provides a 24-bit datum to its SBUS output port. 
Automatically, the SBUS controller (a global re- 

Moorer 31 



source) polls the first-in first-out (FIFO) for the 
named DAC. If there is room in its FIFO, the 16 
bits in the middle of the 24-bit word are placed in 
that FIFO and the ASP proceeds. If the FIFO for the 
named DAC is full, indicating that the ASP is run- 
ning ahead of the DAC, then the clock of the ASP 
will be held until the FIFO is no longer full. The 
situation with the ADCs is analogous. If the named 
ADC FIFO is empty, the ASP clock will be held. 
These FIFOs are 64 samples long, giving a max- 
imum delay of 1.28 msec to the audio path. 

Another SBUS feature, which we call the bulletin 
board, is a 256-element memory that may be writ- 
ten by an SBUS operation and may be read by any 
computer with an update bus (UPDS) interface. 
This provides a channel for certain kinds of feed- 
back, such as the root-mean-squared (RMS) level of 
an audio signal or an overload condition of some 
kind. The controlling computers may also read 
back the current value of the sample counter and 
thus keep track of time. 

Conclusions 

The ASP, through its multiple data paths and 
unique architecture, is capable of the very high nu- 
merical computation rate required for processing 
many channels of high-quality digitized audio. Both 
synchronous and asynchronous data exchange pro- 
ceeds at very high sustained rates without interfer- 
ing with computation. Large blocks of program 
memory may also be changed without interference 
with the sample data stream. The device is ideally 
suited to large-scale, real-time audio processing ap- 
plications, such as film sound mixing, special ef- 
fects processing, and music synthesis. 

with a substantial amount of timing margin. The 
software, under development for more than a year, 
is now operational. We hope to turn the machine 
over to users very soon. As soon as this is done, we 
will begin building two more devices for our own 
in-house use. 

Acknowledgments 

The hardware was designed by James A. Moorer 
with the exception of the main memory board, 
which was designed by John M. Snell. The tech- 
nicians who did the board preparation and final 
assembly were Charlie Keagle, Kris Handwerk, 
and Sharon McCormick. The project was started in 
April 1980 by George Lucas and it is entirely 
his foresight and vision that have enabled us to 
proceed. 

References 

Abbott, C. 1981. "Microprogramming a Generalized Sig- 
nal Processor Architecture." Paper presented at the 
1981 International Computer Music Conference, 5-8 
November 1981, in Denton, Texas. 

Samson, P. 1980. "A General-Purpose Digital Synthe- 
sizer." Journal of the Audio Engineering Society 28(3): 
106-113. 

Samson, P. Forthcoming. "Architectural Issues in the De- 
sign of the Systems Concepts Digital Synthesizer." In 
Computer Music, ed. C. Roads and J. Strawn. Cam- 
bridge, Massachusetts: MIT Press. 

Snell, J. 1982. "The Lucasfilm Real-Time Console for Re- 
cording Studios and Performance of Computer Music." 
Computer Music Journal 6(3): 33-45. 

Status of the Project 

The prototype machine became operational in April 
1982 and is functioning reliably at the full clock 
rate. All of the complex features, such as the DAC 
FIFO mechanism, the direct DMA path to the bulk 
memory system, and the 24-by-24-bit multiply fol- 
lowed by the 48-bit accumulate, function reliably 

Computer Music Journal 32 


	Article Contents
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27
	p. 28
	p. 29
	p. 30
	p. 31
	p. 32

	Issue Table of Contents
	Computer Music Journal, Vol. 6, No. 3 (Autumn, 1982), pp. 1-90
	Front Matter [pp.  1 - 2]
	Editor's Notes [p.  3]
	Announcements [pp.  3 - 4]
	Letters
	Spelling [p.  5]
	A Letter to Composers, in the Decade of 1980 [pp.  5 - 7]
	On Sound Examples [p.  7]

	Machine Tongues IX: Object-Oriented Programming [pp.  8 - 21]
	The Lucasfilm Audio Signal Processor [pp.  22 - 32]
	The Lucasfilm Real-Time Console for Recording Studios and Performance of Computer Music [pp.  33 - 45]
	"Crystals": Recursive Structures in Automated Composition [pp.  46 - 64]
	Linear Sweep Synthesis [pp.  65 - 71]
	Timbral Construction in "Arras" as a Stochastic Process [pp.  72 - 77]
	Reviews
	Publications
	The Handbook of Artificial Intelligence, Volume 1 [p.  78]
	International Electronic Music Discography [pp.  78 - 79]

	Records
	Synthesized Voices [pp.  79 - 80]
	The Expanding Universe [p.  80]
	Satan's Sermon and Other Electronic Fantasies [pp.  80 - 81]
	On the Other Ocean; Figure in a Clearing [pp.  81 - 82]

	Exhibitions
	Modulations [pp.  82 - 83]
	Sunspots [pp.  83 - 85]

	Products of Interest [pp.  86 - 89]
	Back Matter [pp.  90 - 90]



