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Biomolecular computer simulations are now widely used not only in an academic setting 
to understand the fundamental role of molecular dynamics on biological function, but 
also in the industrial context to assist in drug design. In this paper, two applications of 
Grid computing to this area will be outlined. The first, involving the coupling of 
distributed computing resources to dedicated Beowulf clusters, is targeted at simulating 
protein conformational change using the Replica Exchange methodology. In the second, 
the rationale and design of a database of biomolecular simulation trajectories is 
described. Both applications illustrate the increasingly important role modern 

computational methods are playing in the life sciences. 

Keywords: Grid; replica exchange; protein conformation; simulation trajectory; 
storage; analysis 

1. Background 

Grid computing is becoming increasingly important in the area of the life sciences. 
Two particular aspects dominate. First, distributed computing is a potentially 
powerful approach for accessing large amounts of computational power. Cycle 
stealers, which allow a PC user to donate the spare power of their computer, are now 
used in a wide range of scientific projects, e.g. the SETIOhome study,1 the 
CAN-DDO cancer screening project2 and folding@home.3 Cycle stealers are also 
becoming more widely used in the pharmaceutical industry, particularly for virtual 

screening projects. It should be noted that cycle stealers are only one aspect of Grid 
computing, and that there are many other examples that may be useful in the 
domain of biomolecular simulations. Second, large databases are used to hold the 
substantial amount of data now involved in the study of biological systems, and 
have found particular prominence in the field of bioinformatics. In this paper, two 
1 http://setiathome.ssl.berkeley.edu. 
2http://www.chem.ox.ac.uk/curecancer.html. 
3http://www.foldingathome.org. 
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Figure 1. The native (blue) and phosphorylated (red) conformations of NTRC. The site of 
phosphorylation (Asp54) is shown as spheres. 

recent developments in each of these areas, as applied to biologically relevant 
problems, will be described. 

2. Distributed computing 

While the use of cycle stealers can provide supercomputer-like resources, their 
use is limited to calculations that may be split into many independently parallel 
parts (i.e. coarsely parallel simulations). The distributed and unreliable nature of 
this resource makes it unsuitable for closely coupled parallel calculations. For 
these calculations, the speed and latency of inter-processor communication are a 
bottleneck that cannot be overcome simply through the addition of more nodes. 
Unfortunately, a large number of chemical simulations require closely coupled 
parallel calculations, and are thus not suitable for deployment over a distributed 
computing cluster. An example of such a simulation is the investigation of 
protein conformational change. These simulations are typically performed using 
molecular dynamics (MD) (Leach 1996), where the motions of the atoms are 
integrated over time using Newton's laws. These simulations cannot be broken 
up into multiple independent parts, as each nanosecond of MD must be run in 
series and in sequence. 

The investigation of protein conformational change is important as it lies at 
the heart of many biological processes, e.g. cell signalling. Some bacteria regulate 
nitrogen metabolism using one such signalling pathway. Nitrogen regulatory 
protein C (NTRC; Pelton et al. 1999) plays a key role in this pathway. Changes 
in nitrogen concentration activate the kinase NTRB. This phosphorylates an 
aspartate residue in NTRC, causing it to change conformation (figure 1; Pelton 
et al. 1999). This change in conformation allows the NTRC to join together to 
form oligomers, which then activate the transcription of genes. These genes are 
used to produce proteins that are used in nitrogen metabolism (Pelton et al. 
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Figure 2. Progress of the simulation at each temperature as a function of simulation time. 
Iterations are run at each temperature; odd iterations are shown in blue and even iterations are 
shown in green. Our scheduler has to cope with extreme events, e.g. the complete failure of the 
distributed cluster after about 200 and 270 h of simulation. The distributed cluster contains both 
fast and slow nodes. Some iterations can thus take a lot longer than others (visible here as longer 
bars). In addition, the owners of the PCs will also wish to use them (shown here as red dots). This 
will interrupt the calculation that temperature, again slowing it down relative to the other 
temperatures. Because of this, neighbouring temperatures will be ready to test at different times. 
This can lead to a loss of efficiency as completed temperatures wait for their neighbours. In the 
worst case this waiting can propagate, as occurs for temperatures around 310 K after 360 h of 
simulation. To help prevent this, a catchup cluster is used that identifies and reschedules slow 
temperatures (use of the catchup cluster is shown in yellow). 

1999). A key stage of this pathway is the change in conformation that occurs in 
NTRC when it is phosphorylated. It is difficult to study this conformational 
change experimentally via nuclear magnetic resonance (NMR) or X-ray 
crystallography as the phosphorylated form of NTRC has a very short lifetime 
of only a few minutes at 25 'C (Kern et al. 1999). It is thus desirable to model the 
NTRC protein and encourage the conformational change by simulation. 

