
Grid Computing and Biomolecular Simulation
Author(s): Christopher J. Woods, Muan Hong Ng, Steven Johnston, Stuart E. Murdock, Bing
Wu, Kaihsu Tai, Hans Fangohr, Paul Jeffreys, Simon Cox, Jeremy G. Frey, Mark S. P.
Sansom, Jonathan W. Essex
Source: Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 363,
No. 1833, Scientific Grid Computing (Aug. 15, 2005), pp. 2017-2035
Published by: The Royal Society
Stable URL: http://www.jstor.org/stable/30039706
Accessed: 11/04/2010 06:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=rsl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Philosophical
Transactions: Mathematical, Physical and Engineering Sciences.

http://www.jstor.org

http://www.jstor.org/stable/30039706?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=rsl

PHILOSOPHICAL
TRANSACTIONS

of

A
THE ROYAL
SOCIETY

Phil. Trans. R. Soc. A (2005) 363, 2017-2035
doi: 10. 1098/rsta.2005.1626

Published online 26 July 2005

Grid computing and biomolecular simulation

BY CHRISTOPHER J. WOODS1, MUAN HONG NG2, STEVEN JOHNSTON2,
STUART E. MURDOCK1',2, BING WU3'4, KAIHSU TAI4, HANS FANGOHR2

PAUL JEFFREYS3, SIMON Cox2, JEREMY G. FREY1, MARK S.P. SANSOM4
AND JONATHAN W. ESSEX1

1School of Chemistry, and 2Southampton e-Science Centre, University of
Southampton, Southampton, UK

(jwel@soton.ac.uk)
3Oxford e-Science Centre, and 4Department of Biochemistry, University of

Oxford, Oxford, UK

Biomolecular computer simulations are now widely used not only in an academic setting
to understand the fundamental role of molecular dynamics on biological function, but
also in the industrial context to assist in drug design. In this paper, two applications of
Grid computing to this area will be outlined. The first, involving the coupling of
distributed computing resources to dedicated Beowulf clusters, is targeted at simulating
protein conformational change using the Replica Exchange methodology. In the second,
the rationale and design of a database of biomolecular simulation trajectories is
described. Both applications illustrate the increasingly important role modern

computational methods are playing in the life sciences.

Keywords: Grid; replica exchange; protein conformation; simulation trajectory;
storage; analysis

1. Background

Grid computing is becoming increasingly important in the area of the life sciences.
Two particular aspects dominate. First, distributed computing is a potentially
powerful approach for accessing large amounts of computational power. Cycle
stealers, which allow a PC user to donate the spare power of their computer, are now
used in a wide range of scientific projects, e.g. the SETIOhome study,1 the
CAN-DDO cancer screening project2 and folding@home.3 Cycle stealers are also
becoming more widely used in the pharmaceutical industry, particularly for virtual

screening projects. It should be noted that cycle stealers are only one aspect of Grid
computing, and that there are many other examples that may be useful in the
domain of biomolecular simulations. Second, large databases are used to hold the
substantial amount of data now involved in the study of biological systems, and
have found particular prominence in the field of bioinformatics. In this paper, two
1 http://setiathome.ssl.berkeley.edu.
2http://www.chem.ox.ac.uk/curecancer.html.
3http://www.foldingathome.org.
One contribution of 27 to a Theme 'Scientific Grid computing'.

2017 c 2005 The Royal Society

2018 C. J. Woods and others

Figure 1. The native (blue) and phosphorylated (red) conformations of NTRC. The site of
phosphorylation (Asp54) is shown as spheres.

recent developments in each of these areas, as applied to biologically relevant
problems, will be described.

2. Distributed computing

While the use of cycle stealers can provide supercomputer-like resources, their
use is limited to calculations that may be split into many independently parallel
parts (i.e. coarsely parallel simulations). The distributed and unreliable nature of
this resource makes it unsuitable for closely coupled parallel calculations. For
these calculations, the speed and latency of inter-processor communication are a
bottleneck that cannot be overcome simply through the addition of more nodes.
Unfortunately, a large number of chemical simulations require closely coupled
parallel calculations, and are thus not suitable for deployment over a distributed
computing cluster. An example of such a simulation is the investigation of
protein conformational change. These simulations are typically performed using
molecular dynamics (MD) (Leach 1996), where the motions of the atoms are
integrated over time using Newton's laws. These simulations cannot be broken
up into multiple independent parts, as each nanosecond of MD must be run in
series and in sequence.

The investigation of protein conformational change is important as it lies at
the heart of many biological processes, e.g. cell signalling. Some bacteria regulate
nitrogen metabolism using one such signalling pathway. Nitrogen regulatory
protein C (NTRC; Pelton et al. 1999) plays a key role in this pathway. Changes
in nitrogen concentration activate the kinase NTRB. This phosphorylates an
aspartate residue in NTRC, causing it to change conformation (figure 1; Pelton
et al. 1999). This change in conformation allows the NTRC to join together to
form oligomers, which then activate the transcription of genes. These genes are
used to produce proteins that are used in nitrogen metabolism (Pelton et al.

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2019

temperature

(K)

380

360

340

320

300

0 100 200 300 400 500
time (h)

Figure 2. Progress of the simulation at each temperature as a function of simulation time.
Iterations are run at each temperature; odd iterations are shown in blue and even iterations are
shown in green. Our scheduler has to cope with extreme events, e.g. the complete failure of the
distributed cluster after about 200 and 270 h of simulation. The distributed cluster contains both
fast and slow nodes. Some iterations can thus take a lot longer than others (visible here as longer
bars). In addition, the owners of the PCs will also wish to use them (shown here as red dots). This
will interrupt the calculation that temperature, again slowing it down relative to the other
temperatures. Because of this, neighbouring temperatures will be ready to test at different times.
This can lead to a loss of efficiency as completed temperatures wait for their neighbours. In the
worst case this waiting can propagate, as occurs for temperatures around 310 K after 360 h of
simulation. To help prevent this, a catchup cluster is used that identifies and reschedules slow
temperatures (use of the catchup cluster is shown in yellow).

