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We model secondary memory devices as single-server queuing systems. The 
non-random access to data within these devices is explicitly accounted for as 
''set-up" times. Requests are typed by the location of the desired record. No 
distinction is made between "read" and "write" requests. Each request is 
assumed to be satisfiable from one location on the device (e.g., a single directory 
search may result in a number of distinct requests). Requests arrive according to 
a homogeneous Poisson process. The types of successive requests form a first- 
order Markov chain, which is an approximation of reality. Alternative computa- 
tional procedures and closed expressions are given for queue length, waiting 
times, and device utilization. We present some specializations to disks and 
drums. Only FIFO service is considered. 

I MPORTANT congestion points in general-purpose computer systems 
frequently occur through interactions with secondary storage devices. 

In such cases the efficiency with which information is exchanged between 
these devices and primary (e.g., core) storage determines the system's 
maximum throughput or work rate. Secondary storage units such as 
magnetic drums, disks, bubble memories, and tapes (whether singly or 
within libraries) have the characteristic feature that the total service 
time of a read or write request depends on the location addressed by the 
request previously served. Of course, it is precisely this property that 
specifies the manner in which these devices fail to be random access, as 
are primary storage devices. 

Our purpose is to present and analyze a mathematical model that will 
explicitly take into account the above characteristic of non-random access 
devices. Since the difficulty arises mainly from the unpredictable arrivals 
of requests, it is natural that a stochastic model is required for a realistic 
presentation of the salient features of these systems. 

A specific goal will be to provide a FIFO (first-in-first-out) service 
queuing analysis of secondary storage devices sufficiently general to 
embrace the detailed structure of a large majority of existing systems. 

864 
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The parameters of the mathematical model will include a stationary, 
discrete probability distribution describing the patterns by which requests 
address information on secondary storage devices (successive addresses 
are allowed as well to form a first-order Markov chain). Such patterns 
normally influence system performance, and they are determined by the 
mechanism that allocates specific storage locations to records (units of 
information). Thus, in the calculation of conventional performance mea- 
sures we shall also briefly consider the essentially combinatorial problem 
of determining the influence of different record allocations. 

The first two sections present a general model and its analysis. The 
remainder of the paper specializes the results to certain common second- 
ary storage devices and discusses alternative computational methods. 

1. THE MATHEMATICAL MODEL 

We will model the devices discussed above as a single-server facility as 

2 

unlimited queue / 
input Y 6 

N 

Figure 1. Secondary memory as a service facility with a waiting queue. 

illustrated in Figure 1. Incoming requests are immediately inducted into 
service when the facility is idle. Arrivals at a busy facility wait for service, 
and there is no limit to the number of such requests that may wait at any 
given time. All service periods contain an initial period of set-up delay, 
possibly of zero length. The selection from the queue for service, at the 
termination of a service period, is done without prior knowledge of the 
requested service times. During all of our analysis we consider selection 
procedures that provide service in the order of arrival (FIFO), but some 
of the results admit more general regimes. 

Requests are of N types, simply called type 1 through N. The proba- 
bility that an arriving request is of type j, given that the preceding one 
was of type i, is pie and is otherwise independent of the state of the system 
and its history. These "transition probabilities" form a matrix P with an 
invariant probability vector we denote E. (We are interested only in 
situations where P is irreducible and all its states are recurrent.) The 
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matrix with all its rows equal to p will be denoted by P. A request of type 
j, which is immediately preceded by a request of type i, requests service 
with duration Sij drawn from a distribution Fi( ), independently of the 
other descriptors of the state of the system. This service period is 
generally the sum of two components, Sij=Tij+Kj, where Tij, the set-up 
time, is the time it takes the service facility to switch over from a state of 
having finished the service of a type i request to the beginning of service 
for a type j request. The quantity Kj depends on the request type, does 
not depend on the state of the system, and usually represents the actual 
transmission time of the information. In most of the applications toward 
which this paper is directed, the variables Sij are in fact constants. 

In some situations we find it expedient to distinguish the service 
rendered to a request that starts a busy period (i.e., it finds upon arrival 
an idle system). Invariably, it is the set-up time Tij that is affected, and 
its value under these circumstances will be denoted T?J. Associated with 
V- is a service duration S?j, but the value of Kj is not changed. The 
arrival process of requests is assumed Poisson, with rate X, homogeneous 
in time and independent of the state of the system. 