(a) The replica exchange method 

We can use a distributed computing cluster to investigate protein conformation- 
al change via Replica Exchange simulations (Hansmann 1997; Sugita et al. 2000). 
Multiple replicas of the protein are run in parallel, each running under a different 
condition, e.g. temperature. Periodically the potential energies of a pair of replicas 
running at neighbouring temperatures are tested according to a replica exchange 
Monte Carlo test (Hansmann 1997; Sugita et al. 2000) and, if the test is passed, the 
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coordinates of the pair of replicas are swapped. This enables simulations at high 
temperatures, where there is rapid conformational change, to rain down to 
biologically relevant temperatures where conformational change occurs more 
slowly. The testing of neighbouring temperatures introduces a light coupling to the 
simulation, meaning that it no longer fits the archetypal coarsely parallel 
distributed computing model. This light coupling introduces inefficiencies to the 
scheduling of the simulation, as any delay in the calculation of one temperature can 
propagate out to delay the calculation of all temperatures. To help overcome this, a 
catchup cluster has been developed that monitors the simulation for temperatures 
that are taking too long to complete, and that are likely to negatively impact the 
overall efficiency of the simulation. Once identified, the calculation of these 
temperatures is rescheduled onto a small, yet fast and dedicated, computational 
resource so that they can 'catchup' with the other temperatures (figure 2). 
The scheduler identifies which replicas should be moved to the catchup cluster by 
scanning the replicas and seeing if any is waiting for their partner to complete the 
current iteration. If a replica has been waiting for more than 10 min, then an 
estimate is made of how much progress the partner has made, based on how long it 
has been running, and the average completion time of an iteration based on the 
average of the times collected up to that point. If the partner has completed less than 
10% of the iteration, then it is moved onto the catchup cluster. This algorithm was 
necessary as the catchup cluster was a limited resource and was able to catchup only 
two replicas at a time. By concentrating on the replicas that were less than 10% 
complete, it was possible to focus the use of the catchup cluster on the replicas that 
most needed it. The figure of 10% was arrived at through initial experimentation 
that monitored the number of replicas that were passed to the catchup cluster, 
ensuring that the catchup cluster was neither over-used, thus leading to replicas 
waiting in the catchup cluster queue, or under-used, leading to idle resources. 

3. Experimental details 

NMR structures of the phosphorylated (1DC8) and unphosphorylated (1DC7) 
conformations of the NTRC protein were obtained from the protein databank. 
Polar hydrogen atoms were added via WhatIf (Vriend et al. 1997). The proteins 
were solvated in 603 A3 boxes of TIP3P water and sodium ions were added via 
the XLEAP module of AMBER 7.0 (Pearlman et al. 1995) to neutralize the 
system. The CHARMM27 force field (Mackerrell et al. 1998) was used, and the 
systems minimized, then annealed from 100 to 300 K. The systems were finally 
equilibrated for 100 ps at constant temperature (300 K) and pressure (1 atm). 
The final structures from equilibration were used as the starting structures for all 
of the replicas. 

The temperatures for each replica were chosen using a custom program that 
optimized the temperature distribution such that a replica exchange move was 
accepted with a probability of 20%. This resulted in a near uniform distribution of 
temperatures, ranging from several replicas below the target temperature of 300 K 
(290.1 K) to a maximum of 400 K. In total 64 replicas were used for each of the two 
proteins. As the lowest and highest temperature replicas attempt exchange moves 
at half the rate of the other replicas, it is common practice to add additional replicas 
4 http://www.rcsb.org/pdb/. 
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below the target temperature. Replicas may thereby swap into the target 
temperature from both lower and higher temperature simulations. The choice of 
a 20% acceptance probability was made to minimize the number of replicas required 
for simulation, i.e. the computational expense, while still allowing sufficient 
exchange moves to be accepted for the replicas to move in temperature. Further 
information regarding common practice in replica exchange simulations of 
explicitly solvated proteins may be found elsewhere (Wiley 2004). 

The simulations were conducted using NAMD 2.5 (Kale et al. 1999). A replica 
exchange move was attempted between neighbouring temperatures every 2 ps, 
after the initial 20 ps of sampling that was used to equilibrate each replica to its 
initial temperature. A Langevin thermostat (Paterlini and Ferguson 1998) and a 
Nose-Hoover Langevin piston barostat (Feller et al. 1995) were used to sample at 
constant temperature and pressure, while SHAKE (Ryckaert et al. 1977) was 
used to constrain hydrogen bond lengths to equilibrium values. A 1 fs time step 
was used for the MD integrator, and the non-bonded interactions were evaluated 
using a 12 A cut-off and the particle mesh Ewald sum (Darden et al. 1993). 

