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Partitioning methods lend themselves very well to implementation on parallel computers. In recent years, branch-and- 
bound algorithms have been tested on various types of architectures. In this paper, we develop a queueing network model 
for the analysis of a class of branch-and-bound algorithms on a master-slave architecture. The analysis is based on a 
fluid flow approximation. Numerical examples illustrate the concepts developed. Finally, related branch-and-bound 
algorithms are studied using a machine repair queueing model. 

Parallel computers will make it possible to solve 
large problem instances in little time. In the field 

of combinatorial optimization, we may expect to ben- 
efit from parallelism especially for hard problems, for 
which no polynomial time algorithm is known. Using 
traditional sequential computers, we can only solve 
small problem instances to optimality. With the 
advent of parallel machines, the range of tractable 
problem instances will be extended enormously 
although, with bounded parallelism, we can never 
hope for a speedup from exponential to polynomial 
time algorithms. 

Hard combinatorial problems are usually solved by 
some form of implicit enumeration of the set of fea- 
sible solutions. A widely used technique is branch and 
bound. Branch-and-bound algorithms generate search 
trees in which each node has to deal with a subset of 
the solution set. On a parallel computer, the processors 
can examine different parts of the search tree at the 
same time. This idea has been tested on various archi- 
tectures; see, for example, Finkel and Manber (1987), 
Kindervater and Trienekens (1988), and Kindervater 
and Lenstra ( 1988). Often, parallel branch-and-bound 
algorithms exhibit an anomalous behavior. It may 
happen that P processors together are more than P 
times as fast as a single processor. This can be 
explained by the fact that a parallel search algorithm 
may find a good (or the optimal) solution much earlier 

than the corresponding sequential algorithm. Unfor- 
tunately, it can also be the other way around: Adding 
a processor may slow down the computation (Lai and 
Sahni 1984, Lai and Sprague 1985, 1986, Li and Wah 
1986). 

In this paper, we analyze the behavior of a class of 
branch-and-bound algorithms on a master-slave 
architecture. In such a parallel computer system, we 
have a central master processor which is connected to 
a number of slave processors. Since communication 
between two slave processors is only possible through 
the master processor, information circulating in the 
system is known by the master processor. This fact is 
both the strength and the weakness of the master- 
slave architecture: The master processor has full 
knowledge of the progress made by the solution pro- 
cess, but it may become a bottleneck if the information 
being sent becomes too much. We are interested in 
the performance of the master-slave architecture for 
branch-and-bound algorithms. We study the effect of 
changing the speed of the master and of the slaves, 
and of changing the number of processors. This is 
done via a queueing theoretic approach. 

In the next section, we will describe the class of 
branch-and-bound algorithms under consideration. 
For this particular type of branch-and-bound algo- 
rithms, we consider two variants of implementing 
the parallel evaluation of nodes on a master-slave 

Subject classifications: Computers/computer science: master-slave architecture. Programming: analysis of parallel branch-and-bound algorithms. Queues: 
fluid flow approximations. 
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architecture. In Section 2, we give a queueing network 
model in which a slave processor evaluates a node, 
puts the results in a queue at the master processor, 
and immediately continues with a new node, sent by 
the master processor. This queueing model is analyzed 
by means of a fluid flow approximation in Section 3. 
The techniques developed are illustrated by some 
numerical examples in Section 4. Section 5 studies 
the second variant, where a slave processor receives a 
new node only after the master processor has con- 
sumed the slave's latest results. Here, the appropriate 
queueing system turns out to be a so-called machine 
repair model. The main conclusions are presented in 
Section 6. 

In the past, many parallel branch-and-bound algo- 
rithms have been proposed and tested on various 
architectures. However, a theoretical analysis of the 
empirically observed performance has been lacking. 
The purpose of the present paper is to model an 
attractive class of branch-and-bound algorithms on a 
master-slave architecture, and to give a performance 
analysis of the model. 

1. BRANCH AND BOUND 

Many combinatorial problems can only be solved by 
some form of implicit enumeration of the set of fea- 
sible solutions. A well known technique is branch and 
bound. Branch-and-bound algorithms generate search 
trees in which each node has to deal with a subset of 
the solution set. A subproblem corresponding to a 
node is either solved directly, or its solution set is split 
and for each subset a new node is added to the tree. 
The process can be improved by computing a bound 
on the solution a node can produce. If this bound is 
worse than the best solution found so far, the node 
cannot produce a better solution and, hence, it can be 
excluded from further examination. The last issue to 
be clarified is the order in which the nodes are consid- 
ered for evaluation. Hereto, the nodes are given a 
priority, determined by some heuristic function, and 
from among the available nodes the one with the 
highest priority is considered next for evaluation. 

The observation that any two nodes, neither of 
which is an ancestor of the other, can be solved 
independently, provides a natural basis for the paral- 
lelization of branch-and-bound algorithms: An idle 
processor searches for an available, but not yet 
expanded node, evaluates this node, thereby possibly 
creating new nodes, and informs the other processors 
on newly found better solutions. 

