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On Pooling in Queueing Networks 

Avishai Mandelbaum * Martin I. Reiman 
Faculty of Industrial Engineering and Management, Technion, Haifa, Israel 

Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974 

W A 7 e view each station in a Jackson network as a queue of tasks, of a particular type, which 
are to be processed by the associated specialized server. A complete pooling of queues, 

into a single queue, and servers, into a single server, gives rise to an M / PH / 1 queue, where the 
server is flexible in the sense that it processes all tasks. We assess the value of complete pooling 
by comparing the steady-state mean sojourn times of these two systems. The main insight from 
our analysis is that care must be used in pooling. Sometimes pooling helps, sometimes it hurts, 
and its effect (good or bad) can be unbounded. Also discussed briefly are alternative pooling 
scenarios, for example complete pooling of only queues which results in an M / PH / S system, 
or partial pooling which can be devastating enough to turn a stable Jackson network into an 
unstable Bramson network. We conclude with some possible future research directions. 
(Service Facility Design; Flexible Server; Specialized Server; Service Operations, Efficiency, Stability, 
Economics of Scale) 

1. Introduction 
A fundamental problem in the design and management 
of stochastic service systems is that of pooling, namely 
the replacement of several ingredients by a functionally 
equivalent single ingredient. We analyze the pooling 
phenomenon within the framework of queueing net- 
works where in our case, as will be explained momen- 
tarily, it can take one of three forms: pooling queues (the 
demand), pooling tasks (the process) or pooling servers 
(the resources). Here we consider pooling queues and 
servers simultaneously, but keep the task structure in- 
tact, and we provide an efficiency index (5) to determine 
when such pooling is or is not advantageous. 

Our models are described in terms of customers who 
seek service provided by servers. Service amounts to a 
collection of tasks, of which there are a finite number of 
types. Two main models are considered: in the first spe- 
cialized model, each task type has a server and a queue 
dedicated to it. For example, Figure 1 exhibits a 
queueing network in which every customer requires a 
service that constitutes three tasks, and the tasks are 
carried out successively, each by its own specialized 
server. Customers arrive at rate a, average task dura- 
tions are mk and servers' capacities are Ck. In the second 

flexible model, servers are capable of handling all tasks 
and they collectively attend to a single queue of ser- 
vices. For example, Figure 2 exhibits such a model, 
which arises through pooling the tandem network from 
Figure 1: customers arrive at rate a, seeking the same 
three-task service as before; they all join a single queue, 
which is now attended by a single flexible server of ca- 
pacity k Ck. 

Customer arrivals are assumed Poisson and task du- 
rations exponential. (We comment on these distribu- 
tional assumptions in the Addendum.) As articulated in 
?2, we allow a service to consist of a random sequence 
of tasks in a way that the service duration has a phase- 
type distribution (a phase corresponds to a task). The 
specialized (unpooled) model turns out to be a Jackson 
network (Jackson 1957), as in Figure 3, and the flexible 
(pooled) architecture is modeled by an M / PH/1 sys- 
tem (Neuts 1981) as in Figure 4. 

In addition to the above two main models, we also 
consider briefly alternative designs of pooling. For ex- 
ample, Figure 5 depicts the network from Figure 1, with 
its queues pooled into a single queue and the servers 
made flexible while still maintaining their individual 
identities (see ?5.3). Figure 6 depicts partial pooling of 
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Figure 1 A Specialized Model with Tasks Attended by Specialized Serv- 
ers 

Cl C2 C3 

Figure 2 A Flexible Model with Complete Pooling into a Single Queue 
and a Single Flexible Server 

C1 + C2 + C3 

a X m m3 

Figure 3 A Specialized Model with Task Repetition and Feedback 

P31 
Cl C2 

HH HHEST3- 1-P31 

C3 P2 

q2 3 - P-23 

Figure 4 The Flexible Model, under Complete Pooling, that Corresponds 
to Figure 3 

cl + C2 + C3 

only queues and servers 1 and 2 (see ?5.4). Figure 7 
depicts a split of the service so that a customer, upon 
completion of a task, rejoins the queue (see ?5.5), and 
additional designs are possible as well. A common fea- 
ture of our models is that service is unaltered. For ex- 
ample, in Figures 1, 2, 5, 6, and 7, service always consists 
of tasks 1, 2, and 3 in succession. 

1.1. Motivation 
The present research arose from an analysis of a service 
network consisting of several specialized departments. 

The network was redesigned as a pooled single depart- 
ment, which was still responsible for the same services, 
but whose servers were flexible enough to process all 
tasks. In trying to analyze this transition, we found that 
prevalent pooling models failed to cover our network 
scenario. 