1999). A key stage of this pathway is the change in conformation that occurs in
NTRC when it is phosphorylated. It is difficult to study this conformational
change experimentally via nuclear magnetic resonance (NMR) or X-ray
crystallography as the phosphorylated form of NTRC has a very short lifetime
of only a few minutes at 25 'C (Kern et al. 1999). It is thus desirable to model the
NTRC protein and encourage the conformational change by simulation.

(a) The replica exchange method

We can use a distributed computing cluster to investigate protein conformation-
al change via Replica Exchange simulations (Hansmann 1997; Sugita et al. 2000).
Multiple replicas of the protein are run in parallel, each running under a different
condition, e.g. temperature. Periodically the potential energies of a pair of replicas
running at neighbouring temperatures are tested according to a replica exchange
Monte Carlo test (Hansmann 1997; Sugita et al. 2000) and, if the test is passed, the

Phil. Trans. R. Soc. A (2005)

2020 C. J. Woods and others

coordinates of the pair of replicas are swapped. This enables simulations at high
temperatures, where there is rapid conformational change, to rain down to
biologically relevant temperatures where conformational change occurs more
slowly. The testing of neighbouring temperatures introduces a light coupling to the
simulation, meaning that it no longer fits the archetypal coarsely parallel
distributed computing model. This light coupling introduces inefficiencies to the
scheduling of the simulation, as any delay in the calculation of one temperature can
propagate out to delay the calculation of all temperatures. To help overcome this, a
catchup cluster has been developed that monitors the simulation for temperatures
that are taking too long to complete, and that are likely to negatively impact the
overall efficiency of the simulation. Once identified, the calculation of these
temperatures is rescheduled onto a small, yet fast and dedicated, computational
resource so that they can 'catchup' with the other temperatures (figure 2).
The scheduler identifies which replicas should be moved to the catchup cluster by
scanning the replicas and seeing if any is waiting for their partner to complete the
current iteration. If a replica has been waiting for more than 10 min, then an
estimate is made of how much progress the partner has made, based on how long it
has been running, and the average completion time of an iteration based on the
average of the times collected up to that point. If the partner has completed less than
10% of the iteration, then it is moved onto the catchup cluster. This algorithm was
necessary as the catchup cluster was a limited resource and was able to catchup only
two replicas at a time. By concentrating on the replicas that were less than 10%
complete, it was possible to focus the use of the catchup cluster on the replicas that
most needed it. The figure of 10% was arrived at through initial experimentation
that monitored the number of replicas that were passed to the catchup cluster,
ensuring that the catchup cluster was neither over-used, thus leading to replicas
waiting in the catchup cluster queue, or under-used, leading to idle resources.

3. Experimental details

NMR structures of the phosphorylated (1DC8) and unphosphorylated (1DC7)
conformations of the NTRC protein were obtained from the protein databank.
Polar hydrogen atoms were added via WhatIf (Vriend et al. 1997). The proteins
were solvated in 603 A3 boxes of TIP3P water and sodium ions were added via
the XLEAP module of AMBER 7.0 (Pearlman et al. 1995) to neutralize the
system. The CHARMM27 force field (Mackerrell et al. 1998) was used, and the
systems minimized, then annealed from 100 to 300 K. The systems were finally
equilibrated for 100 ps at constant temperature (300 K) and pressure (1 atm).
The final structures from equilibration were used as the starting structures for all
of the replicas.

The temperatures for each replica were chosen using a custom program that
optimized the temperature distribution such that a replica exchange move was
accepted with a probability of 20%. This resulted in a near uniform distribution of
temperatures, ranging from several replicas below the target temperature of 300 K
(290.1 K) to a maximum of 400 K. In total 64 replicas were used for each of the two
proteins. As the lowest and highest temperature replicas attempt exchange moves
at half the rate of the other replicas, it is common practice to add additional replicas
4 http://www.rcsb.org/pdb/.

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2021

below the target temperature. Replicas may thereby swap into the target
temperature from both lower and higher temperature simulations. The choice of
a 20% acceptance probability was made to minimize the number of replicas required
for simulation, i.e. the computational expense, while still allowing sufficient
exchange moves to be accepted for the replicas to move in temperature. Further
information regarding common practice in replica exchange simulations of
explicitly solvated proteins may be found elsewhere (Wiley 2004).

The simulations were conducted using NAMD 2.5 (Kale et al. 1999). A replica
exchange move was attempted between neighbouring temperatures every 2 ps,
after the initial 20 ps of sampling that was used to equilibrate each replica to its
initial temperature. A Langevin thermostat (Paterlini and Ferguson 1998) and a
Nose-Hoover Langevin piston barostat (Feller et al. 1995) were used to sample at
constant temperature and pressure, while SHAKE (Ryckaert et al. 1977) was
used to constrain hydrogen bond lengths to equilibrium values. A 1 fs time step
was used for the MD integrator, and the non-bonded interactions were evaluated
using a 12 A cut-off and the particle mesh Ewald sum (Darden et al. 1993).

(a) Details of the distributed cluster

The simulations were run over the Condor (Litzkow 1987; Litzkow et al. 1988)
cluster provided by the University of Southampton. This cluster uses Condor
(Litzkow 1987; Litzkow et al. 1988) to make available the spare cycles of
approximately 450 desktop computers running Microsoft Windows NT 5.1 at
different locations within the University of Southampton. The two replica
exchange simulations were run simultaneously on this cluster. There was little
competition between the two simulations for nodes as they each required a
maximum of 64 nodes out of the available 450.

