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Geography and Computational Science 

Marc P. Armstrong 

Department of Geography and Graduate Program in the Applied Mathematical and 

Computational Sciences, University of Iowa 

On 

many U.S. campuses, a rising tide of 

scholarly activity, called computational 
science, is being recognized by academic 

administrators through the establishment of re? 
search centers and degree programs (Rice 1994). 
This nascent discipline has emerged from sev- 
eral traditional fields, including for example, 
cosmology, geography, and pharmacology, that 
contain subareas in which computing is the pri? 
mary tool used to pursue research questions. The 
common thread that ties together such seem- 

ingly disparate activities is a shared focus on the 

application of advanced computing to problems 
that heretofore were either intractable, or, in 
some cases, unimagined. The purpose of this pa? 
per is to sketch out the opportunities for geogra? 
phy that lie at the intersection of computational 
science and geographical modeling. 

At the outset, it is important to draw a dis- 
tinction between computational science and 

computer science. Though they are related, com? 

putational science is concerned with the applica? 
tion of computer technology to create knowledge 
in particular problem domains. Sameh (1995:1), 
for example, envisions computational science as 
a multifaceted discipline that can be conceptu- 
ally represented as a pyramid with an applica? 
tion field (e.g., geography) at the apex. At the 
four base corners are: (1) algorithms, (2) archi- 

tectures, (3) system software, and (4) perfor- 
mance evaluation and analysis. O'Leary (1997: 
13) articulates a different but related view in 
which an interdisciplinary and team-oriented 

computational science rests on the foundational 
elements of a particular science or engineering 
discipline, together with mathematics, com? 

puter science, and numerical analysis. 
Despite some apparent variability in these 

(and other) views of computational science (cf., 
Stevenson 1994, 1997), they share a consistent 

unifying principle: the use of models to gain un? 

derstanding. While most traditional views of 
science hold sacred the dyadic link between the? 

ory and experimentation, computational scien? 
tists have expanded this view to include a sepa- 

rate but equal role for simulation and modeling 
(Figure 1). 

Geographers have been specifying and test- 

ing models for decades (Hagerstrand 1967; 

Chorley and Haggett 1969) and are well posi- 
tioned to make significant contributions to in- 

terdisciplinary computational-science teaching 
and research initiatives. Despite substantial 

progress (Longley et al. 1998), however, in 

many cases, the use of models to support scien? 
tific investigations and decisionmaking has 
been hampered by computational complexity 
and poor performance. In the next section of 
this paper, I describe the underlying causes of 
this computational complexity. Then I focus 
discussion on the development of synergistic in? 
teractions between geography and computa? 
tional science, placing a particular emphasis on 
the use of new computer architectures to im- 

prove the performance of models and foster 
their application in an enlarged set of scientific 
and policy contexts. I next describe how emerg- 
ing computational technologies will begin to 
alter approaches to the development of geo? 
graphical models. Because visualization is an 

important element of computational science, 

enabling researchers to gain insights from the 
results of their numerical computations, in the 
final section of the paper, I initiate a discussion 
about how a form of advanced visualization, 
immersion, is creating a need to rethink aspects 
of cartography. 

The Computational Complexity 
of Geographic Analyses 

Why should geographers care about compu? 
tational science and high performance comput- 
ing? The rationale described in this section is 
not meant to be exhaustive, but rather, to high- 
light a set of elements that underlie a broader 
need for concern. It should be noted, however, 
that while similar arguments, some made more 
than three decades ago, have been advanced 
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Simulation 

Figure 1. Expanding the relationship between the- 

ory and experiment to include simulation and model- 

ing (Source: adapted from Karin and Graham 1998). 

(see Gould 1970a; Hagerstrand 1967; Openshaw 
1994), the pace of change has recently acceler- 
ated and other disciplines with computational- 
science ties are moving forward rapidly. If geog? 
raphers fail to make contributions in areas that 
are fundamentally spatial, other disciplines will 

(re)develop or (re)invent many concepts and 
methods that are now known to geographers. 