An appealing implementation on a master-slave 
architecture is the following. The master processor 

keeps track of the search tree generated so far, orders 
the nodes according to their priorities, and sends the 
node with the highest priority to a slave processor as 
one becomes idle. The slave processors evaluate the 
nodes they receive and send the results back to the 
master processor. In this implementation, the master 
processor has full knowledge of the search tree gener- 
ated so far and can ensure that the "most promising" 
part of the search tree is examined by the slave pro- 
cessors. However, the master processor must have a 
high enough processing speed to handle the commu- 
nication requests of the slave processors and to main- 
tain the priority queue of available nodes. The 
effective speed of the master processor, therefore, not 
only depends on the average number of communica- 
tion requests per time-unit, but also on the length of 
the priority queue. It is clear that a large priority 
queue may cause a dramatic slowdown of the master 
processor. 

We consider two variants of this implementation. 
First, we model the variant where a slave processor 
puts its results in a queue in front of the master 
processor and immediately continues with a new 
node, already processed by the master processor. The 
benefits of this variant are clear: The slave processors 
are only idle if there are no nodes available for eval- 
uation. However, if the number of nodes available for 
evaluation grows, the master processor becomes 
slower and, as a result, a long queue of nodes waiting 
to be processed by the master processor may form. 
This has the effect that valuable information may not 
reach the master processor in time and that the slave 
processors may be forced to do what turns out to be 
useless work. 

The second variant avoids the possibility of a long 
queue in front of the master processor: A slave pro- 
cessor receives a new node only after the master 
processor has consumed the slave's latest results. The 
disadvantage here is that a slow master processor 
causes idleness of the slave processors. 

The implementation of the first variant is not always 
possible due to hardware or software limitations. A 
number of experiments with the second variant have 
been reported. Trienekens (1989), for example, 
describes a successful implementation for the traveling 
salesman problem, but a similar experiment for the 
job shop scheduling problem was rather disappointing 
(Kindervater 1989). The outcome for both experi- 
ments can be explained from the fact that in the 
traveling salesman algorithm the time needed for the 
evaluation of a node by a slave processor is much 
longer than in the job shop program. 

This paper aims to provide a theoretical background 
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for experimental observations, such as the ones 
described above. We deal with the first variant in 
Sections 2, 3 and 4. The second variant is discussed 
in Section 5. Throughout the paper, we assume that 
there are enough nodes available for evaluation by the 
slaves. This is not a serious restriction because parallel 
computers are particularly useful for solving problem 
instances that require large search trees for finding the 
optimal solution. 

2. QUEUEING MODEL DESCRIPTION 

In the queueing network representation of the parallel 
processing of branch-and-bound nodes, the master 
processor is represented by a single server M, and the 
P slave processors are represented by P parallel servers 
Si, ..., Sp, gathered in a service station S; cf. 
Figure 1. The nodes are represented by customers. 
In the figure, B&D symbolizes the birth and death 
of customers. This corresponds to the removal of 
processed nodes and the generation of new nodes. 
To further specify the queueing network, we have to 
describe the routing of customers and the service 
processes at M and S. 

2.1. The Routing of Customers 

When a customer arrives at M, he may have to wait 
in a queue until his service starts. After having 
obtained a service requirement, the customer leaves 
and immediately arrives at S, where he usually has to 
wait in a queue. In this queue, each customer has a 
priority that determines the order in which the cus- 
tomers are served by S. In the implementation of the 
branch-and-bound algorithms under consideration, 

the priority queue is maintained by the master pro- 
cessor. In the queueing network model, however, 
it is more natural to identify the priority queue with 
the queue at service center S. Now there are two 
possibilities: 

1. Before the customer is taken into service, the 
service center M receives information on which 
ground it decides to throw away a part of the queue 
at S, to which this customer belongs: The customer 
is instantaneously removed from the queueing net- 
work. This corresponds to the situation that the 
master obtains information from a node which 
makes the analysis of the nodes in a part of the 
priority queue obsolete. Customers who are thrown 
out of the queue at S are not replaced by other 
customers. 

2. After a (possibly zero-length) waiting period, the 
customer is taken into service by one of the P 
servers; after having obtained the required service, 
the customer leaves S. 

A customer who has successfully completed a ser- 
vice in S enters the part of the network designated in 
Figure 1 as B&D; here, he is immediately replaced by 
0, 1 or 2 new customers, with probabilities po, Pi, P2, 
respectively; po + Pi + P2 = 1 (we assume that a 
branch-and-bound node has at most two descendants; 
the analysis to be presented in Section 3 remains valid 
when this assumption is relaxed). These new cus- 
tomers immediately arrive at M. The probabilities pi 
may vary with time; we denote them by pi(t). The 
mean increase of the number of customers in the 
network after a service completion in S at time t will 
be denoted by 

?(t) = p,(t) + 2p2(t) - 1. (1) 

In approximation, 0(t) will be a decreasing function 
of t, with /(0) = 1 and 0(oo) = -1. In the branch-and- 
bound setting, this corresponds to the observation that 
the number of nodes generated by a node usually 
equals two in the beginning of a tree search, and that 
this number decreases to zero in the course of time. 
For most of the subsequent calculations, the exact 
form of 4*(.) is irrelevant. 