Our models provide a new simple framework that 
helps in assessing the effects on pooling of utilization, 
variability, and service design. While this is not aimed as 
a review paper, our framework also relates, as it hap- 
pens, rather disparate concepts and results, for example 
(Bramson 1994, Jackson 1957, Klimov 1974, Neuts 1981, 
Smith and Whitt 1981, and Tcha and Pliska 1977). We 
believe that the usefulness of the framework goes be- 
yond the original motivating applications, pertaining to 
the design of telephone call centers (Brigandi et al. 
1994), evaluation of communication networks (Smith 

Figure 5 Complete Pooling of Queues Only (Servers Are Made Flexible 
but Maintain Individual Identities.) 

Cl 

/ ~~~~~C2 

C3 

Figure 6 Partial Pooling 

Cl + C2 C3 

Figure 7 Splitting Services (Each Task Returns to the End of the Queue.) 

- - - - - - - - - - - - - - - - - - - - - - - - I 
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and Whitt 1981), evolution (growth) of computer sys- 
tems (Kleinrock 1976), group-technology in manufac- 
turing (Burbidge 1991), team-based product develop- 
ment (Adler 1995), business reengineering (Buzacott 
1996, Hammer 1990, Hammer and Champy 1993, and 
Loch 1998) (elaborated on below), and more. 

Prior work on pooling seems to fall mainly into two 
categories: pool queues or pool servers. (In most of our 
analysis we do both.) As an example, pooling only 
queues would change several M / M / 1 queues, say K, 
with arrival rate X and service rate ,t into an M / M / K 
queue with arrival rate KX and service rate ,t; results of 
this flavor are contained in (Rothkopf and Rech 1987 
and Smith and Whitt 1981). Pooling only servers would 
change an M / M / K queue with arrival rate X and ser- 
vice rate ,u into an M / M / 1 queue with arrival rate X 
and service rate Kl; pooling of this type is considered 
in (Stidham 1970). For an illuminating depiction of 
these common pooling models, see (Kleinrock 1976), 
Figure 5.5. Pooling also arises as an asymptotic phe- 
nomenon under appropriate rescaling of time and space 
(Laws 1992, Reiman 1984, and Reiman and Simon 1990): 
for example, in heavy traffic, appropriate routing has 
the effect of pooling servers (hence, in heavy traffic, the 
performance of the systems in Figures 2 and 5 coin- 
cides). 

Our paper is in concert with current emphasis on 
business process reengineering (Hammer 1990 and 
Hammer and Champy 1993). Indeed, referring to pool- 
ing as "integration of work," Loch (1998) predicts that 
"the one idea from the reengineering era most likely to 
persist is that of integrated work." Similarly, in sum- 
marizing (Hammer 1990 and Hammer and Champy 
1993), Buzacott (1996) has "several tasks combined into 
one"/ as the first assertion of the superiority of a system 
that is designed using reengineering principles. 

Both Buzacott (1994) and Loch (1998) use tasks in se- 
ries and the transition from Figure 1 to Figure 5 as their 
paradigm for pooling in reengineering. It was shown in 
both Buzacott (1994) and Loch (1998) that the pooled 
system (with a single queue) is superior to the unpooled 
alternative, and higher task variability makes the ad- 
vantage greater. The network-framework that we pro- 
vide allows the results of Buzacott (1994) and Loch 
(1998) to be viewed in a more illuminating perspective. 
First we show, in ?5.1, that pooling a tandem structure 

is always advantageous but for more general architec- 
tures this need not be the case. In particular, it has been 
known (Smith and Whitt 1981) that pooling a parallel 
structure can sometimes hurt unboundedly (see ?5.2); 
we add the observation that partial pooling can turn a 
stable system unstable (?5.3, based on results of Bram- 
son (1994)). Second, the variability considered in Buz- 
acott (1994) and Loch (1998) is only task variability. In 
general, however, there are additional sources of vari- 
ability, and their effects on pooling, as we now discuss, 
can be opposite to the variability effects in Buzacott 
(1994) and Loch (1998). Variability may be either pre- 
dictable or stochastic: first-order sources for predictable 
variability are service design (e.g. scheduling tasks in 
tandem vs in parallel) or heterogeneity across task types 
(e.g. varying means); second-order sources for stochas- 
tic variability are, for example, fluctuations of task du- 
rations within a task type (e.g. due to human factors). 

Our framework allows the consideration of both pre- 
dictable and stochastic service variability. The sources 
that we explore here, however, are mainly first-order 
structural, since the tasks that constitute a service are not 
altered. (Stochastic task variability is fixed by assuming 
an exponential duration for each task type.) In broad 
terms, with task variability fixed and workload approx- 
imately balanced, the design of the service determines 
its variability and, in turn, the effect of pooling: as serv- 
ers' utilization increases and service variability de- 
creases, pooling advantages are found to increase. This 
explains the apparent contradiction with the conclusion 
of Buzacott (1994) and Loch (1998). (Note that a bal- 
anced workload need not be optimal; see ?4.) 