Trends in Information Acquisition 

Geographers are witnessing a rapid increase 
in the volume of information that is either ex- 

plicitly geographic or that can be converted to 

geographic information after it is linked to geo? 
graphic identifiers (e.g., address-matching). Sat- 
ellite remote sensing instruments, for example, 
continue to increase in both spatial and radio- 
metric resolution. The original Landsat multi- 

spectral scanner had a spatial resolution of 

approximately 79 m. In contrast, several com- 
mercial firms now advertise the availability of 
data with 1-m spatial resolution. Thus, within 
the extent of an idealized Landsat MSS pixel, 
more than 6,000 pixels would exist in an image 
acquired using one of the new sensor systems. 
What this means is that an area covered by a 

mega-pixel Landsat scene (1024 X 1024 = 

1,048,576 pixels) would have 6.29 X 109 pixels 
in the corresponding area imaged with a 1-m 

system. These calculations, of course, are for 

only a single spectral band. With the increasing 
availability of hyperspectral sensor systems, 
some with short revisit capabilities, the amount 
of geographic information being collected can 

easily increase by orders of magnitude. 
Commensurate increases are also being seen 

in other types of data as in situ sensors record ac? 
tivities such as individual vehicle movements 

(Summers and Southworth 1998). Disaggre- 
gated, individual-level administrative and retail 

records (e.g., medical information and point-of- 
sale transactions) are also being linked by ad- 
dresses to locations using widely available digi- 
tal street centerline files with associated address 

ranges (Dueker 1974; Broome and Meixler 1990) 
and inexpensive desktop software (Beaumont 
1989; Openshaw 1993; Armstrong et al. 1999). 
The simple acts of performing input-output and 

managing these massive data files requires a con- 
siderable amount of processing time. Even more 

pressing problems occur, however, when these 
data resources are used in analyses. 

Trends in Geographic Modeling 

Many types of geographic models are intrin- 

sically computationally intensive. Some involve 
combinatorial search strategies that explode as a 
function of problem size. Other types of models 
have become complex as a consequence of re- 
searchers working to capture and incorporate 
increasingly realistic representations of spatial 
processes (Ford et al. 1994; Miller 1996). For ex? 

ample, one family of forest-stand simulation 
models (JABOWA-FORET: Botkin 1993) in? 
cluded a number of biophysical processes in its 

original formulations but failed to incorporate a 

component that handled propagule dispersal. 
When a probabilistic spatial-dispersion module 
was added, the amount of computation required 
to execute the model increased considerably 
(Malanson and Armstrong 1996). 

Computer scientists have recognized that 

spatial-optimization problems, such as the so- 
called "traveling salesman problem," often re- 

quire extensive amounts of combinatorial search; 
they refer to such problems as NP-complete 
(Karp 1976; Garey and Johnson 1979). NP- 

complete problems are distinguished by a sharp 
increase in run time (greater than polynomial) 
as a function of problem size. Other spatial- 
optimization problems are classified NP-hard 
and also require considerable amounts of com? 

putation (Kariv and Hakimi 1979). The compu? 
tational intractability of solution procedures for 
such problems has been recognized by geogra? 
phers for decades and is only aggravated by at? 

tempts to use disaggregated information (Fran- 
cis et al. 1999). Gould (1971: 9), in describing 
the general location-allocation problem, states 
that it "is, quite literally, brutal" in its computa? 
tional complexity, and estimates that for a small 

example problem, approximately one trillion 
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possibilities would need to be evaluated. More 
than two decades later, Church et al. (1993:1) 
make a similar observation when they state that 
"even some of the most basic models are compu- 
tationally intractable for all but the smallest 

problem instances." Hodgson and Berman (1997: 
33), for example, report that their billboard- 
location model, when run for a problem in 

Edmonton, Alberta, required "several days of 
CPU time on a small mainframe computer." For 
these reasons, geographers have been at the 
forefront of researchers who have developed 
heuristic methods that first eliminate unlikely 
possibilities from consideration and then focus 

only on those parts of a problem that are likely 
to lead to a solution (e.g., Densham and Rush- 
ton 1992; Hodgson 1989; Hodgson and Berman 

1997). Heuristic methods, however, are not a 

panacea. Densham and Armstrong (1994), for 

example, describe a disaggregate-level optimiza- 
tion problem that would require more than 68 
million iterations of a heuristic solution proce- 
dure, with each iteration requiring a substantial 
amount of computation. 