This Condor cluster was chosen as, for our purposes, it was a good model for a
computational Grid. The Condor cluster provided a distributed, heterogeneous
resource of processors that were geographically diverse, managed via different
groups, and connected via networks of varying quality. The problems that we
experienced running on this resource were, we believe, typical of those that we
would have experienced if we were using an actual distributed computing Grid.
By running on only Southampton machines, we were able to get a guarantee of
service with regards to network speed, security and support that, at the time, we
did not believe we could attain from a truly Grid resource. It should be possible
to run these replica exchange simulations over a Grid resource using a Grid
scheduler such as Condor-G.5

(b) Implementation of the catchup cluster

The catchup cluster was implemented via dedicated dual Xeon 2.8 GHz nodes
running Linux. Each Xeon processor was able to provide two virtual processors,
allowing NAMD to run in parallel over four virtual processors per node. The fast
catchup cluster consisted of two dual Xeon nodes, thus allowing it to catchup two
replicas simultaneously.

To test the utility of the catchup cluster, it was only made available to the replica
exchange simulation on the phosphorylated conformation of the protein (1DC8).
5 http://www.cs.wisc.edu/condor/condorg.

Phil. Trans. R. Soc. A (2005)

2022 C. J. Woods and others

(a)

nu

nu

nu

nu
nu

60

50

40

30

20

10

0 50 100 150 200 250 300 350
time (h)

(b)

0 50 100 150 200 250 300 350
time (h)

Figure 3. The number of nodes in use for the replica exchange simulation over just the distributed
cluster (a), and over the distributed and catchup clusters (b).

As both replica exchange simulations were running simultaneously, any differences
in efficiency should thus be wholly attributable to use of the catchup cluster.

4. Results

Figure 3 shows the number of nodes in use during the replica exchange
simulations on the phosphorylated and unphosphorylated conformations of
NTRC. The initial phase of the simulation involved the 20 ps of equilibration of
each replica to its initial temperature. This was broken down into 10 iterations
of 2 ps. As there were no replica exchange moves during these first 10 iterations
the replicas were all independent and thus the maximum number of 64 nodes
were in use. However, there were efficiency problems during this phase of the
simulation, as the unreliable nature of the distributed cluster caused several
short periods of downtime that stopped both simulations. Frequent periods of
downtime were common throughout the rest of replica exchange simulations.

The second stage of the simulations occurred when the replicas begun to
complete their 10th iteration. At this point each replica had to wait for its
partner to complete 10 iterations such that the pair of replicas could be tested
and potentially swapped. Owing to the range of processors available in the
distributed cluster and the different impact of downtime on each of the replicas,
there was a large spread of times over which each replica completed 10 iterations.
This meant that a large number of replicas were left waiting for a significant time
for their partner to complete, and thus the number of nodes in use for each
simulation dropped from the maximum of 64 down to approximately 30. If
the efficiency is defined as the ratio of the number of nodes in use compared
to the theoretical maximum, then the efficiency dropped from 100% down to
about 47%.

After this dip in efficiency, the simulations then moved towards the final stage,
which was a steady state, where the number of replicas running and the number
of replicas waiting for their partner to complete reached a consistent range of
values. This steady state was periodically disrupted by failure of the condor
cluster, but was always quickly recovered once the disruption was over. The
steady state for the simulation that used the catchup cluster had significantly

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2023

density

1.0

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0
10000 20000 30000 40000 50000 60000

time (s)

Figure 4. Histogram of the times to complete each iteration of the replica exchange simulation on
the phosphorylated form of NTRC.

more replicas running, and significantly fewer replicas waiting compared to the
simulation that did not use the catchup cluster. The catchup cluster clearly
improved the steady state number of nodes in use to approximately 50, compared
to approximately 40 for the simulation that did not use the catchup cluster. This
is an improvement in efficiency from 63 to 78%.

(a) The heterogeneous distributed cluster

The distributed condor cluster consisted of a range of desktop computers with
varying processor speeds. To investigate the effect of running the simulation on
this heterogeneous cluster, the total simulation time for each iteration was
histogrammed. The histogram of replica completion times for the phosphorylated
form of the protein is shown in figure 4. This figure shows that while the majority
of iterations completed in under 10 000 s (2.8 h), there was a significant spread of
replica completion times up to 20 000 s (5.6 h). This spread of completion times
caused problems for the scheduling of the simulation as it meant that pairs of
replicas that started at the same time could finish at very different times.
This meant that as the scheduler had to wait for both replicas to finish, the
simulation was effectively slowed down to the speed of the slowest nodes.

(b) Comparison to normal MD

The use of dual Xeons in the catchup cluster aiding the efficiency of a replica
exchange simulation was compared to their use as dedicated nodes running a
normal MD simulation. The phosphorylated conformation of NTRC was
simulated at 300 K using a standard MD simulation with an identical starting
structure as the replica exchange simulation and identical simulation conditions.
Over the same period of time as the replica exchange simulations were running,
this MD simulation on a single dual Xeon node completed 1.9 ns of dynamics.
This compares to a total of 10.5 ns of dynamics generated by the corresponding
replica exchange simulation. However, the 1.9 ns of dynamics generated via
the MD simulation forms a single, self-consistent trajectory. In comparison, the

Phil. Trans. R. Soc. A (2005)