1.2. Summary 
The specialized and flexible models are introduced in 
?2. We start with a crude stability analysis in ?2.3, show- 
ing that flexibility increases the workload that a spe- 
cialized system can handle; see also ?2.1 in Buzacott 
(1994). 

In ?3 we quantify the effects of pooling in terms of an 
efficiency index (5), which is the product of a utilization 
factor gu and -a variability factor 9,. We show that 
pooling always helps in light traffic, because a customer 
at the pooled system typically enjoys a service rate that 
is the total capacity of the specialized system. In heavy 
traffic, pooling effects can go either way. 
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For given arrivals and services, resource utilization is 
determined by how capacity is allocated among the 
servers. In ?4 we use the square-root allocation of Klein- 
rock (1976) to show that optimal capacity allocation mit- 
igates the advantage of pooling. This advantage also de- 
creases as variability increases. Indeed, crude analysis 
of the efficiency index (5) reveals the insight that with 
low enough variability pooling is always advantageous. 

In ?5 we explore both network and pooling designs. 
Sections 5.1 and 5.2 treat tandem and parallel systems 
respectively. With tandem tasks the structural variabil- 
ity is small enough so that pooling always helps. For 
parallel tasks, as already discovered by Smith and Whitt 
(1981), the effect can go either way. In ?5.3 we consider 
pooling queues only, as in Figure 5. Performance is 
worse than with pooled servers, with the difference be- 
ing maximal in light traffic and diminishing in heavy 
traffic. In ?5.4 we investigate the effect of pooling design 
by considering partial pooling, as in Figure 6. It turns 
out that one can interpret the recent results in Bramson 
(1994) to show that partial pooling can turn a stable 
system unstable. In ?5.5 we require service splitting, as 
in Figure 7, rather than pursuing service until all of its 
tasks are completed. Through an example we show that 
the relative performance of these two systems depends 
on the structural variability of the total service time. 
There are numerous additional pooling issues that can 
be pursued, within the framework opened up here. 
Some are briefly discussed or mentioned in the con- 
cluding ?6. 

2. The Models 
In our two models, customers arrive for service accord- 
ing to a Poisson process, at a rate of a per unit of time. 
A service constitutes a random sequence of tasks. There 
are K types of tasks, indexed by k = 1, . . ., K, and we 
refer to a task of type k as simply task k. The work con- 
tent in task k is exponentially distributed with mean Mk. 
Let qk be the probability that task k is first in a given 
service, and let Pjk be the probability that task k is a 
direct successor of task j; 1 - k= Pjk is therefore the 
probability that service ends after task j. 

Assume that arrivals of customers are independent of 
services and that, within each service, sequencing of 
tasks and task durations are all mutually independent. 

Also assume that each service constitutes a finite num- 
ber of tasks with probability one; this is equivalent to 
the existence of the matrix 

R = [I - P]-1. 

where P is the K-dimensional matrix P = [Pjk]. (The el- 
ement Rjk is the expected number of times that a task k 
is performed during a single service, given that j is the 
task to start that service.) 

To sum up, customer arrivals are characterized by a 
scalar a, and services by a triplet (q, P, m): qT = (qll .... 

qK), P = [Pjk] and mT = (M1, ..., MK). (It is naturally 
assumed that K 2 2, a > 0, m > 0 and qTR > 0.) Servers 
will be characterized momentarily, as they are model- 
dependent. 

2.1. The Specialized Model 
In the specialized model, every task k has a server k 
dedicated to it, whose service capacity is Ck> 0 units of 
work per unit of time. It follows that the processing 
times of task k by server k are i.i.d., each distributed 
exponentially with mean Mk / Ck. Furthermore, envision- 
ing tasks of every type queueing up for processing at 
their respective dedicated servers, our specialized 
model reduces to an open Jackson network (Jackson 
1957) with K single-server stations, arrival rates aqT, ser- 
vice rates Ck /k and a routing matrix P. (See Figure 3.) 

We assume that the specialized system is stable (er- 
godic). This entails that each server k has traffic inten- 
sity less than unity: 

S Xkmk < 
Ck 

here X = aqTR is the vector whose k-th coordinate Xk 

stands for the effective arrival rate (in units of task k) to 
server k. Equivalently, stability prevails if and only if 

a < as A Ck 
k (q TRM)k 

where M is the k-dimensional diagonal matrix, with Mkk 

= Mk, k = 1, . . ., K. This is a consequence of the repre- 
sentation 

psa (q TRM)k 

Ck 
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2.2. The Flexible Model 
In the flexible model, customers arrive for service as 
before, but now they obtain service from a singleflexible 
server, whose service capacity is cTe (e is the k- 
dimensional vector of one's). Services are as above, 
hence the work content in services are i.i.d., each with 
a phase-type distribution (Neuts 1981) that is character- 
ized by the triplet (q, P, m / cTe): there are K phases each 
corresponding to a task, the duration of phase k is ex- 
ponential with mean Mk, the initial phase is chosen ac- 
cording to q and successive phases according to the 
routing matrix P. In other words, the flexible model re- 
duces to an M / PH / 1 queue, in which the average work 
content in a service is qTRMe and the server's capacity 
is cTe; the average service time is therefore qTTRMe / cTe. 