We shall be interested primarily in steady-state behavior. We observe 
the system at the epochs of departure of requests. Since arrivals and 
departures happen singly, the distribution of the states of the system at 
these epochs is the same as at the arrival epochs, and also equal to the 
so-called "long-term" distribution. We let X, denote the number of 
requests in the system immediately following the departure of the nth 
request, the one in service included. q, denotes the waiting time of the 
nth request, which terminates at the beginning of the nth set-up time. 
We let S be the random variable denoting general service time, F(-) the 
corresponding distribution, and F(-) its LST. 

2. ANALYSIS OF THE MODEL 

The major difference between the model we investigate here and 
standard queuing models is the dependence between successive services. 
Depending on the type of device and its operating procedures, this 
relationship may even extend across an intervening idle period. Special 
cases of our model can be treated as applications of Skinner's model [12] 
(with a loss of structure severe enough to preclude, its use for most of the 
devices for which our model is intended). For an example, see Fuller and 
Baskett [4] for approximate analyses of FIFO paging drums. A queuing 
model with similar structure-the main difference being that no distinc- 
tion is made between a general service and one that starts a busy 
period-was treated in detail by Neuts [10]. 

We begin with an analysis that is independent of the order of arrivals. 
Then we proceed to evaluate the waiting times for a FIFO queue. 
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System capacity. As one usually finds in queuing systems, the input 
rates that the facility can sustain must be less than Xmax= l/E(S), where 
E(S)=1jXY2i3pjjE(Sij). This statement will not be proved explicitly here. 
We note the occurrence of the corresponding discontinuity point in 
numerical calculations. 

Queue length. We observe that (Xn, Jn; n=1, 2, ...), where Jn is the 
type of the nth departing request, is an aperiodic, irreducible and, for low 
enough input rates, recurrent Markov chain (MC). We proceed first to 
evaluate the probability generating function (pgf) of the steady-state 
distribution of the number in system. This will turn out to entail most of 
the complexity of the analysis that we require. 

We define for 1'i'N, xiO, PAX) =hn1P(Xn=XjJn=i) where, as usual, 
the vertical bar is to be read as "given that... ," and Gj(z)=1'=opj(x)zx. 
The dynamics of our MC are embodied in the matrix P and the relation 
Xn+1-=Xn-Un+Yn+1, where Un is 0 when Xn=O and is 1 otherwise, and 
where Y,n+i is the number of arrivals during the service of the (n+l)st 
request. We proceed in a standard way to obtain directly 

P(Xn+I=xlJn+l=j)P(Jn+l=j)=i=1P(Jn=i) tP(Xn=OJn-=i) 

P(Yn+1=x, Jn+ilXn=O, Jn=i)+Z'=P(Xn=rJn=i) (1) 

P(Yn+1=x-r+1, Jn+l=IlXn=r, Jn=i)}; x_:O, 1ljN. 

The distribution of Yn+i is now derived. It obviously depends on the 
duration of service of the (n+l)st request. As mentioned above, we 
distinguish between a departure followed by an idle period (with a 
subsequent service distributed according to F? (.)) and a departure for 
which the next service commences immediately (and is distributed ac- 
cording to Fij(-)); the set-up duration may be different in the two cases. 

Hence 

P( Yn+l=xlXn=O, Jn=i, Jn+l=j) = (exp(-Xs) (Xs)x/x!)dF9(s) (2) 
s=0 

and 

00 

P( yn+l1=x |Xn>O, Jn= ix Jn+ l =i)= J( exp (-As)(As) x/x! )dFy ( s). (3 ) 

We substitute (2) and (3) properly deconditoned from Jn+1 in (1), multiply 
by zx and sum over all values of x. Since the MC is recurrent, we may 
drop the subscripts n and n+1 to obtain the limiting equation 