(a) Details of the distributed cluster 

The simulations were run over the Condor (Litzkow 1987; Litzkow et al. 1988) 
cluster provided by the University of Southampton. This cluster uses Condor 
(Litzkow 1987; Litzkow et al. 1988) to make available the spare cycles of 
approximately 450 desktop computers running Microsoft Windows NT 5.1 at 
different locations within the University of Southampton. The two replica 
exchange simulations were run simultaneously on this cluster. There was little 
competition between the two simulations for nodes as they each required a 
maximum of 64 nodes out of the available 450. 

This Condor cluster was chosen as, for our purposes, it was a good model for a 
computational Grid. The Condor cluster provided a distributed, heterogeneous 
resource of processors that were geographically diverse, managed via different 
groups, and connected via networks of varying quality. The problems that we 
experienced running on this resource were, we believe, typical of those that we 
would have experienced if we were using an actual distributed computing Grid. 
By running on only Southampton machines, we were able to get a guarantee of 
service with regards to network speed, security and support that, at the time, we 
did not believe we could attain from a truly Grid resource. It should be possible 
to run these replica exchange simulations over a Grid resource using a Grid 
scheduler such as Condor-G.5 

(b) Implementation of the catchup cluster 

The catchup cluster was implemented via dedicated dual Xeon 2.8 GHz nodes 
running Linux. Each Xeon processor was able to provide two virtual processors, 
allowing NAMD to run in parallel over four virtual processors per node. The fast 
catchup cluster consisted of two dual Xeon nodes, thus allowing it to catchup two 
replicas simultaneously. 

To test the utility of the catchup cluster, it was only made available to the replica 
exchange simulation on the phosphorylated conformation of the protein (1DC8). 
5 http://www.cs.wisc.edu/condor/condorg. 
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Figure 3. The number of nodes in use for the replica exchange simulation over just the distributed 
cluster (a), and over the distributed and catchup clusters (b). 

As both replica exchange simulations were running simultaneously, any differences 
in efficiency should thus be wholly attributable to use of the catchup cluster. 

4. Results 

Figure 3 shows the number of nodes in use during the replica exchange 
simulations on the phosphorylated and unphosphorylated conformations of 
NTRC. The initial phase of the simulation involved the 20 ps of equilibration of 
each replica to its initial temperature. This was broken down into 10 iterations 
of 2 ps. As there were no replica exchange moves during these first 10 iterations 
the replicas were all independent and thus the maximum number of 64 nodes 
were in use. However, there were efficiency problems during this phase of the 
simulation, as the unreliable nature of the distributed cluster caused several 
short periods of downtime that stopped both simulations. Frequent periods of 
downtime were common throughout the rest of replica exchange simulations. 

The second stage of the simulations occurred when the replicas begun to 
complete their 10th iteration. At this point each replica had to wait for its 
partner to complete 10 iterations such that the pair of replicas could be tested 
and potentially swapped. Owing to the range of processors available in the 
distributed cluster and the different impact of downtime on each of the replicas, 
there was a large spread of times over which each replica completed 10 iterations. 
This meant that a large number of replicas were left waiting for a significant time 
for their partner to complete, and thus the number of nodes in use for each 
simulation dropped from the maximum of 64 down to approximately 30. If 
the efficiency is defined as the ratio of the number of nodes in use compared 
to the theoretical maximum, then the efficiency dropped from 100% down to 
about 47%. 

After this dip in efficiency, the simulations then moved towards the final stage, 
which was a steady state, where the number of replicas running and the number 
of replicas waiting for their partner to complete reached a consistent range of 
values. This steady state was periodically disrupted by failure of the condor 
cluster, but was always quickly recovered once the disruption was over. The 
steady state for the simulation that used the catchup cluster had significantly 
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Figure 4. Histogram of the times to complete each iteration of the replica exchange simulation on 
the phosphorylated form of NTRC. 

more replicas running, and significantly fewer replicas waiting compared to the 
simulation that did not use the catchup cluster. The catchup cluster clearly 
improved the steady state number of nodes in use to approximately 50, compared 
to approximately 40 for the simulation that did not use the catchup cluster. This 
is an improvement in efficiency from 63 to 78%. 