2.2. The Service Process at M 

The single server M serves customers in order of 
arrival (first-come, first-served). M's service of a cus- 
tomer consists of two parts: 

1. a constant part of length a, which reflects the 
master's processing of the information contained 
in a node; 

M 

B& D _ _ _ _ _ _ S 1 - I } 

~~~~~~~~~~~~~I I 

{i: 

I - r SP-- 

Figure 1. The queueing network model. 



1008 / BOXMA AND KINDERVATER 

2. a part of length b ln(1 + y), which reflects the 
master's putting a node in a priority queue of size 
y. Note that insertion in a priority queue requires 
O(ln y) time units when its size is y. 

Hence, the total service time of a customer in M, in 
the case that this customer has to be inserted in a 
priority queue of size y, equals 

a + b ln(1 + y). 

Instead of constants, a and b may also be stochastic 
variables; in the analysis of this paper, that will turn 
out to be of minor importance. 

In the following, the queue length of waiting cus- 
tomers in M at time t will be denoted by yM(t). 

2.3. The Service Process at S 

When a server in S becomes idle, the customer at the 
front of the queue (if any) is immediately taken into 
service. When a newly arriving customer finds several 
servers idle, he chooses an arbitrary idle server. We 
assume that the P slave processors, and hence the P 
servers, are identical. 

The service times of customers at S are independent, 
identically distributed stochastic variables with mean 
I/a. Generally, it will not be necessary to specify the 
service time distribution at S further, but at a few 
places in the text we will consider the case of a negative 
exponential distribution. 

Apparently the "capacity" of S is Pa: S is able to 
handle Pa customers per unit of time, on the average. 
Throughout this paper we assume that 1/a >> Pa, i.e., 
M's maximum speed of handling customers is much 
higher than that of S. Of course, a large queue at S 
will slow down M considerably. The length of the 
queue at S at time t will be denoted by ys(t). 

Remark. In a parallel computer, communication 
takes a certain amount of time. We assume that the 
time to send messages between the master and the 
slaves has been taken into account in the service times. 

3. MATHEMATICAL ANALYSIS OF THE NODE 
PROCESSING MECHANISM 

In the previous section, a queueing network model 
was introduced to describe the node processing mech- 
anism in parallel branch and bound. In this section, 
we present a mathematical analysis of the queue length 
processes in that queueing network. This analysis is 
basically of a nonstochastic nature. Of course, yM(t) 

and ys(t) are stochastic processes which may exhibit 
considerable fluctuations. Information concerning the 
(random) behavior of ys(t) and yM(t) requires a 
detailed queueing analysis. The problem of analyzing 
the transient behavior of queues is notoriously diffi- 
cult, even when arrival and service rates are constant. 
In our case, a detailed mathematical analysis of the 
evolution of, say, yM(t), requires analysis of the tran- 
sient behavior of a single server queue with complex 
time dependent arrival and service rates. Hardly any 
results are available in the literature concerning such 
problems. Massey (1985) studies the asymptotic queue 
length behavior of an M/M/ 1 queue (i.e., a single 
server queue with Poisson arrival process and negative 
exponentially distributed service times) with time 
dependent arrival and service rates. Rider (1976) and 
Rothkopf and Oren (1979) derive approximations for 
the mean queue length at time t in this M/M/ 1 queue; 
their approximations are fairly complicated. These 
models are considerably less complex than the model 
under consideration, with its interaction between M 
and S. As there seems to be little hope of obtaining 
useful exact results, we have taken recourse to a 
standard type of approximation. The approximation, 
simple as it may be, will turn out to yield much insight 
into the behavior of both queue length processes. In 
queueing literature it is called a fluid flow approxi- 
mation (cf. Newell 1971) or deterministicfluid approx- 
imation (cf. Newell 2nd ed., 1982). 

Fluid flow approximations are based on the follow- 
ing observations: i) In a system with a large queue, 
many customers must arrive and depart before the 
queue changes much (in a relative sense). ii) In a 
period of time sufficiently long for many arrivals and 
departures to occur, the effect of random fluctua- 
tions-due to the stochastic nature of the arrival and 
service processes-will be relatively small. The latter 
observation can be supported theoretically by the 
Laws of Large Numbers and Central Limit Theorems. 
As an example for which detailed exact statements 
can be made, consider the departure process from the 
saturated service station S under the assumption that 
successive service times in S are independent, negative 
exponentially distributed stochastic variables with 
mean I/a. Then successive departure intervals are 
independent, negative exponentially distributed sto- 
chastic variables with mean 1/Pa. The number of 
departures, D(t), in an interval of length t is Poisson 
distributed with mean Pat and variance Pat. Accord- 
ing to the Strong Law of Large Numbers 

D(t) - E[D(t)] = D(t) - Pat 
- ~~~---O, t ---> (2) 

E[D(t)] Pat 
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with probability one. Supplementary information is 
provided by the Central Limit Theorem, which shows 
that for large t 

Pr-y < D(t) - Pat y 

~- J exp(-x2/2) dx. (3) 

Observations i and ii allow us to replace the discrete 
and random arrivals and departures at M and S by 
nonrandom continua (cf. Newell 1971, Chap. 2): We 
can view M and S as reservoirs, with fluids flowing in 
and out. In this setting, a reservoir can be considered 
to be empty for a lengthy period of time, without 
really being completely empty; it is empty only on a 
scale of measurement in which fluctuations in cumu- 
lative flows are negligible. 

In our fluid flow analysis of the node processing 
mechanism, we distinguish two possible states in 
which the system can be, viz. 

ME: M is empty; 
MNE: M is not empty. 

Once more, at a time to at which the system is in 
state ME, yM(to) is not necessarily zero; but on the 
scale of measurement, it is negligible. Note that y is 
not printed in boldface, as the queue length process is 
no longer assumed to be stochastic. 