Gx 
Gj (z)= E;N 1fi pij iT izox"=O | (exp (-As) (Xsz)x1x!)dF9-(s) 
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+? lzrP(X=rIJ=i)TIO z1{ 
s=o 

~~~~~~~~(4) 
(exp) (-Xs) (Xsz)x-r+l/(x-r+1 )!)dFij(s)1 IA4 

=1t,7riL9?(a)+z-'(G.(z)-,7.i)Lij(a)I @N 

where ,7i=P(X=OIJ=i), a=X(1-z), ?ij (respectively Y4) is the Laplace- 
Stieltjes transform of Fij (respectively F?) and Lij(Lg) is given by 
fipijij/fj(fi Pip, f/ij). The various changes of order of summation are 
allowed since all the sums are trivially absolutely convergent. 

The N equations can be written in a more convenient and compact 
matrix form: 

A(z)G(z)=B(z)W, (5) 

where & and G(z) are the obvious vectors and 

Aij( z )-zL,a)-LJji(a ), 1'i,Ij'N (6) 

where 8ij is 1 if i=j and is 0 otherwise. Equation (5) has the formal solution 

G(z) =A-1 (z)B(z)&J. (7) 

The unknown boundary probabilities 7ji now have to be deduced. First 
we have 

G(1)=i. (8) 

Second, letting C(z) be the adjoint matrix of A(z), and hence C(z)A(z) 
=IA(z)II, then we must have 

C(D)B(G),=6 (9) 

at all points ~, 1D1'1, which are solutions of 

IA (z) I =0. (10) 

Each of the equations in the system (5) is homogeneous, and thus (9) has 
to be supplemented by an equation that is inhomogeneous. Equation (8) 
does not give this directly, and we obtain it by noting that if 7 is the 
probability an incoming request finds an empty system, then balance 
equations yield 

7T=Zi-lpiTi ( 11) 

1-qT=XZi,jfip jptp71E(Soi j)-E(Sl j)]+XEi,fi ipi jE(Sl j) . (12) 

Equations (11) and (12) can now be combined to yield the necessary 
addendum to (9), 
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>_ mri {1+XYipi j[E(S'?i)-E(Si )J} =1-XE(S); E(S)=EjEjfi pj E(Sij). 

An alternative method to compute the 7Ti is given in Section 4. 
We present here an important result concerning those points at which 

{A (z) I vanishes. 

THEOREM 1. The determinant of A(z) vanishes at z=1 and at precisely 
N-1 points that satisfy 4zl<l. 

Proof The first claim is immediate by substitution and using pP=p. 
The second claim can be proved as follows: 

Let a,(z) denote the N eigenvalues of the matrix L(a), Izl<l. They need 
not necessarily be distinct, but in such a case we "perturb" the matrix P 
to separate them and invoke continuity arguments to assure that the 
number of roots of (10) stays the same.' We will assume they are distinct. 
Then (10) can be rewritten as 

UI=f (z-ai(z))=0. (13) 

Since the matrix LT(a) is term by term strictly smaller (for z#1) in 
absolute value than LT(O), a stochastic matrix (with spectral radius 1), all 
of a,(z) satisfy Iaj(z)f<1 (see [5], vol. II, p. 57). Rouch&'s theorem can 
now be applied to each of the factors of (13), to the effect that it has a 
single root in the open unit disk Izl<1 (except for that factor where 
ai(z)=1). 

We note a phenomenon that is interesting for its numerical implica- 
tions: When successive request types are independent (i.e. pij=pj=Pj) and 
X=0, we have IA(z)1=(z_1)zN-1, and thus it has one simple zero at z=1 
and one of multiplicity N-1 at z=O. When X increases continuously from 
zero to its operational value, the roots of (13) (which consists of contin- 
uous functions only) also move continuously in the z-plane. Writing Lij as 
a power series in X, Lij(a)=r=obijkak+o(Xr), we obtain IA(z)I as a poly- 
nomial in z of degree N, with a simple zero at z=1 and a zero at z=O of 
multiplicity N-r-1(r<N-1). This is obtained by using 0(X) as an ap- 
proximation for the other roots. The Levy-Desplanques theorem assures 
us that for Izl=1, only z=1 is a root of the determinant2; since the roots 
departed continuously, they perforce are somewhere in the unit disk. For 
small values of A we may expect them to have roots that are very close 
together, hard to separate and accurately evaluate. The method described 
in Section 4 is superior in such circumstances. 

'What is not necessarily preserved is the strict inequality 11<1. It may happen that a 
root t2#1 will have 11=1. 

2 The theorem states, in one of its versions, that if a matrix C satisfies the condition ICiij 
> ZXjjlCijj, for all i, then it is non-singular. For the matrix A(z), where JzI=1, this condition 
reduces, using the inequality ja-bji_aI-lbI, to the requirement ILij[\(1-z)]1<1, which is true 
when A>O and Re(1-z)>O [8]. 
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To obtain the expected number in system e1(1?i?N), we differentiate 
(7) at z=1. After some cancellations we obtain the set of relations. 