(a) The heterogeneous distributed cluster 

The distributed condor cluster consisted of a range of desktop computers with 
varying processor speeds. To investigate the effect of running the simulation on 
this heterogeneous cluster, the total simulation time for each iteration was 
histogrammed. The histogram of replica completion times for the phosphorylated 
form of the protein is shown in figure 4. This figure shows that while the majority 
of iterations completed in under 10 000 s (2.8 h), there was a significant spread of 
replica completion times up to 20 000 s (5.6 h). This spread of completion times 
caused problems for the scheduling of the simulation as it meant that pairs of 
replicas that started at the same time could finish at very different times. 
This meant that as the scheduler had to wait for both replicas to finish, the 
simulation was effectively slowed down to the speed of the slowest nodes. 

(b) Comparison to normal MD 

The use of dual Xeons in the catchup cluster aiding the efficiency of a replica 
exchange simulation was compared to their use as dedicated nodes running a 
normal MD simulation. The phosphorylated conformation of NTRC was 
simulated at 300 K using a standard MD simulation with an identical starting 
structure as the replica exchange simulation and identical simulation conditions. 
Over the same period of time as the replica exchange simulations were running, 
this MD simulation on a single dual Xeon node completed 1.9 ns of dynamics. 
This compares to a total of 10.5 ns of dynamics generated by the corresponding 
replica exchange simulation. However, the 1.9 ns of dynamics generated via 
the MD simulation forms a single, self-consistent trajectory. In comparison, the 
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10.5 ns of sampling from the replica exchange simulations was formed over 64 
individual trajectories of only 0.16 ns in length. The dedicated node has produced 
a single trajectory over 10 times the length of those produced via the distributed 
condor cluster with catchup cluster. This is despite the dedicated node only 
running the MD approximately 3.5 times the speed of a typical node in the 
distributed cluster. There are two reasons for this discrepancy; first, as 
demonstrated in figure 4, the heterogeneous nature of the distributed cluster 
meant that there was a large spread in the amount of time needed to complete 
each iteration of the replica exchange simulation. This could be mitigated against 
by running each iteration twice at the same time on the distributed cluster and 
using the results from the first node that completed the calculation. The second 
reason for the discrepancy is that the distributed cluster was very unreliable, 
leading to large periods of time when the simulation was not running. This 
unreliability was both across the whole cluster, when the central manager failed 
causing the entire resource to fail, and also on individual nodes, on which 
calculations were regularly interrupted by reboots or user intervention. 
Unfortunately, the implementation of Condor used for these simulations was 
not able to migrate a calculation between nodes, meaning that the calculation 
had to be restarted each time it was interrupted. The replica exchange 
simulations presented here were run at a time when the condor cluster was 
experiencing a higher than normal amount of downtime. It is anticipated that 
during normal operation the condor cluster would be more reliable, and that the 
steady state efficiency of the replica exchange simulations would be maintained 
throughout the majority of the simulation. However, the experience of running 
these simulations demonstrates that applications that use distributed clusters 
need to include estimates of downtime and the range of available resources when 
predicting how long a particular simulation will take to run. These results also 
demonstrate that a distributed computing resource is, unsurprisingly, not 
efficient compared to a dedicated computing resource. However, distributed 
computing typically provides resources that would otherwise not be available. 

(c) Effectiveness of replica exchange 
The primary aim of running these simulations over the distributed computing 

resource was to sample the conformational change induced by phosphorylating 
NTRC. The aim was to use replica exchange to swap simulations running at high 
temperature, where the conformational change occurs more rapidly, down to 
room temperature, where the simulation statistics are collected. Figure 5 shows 
the temperature for each replica of the unphosphorylated simulation as a 
function of iteration. Four of the replicas are highlighted. This figure shows that 
while the replica exchange moves were accepted with the desired frequency, the 
replicas themselves did not travel far in temperature. Instead, each replica 
drifted slowly across temperature space. No replicas from high temperature 
swapped down to room temperature. This shows that the replica exchange 
simulations need to be continued for many more iterations before the improved 
sampling of high temperature is able to be of use in enhancing the rate of 
sampling at room temperature. This is not unexpected, as our previous 
experience suggests that thousands of iterations are required to allow full 
exchange between low and high temperatures (Wiley 2004), which while 
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achievable in months on a dedicated Beowulf cluster composed of 64 dual-Xeon 
nodes of the type used here for the catchup cluster, would, based on current 
progress, take over a year on the condor cluster. 

5. Summary: distributed computing 

Distributed computing provides a resource that is not ideally suited to a wide 
range of chemistry problems. The investigation of protein conformational change 
is one such problem. The replica exchange algorithm was used in an attempt to 
fit this chemistry problem to the distributed computing resource. The coupled 
nature of replica exchange simulations caused problems for the scheduling of the 
computation that were partially solved through the development of a dedicated 
catchup cluster. This cluster improved the efficiency of the replica exchange 
simulation from 63 to 78%. 