Throughout the analysis, S will be considered to be 
nonempty, with all P servers being occupied. When 
ys(t) becomes zero, M serves so fast that S very soon 
saturates again. This is no longer true when there are 
hardly any customers in the system, but that situation 
is not of much interest. 

For arbitrary customer increment rate 0(.), the 
system state can switch back and forth between ME 
and MNE several times. In Subsection 3.1 we describe, 
in detail, the behavior of the queue length processes 
in each of these two states. In Subsection 3.2 we follow 
the evolution of yM(t) and ys(t) from beginning to 
end, in the case of a nonincreasing function 0(.) with 
o(O) = 1 and o(oo) = -1. 

In Section 2 (see 2.1) we have mentioned an impor- 
tant feature of branch and bound: The master obtains 
information from a node which makes the analysis of 
the nodes in a part of the priority queue obsolete. In 
the queueing network setting, this corresponds to the 
situation that, upon departure of a customer from M, 
the tail of the queue at S is removed from the network: 
ys(t) instantaneously is reduced by a certain number. 
In describing the queue length processes in states ME 

and MNE, we first ignore such sudden reductions of 
the queue at S. In Subsection 3.3 we point out which 
simple changes are required to take reductions of the 
queue at S into account. 

3.1. Queue Length Behavior in the States ME 
and MNE 

We shall mainly concentrate on the queue length 
process ys(t); yM (t) follows from the relation 

rt 
ys(t) + yM(t) = Pa f ?(u) du, t > 0. (4) 

This relation holds for general 0(.) under the assump- 
tion that the P slaves of S are always occupied, ignor- 
ing the possibility of a sudden reduction of the queue 
at S. 

3.1.1. The State ME 

In state ME, M is clearly nonsaturated: Its input rate 
is lower than its maximum possible processing rate. 
The output rate of S is Pa, all P servers being occupied; 
so the input rate to M, and accordingly the input rate 
to S, is Pa(1 + ?(t)). Therefore, with to the entrance 
time of the system in state ME is 

rt 
Ys(t) = ys(to) + Pa f ?(u) du 

to 

= Pa q5(u) du. (5) 
4 

The last equality follows from (4) because, by 
definition: 

YM(t) = 0 

when the system is in state ME. 
If 0(.) is such that ys(.) grows, this may slow down 

M so much that M becomes saturated; the system will 
switch to state MNE. The epoch at which the system 
changes from state ME to state MNE, t,, is determined 
by the condition 'the flow into M equals the flow out 
of M' or 

Pa(1 + ?(t)) = [a + b ln(1 + ys(ti))]-' 

= [a + b ln(1 + Pa f +(u) du)1 (6) 

with t, the smallest solution larger than to. 

3.1.2. The State MNE 

Suppose that, at a time t,, the system enters state 
MNE. The server in M is now continuously busy; 
the input rate at M is still Pa(1 + +(t)), but its 
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output rate-and the input rate to S-equals 
[a + b ln(l + ys(t))] -. The queue length process ys(t) 
(or rather its fluid flow approximation) evolves accord- 
ing to the differential equation: 

d _ _ _ _ 
__P +t 1 t. 7 

dtY() a+b ln(l +ys() 

The initial condition is determined by (6): 

rtj 
ys(ti) =1Pa J (u)du 

P[bPa(l +(t)) . (8) 

The differential equation (7) plays a central role in 
our analysis of the queueing effects of the parallel 
processing mechanism. Rewrite (7) into 

11 a+ bln(1 +ys) _dys = dt 
I - Paa - Pab ln(l + ys) 

or, with C1 some yet unknown constant: 

pa Pa I - Paa a-Pabln(1 +ys) Y 

= t + C1. (9) 

Introduce 

C [Po= a (10) 

and the exponential integral (cf. Abramowitz and 
Stegun 1965) 

El (z): Jexp( dv, z>O. ( 1) 

Substitution of v = C - ln(1 + y) in (11) shows that 
(9) can be rewritten as 

p Ys(t)+1c ecEl(C-ln(1 +ys(t))) 

= t+ Cl. (12) 

The initial condition determines the constant C1: 

(t )+ ecE (C-ln(1 + ys(ti))) 

= t1 + C1. (13) 

Subtraction of the relations (12) and (13) finally gives 
us a relation between ys(t) and t: 

- [ys(t) - Ys(ti)] 

+(P)2b eC[Ei(C - ln(l + ys(t))) 

- E1 (C - ln(l + ys(ti)))i 

=t - tl. (14) 

It seems impossible to find an explicit expression for 
ys(t) as a function of t, t > ti, but (14) is already very 
useful. First, for each given value of ys(t) it is easy to 
explicitly calculate the corresponding t-value (the 
exponential integral EJ (.) is extensively tabulated 
(Abramowitz and Stegun). Second, standard knowl- 
edge about E1 (.) allows us to obtain useful insight into 
the behavior of ys(t). 