e,= (d/dz) G1(z) Iz=I=81 2( t{2CoB1+61C1B1+61CoB2) 1ri), (14) 

where the following derivatives are all with respect to z and are evaluated 
at z=1: 8i=1A(z)I', 82=?i21A(z)l", Co=C(), C1=C'(z), B1=-B'(z) and 
B2 =-2B"(z). The values of these quantities, in terms of the model param- 
eters, are given in the appendix. The overall mean queue size is then 
given by Eii=3jiei. 

Waiting time. We consider now the waiting time in a linear (FIFO) 
queue. Let q denote the waiting time of the nth request. As in any single- 
server linear queue, 

'qn+1=[ qn+Sn-tn] ) n=O,1, (15) 

except that here the request types have to be incorporated into the 
calculation. S,n is the service duration of the nth request, and tn is the 
time between its arrival and that of the (n+l)st. tn- exp (X), independ- 
ently of the other variables. 

Define 

WNj(x)=P(7qncx | N, Jo=i, Jn=j) 

WZJ Wnij(O) ( 16) 

Wm (s)=j exp (-sx)dxWg,(x)=w0 + exp (-sx)d.Wg`(x). 

Using the dependence structure of hin and S,1 we obtain from (15), with 
some manipulations, 

(X--S) WiJ' (S)=-SWiJ +X ,=i { W(s)Lejj(s) -wih[L;(s) L s)}. (17) 

Taking the limit n--oo and assuming stationarity as before, (17) goes over 
to 

C(s) W(s)=D(s)wv, (18) 

where 

Caj(s)=(X-s)Sjj-XLj1(s) or C(s)=(X-s)I-XLT(s) 

Djj(s)=-s8jj + M[Lj)(s)-Lj1(s)], or D(s)= (19) 

-sI + [LOT(s)-LT(s)] 

and Wj, the limit of w0 is independent of i and equal to 7rj. Note that L(O) 
is a stochastic matrix with the invariant vector pi. 

Equation (18) is of interest to us mainly as the starting point for the 
evaluation of the expected conditional waiting times 
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vi=E (-IJ= i) = -(dlds) Wi (s) 1,=o. (20) 

We present a method of calculation. Higher moments can be calculated 
by continuation of the procedure below. 

Differentiating (18) at s=O yields 

M(I-LT(0)) 6=[-I+L0 T'(0) -XLT'(O)J]=[ALT'(0)+I]& (21) 

where e is the all-ones N-vector. 
Equation (21) is a singular set of equations for v. We obtain a more 

convenient form by adding XPv, which can be written as A(v p)e, to both 
sides and get 

XA= (I-LT(0) +P) -I {[NU_NU0_Jr (22) 

+[I-AXvgp+AX( v)e} , a=-L T'(0); (J?= -LOT (0). 

Note that (I-LT(0) +P) -I=e, p(I-LT(0)+P)-1_p. 
The RHS of (22) is known, except the last term, p v, which we now 

determine. To this avail we need the Frobenius' eigenvalue of-LT(s), a(s), 
and its right and left eigenvectors, ri(s) and ,8(s), respectively. 
Thus 

[L T(s) -a(s)1]i(s)=/3(s)[L T(s)-a(s)11=0 (23) 

and we may also stipulate, in addition, &(s) :3(s)=:3(s) e=1. From these 
and (23) we immediately get 6(O)=-, 8(O)=fi, a(O)=1. As in Neuts 
[11] we obtain a'(O)=-p/X, /'(0) =(p/AI-a) (I-LT(O)+P-1, a"(0) 
=LLT (O)e-2p2/X2+2Ia(I-LT(O)+P)-l'e. Now, multiplying (18) on the 
left by ,3(s) yields ,3(s) W(s)=3(s)[ALLT(S) -(s+Xa(s))IlT/(X-s-Xa(s)). 
Differentiating by s and letting s--O result in 

-A~[L T"(O) -L OT"(O)]} jJ/2 (1_ p)2. 

Thus, the expected waiting times can be directly calculated. 

3. SPECIALIZATIONS 

In this section we examine specific secondary storage devices, applying 
the results of previous sections. A specialization consists of specifying Tj, 
T9, and Ki and their relations with the device parameters. 

Drum-like devices. We consider a drum that comprises N logical 
sectors. The number of tracks is left unspecified. The time required for 
the ith sector to pass under the read heads is a constant &-; thus the set- 
up time, called rotational latency here, is given by 

Ej=i+1 'k Cj 3< n 
ti-= (24) 

LR- k3=J t klFi'n R=Zk=1 3k 
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We assume that the physical motion of the drum is the only element that 
creates delays; i.e., electronic switching times are entirely neglected. A 
similar device, with a slightly simpler distance structure, is magnetic 
bubble loop memory [9]. In terms of record structure our drum is midway 
between a "paging drum" and a "file drum" [4]. In our discussion of the 
drum we also specialize the input process by assuming that the types of 
successive requests are independent (and drawn from a distribution 
(pi}). This is a reasonable assumption for a drum, which is normally the 
shared device par excellence in a system. 

An interesting question in the design, and hence in the analysis, of such 
devices is the dependence of service capacity, or delays, on the pattern of 
use. For the drum as modeled here, it is well known that when requests 
are processed continuously, which would be the case in our model when 