Geographers are also now beginning to es? 
tablish literatures in emerging data-analysis par- 
adigms that are computationally intensive. For 

example, some researchers have begun to ex- 

plore data mining and knowledge discovery 
(Murray and Estivill-Castro 1998). Others have 
moved away from the use of "classical" inferen- 
tial statistical methods, since their use with geo? 
graphic information often violates underlying 
assumptions (Gould 1970b). Instead, they use 

bootstrapping methods to assess significance 
and generate confidence intervals by placing 
their observed results in the context of an induc- 

tively generated reference distribution (Efron 
1993; Griffith and Amrhein 1997); computation 
ofa reference distribution for each analysis, how? 

ever, may require the generation of large num? 
bers (> 1,000) of subsamples (see, for example, 
Openshaw et al. 1988; Gatrell et al. 1996). 

Openshaw and Openshaw (1997) and others 
have written about several other recently devel? 

oped computational methods, including simu- 
lated annealing (Openshaw and Schmidt 1996). 
Ritter and Hepner (1990), Fisher and Gopal 
(1993), Hewitson and Crane (1994), and Zhou 
and Civco (1996) are among researchers who 
have begun to explore the use of neural net? 
works in geographic applications. Other re? 
searchers (Hosage and Goodchild 1986; Arm? 

strong and Bennett 1990; Dibble and Densham 

1993) have examined classifier systems and ge- 
netic algorithms (Holland et al. 1986; Goldberg 
1989; Mitchell 1998) in geographical analysis. 
Bennett et al. (1999), for example, have 

remapped the linear "gene" sequences used in 
traditional genetic algorithms so that they can 
more directly represent two-dimensional prob? 
lems. These literatures are increasing in size as 
additional researchers discover these new analy? 
sis paradigms and, as a result, computational re- 

quirements are likely to increase. At the present 
time (and into the foreseeable future), there? 

fore, geographers working in the computational 
arena will need to concern themselves with the 
use of high-performance computers. 

Parallel Processing and 

Geographic Models 

Moore's Law predicts that the performance of 

microprocessors will double approximately ev- 

ery eighteen months. This "law" has held true 

throughout this decade and seems likely to hold 
in the short term. Despite this remarkable in? 
crease in performance, however, computer ar- 
chitects are concerned that their near-future de- 

signs are about to reach the physical limits ofthe 
materials used in processors (Stone and Cocke 

1991; Messina et al. 1998). Matzke (1997), for 

example, describes problems associated with 

moving electrical signals rapidly enough over 
small intraprocessor distances to ensure that all 

parts can be reached in a single clock-cycle. 
This latency constraint can be overcome by re- 

ducing feature sizes but such reductions are be? 

coming increasingly costly, and difficult to put 
into production. Moreover, for any given pro- 
cessor design, users have come to expect that in- 
creases in clock speed will result in higher per? 
formance. Maximum clock-speeds, however, are 

predicted to increase only by less than a factor of 
three by 2010 (Messina et al. 1998: 42). Despite 
this pessimism, there is a considerable amount 
of university-based and intercorporate coopera- 
tive research that is underway with the ex- 

pressed goal of developing innovative and cost- 
effective solutions to these and other problems 
(see, for example, Hamilton, 1999; Patt et al. 

1997). 
Is there a readily available and less costly way 

to overcome such performance limitations? The 

simple answer is: yes. It is clear that raw in- 
creases in processor speed fail to account for the 
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even more dramatic rise in the computational 
power of high-performance computers observed 

during the past decade. Messina et al. (1998:37), 
for example, state that while single-processor 
performance increased by roughly a factor of 15 

during the 1990s, the peak performance of com? 

puter systems used by computational scientists 
increased by a factor of 500. These systems typi- 
cally harness the computational power of collec? 
tions of computers, operating in parallel, to 
achieve these high-performance milestones. In 

fact, of the top twenty high-performance com? 

puter systems (last update: June 10,1999), none 
had fewer than 64 processors and the system 
with the highest performance had 9,472 (see 

http://www.top500.org). 
The general principle is that no matter how 

fast a single processor is, when several are used 

together (efficiently), an even greater increase 
in performance can be achieved. Consider, in a 

metaphorical sense, the experiences that most 
of us have had in a check-out line at a grocery 
store. In the distant past, a clerk would search 
for the price of each item and enter it, using a 
mechanical adding machine, to keep a running 
total of purchases. Technical innovations, such 
as scanners, increased the rate at which price in? 
formation could be entered, which presumably 
increased the overall "throughput" of items, and 
thus customers, at each station. Individual 

items, however, still require handling and, as a 

consequence, an effective limit remains on the 
number of customers that can be reasonably 
handled by an individual employee. At peak 
rush times, it is not the typical practice of store 

management to exhort employees to move more 

quickly. Instead, clerks open additional check- 
out lanes, to operate in parallel, thereby spread- 
ing the workload (customers) to reduce queue 
sizes. In the same way, for a total computational 
workload of a given size, computer systems can 
finish a job more quickly if tasks are efficiently 
divided among processors. 

