
Processor Utilization in Multiprogramming Systems via Diffusion Approximations
Author(s): Donald P. Gaver and Gerald S. Shedler
Source: Operations Research, Vol. 21, No. 2 (Mar. - Apr., 1973), pp. 569-576
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/169025
Accessed: 11/04/2010 06:18

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/stable/169025?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

Processor Utilization in Multiprogramming Systems via

Diffusion Approximations

Donald P. Gaver

Naval Postgraduate School, Monterey, California

and

Gerald S. Shedler

IBM Research Laboratory, San Jose, California

(Received December 16, 1971)

Cyclic queuing systems have been proposed by several authors in the study of
the behavior of multiprogrammed computer systems. Programs in the system
wait for service at the central processor unit (CPU); then, after page fault or
input-output request at a data transmission unit (DTU), the process repeats
until the program completes. Semi-Markov analysis of such systems, based
on the apparently plausible assumption of independently but exponentially
distributed CPU burst time, and independent, but nearly constant DTU time
may be conducted. This paper presents some very simple approximations
based on a continuous-state approximation-the simple diffusion with two
reflecting barriers-to describe the CPU utilization. Computational ex-
perience from which the quality of the approximations can be assessed is
reported.

S EVERAL AUTHORS have recognized that interesting characteristics of multi-
programming computer systems may be obtained by analysis of the cyclic

queues occurring at the CPU (central processor unit) and DTU (data transmission
unit); see GAVER, 131 LEWIS AND SHEDLER, I5] Shedler, 18,91 and others. A system
feature that complicates the probability analysis is the non-Markovian nature of
DTU service: while it may be roughly plausible to assume CPU service times (e.g.,
times to page fault) to be independently and exponentially distributed, it is ap-
parently much less reasonable to make such a distributional assumption about DTU
service times. Although straightforward attacks on this problem have been suc-
cessfully conducted (see references 5 and 8), it may be useful to attempt a simpler
approximate approach-the objective of this paper.

The results obtained here have the virtue of a refreshing mathematical sim-
plicity, but are, of course, only in approximate agreement with results such as those
obtained in Shedler.t81 However, when we reflect that our present models for
multiprogramming are quite simplistic in the light of current knowledge of (a)
program behavior at the CPU, (b) information accessing at the DTU, and (c)
representation of storage hierarchies, approximations of this type may be quite
adequate for providing insights. We envision using results of this kind to design
computer systems with acceptable cost-performance characteristics. Such results
are useful, for example, in suggesting performance characteristics of devices that will
resultina balanced system. In addition, by taking cost characteristics into account,

569

570 Donald P. Gaver and Gerald S. Shedler

one can begin to evaluate technologies from a total-system point of view, and thus
be guided to select appropriate devices. With respect to such questions, we can
consider utilizing our results to obtain an initial idea of the region of parameter
space to explore more extensively by means of simulation or by improved analytical
approximations, several of which are currently under development.

THE DIFFUSION APPROXIMATION

WE CONSIDER A cyclic queuing system (see Fig. 1) that consists of two sequential
stages. The system is assumed to serve a constant number J of programs (J > 2),
each of which goes through both stages in sequence and then returns to the first
stage, this process being repeated continuously. It is assumed that, after comple-
tion of CPU service, a program moves instantaneously from stage 1 to the tail of

Fig. 1. The cyclic-queue model.

the queue in stage 2, and after DTU service at that stage, back to the tail of the
queue in stage 1. We shall suppose in addition that the queue in front of the CPU
and the queue in front of the DTU are served according to a first-in-first-out
(FIFO) discipline. The assumption that J is a constant is an approximation that
is justified by the common practice of operating such a system in a saturated mode.

In addition, we assume that the service times at the CPU and the DTU are
mutually independent, and that CPU service times and DTU service times, respec-
tively, are identically distributed.