2024 C. J. Woods and others

10.5 ns of sampling from the replica exchange simulations was formed over 64
individual trajectories of only 0.16 ns in length. The dedicated node has produced
a single trajectory over 10 times the length of those produced via the distributed
condor cluster with catchup cluster. This is despite the dedicated node only
running the MD approximately 3.5 times the speed of a typical node in the
distributed cluster. There are two reasons for this discrepancy; first, as
demonstrated in figure 4, the heterogeneous nature of the distributed cluster
meant that there was a large spread in the amount of time needed to complete
each iteration of the replica exchange simulation. This could be mitigated against
by running each iteration twice at the same time on the distributed cluster and
using the results from the first node that completed the calculation. The second
reason for the discrepancy is that the distributed cluster was very unreliable,
leading to large periods of time when the simulation was not running. This
unreliability was both across the whole cluster, when the central manager failed
causing the entire resource to fail, and also on individual nodes, on which
calculations were regularly interrupted by reboots or user intervention.
Unfortunately, the implementation of Condor used for these simulations was
not able to migrate a calculation between nodes, meaning that the calculation
had to be restarted each time it was interrupted. The replica exchange
simulations presented here were run at a time when the condor cluster was
experiencing a higher than normal amount of downtime. It is anticipated that
during normal operation the condor cluster would be more reliable, and that the
steady state efficiency of the replica exchange simulations would be maintained
throughout the majority of the simulation. However, the experience of running
these simulations demonstrates that applications that use distributed clusters
need to include estimates of downtime and the range of available resources when
predicting how long a particular simulation will take to run. These results also
demonstrate that a distributed computing resource is, unsurprisingly, not
efficient compared to a dedicated computing resource. However, distributed
computing typically provides resources that would otherwise not be available.

(c) Effectiveness of replica exchange
The primary aim of running these simulations over the distributed computing

resource was to sample the conformational change induced by phosphorylating
NTRC. The aim was to use replica exchange to swap simulations running at high
temperature, where the conformational change occurs more rapidly, down to
room temperature, where the simulation statistics are collected. Figure 5 shows
the temperature for each replica of the unphosphorylated simulation as a
function of iteration. Four of the replicas are highlighted. This figure shows that
while the replica exchange moves were accepted with the desired frequency, the
replicas themselves did not travel far in temperature. Instead, each replica
drifted slowly across temperature space. No replicas from high temperature
swapped down to room temperature. This shows that the replica exchange
simulations need to be continued for many more iterations before the improved
sampling of high temperature is able to be of use in enhancing the rate of
sampling at room temperature. This is not unexpected, as our previous
experience suggests that thousands of iterations are required to allow full
exchange between low and high temperatures (Wiley 2004), which while

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2025

achievable in months on a dedicated Beowulf cluster composed of 64 dual-Xeon
nodes of the type used here for the catchup cluster, would, based on current
progress, take over a year on the condor cluster.

5. Summary: distributed computing

Distributed computing provides a resource that is not ideally suited to a wide
range of chemistry problems. The investigation of protein conformational change
is one such problem. The replica exchange algorithm was used in an attempt to
fit this chemistry problem to the distributed computing resource. The coupled
nature of replica exchange simulations caused problems for the scheduling of the
computation that were partially solved through the development of a dedicated
catchup cluster. This cluster improved the efficiency of the replica exchange
simulation from 63 to 78%.

6. BioSimGrid: a database for biomolecular simulation

As evidenced by the preceding example, computer simulations play a vital role in
biochemical research. These simulations are computationally demanding and
they produce huge amounts of data (up to approximately 10 GB each) that is
analysed by a variety of methods in order to obtain biochemical properties.
Generally, these data are stored at the laboratory where they have been
computed in a proprietary format that is unique to the simulation code that has
been used. This constrains the sharing of data and results within the
biochemistry community: (i) the different simulation results are usually not
available to other groups and (ii) even if they are exchanged, for example via
FTP, then the data can generally not be compared easily with post-processing
tools due to the varying data formats. BioSimGrid will facilitate the comparative
analysis of these simulations, allowing more general structure/dynamics/func-
tion relationships to be discovered.

BioSimGrid6 (Wu et al. 2003; Tai et al. 2004) seeks to tackle this problem by
enabling biochemists to deposit their simulation data of varying formats to a
shared repository. This will allow biochemists to retrieve a slice or part of a
protein in a uniform way for post-simulation analysis. BioSimGrid also provides
an integrated analysis environment. By providing a uniform data storage and
data retrieval mechanism, different proteins can be compared easily.

Figure 6 demonstrates typical scenarios of using the BioSimGrid project. The
completion of a biomolecular simulation delivers simulation data, which is called
a 'trajectory'. A trajectory consists of many frames (corresponding to time steps
in the simulation process) of simulation data recording the positions and
velocities of all atoms. The first step is to submit the new trajectory and all the
relevant meta-data (which describes the simulation and will allow sophisticated
querying of all submitted trajectories) to the database. The extraction of the
meta-data (from the simulation configuration files) and the trajectories (from the
simulation data files) is fully automated, but the user has the option to provide
6 http://www.biosimgrid.org.

Phil. Trans. R. Soc. A (2005)

2026 C. J. Woods and others

temperature

(K)

410-

400-

390-

380-
370-

360-
350-
340-

330-

320-

310-

300-
290-
280-

0 10 20 30 40 50 60 70 80 90 100
iteration

Figure 5. Temperature of each replica as a function of iteration from the replica exchange
simulation on the unphosphorylated conformation of NTRC. Four randomly chosen replicas are
highlighted.

user

configuration file

simulation
tools

visualisation
tool

BioSimGrid core application

hybrid data storage

relational
database flat files

user input

metadata

trajectory

3. query data-on-demand

2. generation of metadata

1. submission of trajectory

5. visualisatioin of analysis result

analysis toolkits

RMSD
(surfaced

average
structure

distance
matrix

RMSF)

interatomic
distances

center of
mass

4. analysis

analysis results

Figure 6. Schematic of the work flow in the BioSimGrid project.

additional information, such as publication references that cannot be extracted
from the simulation configuration and data files.