It is clear from the differential equation (7) that, 
independently of the choice of 0(.), ys(t), t > ti, 
increases as long as this differential equation holds, 
tending to the limit exp(C) - 1. Let us now study the 
following question: At what time t, will ys(t) + 1 reach 
the level exp(C( 1 - E))? According to (14): 

- [exp(C(1 - e)) - 1 - ys(ti)] 

+(P)2b eC[El(cC) - E1(C - ln(1 + ys(ti)))] 

= - t1. (15) 

Now we use the fact that (Abramowitz & Stegun) 

E1 (z) =-,y-In z - ! >0 (16) 
n=l1 n 

with y = 0.57721 ... denoting Euler's constant. Hence 

E1 (EC) =-y +In + 0 (c), c -? (17) 
C 

so 

(P )2b eC(ln - + 0(1)), c -? 0. (18) 

These calculations enable us to estimate the behavior 
of ys(t) close to its limiting value. In particular, from 
comparing t, with t2e, it follows that an O(c) increase 
of ys(t) in this time region requires 0(1) time 
(one can, in fact, also derive this directly from the 
differential equation (7)). More precisely, from 
(14) and (17) one can show that for t -* oo, ys(t) = 
-1 + ec[1 - exp[_(Pa)2be-Ct]]. If +(t) = 1 in close 
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approximation in a large time span in state MNE, 
ys(t) + yM(t) grows linearly with Pa customers per 
unit of time. Therefore, when ys(t) is close to its 
limiting value, the queue at M grows linearly with 
time in the time region under consideration. 

The queue length process yM(t) follows from (4) 
once ys(t) has been determined. It depends on the 
choice of 4(.) and of the various parameters whether 
a situation as sketched above (with the bulk of the 
growth of the customer population contributing to 
yM(t)) actually occurs. See also the numerical exam- 
ples in Section 4. 

For the system to switch back to state ME, it is 
required that M's input rate Pa(1 + ?(t)) is less than 
its output rate [a + b ln( 1 + ys(t))]1- for some period 
of time. Let us suppose that 0(.) and the various 
parameters are such that the system switches back to 
state ME. The epoch at which the system switches 
from state MNE to state ME, t2, is determined by the 
condition YM(t2) = 0, or equivalently: 

rt2 

ys(t2) = Pa f (u) du. 

Substitution in (14) yields: 

rt2 
- fJ q?(u) du 

+ (P)2b elEl(C -ln(1 + Pa ,f ?(u) du)) 

- El(C - ln(l + Pa j 0(u) du))1 

=t2 - tl (19) 

with t2 the smallest solution, larger than t,, of this 
equation. It has to be determined numerically. 

3.2. Evolution of the Queue Length Processes 

We now restrict ourselves to the case of a nonincreas- 
ing function 0(.) with 4(O) = 1 and q(oo) = -1. We 
follow the evolution of yM(t) and ys(t) from beginning 
to end. 

Initially, there is only one customer in the system 
(the root of the search tree). This customer is served 
in M, and subsequently in S; it is replaced by two new 
customers, who arrive at M; shortly thereafter there 
are three customers, etc. Very soon all processors of S 
are continuously busy. If, e.g., all service times at S 
are negative exponentially distributed with mean i/a 
and M is much faster than the P processors, the length 

of the initial period is approximately 

1 1 1 
ao 2a0 (P -l)a 

(indeed, when j servers are active in S, the time until 
the first departure from S is negative exponentially 
distributed with mean I/Ija; the departing customer is 
almost certainly replaced by two other customers, 
who-after a very short visit to M-increase the num- 
ber of active servers in S to j + 1). After the initial 
period, Pa customers leave S per unit of time (on the 
average), and Pa(1 + +(t)) customers arrive at M per 
unit of time. M is extremely fast as long as the queue 
length at S, ys(t), is not too large: M has at first no 
difficulty handling its input stream, so its output 
stream also has the intensity Pa( 1 + +(t)). In the fluid 
flow approach, M is still considered to be empty: The 
system is still in state ME. ys(t) grows at a rate Pao(t), 
cf. (5). There are now two possibilities: 

i. M slows down so much that its maximal output 
rate equals its input rate: M starts to saturate, and 
the system enters state MNE; 

ii. M's speed is not reduced enough to reach the 
saturation point, and all customers are being 
processed without the system ever entering 
state MNE. 

Case i obviously is the more interesting one. The 
system enters state MNE. The queue length process 
Ys(t) now evolves according to the differential equa- 
tion (7). M's queue length initially grows but, as a 
counteracting force, 0(t) decreases; finally, the input 
rate Pa( 1 + 0(t)) in M becomes lower than the output 
rate and M's queue length starts to decrease. This 
process continues until M becomes empty again: The 
system switches back to state ME. 

At this epoch, the input rate at S switches to 
Pa(1 + 0(t)). If ?(.) has already become negative, 
the queue length at S immediately starts to decrease, 
and continues to do so (0(.) being a nonincreasing 
function). Consequently, M speeds up, and the system 
stays in state ME until there are no customers left. 
However, if 0(.) still is positive, then in principle both 
possibilities, i and ii, discussed above again exist, and 
the system may switch back to MNE, etc. Such an 
alternating series of states ME and MNE may, for 
example, occur if shortly after entering state MNE 
the function 4(.) drops from almost one to a small 
positive value and keeps this value for a substantial 
period. The system will react by a change from state 
MNE to state ME, and because the number of cus- 
tomers is still growing M will get saturated once 
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more. Figure 2 depicts the typical behavior of M's 
input rate Pa( 1 + 0(t)) and its service speed 
[a + b ln(l + ys(t))]-L. 