6. BioSimGrid: a database for biomolecular simulation 

As evidenced by the preceding example, computer simulations play a vital role in 
biochemical research. These simulations are computationally demanding and 
they produce huge amounts of data (up to approximately 10 GB each) that is 
analysed by a variety of methods in order to obtain biochemical properties. 
Generally, these data are stored at the laboratory where they have been 
computed in a proprietary format that is unique to the simulation code that has 
been used. This constrains the sharing of data and results within the 
biochemistry community: (i) the different simulation results are usually not 
available to other groups and (ii) even if they are exchanged, for example via 
FTP, then the data can generally not be compared easily with post-processing 
tools due to the varying data formats. BioSimGrid will facilitate the comparative 
analysis of these simulations, allowing more general structure/dynamics/func- 
tion relationships to be discovered. 

BioSimGrid6 (Wu et al. 2003; Tai et al. 2004) seeks to tackle this problem by 
enabling biochemists to deposit their simulation data of varying formats to a 
shared repository. This will allow biochemists to retrieve a slice or part of a 
protein in a uniform way for post-simulation analysis. BioSimGrid also provides 
an integrated analysis environment. By providing a uniform data storage and 
data retrieval mechanism, different proteins can be compared easily. 

Figure 6 demonstrates typical scenarios of using the BioSimGrid project. The 
completion of a biomolecular simulation delivers simulation data, which is called 
a 'trajectory'. A trajectory consists of many frames (corresponding to time steps 
in the simulation process) of simulation data recording the positions and 
velocities of all atoms. The first step is to submit the new trajectory and all the 
relevant meta-data (which describes the simulation and will allow sophisticated 
querying of all submitted trajectories) to the database. The extraction of the 
meta-data (from the simulation configuration files) and the trajectories (from the 
simulation data files) is fully automated, but the user has the option to provide 
6 http://www.biosimgrid.org. 
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Figure 5. Temperature of each replica as a function of iteration from the replica exchange 
simulation on the unphosphorylated conformation of NTRC. Four randomly chosen replicas are 
highlighted. 
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Figure 6. Schematic of the work flow in the BioSimGrid project. 

additional information, such as publication references that cannot be extracted 
from the simulation configuration and data files. 

Once the data are stored in the database, users can query different slices of one 
or more trajectories and perform a number of standard analysis computations 
(a selection is shown in the figure) on these data. The work flow is then 
completed by the graphical display of the analysis results (either as vector 
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graphics, bitmaps, movies or using interactive three-dimensional environments 
such as visual molecular dynamics (Dalke et al. 1996) and PyMol (DeLano 
2002)). The results are, of course, also available in text or data files. 

The following section of the paper discusses two related projects on grid- 
enabled data storage. Section 8 describes the architecture of BioSimGrid where 
the data storage layer, the middleware layer and the user interface layer are 
discussed in detail. Section 9 gives a brief outline on the current issues and the 
future work on the next prototype, and we finally conclude in e10. 

7. Related work 

(a) GridPP and the European DataGrid project 

GridPP7 is a collaboration project between particle physicists and computer 
scientist from the UK and CERN aiming to build a Grid for particle physics. One 
of the key components of GridPP is the European DataGrid Project (EDG)8 
which deals with managing a large quantity of sharable data reliably, efficiently 
and scalably. EDG aims at enabling access to geographically distributed 
computing and storage facilities. It provides resources to process huge amounts 
of data from three disciplines: High energy physics, biology and earth 
observation. EDG has a file replication service to optimize data access by 
storing multiple copies of local data at several locations. This replication 
framework has an optimization component to minimize file access by pointing 
access requests to appropriate replicas and proactively replicating frequently 
used files based on access statistics. 

As compared to DataGrid, BioSimGrid aims to provide a mechanism of data 
access at a finer granularity level, by delivering a slice of a trajectory rather than 
a whole file. Hence the concept of file replication of DataGrid can potentially be 
adopted and modified to suit a finer granularity level of data access. 

8. The architecture of BioSimGrid 

BioSimGrid seeks to fulfil the following criteria in its implementation: 

(i) to minimize data storage, in order to store as many trajectories as possible 
in a fixed amount of storage space; 

(ii) to maximize data transfer rate, in terms of the speed of delivering data to 
the computational elements, in this case the post-processing tools; 

(iii) to provide an abstraction of the data layer, where biochemists are freed 
from the complication of using and understanding data querying 
languages and the data storage structure in their scientific research; 

(iv) to provide a transparency of data location to the users, where actual 
physical location of the data is hidden. 

As shown in figure 7, the architecture of BioSimGrid encompasses three layers: 
the data storage layer, the middleware and the user interface layer. Each of these 
will be described in the following sections. 