We now give a brief intuitive account of our approximation. Let Nc(t) denote
the number of programs present at the CPU at time t, including those queued in
addition to the program currently in service. Then, if Nc(O)= 0,

Nc(t) = A(t)-D(t), (1)

where A(t) represents the number of arrivals at the CPU in (0, t), and D(t) is the
number CPU departures in (0, t). If we neglect boundary effects at 0 and J,
A(t) and D(t) are independent renewal processes, so, as t becomes large, A(t) and
D(t) are approximately normally distributed with means t/E[D] and t/E[S] and
variances tvar[D]/(E[D])3 and tvar[S]/(E[S])3 respectively (see Cox,R]l page 40).
It follows that Nc(t) is approximatelynormally distributed with mean gt = { 1/E[D] -

Multiprogramming Systems 571

1/E[S] }t and variance A2t= {var[D]/(E[D])3+var[S]/(E[S])3 }t. We now approxi-
mate by replacing the difference of renewal processes by a diffusion (Wiener)
process with drift /i and infinitesimal variance a2. Thus, F(x, t), the distribution of
Nc(t), satisfies the diffusion equation

aF/at = -,uMF/Ox+ (v /2) a&F/3xi2 (2)

again approximately; cf. NEWELL,[71 pp. 105-107. A reflecting boundary condi-
tion at x = 0 must be imposed, for Nc(t) 0, and another such boundary condition
at x=J constrains Nc(t) to be <J. We require the solution to (2), subject to an
initial distribution, e.g.,

F(x, f) <3x0>O,)

and boundary conditions
F (0+, t) > 0, F(J. t) =1. (4)

For further details of the behavior of this approximation when J is infinite, see
Gaver.141 For a closed-form solution to (2) when J is infinite, see Newell.'71

THE STATIONARY DISTRIBUTION IN THE DIFFUSION APPROXIMATION

THE STATIONARY or long-run distribution associated with our problem is F(x) =

limO F(x, t) and satisfies
(2/2)d2F/dx2-_udF/dx= 0

for x> 0. Routine integrations lead to the solution

F (x) =A[1-Bexp (2,x/f2)]. (5)

Invocation of the upper boundary condition provides that

1 = A [1-Bexp (2,J/u2)]. (6)

According to (5) and (6) we have

F (x) = [1 -Bexp (2,x/ux/2)]/[i -Bexp (2.uJ/I2)]. (7)

It remains to determine the constant B. We suggest three alternatives, and present
their numerical properties.

1. Exact fit for J= 1. If only one program occupies the system, then renewal
theory provides that (assuming E[D] = 1, as we shall throughout)

F(O+)=1/(1+E[S]). (8)

If we set J = 1 and x=0 in (7) and equate the result to (8), the value of B is de-
termined:

B = E[S]/l{ E[S]-exp (2,/0fa) }.

2. Exact fit for J = 2. If CPU service times are independently distributed
copies of a random variable S, and likewise DTU service times are independent
copies of the random variable D, then the long-run CPU utilization u, when J = 2,
is given by

u = 1-F (0+) =E[S]/E[max (S, D)]. (9)

572 Donald P. Gaver and Gerald S. Shedler

This was pointed out by J. GECSEI (private communication), and can be seen as
follows. Consider the sequence of times {TK} at which either (i) the CPU is idle,
a DTU service has just been completed, and the served program has moved to the
CPU stage queue, or (ii) the DTU is idle, a CPU service has just been completed,
and the served program has moved to the DTU-stage queue. These { TK are
regeneration points in the process, the mean regeneration time being E[max(S, D)].
Since the mean amount of time that the CPU is busy between regeneration points
is E(S), (9) follows from a basic limit theorem for regenerative processes; see
FELLER,[2] P. 365. Making use of (7), we obtain

B=E[S]/{E[max(S, D)][1-exp(4A/o-f)]+E[S]exp(4u/0_2) }. (10)

3. Exact fit for large J (J-> oo). Of most practical interest is the case of large
J. The diffusion approximation may also be expected to work best when bound-
aries are visited infrequently, and this implies large J and near equality of E[S]
and E[D].