(See Figure 4.) We assume that this queue is stable (er- 
godic), which entails that its traffic intensity satisfies 

qTRMe 
a cTe < 1. 

c e 

Equivalently, stability prevails if and only if 
T cTe 

a < af = 
T qTRMe 

2.3. Stability Analysis 
The flexible system can handle any load that the spe- 
cialized one can. This is formalized in terms of each of 
the following two inequalities: 

as ?af, or (1) 

pf ? V Pk (2) 
k 

To verify (1), note that for any positive vectors a and b, 

.aTe [A ak v k(3) 
be [k bk k bk 

since the left hand-side is a convex combination of ak/ 

bk, k = 1, ..., K, namely, 

Ek ak bk ak 

Ek bk k Ej bj bk 

Letting ak = Ck and bk = (qTRhM)k establishes (1). Simi- 
larly, letting ak = (qTRM)k and bk = Ck yields 

f= dkpk, dk = ck/cTe, (4) 
k 

which implies (2). 

If a > al then the flexible and specialized models are 
both unstable (have no steady state), hence a steady- 
state comparison between them is vacuous. If a e [as, 
af), then the specialized model is unstable while the 
flexible one is stable, in which case pooling is advanta- 
geous trivially. One is left with a < as c af, which will 
be assumed from now on. 

3. Performance Analysis 
Let W5 and Wf denote the steady-state average sojourn- 
times in the specialized and flexible models respec- 
tively. Then 

w s Pk 
_ __ 

a (1 - Pk) 

by Little's law and Jackson's characterization of individ- 
ual stations as M / M / 1 queues in steady state. For the 
flexible model, the Pollaczeck-Khintchine formula 
yields 

Wf = E(S)L1 +(l ) ?C2(S) 

Here S is a phase-type random variable characterized 
by (q, P, m / cTe), whose moments are given by Neuts 
(1981) 

E(Sn) n=) =(cTr) qT(RM) e, n 2 1, 

and whose squared coefficient of variation is C2(S) 
= Var(S) / E(S)2. Define the efficiency index of pooling to 
be & = Ws / Wf. Then pooling is advantageous, as far as 
average sojourn time is concerned, when 9 > 1. Simple 
algebra leads to the representation 

1 
Y, Pk 

K - ps K(5 

P (1 _ ) + / + C2(S) 

in which 

1 + C2(S) E(S2) qT(RM)2e 
2 2E(S)2 (qTRMe)2 

We write & = RuRv where 
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gu=K1 E pk ad9 

P 
= 

'p and 
=Pf 

1 + C2(S) 

1 -p 2 

are the utilization index and variability index respec- 
tively. They represent the effects of utilization and vari- 
ability on pooling efficiency, the analysis of which con- 
stitutes the rest of the paper. 

Ranges of the Indices. The ranges are given by 

gu E K' I? 00 Iv E (O, 2K), 

and 

9 E (0, cc); 

the indices can take on all values within the specified 
intervals, and the end-points of the intervals provide 
tight asymptotic bounds. To elaborate, let 

x 
f(x) = (1-x)' x < 1, 

a strictly convex, strictly increasing function with f(0) 
= 0 and f(1-) = oo. Then, using (4), these properties 
imply 

k-k f(Pk) K k f(Pk) 

f(>A dkPk) Ek dkf(ps) 

1 cTe 1 

K Vkck K 

One way for gu I 1/ K is to let Ps I 0, for all k 2 2, while 
maintaining pf z ps, both being bounded away from 0. 
This requires that cl / cTe 1 1. On the other hand, 9u 1 oo, 
for example, as a 1 0, aIck I 0 for all k, andcj / Ck t oo for 
some pair j * k. 

Turning to 9,, the upper-bound 2K is an immediate 
consequence of C2(S) 2 0 and pf c 1. The lower bound 
0 is approached as C2(S) 1 oo while maintaining pf 
bounded away from 0. Finally, the ranges of & will 
emerge during later analysis. 

Observations on Variability and Utilization. If 
variability is low enough, formally if C2(S) < 1, then & 
> 1 since &, > K; in other words pooling is advanta- 

geous. If utilization is balanced, formally if pk = pj, Vj, 
k, (hence also pf = pk, Vk,) then 9,, = 1 and pooling 
efficiency is determined by the variability index. In par- 
ticular, increasing utilization (pf 1 1) and reducing vari- 
ability (C2(S) I 0) attains the maximum pooling effi- 
ciency achievable under balanced utilization (2K). 