Parallelism in Geographic Research 

Most geographers are unfamiliar with basic 

parallel-processing concepts. This is not surpris- 
ing since there was scant research on applica- 
tions of parallelism by geographers and planners 
before 1995. There are several plausible reasons 
for this. First, though computers with multiple 
processors have been used widely for decades, 

they were designed so that typical users were un- 
aware of this fact, and tools were not provided 
for users to control parallelism. Second, when 
commercial parallel systems became available, 

they used control languages that were propri- 
etary to each manufacturer. This trend, which is 
similar to that followed originally by graphics 
software (recall CalComp plotting language), 
meant that parallel software implementations 
were often limited to use on a single type of 

computer system. It is only during the past five 

years that general and portable command lan? 

guages have been widely adopted. Despite these 

problems and uncertainties, however, parallel? 
ism did attract the attention of some spatial 
modelers. 

In an early paper, Harris (1985) suggested 
that parallel processing could be fruitfully ap- 
plied to transportation and land-use models. 
Sandhu and Marble (1988) explored high- 
performance computing and the use of parallel? 
ism for spatial data processing (Sandhu 1987, 
1988). In the following year, Smith et al. (1989) 

published a paper in which they provided a par? 
allel solution to the weighted-region least-cost 

path problem, Healey and Desa (1989) evalu- 
ated parallel architectures and programming 
models, and Franklin et al. (1989) described a 

parallel implementation of a map overlay algo- 
rithm. In their discussion, Franklin et al. (1989) 
address the issue of scalability1 and report results 
as they systematically increase the number of 

processors used in their analysis. Since the early 
1990s, however, the pace of publication has 
increased (see, for example, Mower 1993; Hodg- 
son et al. 1995; Zhang et al. 1998; and the sum- 

mary in Cramer and Armstrong 1999). More- 

over, a special parallel-processing issue of the 
International Journal of Geographical Information 
Systems has been published (10[6], 1996), and, 
in 1998, the milestone of a book was achieved 

(Healey et al. 1998). This increasing level of ac- 

tivity is partially a reflection of broader trends in 

computing: parallelism has become an impor? 
tant paradigm, access to parallel machines is im- 

proving, and languages and architectures are be? 

coming more standardized. 

Architectural Futures 
and Geographical Analyses 

There are several ways to achieve parallel? 
ism, and hardware vendors have chosen to pur- 
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sue these different lines of implementation with 

varying degrees of success. In the early 1990s, 
the SIMD (single instruction, multiple data) 

systems at most ofthe major supercomputing in- 
stallations employed thousands of simple pro? 
cessors that executed instructions in lock-step 
(synchronously) on different data. Though they 
were often effective for programs that processed 
regular geometrical representations (e.g., remote- 

sensing images and geographic matrices: [Birkin 
et al. 1995; Xiong and Marble 1996]), SIMD 

computers did not perform well in many other 

problem domains (Armstrong and Marciano 

1997). Consequently, SIMD architectures ap- 
pear to be an evolutionary deadend. 

In contrast, MIMD (multiple instruction, 

multiple data) architectures have persisted in 
several forms and appear to be long-run survi- 
vors. In their basic form, MIMD computers are 
constructed from a set of largely independent 
processing elements that access a physical 
shared memory. Tasks are apportioned to the 
different processors and results are computed 
asynchronously (see for example, Armstrong et 
al. 1994). This model is not without its own 

problems, but computer architects have worked 

successfully to overcome limitations. New shared- 

memory machines, for example, reduce commu? 
nication bottlenecks with high-speed network 
switches that permit low-latency communica? 
tion among processors organized in hierarchi- 

cally structured clusters (Pfister 1998). In gen? 
eral, researchers who have applied MIMD 
architectures to geographic problems have met 
with success: processors are used efficiently, and 
execution times are reduced substantially. 