Once the data are stored in the database, users can query different slices of one
or more trajectories and perform a number of standard analysis computations
(a selection is shown in the figure) on these data. The work flow is then
completed by the graphical display of the analysis results (either as vector

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2027

graphics, bitmaps, movies or using interactive three-dimensional environments
such as visual molecular dynamics (Dalke et al. 1996) and PyMol (DeLano
2002)). The results are, of course, also available in text or data files.

The following section of the paper discusses two related projects on grid-
enabled data storage. Section 8 describes the architecture of BioSimGrid where
the data storage layer, the middleware layer and the user interface layer are
discussed in detail. Section 9 gives a brief outline on the current issues and the
future work on the next prototype, and we finally conclude in e10.

7. Related work

(a) GridPP and the European DataGrid project

GridPP7 is a collaboration project between particle physicists and computer
scientist from the UK and CERN aiming to build a Grid for particle physics. One
of the key components of GridPP is the European DataGrid Project (EDG)8
which deals with managing a large quantity of sharable data reliably, efficiently
and scalably. EDG aims at enabling access to geographically distributed
computing and storage facilities. It provides resources to process huge amounts
of data from three disciplines: High energy physics, biology and earth
observation. EDG has a file replication service to optimize data access by
storing multiple copies of local data at several locations. This replication
framework has an optimization component to minimize file access by pointing
access requests to appropriate replicas and proactively replicating frequently
used files based on access statistics.

As compared to DataGrid, BioSimGrid aims to provide a mechanism of data
access at a finer granularity level, by delivering a slice of a trajectory rather than
a whole file. Hence the concept of file replication of DataGrid can potentially be
adopted and modified to suit a finer granularity level of data access.

8. The architecture of BioSimGrid

BioSimGrid seeks to fulfil the following criteria in its implementation:

(i) to minimize data storage, in order to store as many trajectories as possible
in a fixed amount of storage space;

(ii) to maximize data transfer rate, in terms of the speed of delivering data to
the computational elements, in this case the post-processing tools;

(iii) to provide an abstraction of the data layer, where biochemists are freed
from the complication of using and understanding data querying
languages and the data storage structure in their scientific research;

(iv) to provide a transparency of data location to the users, where actual
physical location of the data is hidden.

As shown in figure 7, the architecture of BioSimGrid encompasses three layers:
the data storage layer, the middleware and the user interface layer. Each of these
will be described in the following sections.

7http://www.gridpp.ac.uk.
Shttp://www.eu-datagrid.org.

Phil. Trans. R. Soc. A (2005)

2028 C. J. Woods and others

web
environment

HTTP

deposition
deposition

data

python
environment

user interface layer

middleware layer

data retrieval
component

post processing
component

data storage layer

relational
databases

flat files

Figure 7. The architecture of BioSimGrid depicting the data storage layer, middleware layer and
user interface layer.

(a) BioSimGrid data storage layer
The data storage layer is responsible for managing the data on a single

machine and exposes methods that are used by the data retrieval component to
provide the user with data. This layer is required on each machine that is storing
trajectory data, initially there will be six remote sites each running this layer.
It provides an API that abstracts from the method used to store the data and
provides simple access methods for both querying and retrieving data. The
trajectory data is divided into two key sections, the metadata and the coordinate
data.

(i) Trajectory metadata

The metadata is additional information about the trajectory that can either be
supplied by the user, the input files or calculated at a later stage. It also includes
the topology that describes the structure of the protein (chains and residues).
This metadata is comparatively small and can be replicated across all sites using
standard database replication tools. The advantage of replicating the metadata
across all sites is so that a user can query all the trajectories stored in the system
by querying a single machine and expect a timely response. This design also helps
with scalability and load balancing: since the volume of metadata is small,
additional nodes can be added to the system and easily incorporated by simply
replicating the database. Since each node stores the topology of all the
trajectories, users can use any node to query and process data helping to
balance the load across the system.

(ii) Trajectory coordinate data

The coordinates for every atom for every time step are stored resulting in a
large volume of data which has to be managed. We have devised a fast, efficient
way to store the coordinates using flat files that reduces the storage requirements
as well as improving performance results. This flat file method was implemented

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2029

Table 1. Summary of performance results comparing different flat file methods with a commercial
database (DB2)

DB2 NetCDF python pickle

size (GB) 7.5 3.0 3.0
random accessa (s) 560.8 16.4 18.6
sequential access1) (s) 389.0 4.9 5.5

aA random frame is chosen and then read from a trajectory of 1000 frames. This is completed 1000
times with a different frame chosen each time.

"The same trajectory of 1000 frames is read frame by frame from start to finish.

using Python pickle (Drake 1995) and it was compared with a commercial
database (DB2) as well as an existing flat file method (NetCDF9). The
performance results are shown in table 1. These results show that a flat file
method is well suited to our application for both random and serial data access.

We selected our own method for flexibility as a whole trajectory is broken into
a set of files that are then replicated to at least one other node. This helps to load
balance the coordinate data requests as well as provides offsite backups of the
data. This abstraction layer also permits the use of different storage methods
that can include compression and custom formats, which are completely
transparent to the user.

Currently only the coordinates are stored using this method but the next
version will store both coordinates as well as velocities.

(b) BioSimGrid middleware

The middleware of BioSimGrid is implemented on a modular architecture to
enable easy extension and future plug in. It is written in Python (Drake 1995), a
free, open-source and platform-independent high-level object-oriented program-
ming language. Python is chosen for several reasons: (i) the biomolecular
simulation community are moving towards Python as the preferred environment
for post-processing analysis and several mature post-processing tools written
in Python exist already (for example, MMTK10 and PyMOL DeLano 2002).
(ii) Python can easily integrate and interface to compiled codes so that other
existing tools (typically written in FORTRAN or C) can be re-used immediately.
(iii) Python comes with a substantial set of standard libraries that can be used in
this project and avoid recoding common tasks.