In practice A<0, so we may allow J-> oo in (7) to discover that

F (x) = limj.S { [1 -Bexp (2Ax/o2)]/ [1 -Bexp (2AJ/Io2)]1
=1- Bexp (2Axla2 (1

and hence for J =o

F (O+) = 1-B. (12)

But, for arbitrary queuing systems of the type under consideration (see TAKiCS,1101

p. 142), limt,,,. P {NC (t) =0} = 1-p, if p < 1, where p is the traffic-intensity param-
eter, and p = E[S]/E[D] < 1 when J = o. Consequently we put B = p and find

F (0+) = (1-P) / [1_peXp (2,uj/,f2)]. (13)

This simple expression promises to give a good approximation when J is reasonably
large and A is not far from zero but has a negative sign. The quality of the ap-
proximations may be judged by refering to the numerical examples that follow.

NUMERICAL EXAMPLES

SHEDLER HAS tabulated CPU utilization, that is, the long-run probability that the
CPU is busy, which depends on the DTU distribution and the degree of multi-
programming J. The numbers obtained are the result of a semi-Markov analysis,
whose success seems to depend rather crucially on the assumption of an exponential
service time at the CPU.

Our diffusion approximation is capable of supplying figures for CPU utiliza-
tion-an explicit formula follows directly from (13) by subtraction from unity:

CPU utilization = p { [1- exp (2AuJ/&f2)]/[1 - pexp (2AJ/Io2] } (14)

when p<1. Here we compare the 'exact' numbers obtained by Shedler18' with
those delivered by (14). Since the usual system is likely to have a relatively high
degree of multiprogramming, we shall first discuss Method 3 for fitting B (exact
fit for J = o). Refer to Table I. Evidently the diffusion (diff.) and semi-Markov
(S-M) figures agree quite closely. The numerical comparisons suggest that the
diffusion approach provides an underestimate in the case of an exponential DTU.

Multiprogramming Systems 573

That this will always be the case may be shown analytically. Before doing so, we
shall compare some of the results of Table I to the numbers obtained when Method
2 is used (exact fit for J=2). This comparison is illustrated in Table II. Ap-
parently the procedure of fitting J = 2 exactly does not agree as well with the S-M
calculations as does the J =o exact fit. When we recollect that explicit calcula-

TABLE I
THE CPU UTILIZATION COMPARISON BASED ON FITTING B FOR J 00

(CPU exponential mean ELSI; DTU service-distribution mean=1.)

7ELang l) Erlang-2 Erlang-3 Erlang-4 Erlang-5 Erlang-Xo

I E[S] (exponential) (constant)

S-M Diff. S-M Diff. S-M Diff. S-M Diff. S-M Diff. S-M Diff.

2 0.238 0.233 0.243 0.237 0.245 0.238 0.246 0.239 0.247 0.239 0.249 0.241
3 0.247 0.245 0.249 0.247 0.250 0.247 0.250 0.247 0.250 0.247 0.250 0.248
4 0.25 0.249 0.249 0.250 0.249 0.250 0.249 0.250 0.249 0.250 0.249 0.250 0.250
5 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
6 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250

2 0.429 0.424 0.444 0.444 0.451 0.451 0.455 0.454 0.458 0.456 0.468 0.464
3 0.467 0.464 0.480 0.476 0.485 0.480 0.487 0.482 0.489 0.483 0.494 0.487
4 0.50 0.484 0.482 0.493 0.490 0.495 0.492 0.496 0.493 0.497 0.493 0.499 0.495
5 0.492 0.491 0.497 0.495 0.498 0.497 0.499 0.497 0.499 0.497 0.500 0.498
6 0.496 0.495 0.499 0.498 0.500 0.499 0.500 0.499 0.500 0.499 0.500 0.499

2 0.568 0.566 0.591 0.608 0.601 0.623 0.606 0.631 0.610 0.636 0.626 0.655
3 0.634 0.633 0.660 0.666 0.670 0.677 0.676 0.683 0.679 0.686 0.694 0.700
4 0.75 0.672 0.672 0.695 0.697 0.704 0.706 0.709 0.710 0.711 0.712 0.723 0.722
5 0.696 0.695 0.716 0.716 0.722 0.722 0.726 0.725 0.728 0.727 0.736 0.734
6 0.712 0.711 0.728 0.727 0.733 0.732 0.736 0.734 0.737 0.736 0.743 0.741