the system is overloaded, the average rotational latency, T, depends on 
the distribution {pi} of relative frequencies but not on the manner in 
which the corresponding records are arranged around the circumference. 
Indeed, from (24) we easily have 

ttJ+tJt JR-8j-a joi 
t2R-28i j=i. 

Hence 

E(Tsat)=ZN E,=l - PiPjtij=1/2 I= ZV=l PiPyttjOi) (5 

-R N 2 1 =lp 2- E1= 1 piji 

for which the claimed invariance manifestly holds. 
We shall show that this property is not retained when idle periods 

intervene. As in Section 2 we distinguish between a set-up within a busy 
period (T) and one that follows an idle period (To). From (25) we have 

E(T)=(R/2)(1+>p2)- >pii. (26) 

To compute E(TV)) consider the following sequence of events, on which 
we condition our calculation. A request for sector j is completed (and 
"departs"); no other request is queued for service; a request for sector i 
arrives and finds the head over sector M, at a distance D from its 
termination. Thus 

TJ;M,i,D=D+tMi. (27) 

The duration T between the departure of the request for the jth sector 
and the arrival of the new one is distributed exponentially with parameter 
N. We may write 

P(M=m, D=x)dx= -=O P(T=kR+tjm+3m-x)dx, 

where k is the number of complete revolutions the drum made between 
the departure and arrival. Using the distribution of T we readily obtain 
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P(M=m,D=x)dx=X exp {-A(tjm+8M3X)} / (28) 

(1- exp (-RX))dx, 0-_-x<8m;1-::m-N. 

Using this result in (27) we have 

E(T?) =i Zjpipj E>m f X(x+tmi) exp {-X(tim+85m-x) dx. 
x=0 

After integration and rather massive cancellations, one obtains 

E(T0)=R(1+>p)/2-1/X (29) 

-Zi p i8i+R Ei Ej pipj exp (-Xtji) /(I -exp (-RA)). 

Looking at the last term of (29) we see that E(?J) clearly depends, as 
claimed, on the relative arrangement of the records. 

Remarks 

1. We assumed here that sector lenghts &i may differ. In paging systems 
this is not necessarily the case. Nevertheless, the dependence expressed 
in (29) is maintained then as well. 

2. Although we did not address ourselves to the problem of finding the 
optimal arrangement of the records on the drum (i.e., the relative place- 
ment of 8i), which minimizes E(?P ), this problem is of some theoretical 
interest. We digress here briefly to present a variation on the last model, 
where the nature of the problem is more evident. 

In this variation all sectors have equal length, time is discrete, and 
arrivals may occur only at those evenly spaced epochs when an intersector 
boundary arrives at a read head. On this time scale, inter-arrival times 
are distributed geometrically, with a parameter we denote by a; this is 
the discrete analog of the exponential distribution. E(T) is still given by 
(25), with no change, but when we come to evaluate E(T?) and examine 
(27), we see that D has no counterpart because of the discretization of 
arrival times. 

If the calculation of E(To) is carried to conclusion, we obtain instead 
of (29) 

E(T(T, discrete) =(1-a)/(1-aN) >1 E>j pipj Em tmiadj"t. (30) 

Consider the sum in (30). This is a polynomial of degree N-I in a. The 
coefficient of aT contains various terms that do not depend on the relative 
order of the records and the term /,8=N EN pipj, which does (the 
indices j'are calculated modulo N). Thus, the minimization of E(T?) here 
requires solution of min >r=-o1 /3oa 

3. Obviously, when the traffic intensity increases, idle times become 
rarer, and the relative arrangement is thus least important just when 
capacity is most critical. We note that this result does not justify ran- 



874 Coffman and Hofri 

domly placing records on a drum since this policy would affect the values 
of pi as well (through the aggregating effects of tracks). As is apparent 
from (26), (29), and (30), the pi do have considerable influence on E(T), 
not just E(r). 

The maximum traffic intensity that the drum can handle under this 
regime is immediately given by (26) and bounded by 

Xmax=l/E(S) =1/[E( T) +ipii]=2/R( +ipi)v 

This result shows the way to obtain the distribution {pi) that results in 
efficient operation of the system. (Remember that the pi are determined 
by the records that are placed in each sector, and normally some choice 
can be exercised in this respect.) To this end we only have to find the 
vector (pi) that minimizes f=Eipi2, subject to Epj=l. Since f and the 
constraint are convex and pi= 1/N is an extremum point, that point must 