3.3. Reductions of the Queue at S 

Neither Figure 2, nor the global description of the 
queue length processes, considers the phenomenon 
that part of the queue at S is instantaneously thrown 
out of the system. This phenomenon, which also 
implies a sudden increase of M's speed, can easily be 
captured in the mathematical analysis. Suppose that 
a reduction of the queue at S occurs at an epoch td, 

and that x customers are removed from the network. 
If this happens while the system is in state ME, the 
output rate, Pa(1 + 0(td)), of M is not affected. Much 
more interesting is the situation in which the sudden 
drop in the queue length of S occurs while the system 
is in state MNE. Instantaneously the output rate of M 
increases to 

[a + b ln(1 + YS(td +))] 

= [a + b ln(1 + YS(td-) - x)]-. 

The queue length at S still behaves according to the 
differential equation (7), but with a new initial value 
Ys(td +). The speedup of M may soon lead to an empty 
queue at M, so that the system enters state ME. Of 
course, it is possible that several considerable reduc- 
tions of the queue at S occurs. Not much is known 
about the frequency with which this phenomenon 
occurs, nor about the sizes (x) of the corresponding 

jumps. Therefore we do not discuss the issue in much 
detail here. It suffices to observe that our model is 
able to determine the influence of sudden reductions 
of the queue at S on the speed of the master, and on 
the subsequent behavior of the queue sizes. 

In Section 4 we present some numerical examples 
which, for various choices of the function 4(.) and 
the parameters P, a, a and b, exhibit the global behav- 
ior of ys(t) and yM(t). In one example, the phenome- 
non of a reduction of the queue at S is also taken into 
account. 

Remark. At this stage, it seems appropriate to cite 
Newell's cautionary note concerning the use of fluid 
flow approximations (Newell 1982, p. 36): "Any con- 
clusions obtained here are tentative and subject to 
unknown errors arising from the use of deterministic 
approximations. One must be particularly cautious of 
the possibility that the queue lengths calculated here 
may be overshadowed by queues generated by sto- 
chastic effects." Although we do not expect such an 
overshadowing effect here, there may be periods dur- 
ing which the queues are small and the stochastic 
behavior is dominating. 

Remark. 0(.) has so far been considered as a process- 
independent function. In reality, 0({) may depend on 
the queue length process; it might, in particular, be 
realistic to decrease '(.) after the occurrence of a 
sudden reduction of the queue at S as described before 
(and this decrease should be related to the size of the 
reduction). Such process-dependent behavior of 0(.) 
can be incorporated in the model. The behavior of 
ys(t) initially would still be determined by the differ- 
ential equation (7), but the input rate in M would 
suddenly decrease. 

4. NUMERICAL EXAMPLES 

To give a global idea of the behavior of ys(t) and 
yM(t), we will now present the results of some numer- 
ical computations. In all cases, we consider a linearly 
decreasing function 0(.) with 4(0) = 1. The process 
stops at a time T with b(T) = -1. The total number 
of customers served by the slaves at time T is Pa T. In 
all examples, we chose this number to be 10,000. 

In Figure 3, the case Pa = 50 and a = b = 0.0020 
is shown (see also Figure 2, and note that P and a are 
occurring as a product in all formulas). In the begin- 
ning, Ys is increasing very fast and M is getting satu- 
rated almost immediately. At that moment, the queue 
length YM starts to grow. Since 0(.) is a decreasing 
function, the number of customers arriving at M is 

Number of nodes 
per time unit 

500 

400 

300- 

200 - +2 

100 

0 50 100 150 200 
Time 

Figure 2. M's input rate vu and service speed v2 = 

(v, = Pa(1 + ?(t)) and v2 = [a + b ln(l + 
ys(t))]-); Pa = 50, a = b = 0.0020, and X 
(.) is linearly decreasing. 
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Figure 3. Ys and YmV for Pa = 50 and a = b = 0.0020. 

decreasing. Therefore, M will eventually become 
empty and the system changes from state MNE to 
state ME. At this point in time, Ys starts to decrease 
since 0(.) is already negative. 

Figure 4 shows the effect of changing Pa, which 
corresponds to altering the number of slaves or the 
processing speed of the slaves. For Pa = 20, the master 
is fast enough to serve the incoming customers and 
YM 0 O. If Pa = 80, the master gets into serious trouble. 
The speed of the master is much too slow compared 
with the number of incoming customers. Here, we 
can observe the fact that Ys is approaching an asymp- 
totic value if the system is in state MNE for a long 
enough period. 

There appears to be a delicate interaction between 
the processing capacities of the master and the slaves. 
Increasing the processing capacity of the slaves may 
change an almost continuously idle master into a 
saturated master with a very long queue. The benefi- 
cial effect of increasing the processing capacity of the 
slaves may now be reduced; for example, a node with 
information that would make a large part of the 
priority queue obsolete (i.e., a part of the queue at S 
would be thrown away) is delayed for a long time, 
thus possibly causing a deterioration of the running 
time of the algorithm. 

In Figure 5, we consider different speeds of the 
master. The effects are about the same as when 
changing Pa. 

Sudden reductions of the queue at S may cause an 
alternating sequence of the states ME and MNE. An 
example is given in Figure 6. In state MNE, a part of 
the queue at S is thrown away. As a consequence, M's 
speed increases so much that YM becomes zero. Since 
the total number of customers in the system is still 

increasing rapidly, M gets saturated again, and the 
system enters state MNE again. 