7http://www.gridpp.ac.uk. 
Shttp://www.eu-datagrid.org. 
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Figure 7. The architecture of BioSimGrid depicting the data storage layer, middleware layer and 
user interface layer. 

(a) BioSimGrid data storage layer 
The data storage layer is responsible for managing the data on a single 

machine and exposes methods that are used by the data retrieval component to 
provide the user with data. This layer is required on each machine that is storing 
trajectory data, initially there will be six remote sites each running this layer. 
It provides an API that abstracts from the method used to store the data and 
provides simple access methods for both querying and retrieving data. The 
trajectory data is divided into two key sections, the metadata and the coordinate 
data. 

(i) Trajectory metadata 

The metadata is additional information about the trajectory that can either be 
supplied by the user, the input files or calculated at a later stage. It also includes 
the topology that describes the structure of the protein (chains and residues). 
This metadata is comparatively small and can be replicated across all sites using 
standard database replication tools. The advantage of replicating the metadata 
across all sites is so that a user can query all the trajectories stored in the system 
by querying a single machine and expect a timely response. This design also helps 
with scalability and load balancing: since the volume of metadata is small, 
additional nodes can be added to the system and easily incorporated by simply 
replicating the database. Since each node stores the topology of all the 
trajectories, users can use any node to query and process data helping to 
balance the load across the system. 

(ii) Trajectory coordinate data 

The coordinates for every atom for every time step are stored resulting in a 
large volume of data which has to be managed. We have devised a fast, efficient 
way to store the coordinates using flat files that reduces the storage requirements 
as well as improving performance results. This flat file method was implemented 
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Table 1. Summary of performance results comparing different flat file methods with a commercial 
database (DB2) 

DB2 NetCDF python pickle 

size (GB) 7.5 3.0 3.0 
random accessa (s) 560.8 16.4 18.6 
sequential access1) (s) 389.0 4.9 5.5 

aA random frame is chosen and then read from a trajectory of 1000 frames. This is completed 1000 
times with a different frame chosen each time. 

"The same trajectory of 1000 frames is read frame by frame from start to finish. 

using Python pickle (Drake 1995) and it was compared with a commercial 
database (DB2) as well as an existing flat file method (NetCDF9). The 
performance results are shown in table 1. These results show that a flat file 
method is well suited to our application for both random and serial data access. 

We selected our own method for flexibility as a whole trajectory is broken into 
a set of files that are then replicated to at least one other node. This helps to load 
balance the coordinate data requests as well as provides offsite backups of the 
data. This abstraction layer also permits the use of different storage methods 
that can include compression and custom formats, which are completely 
transparent to the user. 

Currently only the coordinates are stored using this method but the next 
version will store both coordinates as well as velocities. 

(b) BioSimGrid middleware 

The middleware of BioSimGrid is implemented on a modular architecture to 
enable easy extension and future plug in. It is written in Python (Drake 1995), a 
free, open-source and platform-independent high-level object-oriented program- 
ming language. Python is chosen for several reasons: (i) the biomolecular 
simulation community are moving towards Python as the preferred environment 
for post-processing analysis and several mature post-processing tools written 
in Python exist already (for example, MMTK10 and PyMOL DeLano 2002). 
(ii) Python can easily integrate and interface to compiled codes so that other 
existing tools (typically written in FORTRAN or C) can be re-used immediately. 
(iii) Python comes with a substantial set of standard libraries that can be used in 
this project and avoid recoding common tasks. 

(i) Data deposition component 

The process of depositing a trajectory into the BioSimGrid database is 
completely automated and the complication of the underlying storage structure 
is abstracted from the users. One of the challenges is to cater for different 
simulation packages that produce simulation data in various file formats. To deal 
with this, the deposition component consists of different parsers for different 
simulation packages to parse the simulation data files into a generic input object. 
9 http://my.unidata.ucar.edu/content/software/netedf/index.html. 
10 http://starship.python.net/crew/hinsen/MMTK. 
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Figure 8. The modular implementation of a data deposition component that includes a set of 

parsers, a validator and an importer. New parsers can be easily added to this modularized 

component. 

from bioSim.Settings import UserSettings 
from bioSim.Deposit.NAMDDeposit import NAMDDeposit 
filenames = {'parameters':'/path/paraFile', 

'topology':'/path/topoFile', 
'coordinates':['/path/coordFile'] 
} uSettings=UserSettings.UserSettings("guest") 

NAMDDeposit .NAMDDeposit (uSettings, filenames) 

Figure 9. An example of a user script to deposit a NAMD trajectory. The underlying complexity of 

parsing, validating and importing of trajectory into the database is hidden from the users. 