In 1997, the National Science Foundation 

phased out funding for its Supercomputer Cen- 
ters Program and began funding that established 
its Partnerships for Advanced Computational 
Infrastructure (PACI) initiative (Smith 1997). 
Two partnerships, one led by the University of 
Illinois (National Computational Science Alli? 
ance [NCSA]), and the other by the University 
of California at San Diego (National Partner- 

ship for Advance Computational Infrastructure 

[NPACI]), resulted. Each features computa? 
tional science as a cornerstone of its activity and 

places a major emphasis on the development of 
services that employ distributed shared-memory 
(DSM) parallel architectures. NCSA, for exam? 

ple, has, as a stated goal, a program to "make 

shared-memory parallel computing the norm, 
even at the desktop, over the next five years" 

(Kennedy et al. 1997: 65). Researchers from 

both partnerships have contributed to a recently 

published book in which this vision for the fu? 
ture of computing is more fully developed (Fos- 
ter and Kesselman 1999). The guiding meta- 

phor is "the grid," specifically to connote the 
electrical power grid. Computational grids are 
intended to provide a new infrastructure that 

supplies dependable, consistent, pervasive, and 

inexpensive computing. 
A key change that arises from grid-based 

computing is a move away from proprietary, 
small-volume processors used by obsolete vector 

supercomputers (e.g., Cray) and massively par? 
allel SIMD machines (e.g., Connection Ma- 

chine, MasPar) toward off-the-shelf processors. 
In fact, one DSM approach is referred to as 
"shared nothing," meaning that each element in 
the machine is a stand-alone processor with its 
own memory, disk, and network controller. 
These distributed elements can be linked into a 
virtual metasystem that provides a monolithic 
illusion to the end user (Grimshaw et al. 1997, 
1998). 

Though some metasystems use ordinary work- 
stations and network connections, others are 
more formal collections that use special-purpose 
networks. The NOW (network of workstations) 
machine at the University of California at Berke? 

ley, for example, is a computational resource 
of NPACI that consists of approximately one 
hundred Sun workstations linked with a high- 
performance network and fast switches to route 

messages among them (Anderson et al. 1995). 

Anticipated system upgrades include the addi? 
tion of a heterogeneous mix of workstations 
from different manufacturers with some running 
other types of operating systems (http://now.cs. 
berkeley.edu/). While early results using this 
machine in prototype form have been somewhat 

disappointing (Armstrong and Marciano 1998), 
the price/performance benefits of using com- 
mercial off-the-shelf technology overpower ar? 

guments against it, and several initiatives simi- 
lar to NOW are underway. 

One project in particular, called Condor, 

provides software that implements a high- 
throughput computing environment con- 
structed from a loosely configured ensemble of 
workstations (http://www.cs.wisc.edu/condor/). 
A distinction in this case is made between 

high-performance computing, which is con- 
cerned with reducing response times to as close 
to interactive as possible, and high-throughput 
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computing, which is concerned with the deliv- 

ery of large amounts of processing capacity over 

long periods of time (e.g., weeks). Condor 

probes the set of machines that owners have 
elected to include in its configuration and, 
when it detects an idle or lightly loaded node, it 

migrates pending tasks to it, thereby harnessing 
the otherwise spare cycles (see also Gelernter 

1992). If a workstation user once again begins 
intensive use of an idle machine, the Condor 
software moves the job elsewhere. For a user to 

permit their machine to be linked into the 
Condor configuration, they must have some 
level of assurance that their own computational 
requirements will be satisfied and that there 
will be no adverse outcomes associated with 
their participation. 

Given that several powerful parallel-program- 
ming tools are now being developed to support 
DSM approaches (Saltz et al. 1998), and that 
the goal of most is to hide low-level details from 
the user, is it appropriate to wait for fully auto- 
mated parallel environments? No, because in 
the short-term, it is unlikely that users will 
either want, or be able, to remove themselves 

completely from some level of involvement 
with the machines on which they compute. 
Great strides have been made in providing users 
with tools such as MPI (Snir 1998) and MPI2 

(International Journal of High Performance Com? 