be a global minimum of f. Thus Xmax=2N/R(N+1), the best performance 
the system can exhibit. We remark that this optimization problem is 
"hard" (in fact, NP-complete [7]), as verified in [1] and [2]. Thus, one 
must expect an essentially enumerative search for that partition of the 
set of records such that f is minimized. (See [1] and [2] for analyses of a 
simple but very efficient heuristic.) 

Finally, we look at the system of equations in (5) and their interpre- 
tation in the geometry and dynamics of the drum. We note first that 
L1i(a)=pjexp t-a(tji+6i)} since the service time is constant. The transform 
of Sji is calculated in a way -similar to that producing (29), and we obtain 
at some labor 

Lj?i(a)=[pjexp (-a8i)/z(1-exp (-XR))]EN=J { exp [ -Xtj,,- a (8 +tmi)] 

-exp [-Xtjm-XN8m-atmi]} 

=[pjexp (-aci)/z(1-exp (-XR))]exp (-Xtji){exp (-aR) 

-+ (1 -exp (-XR) exp (Xztji)). 

Thus, we have from (6) 

Aij(z)=z8ij-pjexp {-a(tji+5i)} (31) 

and 

Bij(z)=[pj(exp (-aR)-1)/(1- exp (-XR))] exp (-a8i-Xtji). 

In order to use (9) the roots of the equation IA(z)1=0 are required. The 
following result is instrumental in obtaining an efficient solution. 

THEOREM 2. The determinant of A(z) (in (31)) can be expressed as 

IA(z) =(b-ZN)/(q-1) (32) 

where q= exp (-aR), b=q 11N= [z-pj(q-1)]. 
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Proof Consider IA(z)j as an Nth degree polynomial expression in the 
term hnear in z, with the exponentials regarded as coefficients. At the N 
values of z given by zj=pj(q-1) (when we treat q as an explicit coefficient 
of z rather than display its functional dependence), the determinant can 
be easily evaluated, and we obtain _zjN/(q-1). The right-hand side of 
(32) is a polynomial expression of degree N that correctly interpolates 
IA (z) at the N+1 points3 z=zj and z=1 and is therefore the unique 
interpolating polynomial expression of degree N. 

This is perhaps a somewhat curious result, since the roots of this 
equation turn out not to depend to any extent on lengths of individual 
records (sectors), but merely on their frequency of use. We have no 
intuitive explanation for this phenomenon. 

The equation IA(z)1=0 can now be easily solved numerically, and our 
experience with a straightforward Newton-Raphson iteration procedure 
demonstrated very fast convergence and good resolution between the 
roots (we only looked inside the unit disk). 

Disk-like devices. We consider now the characteristics of a disk pack 
(or cartridge), with N cylinders (tracks), and a single arm carrying the 
read heads. For the purposes of our analysis this is functionally identical 
with any device where the setuip time Tij is merely a function of li-jl, 
such as magnetic bubble or shift register storage devices. The following 
will be in disk terminology. 

It is customary to consider the set-up time in disks as composed of two 
parts: seek time, the duration required for the arm to move between 
cylinders, and a rotational latency similar to the drum. 

As we consider here a primitive request-queue management technique, 
we also limit all explicit calculations concerning disks in two ways: 

Rotational latency is eliminated by the method of reading, which is to 
transmit one whole track per request (the portion of the disk passing 
under a read head during one full revolution). The desired record is 
subsequently located in memory and perhaps pieced together from two 
portions. The latter situation occurs when the requested record was 
under the read head when the seek terminated and transmission started. 

In these devices (in contrast to the situation in scanning disks) the arm 
does not react "on the fly" to changes of destination, but rather maintains 
a "busy" status until a desired seek is terminated and the arm is stopped; 
only then can a new seek be initiated. Comprehensive discussions of 
these delays can be found in [3] and [13]. 

Although the set-up times Tij of bi-directional tapes conform with the 
above characterization, we exclude them from this discussion on both 
practical and analytical grounds. First, rotational latency is of course 
absent here; also, the tape system can usually handle changes of desti- 

Obviously IA(1)I=0 since 1,,j=1; a single application of L'Hospital's rule establishes that 
z=1 is a zero of the right-hand side of (32). 
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nation "on the fly" in a much simpler way than in a disk system. (Thus, 
FIFO is a less natural operating technique for tapes than it is for disks. 