2 0.590 0.589 0.614 0.635 0.624 0.652 0.630 0.661 0.633 0.666 0.651 0.688
3 0.661 0.661 0.689 0.697 0.700 0.710 0.701 0.717 0.709 0.721 0.726 0.737
4 0.80 0.702 0.702 0.728 0.732 0.738 0.742 0.743 0.747 0.746 0.750 0.759 0.762
5 0.729 0.729 0.751 0.753 0.759 0.761 0.763 0.764 0.766 0.767 0.776 0.776
6 0.747 0.747 0.766 0.766 0.773 0.773 0.776 0.776 0.778 0.778 0.786 0.784

2 0.631 0.631 0.656 0.685 0.667 0.705 0.673 0.715 0.677 0.721 0.694 0.748
3 0.709 0.709 0.739 0.753 0.751 0.769 0.757 0.777 0.762 0.782 0.780 0.803
4 0.90 0.756 0.756 0.785 0.792 0.796 0.806 0.802 0.812 0.806 0.816 0.821 0.832
5 0.787 0.787 0.813 0.818 0.823 0.829 0.828 0.834 0.831 0.837 0.845 0.851
6 0.808 0.808 0.832 0.835 0.841 0.844 0.846 0.849 0.848 0.852 0.860 0.863

tion of E[max(S, D)] for general distributions of S and D is a bit troublesome, it
becomes easier to recommend the method of fit obtained by Method 3.

THE DIFFUSION APPROXIMATION TO THE MARKOVIAN CYCLIC SYSTEM

IN THIS SECTION we shall show that the tendency for the diffusion (in the fit of
Method 3) to underestimate CPU utilization in the exponential CPU and DTU
(entirely Markov) case is no accident.

574 Donald P. Gaver and Gerald S. Shedler

Denote the mean of S, the exponential service time at the CPU, by E[S] = 1

again E[D] =1. Then explicit probability balance equations may be written:

Xpo=pi; (X+l)p,=Xpil+p+1, 1 <?iJ-1, Pi=Xpi-1;

where pj is the long-run probability of j programs at the DTU. The solution is,
expressed in terms of p =X-,

pi= [P(1-p)/ (1pJ+l)]PJ-i

TABLE II
THE CPU UTILIZATION COMPARISON

(CPU exponential mean E[S]; DTU service distribution mean = 1.)

Exponential Constant

i E[S]
~~-M Diff . Diff . Diff . Diff . E

S-M (Fit J = 2) (Fit J =) S-M (Fit J1= 2) (Fit J= oo)

2 0.238 0.238 0.233 0.249 0.249 0.241
3 0.247 0.251 0.245 0.250 0.256 0.248
4 0.25 0.249 0.254 0.249 0.250 0.258 0.250
5 0.250 0.255 0.250 0.250 0.258 0.250
6 0.250 0.256 0.250 0.250 0.259 0.250

2 0.429 0.429 0.424 0.468 0.468 0.464
3 0.467 0.468 0.464 0.494 0.492 0.487
4 0.50 0.484 0.487 0.482 0.499 0.500 0.495
5 0.492 0.495 0.491 0.500 0.503 0.498
6 0.496 0.500 0.495 0.500 0.504 0.499

2 0.568 0.568 0.566 0.626 0.626 0.655
3 0.634 0.634 0.633 0.694 0.673 0.700
4 0.75 0.672 0.673 0.672 0.723 0.696 0.722
5 0.696 0.696 0.695 0.736 0.708 0.734
6 0.712 0.712 0.711 0.743 0.716 0.741

2 0.590 0.590 0.589 0.651 0.651 0.688
3 0.661 0.661 0.661 0.726 0.702 0.737
4 0.80 0.702 0.703 0.702 0.759 0.730 0.762
5 0.729 0.729 0.729 0.776 0.745 0.776
6 0.747- 0.747 0.747 0.786 0.755 0.784

2 0.631 0.631 0.631 0.694 0.694 0.748
3 0.709 0.709 0.709 0.780 0.757 0.803
4 0.90 0.756 0.756 0.756 0.821 0.791 0.832
5 0.787 0.787 0.787 0.845 0.813 0.851
6 0.808 0.808 0.808 0.860 0.828 0.863

Thus, CPU utilization Ue = 1 - pi, where the subscript signifies 'exact'; the cor-
responding figure for the diffusion is Ud, and the figures for idleness are Ie = pi,
and Id = 1-Ud, respectively. It will be shown that Id >Ie, or

{(1 -p) /[1 -pexp (2,uJ/l2)] I > [(1 -p) / (1 - pj+').