(i) Data deposition component

The process of depositing a trajectory into the BioSimGrid database is
completely automated and the complication of the underlying storage structure
is abstracted from the users. One of the challenges is to cater for different
simulation packages that produce simulation data in various file formats. To deal
with this, the deposition component consists of different parsers for different
simulation packages to parse the simulation data files into a generic input object.
9 http://my.unidata.ucar.edu/content/software/netedf/index.html.
10 http://starship.python.net/crew/hinsen/MMTK.

Phil. Trans. R. Soc. A (2005)

2030 C. J. Woods and others

amber

gromacs

NAMD

charmm

various simulation simulation package
result files parsers

generic
input
object

validator

validated
generic
input
object

importer relational
databases

flat files

Figure 8. The modular implementation of a data deposition component that includes a set of

parsers, a validator and an importer. New parsers can be easily added to this modularized

component.

from bioSim.Settings import UserSettings
from bioSim.Deposit.NAMDDeposit import NAMDDeposit
filenames = {'parameters':'/path/paraFile',

'topology':'/path/topoFile',
'coordinates':['/path/coordFile']
} uSettings=UserSettings.UserSettings("guest")

NAMDDeposit .NAMDDeposit (uSettings, filenames)

Figure 9. An example of a user script to deposit a NAMD trajectory. The underlying complexity of

parsing, validating and importing of trajectory into the database is hidden from the users.

This object is then parsed through a validator to check for correct data type and
their validity against various dictionaries (e.g. the existence of a residue in the
dictionary). The process is completed when the validated generic input object is
deposited into the flat files (coordinates and velocities) and database (metadata)
through an importer. With the modular approach as shown in figure 8, new
parsers can easily be added for any new simulation package if required. The
underlying complexity of parsing, validating and importing a trajectory into the
database is hidden from the users. A biochemist needs only to run five lines of
code to deposit their trajectories by specifying the path to their simulation data
files, as shown in figure 9.

For the next prototype, the data deposition component will be extended to
cater for the distributed nature of the application. We envisage an
implementation of multiple deposition points to avoid single point failure and
performance bottlenecks. In this case, a global identifier will be assigned to
uniquely identify a trajectory and facilitate the synchronization of multiple
metadata databases. To deposit a trajectory from a remote location the generic
input object will be serialized at the deposition client and deserialized at the
deposition server.

(ii) Data retrieval component

The data retrieval component provides a single point of entry for all the
trajectories stored on any of the sites. Each site will be running a data retrieval
component and a user can use any site to query the data in the entire system.
This component queries the local database to retrieve any metadata that is
requested, so the user can query information about a trajectory on a different site

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2031

site 1

user script

(2) script requests data (11) data returned

middleware layer

data retrieval
component

I Iet
(10) data returned[

(7) data is requested from remote site

(6) data or data location is returned
(3) valid data locations established

data storage layer

(4) if not local',Cache is queried (5) data or nill returned

cache

(1) user submits script

user
site 2

middleware layer
data retrieval

mponent

(8) data requested (9 data returned (8) data requested (9) data returned

data storage layer

Figure 10. Schematic showing how a remote data request is returned. Caching mechanism is used
to improve the speed of data transfer.

without having the overhead of contacting the hosting site. This component
abstracts the location of the trajectory data from the user and is responsible for
getting coordinates from external sites if they are not stored locally.

Figure 10 shows how the data are transparently retrieved from a remote site so
that it can be used by a user's script. In step 1 and 2 the user submits a script
that requests for a set of coordinates from the data retrieval component. This
component first looks at the metadata database to retrieve the locations of the
requested coordinate flat files (step 3). If the data are stored locally then it is
returned otherwise a list of remote data source locations are returned to the data
retrieval component (step 6). A data source is then selected from the list and a
request is made to the data retrieval component on the remote site for the
required data (step 7). As this source is listed as a valid data source it is
guaranteed to store the data locally, hence it will not attempt to retrieve the data
from another remote site. The data are then passed back to the requesting site

(step 10) and the data retrieval component returns the data to the user script
(step 11) in the same way as a locally stored data set.

There are two key opportunities to save retrieval times when retrieving large
amounts of data. The first is to look at the list of sites that store the trajectory
and ask multiple sites to provide different parts of the trajectory. This will reduce
the load on sites by distributing it across multiple sites as well as improving the
speed that data are received.

The second is a cache (not implemented in the current prototype). Each frame
that is retrieved from an external site will be stored using the same fiat file
storage method. If a whole trajectory is then cached it can be moved to the main
database and marked as a valid location to retrieve data for that trajectory.

Phil. Trawns. R. Soc. A (2005)

2032 C. J. Woods and others

from bioSim.DataRetrieval import FrameCollection, FCSettings
from bioSim.Analysis import RMSD
from bioSim.Settings import UserSettings
u = UserSettings.UserSettings('guest')
f = FCSettings.FCSettings(u, [['BioSimGrid GB-STH 1',range(100,201)]])
fc = FrameCollection.FrameCollection(f)
myRMSD = RMSD(fc)
myRMSD.createPNG()

Figure 11. An example of a user script to run a RMSD analysis using frames 100-200 from

trajectory 'BioSimGrid_GB-STH_1'.

So when a data query requires data that is not stored on the database then the
cache is consulted first to see if it has been retrieved previously (step 4 and 5 in
10) if not then the hosting site is queried. There is a limit to the number of frames
that are held in the cache and this is defined by a site-specific limit, which also
includes the whole trajectories that are added to the local data store. The aim of
storing whole trajectories on additional sites is to attempt to move the data
closer to the processing. If a site continually requests a trajectory it makes sense
to store the trajectory on that site.