Even there, however, low processor speeds may require a FIFO regime.) 
Analytically, we find the dependence structure between successive ser- 
vices even more involved than the model presented in Section 1: Tij 
depends on the boundary of record i where its reading terminated, and 
this, in turn, involves the even earlier record. We note, though, that if the 
idle-period policy were of the type denoted by (a) in the following, one 
randomization on the identity of that preceding record is enough to 
properly define the necessary variables. 

Unlike the drum, the behavior of the system when no requests are 
pending may have different modes. The more common ones are (in disk 
terminology) 

(a) The arm remains in place, at the cylinder last used. 
(b) The arm is directed to move to a predetermined "rest place," 

cylinder r. 
These modes determine the distributions of the respective S?y. In case 

(a) it is clear that Si?j-Sij. In case (b) let f(i, j) be the time taken to travel 
from cylinder i to cylinder j when no intervening cylinders are read. 
Normally, this is the same as the set-up time Tij and we assume so in the 
following. The set-up time ?ly succeeding an idle period is then given by 

T?=f(r j)s_f(i, r) 
iji tfli, r) -s+f(r, j) s<f(i, r) 

where s is the length of the idle period. Since s is exponentially distributed, 
we immediately find E (TQ-)=f(i, r)+f(r, j)-[1-exp (-Af(i, r))]/A. The 
expected duration of this delay is calculated as follows. Note first that 
p%i?-P (cylinder i was just readlan idle period just started)=TiPi1/kTkpk 

where 7, as defined earlier, is the probability that the request queue is 
empty following the completion of service from cylinder i. Thus we obtain 

E(TV)=Z =Epi`pjEs(T(V1jy 

and 

E(T )=Ejpjf(r, j)+iv7ipif(i, r)exp (-Xffi, r))1(XZ k7TkPk)-1/X- 

The value of E(T?) does not influence the overall service capacity of the 
system. It is a factor in its response when not fully loaded. In fact, it 
becomes more important as the load becomes lighter. 

Unlike the drum, which is a constant speed system, we have here 
important acceleration and deceleration effects. An approximation that 
holds for a rather large subset of available disks is 

TYj=ffi' j) ={0+B}i_ isi, 
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where A "summarizes" the effects of the changes of speed of motion of 
the arm and B corresponds to movement in constant speed. (The ap- 
proximation is not very good for short distances and quite acceptable 
when a sizeable portion of the disk radius has to be traversed.) This 
completes the specification, so that the procedures of Section 2 can be 
applied. (Nothing comparable to Theorem 2 was found here, however.) 

4. ALTERNATIVE PROCEDURE TO CALCULATE BOUNDARY 
PROBABILITIES 

In this section we describe a general method to evaluate the boundary 
probabilities 7j defined below (4). The analytical method given in Section 
2 which depends on Theorem 1 is devoid of probabilistic-physical content. 
This makes any numerical idiosyncracies occurring in its implementation 
hard to interpret, and thus instabilities are not easy to move, even for 
moderate values of N. We present an approach parallel to the one in 
[11]'; here all the steps and interim results have intuitive meaning, and 
thus error control is materially simplified. Excepting values of X close to 
Amax, this method would also be cheaper than the method of Section 2. 

We call upon a familiar result: In a recurrent Markov chain, the 
invariant probability of a state (its steady-state probability) is equal to 
the inverse of its recurrence time [6, p. 195]. 

Consider then the embedded chain, formed of the N states (0, j), 
obtained at departure epochs. Its steady-state probabilities were called 
p(O, j)=pj4,j, and its recurrence times are given byEvj l Ztj*/4j, where I is 
the invariant probability vector of the matrix L, defined as follows: Lij(k, 
x)=Prob (a busy period that starts at (0, i) terminates at (0, i), following 
k services and requiring up to x) and L=f =o ?=1dL(k, x). The quantity 
Ii* is the expected number of service completions in a busy period that 
started in state (0, i). If L(z, s) is the LST-pgf of L(k, x), we have 
,i*=(dL(z, s)/azIz=,,=o)j. We proceed to derive I and 1*. Define now the 
matrices c-() and co(-), &i.(x)=pjjFjj(x) and cjj(x)=pjjF?,(x), and first- 
-passage measure Gij(k, x)=Prob (A first transition of the system from a 
state (n, i) to a state where X=n-1, will be to the state (n-1, j), will 