Light Traffic. In light traffic, the pooled system is 
always better because its customers are served at the 
pooled capacity of all specialized servers. Formally, 
light traffic prevails as a I 0, while keeping the other 
parameters unaltered. Let & = &(a) in (5). Then 

lim &(a) = E (q T )kq TRMe > 1, (6) 
a40 k Ck cTe>1 (6 

since the limiting efficiency belongs to the interval 

cTe cTe 

VkCk' AkCk 

in view of (3). Pooling, therefore, is always better in 
light traffic, and it is K times better when the Ck's are all 
equal. 

Equation (6) can be explained with the light traffic 
theory of Reiman and Simon (1989). The light traffic 
limit of the mean sojourn time is the mean sojourn time 
of a single customer that moves alone through the sys- 
tem. For the pooled system, this time is qTTRMe / cTe. For 
the specialized system, the mean sojourn time is Ek 

(qTRM)k / Ck, since the k-th summand is the total time at 
station k. 

Heavy Traffic. There are two cases of heavy traffic: 
as = af and as < af. We consider the case as = af here, 
and treat as < af at the end of ?4. The equality as = af 
occurs if and only if as = Ck / (qT)M)k for all k, in which 
case ps = pf for all k. Let & = &(p) in (5), where p denotes 
the common utilization. Then &,9 = 1, and 

lim &(p) = 
2K 

ptl 1 + C2(S) 

This finite limit prevails even though, as p 1 1, both 
Ws(p) and Wf(p) grow unboundedly. Indeed, as p 1 1, 

(1 - p)Ws(p) -- KE(S), 

(1 - p)Wf(p) 2E(S) 2() 

976 MANAGEMENT SCIENCE/Vol. 44, No. 7, July 1998 



MANDELBAUM AND REIMAN 
On Pooling in Queueing Networks 

4. Division of Work or Capacity 
Allocation 

Fix a, q, P and m. Introduce an additional scalar y > 0, 
to be interpreted as total available service capacity, and 
consider positive vectors c such that cTe = y. As before, 

f = aqTRMe / c e = Ek Xkmkk / ce < 1, hence pf is fixed, 

'Y > Ek Xkmk, and 9, is also fixed. It follows that, as a 
function of c, the index 6 = &(c) is minimized by the 
solution to 

Xkmk min XkM 
k Ck -Xkmk 

s.t. X Ck =7, C 2?O. 
k 

This is Kleinrock's well-known capacity allocation 
problem [Kleinrock (1976), ?5.7], solved by the "square- 
root" allocation 

Ck Xkmk + - Kim) XkMk) 

i Ei xjj 

The corresponding value of & is given by the product of 
&,9, in which pf = mTX / y, with 

(k XkM)2 - (Ek (q RM)k)2 

Ek Xkmk Y-k (qTRM)k 
1. (7) 

The last inequality is a simple consequence of the 
Cauchy-Schwartz inequality, that also guarantees 
equality to unity if and only if (qTRM)k = (qTRM)j, Vk, 
j, in which case also Ck = cj, Vk, j. The quantity (qTRM)k 

represents the amount of work of task k that is embod- 
ied in an arrival. Hence, under the optimal capacity al- 
location, 9u = 1 if and only if workload and capacity are 
both balanced. 

Optimal capacity allocation typically results in un- 
even utilization of the servers (see also Calabrese (1992) 
and Hillier and So (1991)), which in turn is associated 
with a smaller benefit from pooling. That is indicated 
by (7), from which it follows that & ? 2K; in words, 
pooling benefits do not exceed 2K. This upper bound 
can be approached only in a balanced system that is 
both heavily utilized (pf 1 1) and almost deterministic 

(C2(S) I 0). 

Heavy Traffic, Continued. We can now treat the 
other case of heavy traffic, as < af. If as < af, and a 
E [as, af), as observed in ?1, the specialized model ex- 
plodes while the flexible one is stable, so pooling is triv- 
ially advantageous. To allow for a meaningful compar- 
ison, fix q, P, M and total capacity y, then assume that 
for each a, the specialized system employs the corre- 
sponding optimal capacity allocation. This makes as a 
function of a, enforcing as(a) 1 af, as a 1 af. Thus, both 
the specialized and flexible system approach heavy traf- 
fic, in a way that 

iK= ( (qTRM)k) 2K 
pftl () k (qTRM)k 1 + C2(S) 

by (5) and (7). The discussion that follows (7) applies 
here as well. 

5. Design 
This section is devoted to some effects of network de- 
sign on pooling efficiency. In ??5.1 and 5.2 respectively, 
we consider tasks that are processed in tandem and par- 
allel. The pooling of queues only, as depicted in Figure 
5, is briefly discussed in ?5.3. We then highlight possible 
negative effects of poor pooling design (with partial 
pooling) in ?5.4. In ?5.5 we consider the effect of having 
customers rejoin the queue for each task. 