Now, in the present case, 2,M/2 = 2 (p-1)/ (p+ 1), and an easily verified inequality
[In x<2(x-1)/(x+1) for O<x<l) shows that p<exp[2(p-1)/(p+1)], which

Multiprogramming Systems 575

verifies the assertion. It may also be shown that the error committed by using
the diffusion approximation decreases as J increases, but not to zero. The ap-
proximation improves, however, as E[S]->E[D].

DIFFUSION APPROXIMATION FOR AN EXTENSION OF THE MODEL

IN THIS SECTION we shall indicate how a diffusion approximation for CPU utiliza-
tion can be obtained when the assumption of identically distributed CPU service
times is relaxed to permit the J programs to have different page-fault characteristics.
Specifically, we shall now assume that the CPU service times in the sequence are
mutually independent, and that the CPU service times of program i are identically
distributed as a random variable Si(1 <i J). The diffusion approximation pro-
posed will again be of the form (14), and we seek appropriate expressions for A,
-2, and p.

It is easily verified that the successive CPU service times S in the cyclic queuing
system are a semi-Markov process, and that within this semi-Markov process Z(t),
the total number of page faults in time t is a cumulative stochastic process; see Cox.[']
It then follows from cumulative process theory that

A, =_lim, [E{Z(t) }/t]= J/{E[S1]+. +E[SA} (15)

CZ2 _ it [var I Z (t) I It]
= J2 (var[Si]+ *. +var[SJ])/ (E[Si]+ +E[SJ])3 (16)
= { (var[Si]+ * +var[SJ])/J} / { (E[Si]+ * - +E[SJ])/J} 3.

To establish the drift and infinitesimal variance for the diffusion approximation, put

A = 1- Az 1- J (E[S1]+ -* +E[SA]), (17)
2 = var[D]/E[D]f = var[D]/ (E[D])3

18
+ { (var[S,]+ +var[Sj])/J}/{ (E[S1]+ +E[SJ])/J}3, (1)

and
P = I/H. = (E[Si] + +E[S]/) 1J. (19)

One can also assume that each program's DTU service time comes from a specific
distribution, and generalize these expressions accordingly in an obvious way.

CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

ALTHOUGH CERTAIN OF the cyclic queue problems relevant to multiprogramming
studies may be solved by conventional methods (semi-Markov processes, or the
'phase' approach described in MORSE,[6] the results are nearly always cumbersome
and difficult to compute. The approximate approach exhibited here furnishes
simple formulas that may be evaluated by hand computation. The accuracy of
the approximation seems quite adequate for the cases studied. However, efforts
to improve the approximation are suggested for the following reasons.

1. Data analysis of actual CPU service times indicates that they are apt to be
somewhat more skewed than the exponential.

2. The cyclic queue model discussed here may also be used to represent a

576 Donald P. Gaver and Gerald S. Shedler

reliability situation. In this interpretation components of subsystems take the
place of programs. A DTU service time represents the service life of a component,
and CPU service is identified with a repair; in this model there is only one repair
facility. Finally, J- 1 is the number of spare components in the system. One
question of interest concerns the long-run probability that the DTU is 'busy,'
equivalent to the probability that all J items in the system are not undergoing
repair. This 'availability' figure is approximated by F(J- 1). Another question
relates to the probability that, if initially (i) a new component is in operation (at
the DTU), and (ii) the J- 1 spares are queued behind the latter, then the time until
the DTU becomes idle for the first time exceeds t. The latter probability may be
approximated by solving a diffusion equation, this time with one reflecting and one
absorbing barrier. The details remain to be worked out, and the quality of the
approximation evaluated.

ACKNOWLEDGMENT

GAVER'S PORTION of this work was partially supported by the National Science
Foundation. He is also a consultant to IBM.