5. THE MACHINE REPAIR MODEL 

For the class of branch-and-bound algorithms consid- 
ered in this paper, it can be advantageous that the 
master has full knowledge of the search tree developed 
so far. An enormous queue length at the master can 
cause a slowdown of the computation. Therefore, in 
this section we consider branch-and-bound algorithms 
where a slave does not start with the evaluation of a 
new node until the master has processed the latest 
information the slave has sent. 

This gives rise to the queueing model of Figure 7, 
with exactly P customers, each customer correspond- 
ing to one particular slave. This is a well known 
queueing model, often referred to as the machine 
repair model (the P customers being P machines which 
after breakdown have to be repaired in repair facility 
M). In a computer context, the model also represents 
a multiaccess system (Kobayashi 1978). In such a case, 
the P slaves correspond to P terminal users. Each of 
these terminal users alternates between an active 

Queue length Queue length 
2500 2500 

2000 Ys 2000 

1500 1500 

1000 1000 n-3M 

500 500 
lYs 

0 0 
0 100 200 300 400 500 0 25 50 75 100 125 

Time Time 

Figure 4. The effect of changing Pa; a = b = 0.0020, 
Pa = 20 (left), Pa = 80 (right). 
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Figure 5. The effect of changing a and b; Pa = 50, 
a = b = 0.0015 (left), and a = b = 0.0025 
(right). 
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Figure 6. An example with a reduction of the queue 
at S; Pa = 50 and a = b =0.0020. 

(think) phase and a passive phase; after a think phase, 
a job is sent to the central processor M. 

The machine repair model has been studied exten- 
sively in the queueing literature (see, for example, 
Gross and Harris 1985, Kobayashi 1978, and Tijms 
1986). Hardly any time-dependent results are known; 
however, under some distributional assumptions, 
quite simple explicit formulas for the steady-state 
queue length distribution at the repair facility, the 
mean number of busy machines, etc., have been 
derived. In this section, we shall use those steady-state 
results to obtain insight into the performance of the 
master-slave architecture for branch-and-bound algo- 
rithms where a slave processor only receives a new 
node when the master has consumed the slave's latest 
results. 

As in the previous model, we assume that the service 
times at the P servers Si, . . ., Sp of service station S 
are independent, identically distributed with mean 
1/oa. The assumptions concerning the service pro- 
cess in M differ from those in the previous model. For 
reasons of mathematical tractability, it is assumed 
that the service times at M are independent, negative 
exponentially distributed stochastic variables, with 
mean 1/j. Note that the fluid flow approximation of 
Section 3 allowed us to leave the service time distri- 
bution at M unspecified. We return to this issue in 
the remark at the end of this section. The rate of the 
service times at the master is further assumed to be 
constant in time. However, the steady-state analysis 
for the case of constant master speed that we are about 
to present will yield insight into the effect that a change 
in speed of the master has (see Figure 8 below). 

It is easy to see that under the assumption of nega- 
tive exponentially distributed service times at M, S is 

equivalent-with respect to the number of busy 
servers-to the so-called M/G/P loss model. This is 
an open queueing model with a Poisson arrival proc- 
ess, P servers with generally distributed service times, 
and no waiting room; an arriving customer who finds 
all servers occupied is lost. Indeed, as long as the loss 
model and S contain less than P customers, their 
number of customers evolve in exactly the same way. 
When the loss model contains P customers, no more 
arrival is accepted until a customer has left; after an 
exponential period of time, a new arrival takes place. 
But exactly the same situation occurs in S, when it 
contains all P customers. 

We restrict ourselves to the consideration of the 
limiting probability distribution of the number of busy 
servers, B, at S (which number equals P minus the 
number of customers in M). This amounts to studying 
the limiting distribution of the number of busy servers 
in the M/G/P loss model. This limiting distribution, 
and hence the distribution of B, is given by (see, e.g., 
Kelly 1979, pp. 13, 79, or Tijms 1986, pp. 290, 291): 

Pn = Pr{B = n} I= y r 

n = O, 1, ...,P (20) 

with 

r : f/a. 

The probability that an arriving customer in the 
M/G/P loss model is lost, Ep(r), is given by Erlang's 
loss formula: 

Ep(r) = pp = rp/P! (21) 

M 

l ~~~~~s 
A ~~~~~~SI 

S2 

IS 

: : : -1 

Figure SThmlP 

IFigure 7. The machine repair model. 
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The mean number of busy servers at S, N, follows 
from (20): 

N := E[B] = r[l - Ep(r)]. (22) 

The relation between Nand Ep(r) is easily interpreted. 
Indeed, with r the amount of traffic offered to the 
M/G/P loss system per unit of time, N equals the 
mean amount of traffic handled per unit of time- 
and this should equal the mean number of busy 
servers. In this connection, note that aN represents 
the throughput of S, and hence also of M; so the mean 
cycle time of a job in the closed system is given by 
P/aN. 

In principle, (22) can be evaluated numerically. 
However, this evaluation may be cumbersome when 
P and/or r are large while, moreover, (21) does not 
yield much insight. Therefore, the behavior of N and 
Ep(r) for large values of P and/or r has been investi- 
gated extensively. See Whitt (1984) for an interesting 
exposition and several early references, and Newell 
(1984) for various asymptotic expansions. In particu- 
lar, Newell presents a simple first-order approximation 
for Ep(r) for r -* oo, leading to 

N~r, r<P, (23) 
N~P, r>P. 