5.1. Tandem Tasks 
Here C2(S) is small enough to render pooling always 
advantageous. Indeed, for K tasks in tandem, qi = 1 (so 
qk = 0, k 2 2), Pk,k+l = 1 for k < K, Ps = amk / Ck, Af 
= cxmTe/cTe, and C2(S) = mTm/(mTe)2 ? 1. It follows 
that &9, 2 K, hence & 2 1 since 9u 2 1 / K always. 

5.2. Parallel Tasks 
Here the effect of pooling can be good or bad. For K 
tasks in parallel (each service consists of exactly one 
task, which is task k with probability qk), P = 0, psk 
= aqkmk / Ck, and pf = aqTm / cTm. The service time of the 
pooled system is hyper-exponential, hence C2(S) 2 1. 
This also follows immediately from 

1 + C2(S) _ kqkm2 
2r te liyk qk) o1 (8) 

where the last inequality is a consequence of viewing 
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'k qkmk and EK qkmk2 as the first and second moments of 
a discrete random variable. 

From C2(S) 2 1 it follows that -- ? K. Under optimal 
capacity allocation, in fact & ? K by 9& ? 1. The upper 
bound K is attained, for example, as follows: 9, = K 
when mk = m, Vk, since then C2(S) = 1; &,g = 1 by letting 
also qk = 1/K, Vk. 

We now show that it is possible for a pooled system 
to be arbitrarily worse than the specialized one. To this 
end, we achieve & I 0 by constructing families of parallel 
systems that adhere to optimal capacity allocation, im- 
plying -- ? 1, while having pf fixed and C2(S) 1 oo, im- 
plying &9 I 0. 

One way is to follow Smith and Whitt (1981), where 
there exist tasks which are both rare and "challenging". 
Such tasks rarely challenge the specialized system but, 
when pooled, they delay all other tasks sufficiently to 
render pooling inefficient, unboundedly. The driver is 
variability, made high enough for I1 0. To be specific, 
vary qk and mk in a way that does not change the K 
products qkmk; simultaneously let, say, ml1 oo, while 
maintaining mk/ ml bounded for all k 2 2; a is fixed to 
guarantee stability. (q1 I 0 by p' = aq1ml / cl < 1 and ml 
1 ??, thus tasks of type 1 are both rare and challenging.) 
It follows that pf, the optimal capacity allocation, and 
the denominator in (8) are all constant, but C2(S) I 00 

with the numerator of (8). 
A second way is to have slow servers in addition to 

challenging customers. Specifically, in an optimal allo- 
cation, take c1 I y and q1 I 0 (hence Ek?2 Ck I 0 and 

Ek22 qk Il: the servers 2,.. ., K are the slow ones), while 
maintaining p' bounded away from 1. One can then 
show that qkmk/ qlml -- 0, Vk 2 2. By (8) 

1 + C2(S) _ 1llql 

2 (1 + Yk?2 qkmk/qlml) 

verifying that, again, C2(S) 1 oo. 

5.3. Heterogeneous Servers 

There are situations in which servers cannot be pooled 

into a single server and, while still flexible, they must 

retain their individual identities. The flexible model 

would thus become a multi-server single station (M/ 

G / S), with phase-type service and possibly heteroge- 

neous servers, as depicted in Figure 3. Both systems en- 

joy the same stability region [4], nevertheless perfor- 

mance is now worse than with a single server because 
service is not always rendered at the maximal capacity 
cTe. (This can be verified through coupling.) 

A comparison between our specialized system and a 
flexible system with heterogeneous servers would re- 
quire formulae for the M / PH / S queue with heteroge- 
neous servers. Such formulae do not exist so we restrict 
our attention below to light and heavy traffic. In specific 
cases, there exists approximations which enable certain 
(approximate) comparisons. For example, Buzacott 
(1996) uses second-moment approximations to compare 
series systems (as in Figures 1 and 3) while varying sto- 
chastic variability of tasks. 

In light traffic, the performance of the single server 
could be made better than the heterogeneous system by 
a factor of cTe / VkCk- Indeed, by the light-traffic rationale 
(Reiman and Simon 1989), the mean sojourn time of the 
single-server system is E(S) / cTe. For the heterogeneous 
system, assume that services are always performed by 
the fastest available server. The mean sojourn time, in 
light traffic, is then E(S)/ VkCk, which yields the above 
factor. 

The heavy traffic limit of the single server and the 
heterogeneous system coincide (Iglehart and Whitt 
1970). One expects, therefore, that the difference in per- 
formance between the systems is maximal in light traf- 
fic, and it diminishes as utilization increases to heavy 
traffic. A precise justification would require a compari- 
son via stochastic ordering. 

5.4. Partial Pooling 
In partial pooling, K specialized servers are pooled into 
K' < K servers, typically more flexible, thus resulting in 
a queueing network with K' stations. In this section we 
show, by way of examples, that it is possible for partial 
pooling to make a stable system unstable. Our examples 
are based upon networks introduced by Bramson 
(1994), which have opened up a yet uncharted research 
territory. 