This object is then parsed through a validator to check for correct data type and 
their validity against various dictionaries (e.g. the existence of a residue in the 
dictionary). The process is completed when the validated generic input object is 
deposited into the flat files (coordinates and velocities) and database (metadata) 
through an importer. With the modular approach as shown in figure 8, new 
parsers can easily be added for any new simulation package if required. The 
underlying complexity of parsing, validating and importing a trajectory into the 
database is hidden from the users. A biochemist needs only to run five lines of 
code to deposit their trajectories by specifying the path to their simulation data 
files, as shown in figure 9. 

For the next prototype, the data deposition component will be extended to 
cater for the distributed nature of the application. We envisage an 
implementation of multiple deposition points to avoid single point failure and 
performance bottlenecks. In this case, a global identifier will be assigned to 
uniquely identify a trajectory and facilitate the synchronization of multiple 
metadata databases. To deposit a trajectory from a remote location the generic 
input object will be serialized at the deposition client and deserialized at the 
deposition server. 

(ii) Data retrieval component 

The data retrieval component provides a single point of entry for all the 
trajectories stored on any of the sites. Each site will be running a data retrieval 
component and a user can use any site to query the data in the entire system. 
This component queries the local database to retrieve any metadata that is 
requested, so the user can query information about a trajectory on a different site 
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Figure 10. Schematic showing how a remote data request is returned. Caching mechanism is used 
to improve the speed of data transfer. 

without having the overhead of contacting the hosting site. This component 
abstracts the location of the trajectory data from the user and is responsible for 
getting coordinates from external sites if they are not stored locally. 

Figure 10 shows how the data are transparently retrieved from a remote site so 
that it can be used by a user's script. In step 1 and 2 the user submits a script 
that requests for a set of coordinates from the data retrieval component. This 
component first looks at the metadata database to retrieve the locations of the 
requested coordinate flat files (step 3). If the data are stored locally then it is 
returned otherwise a list of remote data source locations are returned to the data 
retrieval component (step 6). A data source is then selected from the list and a 
request is made to the data retrieval component on the remote site for the 
required data (step 7). As this source is listed as a valid data source it is 
guaranteed to store the data locally, hence it will not attempt to retrieve the data 
from another remote site. The data are then passed back to the requesting site 

(step 10) and the data retrieval component returns the data to the user script 
(step 11) in the same way as a locally stored data set. 

There are two key opportunities to save retrieval times when retrieving large 
amounts of data. The first is to look at the list of sites that store the trajectory 
and ask multiple sites to provide different parts of the trajectory. This will reduce 
the load on sites by distributing it across multiple sites as well as improving the 
speed that data are received. 

The second is a cache (not implemented in the current prototype). Each frame 
that is retrieved from an external site will be stored using the same fiat file 
storage method. If a whole trajectory is then cached it can be moved to the main 
database and marked as a valid location to retrieve data for that trajectory. 
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from bioSim.DataRetrieval import FrameCollection, FCSettings 
from bioSim.Analysis import RMSD 
from bioSim.Settings import UserSettings 
u = UserSettings.UserSettings('guest') 
f = FCSettings.FCSettings(u, [['BioSimGrid GB-STH 1',range(100,201)]]) 
fc = FrameCollection.FrameCollection(f) 
myRMSD = RMSD(fc) 
myRMSD.createPNG() 

Figure 11. An example of a user script to run a RMSD analysis using frames 100-200 from 

trajectory 'BioSimGrid_GB-STH_1'. 

So when a data query requires data that is not stored on the database then the 
cache is consulted first to see if it has been retrieved previously (step 4 and 5 in 
10) if not then the hosting site is queried. There is a limit to the number of frames 
that are held in the cache and this is defined by a site-specific limit, which also 
includes the whole trajectories that are added to the local data store. The aim of 
storing whole trajectories on additional sites is to attempt to move the data 
closer to the processing. If a site continually requests a trajectory it makes sense 
to store the trajectory on that site. 

Currently each site has an excess of storage space and we can utilize this space 
to gain a performance boost. However, more trajectories can still be added as 
temporary trajectories can simply be deleted and removed from the metadata 
database to make more room as required. 

The data retrieval component is not only responsible for getting the data from 
the distributed sources but it is also responsible for making the data 
transparently available to the users in an environment of their choice, in this 
case Python. This result in Python numeric arrays being made available to users 
who have no idea where or how the data are stored. This has currently been 
implemented and a series of analysis tools for the post-processing component 
have been built on this design. This design also permits extensions for other 
languages like Perl to assist the users to migrate and utilize the BioSimGrid 
project. 