involve k services and terminate within x). The interpretations of c() 
and c"( ) are obvious. G( ,) is also called a "down level-crossing" 
distribution. 

We further define the matrices 
- 
(x)=f=o p(z, t)dc(t), vO, and 

&)O( x) =f x=o p(p, t)dc-((t), z_O, where p(z, t) is the probability of exactly " 

arrivals within t. 
Forming the LST's of c( ), c^Q(.) and G(, ,) (the latter is also a 

pgf), denoted respectively by cp(s), c2?(s), and G(z, s) we have, following 
[11] from renewal considerations, 

4The only essential difference between our model and the problem treated in [11], is 
that we must ascribe an extraordinary distribution to the service duration that initiates a 
busy cycle. We note, however, that in [11] batch arrivals are treated. 
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G(z, s)=Z PUozc,(s)G'(z, s)IzI- 1, Re(s)>O. (33) 

For z=1, s=O, G(1, O)-G is a stochastic matrix, with invariant proba- 
bilty vector g, from which we form G, as P was defined. 

The same consideration that led to (33) can be applied to L(z, s), and 
we obtain L(z, s)=Y,=0ozcpo(s)G"(z, s), IzIz1, Re(s)>O. 

Equation (33), at z=1, s=O can be iteratively solved,' whence L and / 
are obtained quite painlessly. L is the probability transition matrix of our 
embedded chain. 

We still need f*. To this avail we note the following result, given in 
[11]: 

y--(aG/azjIz=1 ,o) e= (I-G+G) [I-P+G+Adiag(&) G]fe= (I-G+G) d, 

where ui=j=PLpE(S(/). Thus, 

jj* (aL/az l Gv Cv)e= P.ZP== - GiMzGv-l]e, 

where Mz=dG(z, s)/dz, z=1, s=O. Since G is stochastic we get 

b*=I+? c^(O)Zi^ Gt1G = 1+E^-o c1p0?j. G1(I-G+G)d 

=1+[P-L+Xdiag(&0) G] (I-G+G) -'i, 

which can be readily calculated. 
Reference 11 contains further results that are of interest and can be 

applied-mutatis mutandis-to our model. Expressions for mean queue 
lengths were derived, to be used as a check on (14). As they are rather 
involved, we do not present them here. We note, however, that the two 
procedures pose numerical problems of entirely different nature and the 
investigation of their respective behavior modes, particularly in extreme 
situations (very light or very heavy traffic, large N, etc.), is of great 
interest. 

5. DISCUSSION 

We have shown in the preceding sections a method of analyzing system 
models that, although they are simple to describe in queuing-theoretical 
terminology, display features that render standard methods ineffective in 
tackling them. The factor that particularly exacerbates the work is the 
dependence between successive services; put another way, the time 
required to service a set of requests depends on the way we order them. 
Rarely, if ever, will FIFO prove the most efficient service method, 
although we can very well imagine situations where its simplicity of 
implementation would outweigh other considerations. 

'E.g., by the sequence G,=(I-cl)-', G,+, =(I-c1)_'f {C0+E' =2c,,Gki ,k'1, which converges 
quite well, normally. 
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In contrast with the foregoing analysis we mention a rather prevalent 
approach to the same situation that is often found in the literature (cf. 
[14] for a recent example). The approach we refer to consists of evaluating 
a distribution function for the duration required to service a request 
by averaging over request types [essentially, writing P(S't) 
-j jpijP(Sij't)] and substituting the result within formulas derived in 
the standard analysis of an M/G/1 queuing system, which explicitly 
assumes (and uses) independence between successive services. This can 
often lead to gross misestimation of the evaluated quantities. 

APPENDIX 

Defining ujj=E(Sj), a2-)=E(S2) (similarly with superscript, 0), and 
letting MJ be fipjMii/P, where M is any of a, u0, (2), 0(2), I we find 
B T=A XA&J-oI B2T2[A2,&o(2)+2X _QX2&(2)]. The quantities 81, S2 and the 
matrices Co and C1 have generally to be directly evaluated by differen- 
tiating IA (z) and the relation IA(z) I=A (z) C(z). For the special case P=P 
(independent references) closed expressions can be readily found: 

61=l-p; 62=N-1-A>jppju1jj-(N-2)p_1/2A2E(S2) +A2 j Ek>jpjpk 

(UJjykk-UjkJkj) EX i Xk>jXl>kpjpkplU(jkl)U, 

where 

(J9kl)U=Ujj(ykk+UTjjaIll +UkkUll+UFkjUlk 

+ (Ukij(jl + (Ulk (Jjl + (U k (JIj + (Ulj(Uk I 

+ (UikU(kIU-(klk-lk (UklU1J -U(JlkUjj 

-UJjlUJkk-UJjllj-UJkkUllj-UIICJjk 

-co 11=kp-ik,kj 

Co i' ,=Pi 

C1i i =-1-(N- 2)pi+p p+Xpizjpj(19jj- vij-(Tji), 
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