REFERENCES

1. D. R. Cox, Renewal Theory, Methuen Monograph, Methuen, London, 1962.
2. W. FELLER, An Introduction to Probability Theory and its Applications, Vol. II, Wiley,

New York, 1966.
3. D. P. GAYER, "Probability Models for Multiprogramming Computer Systems," J.

ACM 14, 423-438 (1967).
4. , "Diffusion Approximations and Models for Certain Congestion Problems," J.

Apple. Prob. 5, 607-623 (1968).
5. P. A. W. LEWIS AND G. S. STIEDLER, "A Cyclic-Queue Model of System Overhead in

Multiprogrammed Computer Systems," J. ACM 18, 199-220 (1971).
6. P. M. MORSE, Queues, Inventories and Maintenance, Wiley, New York, 1958.
7. G. F. NEWELL, Applications of Queueing Theory, Chapman and Hall, Ltd., London, 1971.
8. G. S. SHEDLER, "A Cyclic-Queue Model of a Paging Machine," IBM Research Report

RC-2814, IBM Watson Research Center, Yorktown Heights, New York, March 1970.
9. , "A Queueing Model of a Multiprogrammed Computer with a Two-Level Stor-

age System," Comm. ACM 16, 3-10 (1973).
10. L. TAKACS, Introduction to the Theory of Queues, Oxford University Press, New York,

1962.

	Article Contents
	p. 569
	p. 570
	p. 571
	p. 572
	p. 573
	p. 574
	p. 575
	p. 576

	Issue Table of Contents
	Operations Research, Vol. 21, No. 2 (Mar. - Apr., 1973), pp. i-vi+401-660+vii-xii
	Front Matter [pp. i-vi]
	An Applicable Model of Optimal Marketing Policy [pp. 401-412]
	Computed School Assignments in a Large District [pp. 413-426]
	The Progress of Management-Science Activities in Large US Industrial Corporations [pp. 427-450]
	The Relation between Formal Procedures for Pursuing OR/MS Activities and OR/MS Group Success [pp. 451-474]
	An Empirical Investigation of Optimum-Seeking in the Computer Simulation Situation [pp. 475-497]
	An Effective Heuristic Algorithm for the Traveling-Salesman Problem [pp. 498-516]
	Maximal, Lexicographic, and Dynamic Network Flows [pp. 517-527]
	Calculating Maximal Flows in a Network with Positive Gains [pp. 528-541]
	Sequencing Expansion Projects [pp. 542-553]
	Response-Variance Tradeoffs in Adaptive Forecasting [pp. 554-568]
	Processor Utilization in Multiprogramming Systems via Diffusion Approximations [pp. 569-576]
	The Rearrangement of Items in a Warehouse [pp. 577-589]
	Optimal Defensive Missile Allocation: A Discrete Min-Max Problem [pp. 590-596]
	Queues
	On Two-Server Poisson Queues with Two Types of Customers [pp. 597-603]
	A Queuing-Type Birth-And-Death Process Defined on a Continuous-Time Markov Chain [pp. 604-609]
	Single-Server Queues with Service Time Dependent on Waiting Time [pp. 610-616]
	On the Ergodic Theory of Markov Chains [pp. 617-622]
	A k-Server Queue with Phase Input and Service Distribution [pp. 623-628]
	Distribution-Free Analysis of M/G/1 and G/M/1 Queues [pp. 629-635]
	Technical Notes
	Distribution of the Mean Queue Size for the Time-Dependent Queue [pp. 636-638]
	How to Win by Losing [pp. 639-643]
	Economic Packaging Frequency for Items Jointly Replenished [pp. 644-647]
	Comment on an Integer Maximization Problem [pp. 648-650]
	A Note on Lipstein's Model of Consumer Behavior [pp. 650-652]
	Errata: Operations Research in Planning Political Campaign Strategies [p. 653]

	The Analyst's Bookshelf
	Review: untitled [pp. 654-655]
	Review: untitled [pp. 655-657]
	Review: untitled [pp. 657-658]
	Books Received [pp. 658-659]

	Back Matter [pp. 660-xii]