(iii) Post-processing component 

For the post-processing component, a set of analysis tools are written for 
standard and generic analysis on the simulation data, e.g. the calculation of 
root mean square derivation (RMSD) and the computation of the average 
structure and interatomic distances. Each analysis is exposed as a module and 
the modularity approach enables the tool set to be extended easily. An 
example of an analysis script is shown in figure 11 to demonstrate how to use 
the post-processing tools. The fourth line of the script initializes the user 
settings. The fifth line specifies the setting for a frame collection-the part of 
the protein to be used to perform the analysis, in this case frames 100-200 
from trajectory 'BioSimGrid_GB-STH_1'. The seventh line requests a RMSD 
analysis by taking the frame collection as its input parameter. Finally, the last 
line specifies the format of the result to be generated, which in this case is the 
output of an image file in PNG format. The ease of selecting different data set 
and different post-processing tools allows biochemists with little computational 
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experience to perform an analysis on the simulation data and obtain 
meaningful results. 

(c) User interface layer 
The BioSimGrid user application level offers two modes of interaction: via a 

graphical web based interface or via the Python scripting environment. The 
graphical interface is just another layer on top of the underlying Python codes. 
The scripting environment caters for advanced users who would like to connect 
to BioSimGrid in a scripting environment and utilize its data submission, 
retrieval and post-processing API in a fully programmable way. In this 
environment, biochemists can choose to run existing analysis toolkits provided 
by BioSimGrid. Alternatively, for more specific analysis, they can use the 
available data retrieval packages to write their own script. The graphical 
interface provides a more user-friendly environment to cater for novice users. It 
allows users to perform standard analysis runs and provides an overview of the 
available data and processing options. In this mode, a user first selects an 
analysis from a drop down menu then proceeds to select a trajectory and the 
relevant frames on which to perform the analysis. All these operations are done 
by clicks of buttons on a web browser. 

9. Current issues and next prototype 

BioSimGrid is in its early stage of development. Current prototypes that have 
been developed are based on architecture where both the application and 
database server are implemented as client server architecture, running at a single 
location. We have modularized our components and have developed a basic set of 
functionalities of BioSimGrid for data deposition, data retrieval and analysis of 
post simulation data. The modularity approach of the components enables easy 
plug-in and future extension of various functionalities, such as adding more 
analysis tools or extending the data deposition tools to cater for new simulation 
result formats. 

The next prototype of BioSimGrid will concentrate on tackling the 
geographically distributed databases and applications. Establishing secure 
asynchronous network communication, handling data latency and data 
recovery is non-trivial in this case. We are investigating Python twisted 
framework11 and Pyro12 for programming network services and applications. 
For a more reliable data transmission, the next prototype will incorporate 
MD513 hashes to help manage corruptions in file transfer. We also envisage 
the use of standard protocols such as secure socket layer (openSSL) to provide 
secure point to point communication. 

The issue of security is also a major concern in BioSimGrid. We envisage the 
use of digital certificate-based authentication to authorize users into the system 
and provide mechanism to set various permission levels for different user groups 
to authorize them to different resources and transactions. 

11http://www.twistedmatrix.com. 
12 http://pyro.sourceforge.net/index.html. 13 

http://www.faqs.org/rfcs/rfc1321.html. 
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In the future work, we plan to implement web service based interfaces in order 
to provide a platform and language independent way of accessing the existing 
middleware components. 

10. Summary: BioSimGrid 

In summary, BioSimGrid provides a trajectory storage system that allows users 
to submit simulation data from a wide range of simulation packages and to run 
cross simulation comparisons independent of the source of the data. We have 
developed the current version of the system together with biochemists who 
provide constant feedback on the usability of the project, and we are currently 
expanding the user base and the number of available trajectories in the system. 

11. Conclusion 

Advanced computational methods and Grid computing are finding increasing use 
in the area of the life sciences. In the particular context of biomolecular computer 
simulations, we have extended the basic distributed computing model to the 
situation where the calculations are coupled, through the addition of a dedicated 
Beowulf cluster to catchup on delayed simulations. This approach does yield an 
improvement in the overall simulation efficiency. We have also reported the 
development of a database for the storage and analysis of the large trajectories 
produced by these simulations. This database will not only allow for extensive 
and valuable comparisons to be made between related simulations, thereby 
yielding more a more reliable biochemical interpretation, but will also allow data 
to be readily shared between laboratories. 

For the work on distributed computing, we thank R. Gledhill, A. Wiley and L. Fenu for discussions 
and the EPSRC for funding comb-e-chem. For BioSimGrid, we would like to thank our 
collaborators D. Moss, C. Laughton, L. Caves, O. Smart and A. Mulholland. This project is funded 
by BBSRC. 
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