We start with a specialized system that is a tandem 
network, as in ?5.1, with K taken odd for notational con- 
venience. Let 

a = ; m2 = mK =d, mk = 6, k * 2, K; 

cl = 26, C2 =1-(K-3)5, 

C3, C5, ..., CK-2 = 2/(K - 3), 
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C4, C6, . . *, CK-1 = 26, 

CK = 1 - 26. 

Bramson (1994) chose first 399 / 400 ? d < 1, then K 
large enough for dK-2 < 1 / 50, and finally 6 small 
enough so that 0 ? 6 < (1 - d)/50(K - 2)2. The spe- 
cialized network is, therefore, stable and its (complete) 
pooling, as in ?5.1, is advantageous. 

We consider now two (related) poolings. In the first, 
the K servers are pooled into 3 servers as follows: server 
1 attends to tasks 1 and K; server 2 serves tasks 2, 4,. . ., 
K - 1; server 3 cares for tasks 3, 5, . . ., K - 2. Thus, a 
customer starts with server 1, moves on to 2, then 3, 
back to 2, and so on, until service K - 1 at server 2, then 
the last service back at 1 and finally out. Each server 
uses the FIFO discipline, under which Bramson (1994) 
proved that the network is unstable. (See his comment, 
immediately following the statement of Theorem 1.) In 
particular, with probability 1, the sojourn time of cus- 
tomers increases to infinity, as t 1 oo. Instability arises 
because the system roughly alternates between busy pe- 
riods of server 2, attending mainly to incoming tasks 2 
while starving server 1, and busy periods of server 1, 
attending to tasks K while starving server 2. The star- 
vation of both servers is a consequence of FIFO, under 
which ample 5-tasks are forced into queueing behind 
few d-tasks. (A more refined and quantitative intuition 
is provided in Bramson (1994).) 

The second pooling is into 2 servers as follows: server 
1 serves tasks 1 and K and server 2 attends to the rest. 
The service discipline is again FIFO, where immediate 
feedbacks at server 2 (of tasks 2,. . ., K - 2) join the end 
of the queue, upon service completion. (There were no 
immediate feedbacks in our first example.) Thus, a ser- 
vice starts at server 1, moves on to 2 where it cycles for 
K - 2 times, then back to 1 and out. Again, such a net- 
work was proved unstable in Bramson (1994), Theorem 
1, following the same rationale as above. 

In the second pooling, server 2 could have served 
tasks 2,. . . , K - 2 of a given service in succession, rather 
than separating the service so that a task joins the end 
of the queue upon service completion. Then the system 
would have been stable (Baccelli and Foss 1996), which 
gives rise to the general issue of splitting services. We 
address this next. 

5.5. Splitting Services 
Suppose that, after a task completion, each customer 
returns to the end of the (single) queue; see Figure 7. 
Thus, the queue consists of services that are at different 
stages of their processing. Although such a protocol 
seems naive, there are circumstances under which it is 
superior (in terms of mean wait) to having services car- 
ried out in an uninterrupted manner. For its perfor- 
mance analysis, one must retain task-identities in 
queue. An exact analysis is then possible (Simon 1984), 
in terms of a set of linear equations whose solution 
yields mean waiting times. More explicit results can be 
obtained in heavy traffic (Dai and Kurtz 1995 and Rei- 
man 1988). We just examine a special case, with the aim 
of showing that the advantage can go either way. 

In our special case, all tasks have exponential service 
requirements with the same mean, m. This gives rise to 
a product-form system (Baskett et al. 1975 and Kelly 
1979), under which the distribution of total queue 
length is that of an M / M / 1 queue with traffic intensity 
pf. The sojourn time per 'pass' is thus m / [cTe(l -pf)], 
and the mean number of passes through the queue is 
qTRe. If we let W' denote the mean sojourn time in the 
naive system, we obtain 

W 
Te q qRe 1 +l] 

For this case, M = mI, implying that 

Wf=~qTRe~1?1f 1?+C2(S)1 
cTe [ 1 - t 2 ] 

We thus see that Wn is less than (resp. equal to, greater 
than) Wf if C2(S) > 1 (resp. C2(S) = 1, C2(S) < 1): the 
naive protocol is superior under high variability. Note 
that, in this special case, W' ? WS. (The comparison 
amounts to the inequality &9 ? 1 / K, which was estab- 
lished in ?3.) 

6. Addendum 
We conclude the paper with a discussion of our distri- 
butional assumptions and possible further research di- 
rections. 