Newell's second-order approximation (see also Whitt) 
leads to the following approximation for N. Introduce 

r t 
K: = (-- ) 

and the standard normal distribution function 

rx I ?(x) f 4 exp(-z2/2) dz, -00 < x < mo. 

The mean number of busy servers in S is for large 
values of r approximated by: 

N~ r[1 I (r/P) ], r < P 
V2P '(KPIr) (24) 

N r[l_ 
(P' 

exp(-K 
2/2)l N~ r \ I rr(K J r>P. 

This approximation is based on Stirling's approxima- 
tion for factorials, and the normal approximation to 
the Poisson distribution. 

Figure 8 displays the exact fraction of busy servers 
in S, N/P, as a function of r = 6/a for P = 1, 2, 4, 8, 
16, 32, 64 and 128. The figure clearly shows the 
usefulness of the simple first-order approximation 
(23). N grows linearly with fl/a until the speed of the 
master M, ,B almost equals Pa, the maximal speed of 

S; further increasing d has hardly any effect. In branch- 
and-bound algorithms, the speed of the master varies 
with the number of generated but not yet examined 
nodes. The effect of such fluctuations in the speed of 
the master processor on the fraction of busy servers 
can also be derived from Figure 8. 

Figure 9 displays the fraction N/P as a function of 
r/P = /3/Pa for the same parameter choices as in 
Figure 8. The figure shows that for P > r (fl/Pa < 1) 
the fraction of busy servers decreases rapidly when 
/3/Pa decreases. For fixed speeds of the master and 
the slaves, it is, therefore, only worthwhile to add slave 
processors as long as P < r (l/Pa > 1). 

So far, we have been concerned mainly with the 
mean of the number of busy servers in S. Newell 
(1984) also presents approximations for the distribu- 
tion of the number of busy servers in S. He states that, 
for P large and fixed, and r > P, and in particular 
1 - P/r > r-1/2, the distribution of idle servers in S is 
approximately geometric: 

Pr{n idle servers) = pp-, = (1 - P/r)(P/r)n 

n = 0, 1, ..., P (25) 

with the mean number of idle servers in S approxi- 
mately equal to P/(r - P). 

Remarks. In this section, the service times at S are 
generally distributed, whereas the service times at M 
are exponentially distributed. It is an interesting 
and well known fact for the machine repair model 
(and the M/G/P loss model) that (20) for the number 
of customers at S holds regardless of the form of 
the service time distribution at S. When M uses a 
processor-sharing discipline, (20) even holds when the 
service times at M have a general distribution with 
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Figure 8. Fraction of busy servers as a function 
of f/a for P = 1, 2, 4, 8, 16, 32, 64, 128. 
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Figure 9. Fraction of busy servers as a function 
of d/Pa for P = 1, 2, 4, 8, 16, 32, 64, 128. 

mean 1/3 (cf. Tijms, p. 291). For the first-come first- 
serve discipline at M under consideration, this insen- 
sitivity for the service time distribution at M is not 
true. 

Formula (20) can easily be generalized to the case 
that the mean service time in M depends on the 
number of customers waiting in M, or equivalently, 
that the arrival rate at the M/G/P loss system depends 
on the number of busy servers. Let On denote the 
service speed in M when n customers are present in 
M. Then (20) should be replaced by 

Pn := Pr{B = n } EP 
M= 

HF I (3P-k+l/ka) 

JZj=o flk=i (13P-k+l/kax) 

n = 0, 1, ...,P. (26) 

6. CONCLUSIONS 

The queueing network model developed in this paper 
allows us to analyze the behavior of a class of branch- 
and-bound algorithms on master-slave architectures. 
The main performance measures under consideration 
are the number of customers at the master and at the 
slaves. These are natural performance measures 
because they determine the effectiveness of an imple- 
mentation. For both variants, we have studied the 
influence of changing the speed of the master and 
of the slaves, and of changing the number of slave 
processors. 

For the case where a slave starts evaluating a new 
node as soon as it becomes idle (Section 3), the state 
of the system can be determined completely at any 
point in time. We have shown that there is a delicate 
interaction between the processing capacities of mas- 
ter and slaves. For example, increasing the speed of 

the slave processors or adding extra slave processors 
may turn an almost continuously idle master into a 
saturated master with a large queue. The resulting 
long delay, at the master, of nodes with valuable 
information may counteract the beneficial effect of 
increasing the processing capacity of the service station 
S. The "best" situation is probably the one in which 
the master never saturates. Given the speed of the 
master and of the slaves and a function k(.), one may 
use (6) to obtain the highest number of slave proces- 
sors, PO, such that a saturation of the master never 
occurs, i.e., 

Poa(1 + X(t)) 

<[a + b ln(l + Poa f (u) du)] for all t. 

For the variant of Section 5 where a slave starts 
evaluating a new node only after the master has pro- 
cessed the slave's latest results, we can only give a 
steady-state analysis. Still, this analysis yields useful 
insight. Increasing the speed of the master, A, to 
enhance that the slaves are almost always busy, is only 
useful as long as d < Pa, the total processing capacity 
of the slaves; similarly, increasing the number of 
slaves, P, is only useful as long as Pa < A. 

Finally, given system parameters such as the speed 
of the master and of the slaves, and given branch-and- 
bound parameters, such as the function 0(.) and the 
average number of steps needed for the processing of 
a branch-and-bound node, the queueing network 
model allows us to decide whether the two discussed 
implementations can be used effectively. 
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