Currently each site has an excess of storage space and we can utilize this space
to gain a performance boost. However, more trajectories can still be added as
temporary trajectories can simply be deleted and removed from the metadata
database to make more room as required.

The data retrieval component is not only responsible for getting the data from
the distributed sources but it is also responsible for making the data
transparently available to the users in an environment of their choice, in this
case Python. This result in Python numeric arrays being made available to users
who have no idea where or how the data are stored. This has currently been
implemented and a series of analysis tools for the post-processing component
have been built on this design. This design also permits extensions for other
languages like Perl to assist the users to migrate and utilize the BioSimGrid
project.

(iii) Post-processing component

For the post-processing component, a set of analysis tools are written for
standard and generic analysis on the simulation data, e.g. the calculation of
root mean square derivation (RMSD) and the computation of the average
structure and interatomic distances. Each analysis is exposed as a module and
the modularity approach enables the tool set to be extended easily. An
example of an analysis script is shown in figure 11 to demonstrate how to use
the post-processing tools. The fourth line of the script initializes the user
settings. The fifth line specifies the setting for a frame collection-the part of
the protein to be used to perform the analysis, in this case frames 100-200
from trajectory 'BioSimGrid_GB-STH_1'. The seventh line requests a RMSD
analysis by taking the frame collection as its input parameter. Finally, the last
line specifies the format of the result to be generated, which in this case is the
output of an image file in PNG format. The ease of selecting different data set
and different post-processing tools allows biochemists with little computational

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2033

experience to perform an analysis on the simulation data and obtain
meaningful results.

(c) User interface layer
The BioSimGrid user application level offers two modes of interaction: via a

graphical web based interface or via the Python scripting environment. The
graphical interface is just another layer on top of the underlying Python codes.
The scripting environment caters for advanced users who would like to connect
to BioSimGrid in a scripting environment and utilize its data submission,
retrieval and post-processing API in a fully programmable way. In this
environment, biochemists can choose to run existing analysis toolkits provided
by BioSimGrid. Alternatively, for more specific analysis, they can use the
available data retrieval packages to write their own script. The graphical
interface provides a more user-friendly environment to cater for novice users. It
allows users to perform standard analysis runs and provides an overview of the
available data and processing options. In this mode, a user first selects an
analysis from a drop down menu then proceeds to select a trajectory and the
relevant frames on which to perform the analysis. All these operations are done
by clicks of buttons on a web browser.

9. Current issues and next prototype

BioSimGrid is in its early stage of development. Current prototypes that have
been developed are based on architecture where both the application and
database server are implemented as client server architecture, running at a single
location. We have modularized our components and have developed a basic set of
functionalities of BioSimGrid for data deposition, data retrieval and analysis of
post simulation data. The modularity approach of the components enables easy
plug-in and future extension of various functionalities, such as adding more
analysis tools or extending the data deposition tools to cater for new simulation
result formats.

The next prototype of BioSimGrid will concentrate on tackling the
geographically distributed databases and applications. Establishing secure
asynchronous network communication, handling data latency and data
recovery is non-trivial in this case. We are investigating Python twisted
framework11 and Pyro12 for programming network services and applications.
For a more reliable data transmission, the next prototype will incorporate
MD513 hashes to help manage corruptions in file transfer. We also envisage
the use of standard protocols such as secure socket layer (openSSL) to provide
secure point to point communication.

The issue of security is also a major concern in BioSimGrid. We envisage the
use of digital certificate-based authentication to authorize users into the system
and provide mechanism to set various permission levels for different user groups
to authorize them to different resources and transactions.

11http://www.twistedmatrix.com.
12 http://pyro.sourceforge.net/index.html. 13

http://www.faqs.org/rfcs/rfc1321.html.

Phil. Trans. R. Soc. A (2005)

2034 C. J. Woods and others

In the future work, we plan to implement web service based interfaces in order
to provide a platform and language independent way of accessing the existing
middleware components.

10. Summary: BioSimGrid

In summary, BioSimGrid provides a trajectory storage system that allows users
to submit simulation data from a wide range of simulation packages and to run
cross simulation comparisons independent of the source of the data. We have
developed the current version of the system together with biochemists who
provide constant feedback on the usability of the project, and we are currently
expanding the user base and the number of available trajectories in the system.

11. Conclusion

Advanced computational methods and Grid computing are finding increasing use
in the area of the life sciences. In the particular context of biomolecular computer
simulations, we have extended the basic distributed computing model to the
situation where the calculations are coupled, through the addition of a dedicated
Beowulf cluster to catchup on delayed simulations. This approach does yield an
improvement in the overall simulation efficiency. We have also reported the
development of a database for the storage and analysis of the large trajectories
produced by these simulations. This database will not only allow for extensive
and valuable comparisons to be made between related simulations, thereby
yielding more a more reliable biochemical interpretation, but will also allow data
to be readily shared between laboratories.

For the work on distributed computing, we thank R. Gledhill, A. Wiley and L. Fenu for discussions
and the EPSRC for funding comb-e-chem. For BioSimGrid, we would like to thank our
collaborators D. Moss, C. Laughton, L. Caves, O. Smart and A. Mulholland. This project is funded
by BBSRC.