Distributional Assumptions. Only the exponential 
tasks require an elaboration since the role of the Poisson 
process as a model for exogenous random arrivals is 
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well established. Empirical experience (Asmussen et al. 
1994 and Mandelbaum 1994) with human services sup- 
ports the phase-type service structure, as evidence sug- 
gests that homogeneous human tasks are surprisingly 
often exponential. Admittedly, however, exponentially 
distributed task times will not be a good assumption for 
all applications. Then the simplicity of the resultant 
analysis becomes a driving motivation: explicit results 
make it easier to obtain insights from the analysis. (One 
could in fact analyze generally distributed tasks, in the 
spirit of Buzacott (1996), Wein (1989), and Whitt (1983) 
and in analytical support of Loch (1998); this would 
require approximations of nonparametric Jackson net- 
works and it is left as a possible avenue for future re- 
search.) Although there is a basis for questioning the 
universality of exponentially distributed task times, it 
should be pointed out that the distribution of the total 
service time as a phase-type distribution is not a prac- 
tical restriction because phase-type distributions are 
dense in the set of all distributions (see, for example 
Asmussen (1987)). 

Stochastic Ordering. Most of our results invite 
finer comparisons, via various stochastic ordering 
schemes. For example, under what conditions would 
complete pooling of a tandem network lead to sto- 
chastically smaller sojourn times? (For an example of 
this type of result, see Buzacott et al. (1994), Example 
1.7.1.) Beyond the basic assessment of flexible vs. spe- 
cialized models, other possibilities include paramet- 
ric analysis, from light to heavy traffic (see the dis- 
cussion at the end of ?5.3) or an investigation of the 
effects of task-variability, for example refining Buza- 
cott (1996). 

Control. It is possible to maintain identities of tasks, 
or customer-types. One reason is to identify the types 
that benefit and those that suffer from pooling. More 
generally, this enables the incorporation of control (ad- 
mission, sequencing, routing), with the goal of improv- 
ing performance. Recall the devastating effects of FIFO, 
within the partial pooling of ?5.3. Also note that pooling 
all servers into a single server while maintaining task 
identities raises the question of task sequencing, as an- 
alyzed in Harrison (1975a), Harrison (1975b), Klimov 
(1974), and Tcha and Pliska (1977). With appropriate 
sequencing control (allowing preemption) the pooled 

system can always be made at least as good as the un- 
pooled system. This is achieved by reproducing in the 
pooled system (using preemption) the performance of 
the original unpooled system. Preemption plays an im- 
portant role here because with it certain customer types 
can be made effectively invisible to some other types, 
thus preventing the phenomenon of "challenging" 
tasks from ?5.2. (The well-known formula for the wait- 
ing times in the M/ G / 1 queue with nonpreemptive pri- 
orities (Kleinrock 1976) allows the reproduction of the 
arguments from ?5.2.) 

Economies of Scale. Consider a parallel specialized 
network, with statistically identical tasks and servers 
(equal Mk's and Ck'S). Then & = K since &,9 = 1 and C2(S) 
= 1. In words, pooling advantage equals the number 
of servers pooled. This is a manifestation of economies 
of scale because the pooled larger-scale system can 
achieve, with higher utilization, the service level pro- 
vided by the specialized system. Such higher utiliza- 
tion could be the outcome of reduced capacity, hence 
reduced cost. In the spirit of reengineering (Loch 
1998), one often seeks to take advantage of economies 
of scale (increasing K by pooling), in a way that out- 
weighs the variability overhead that ensue (C2(S) in- 
creasing). The desirable outcome is an operation that 
is as efficient as mass production (pf near unity) and 
as flexible as customized services (large C2(S)), yet 
provides a very high operational service level (fast re- 
sponse, due to short and predictable sojourn times.) 

The notion of flexible specialization (Priore and Sa- 
bel 1984) or mass customization is a current key con- 
cept in manufacturing strategy. This is also a main 
goal in the design of distributed telephone call cen- 
ters (Brigandi et al. 1994) and packet switches for 
integrated broadband telecommunication networks 
(Schwartz 1996). The main obstacle to achieving this 
goal is the significant transactional overhead that 
arises due to pooling. Consider, for example, the time- 
overhead required for matching queueing customers 
to servers that become idle, in a face-to-face service 
operation with, say, 20 servers in parallel that attend 
to a single queue. Another interesting example in- 
volving overhead is to trade off transportation times 
in the specialized model (adding ample-server sta- 
tions) against set-up times in the flexible model, due 
to switching among task-types. 
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The general issue here is cost / benefit analysis of 
economies of scale (increasing K or pf) in the presence 
of various pooling-dependent constraints and over- 
heads. Special attention can be given to specific topol- 
ogies, for example hub-networks. 

More Networks. Analyze pooling within queueing 
networks that are richer in features and capabilities, for 
example fork-join networks, where one must also trade 
off the effects of coordination and synchronization; or 
finite-buffer networks, with various blocking protocols, 
giving rise to the option of pooling buffers.1 

'The comments of the area editor, associate editor and two anony- 
mous referees helped turn a rather different first version of the paper 
into its more readable, so it is hoped, present form. 
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