References

Dalke, A., Humphrey, W. & Schulten, K. 1996 J. Mol. Graph. 14, 33.
Darden, T., York, D. & Pedersen, L. 1993 J. Chem. Phys. 98, 10 089.
DeLano, W. L. 2002 The PyMOL molecular graphics system. DeLano Sci. (www.pymol.org)
Drake Jr, F. L., van Rossum, G. 1995 Python library reference. Computer Science Department of

Algorithmics and Architecture, CS-R9524. http://www.python.org.
Feller, S. E., Zhang, Y. H., Pastor, R. W. & Brooks, B. R. 1995 J. Chem. Phys. 103, 4613.
Hansmann, U. H. E. 1997 Chem. Phys. Lett. 281, 140.
Kale, L. et al. 1999 J. Comp. Phys. 151, 283. NAMD was developed by the Theoretical Biophysics

Group in the Beckman Institute at Urbana-Champaign.
Kern, D., Volkman, B. F., Luginbuhl, P., Nohaile, M. J., Kustu, S. & Wemmer, D. E. 1999 Nature

402, 894.
Leach, A. R. 1996 Molecular modelling, principals and applications. Harlow: Longman.
Litzkow, M. 1987 Turning Idle Workstations into Cycle Servers. In Usenix Summer Conference,

Litzkow, pp. 381-384.
Litzkow, M., Livny, M. & Mutka, M. 1988 Condor-a hunter of idle workstations. In Eighth

International Conference of Distributed Computing Systems, pp. 104-111.

Phil. Trans. R. Soc. A (2005)

Grid computing and biomolecular simulation 2035

Mackerrell, A. D. et al. 1998 J. Phys. Chem. B. 102, 3586.
Paterlini, M. G. & Ferguson, D. M. 1998 Chem. Phys. 236, 243.
Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson,

D., Seibel, G. & Kollman, P. 1995 Comput. Phys. Commun. 91, 1.
Pelton, J. G., Kustu, S. & Wemmer, D. E. 1999 J. Mol. Biol. 292, 1095.
Ryckaert, J. P., Ciccotti, G. & Berendsen, J. C. 1977 J. Comput. Phys. 23, 327.
Sugita, Y., Kitao, A. & Okamoto, Y. 2000 J. Chem. Phys. 113, 6042-6051.
Tai, K. et al. 2004 Org. Biomol. Chem. 2, 3219. (doi:10.1039/b411352g.)
Vriend, G., Hooft, R. W. W. & Van Aalten, D. 1997 WhatIf.
Wiley, A. P. 2004 The computational investigation of conformational change Ph.D. thesis,

University of Southampton.
Wu, B. 2003 In Proceedings of UK e-science All Hands Meeting 2003, Swindon (ed. S. J. Cox).

EPSRC.

Phil. Trans. R. Soc. A (2005)

	Article Contents
	p. 2017
	p. 2018
	p. 2019
	p. 2020
	p. 2021
	p. 2022
	p. 2023
	p. 2024
	p. 2025
	p. 2026
	p. 2027
	p. 2028
	p. 2029
	p. 2030
	p. 2031
	p. 2032
	p. 2033
	p. 2034
	p. 2035

	Issue Table of Contents
	Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 363, No. 1833, Scientific Grid Computing (Aug. 15, 2005), pp. 1701-2095
	Front Matter
	Preface [pp. 1705-1706]
	Scientific Grid Computing [pp. 1707-1713]
	Building Grids
	Building the TeraGrid [pp. 1715-1728]
	Building an Infrastructure for Scientific Grid Computing: Status and Goals of the EGEE Project [pp. 1729-1742]

	Middleware
	The Service Architecture of the TeraGyroid Experiment [pp. 1743-1755]
	Building Messaging Substrates for Web and Grid Applications [pp. 1757-1773]
	Reliable Multicast for the Grid: A Case Study in Experimental Computer Science [pp. 1775-1791]
	Towards Performance Control on the Grid [pp. 1793-1805]
	WEDS: A Web Services-Based Environment for Distributed Simulation [pp. 1807-1816]
	RealityGrid: An Integrated Approach to Middleware through ICENI [pp. 1817-1827]
	Towards a Grid Infrastructure to Support Integrative Approaches to Biological Research [pp. 1829-1841]

	Computational Steering and Visualization
	A Practical Toolkit for Computational Steering [pp. 1843-1853]
	Steering UNICORE Applications with VISIT [pp. 1855-1865]
	Improving Scientists' Interaction with Complex Computational: Visualization Environments Based on a Distributed Grid Infrastructure [pp. 1867-1884]
	A Grid-Enabled Lightweight Computational Steering Client: A .NET PDA Implementation [pp. 1885-1894]

	Science
	Large-Scale Lattice Boltzmann Simulations of Complex Fluids: Advances through the Advent of Computational Grids [pp. 1895-1915]
	Physical and Computational Scaling Issues in Lattice Boltzmann Simulations of Binary Fluid Mixtures [pp. 1917-1935]
	Vortex Core Identification in Viscous Hydrodynamics [pp. 1937-1948]
	Molecular Dynamics Simulations of Nanoindentation and Nanotribology [pp. 1949-1959]
	Computational Steering in Monte Carlo Simulations of thin Film Polystyrene [pp. 1961-1974]
	Hybrid Molecular-Continuum Fluid Models: Implementation within a General Coupling Framework [pp. 1975-1985]
	On the Performance of Molecular Dynamics Applications on Current High-End Systems [pp. 1987-1998]
	Grid-Based Steered Thermodynamic Integration Accelerates the Calculation of Binding free Energies [pp. 1999-2015]
	Grid Computing and Biomolecular Simulation [pp. 2017-2035]
	Peptide Recognition by the T Cell Receptor: Comparison of Binding free Energies from Thermodynamic Integration, Poisson-Boltzmann and Linear Interaction Energy Approximations [pp. 2037-2053]
	Large Scale Molecular Dynamics Simulation of Native and Mutant Dihydropteroate Synthase: Sulphanilamide Complexes Suggests the Molecular Basis for Dihydropteroate Synthase Drug Resistance [pp. 2055-2073]
	Grid-Based Dynamic Electronic Publication: A Case Study Using Combined Experiment and Simulation Studies of Crown Ethers at the Air/Water Interface [pp. 2075-2095]

	Back Matter