puting Applications 1998) that enable users to 
write programs that are far more portable than 

previously possible. And new versions of tradi? 
tional high-level languages (e.g., High Perfor? 
mance Fortran [HPF]) now handle some of the 
details of automatic parallelization (Kennedy et 
al. 1997). Load balancing of geographic in? 
formation among processors, however, remains 
an important factor in many parallel applica? 
tions, since data "locality" can seriously affect 

performance. The idea is that, if data for a par? 
ticular processor can be found on a machine 
that is "near" it in its network arrangement (e.g., 
in its own memory or that of a machine in a 
local cluster), then processing will proceed 
more efficiently (with low latency) than if data 
must be accessed from a machine that is "far" 
from it. Grimshaw et al. (1998: 50), for exam? 

ple, state that "it is, after all, at least 30msec 
from California to Virginia." This invites a re- 
statement of Tobler's oft-invoked law of geog? 
raphy: A program will perform more efficiently 
if required data can be accessed from a near 
node. Data, therefore, might be allocated dy- 

namically in uniform blocks, strips, or nonuni- 
form partitionings, such as those used by 
quadtrees. Research on the application of geo? 
graphic data structures such as Morton se- 

quences might prove useful in this regard (Ding 
and Densham 1996; Qian and Peuquet 1997; see 
also Saltzetal. 1998). 

The architectural shift toward distributed 

parallelism will likely cause researchers to ex- 
tend their thinking in interesting ways. As deci- 
sion (and planning) support systems continue to 

develop, there is a need to develop interactive 

approaches to the generation and evaluation of 
alternative solutions to problems (Densham 
1994). This need is especially pressing when 

groups of people are convened to address ill- 
defined public policy problems (Armstrong, 
1994; Churcher and Churcher 1999). In such 

cases, a group may meet together only for short 

periods of time but may wish to consider a prob? 
lem from several perspectives. Often, a computer- 
produced solution may have some type of iden- 
tifiable limitation but prove to be a useful point 
of departure for group discussion. If, however, 
only one or two computationally complex solu? 
tions can be generated during the course of a 

meeting, group members will be unable to real- 
ize substantial benefits from decision-support tools. 
To circumvent this bottleneck, it is possible to 

spawn a swarm of software agents (Chorafas 
1998; Tecuci 1998; Murch and Johnson 1999) 
that will autonomously search for spare com? 

puter cycles, execute models using different 

parameters, and report results back to decision- 
makers. Obviously, research is needed to accom- 

plish this task, and also to help decisionmakers 
sort through the complexity of evaluating com- 

peting alternatives. 
Researchers will also be required to rethink 

and, in some cases recast, their approaches to 

computer-based modeling and analysis if they 
wish to reap the performance benefits of new 

parallel environments. Modelers have made a 
substantial investment in formulating com? 

puter code so that it can run efficiently on the 

dominant, sequential architecture of the past 
several decades. It is somewhat ironic that these 

highly optimized algorithms will not perform 
well in parallel environments if they rely on in- 
tricate data structures that preclude indepen- 
dence of program elements?this is anathema 
to parallel efficiency. Armstrong and Densham 

(1992), for example, suggest that one simple, 
but relatively slow, locational modeling heuris- 
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tic would be much easier to implement and ex- 
ecute in parallel environments than other 

widely used but more complex approaches. Is? 
sues such as this need additional research as ge? 
ographers and computational scientists turn 
their attention to spatially explicit models that 
execute on state-of-the-art, distributed parallel 
architectures. 

Visualization, Computational Science, 
and Cartography 

Researchers working with complex models 
often wish to visualize their work to "see" if re- 
sults make intuitive and theoretical sense. Many 
model applications in computational science 
have a geographic component and thus, maps 
are often needed. Advances in visualization 
have taken place on several fronts, but few are 
more immediately and simultaneously visceral 
and informative than immersion. New technol- 

ogies enable researchers to virtually walk around 
inside representations of their models to gain a 
better understanding of their data and modeling 
results, including the interrelationships among 
variables and the various parameterizations used 

(Foster and Kesselman 1999). Though such ap? 
proaches to visualization are still somewhat ex- 

otic, many universities have acquired projection- 
based virtual-reality environments that can be 
used to visualize spatial processes (Reed et al. 

1997) and support virtual exploratory analyses. 
It is interesting to note, however, that while 

cartographers have worked diligently during the 

past several decades to understand map commu? 
nication and use, they have largely operated un? 
der an "abstractive" paradigm: maps are abstrac- 
tions of reality that are created through a 

process of applying a set of limiting filters. This 

paradigm has driven a considerable amount of 
research in areas such as symbolization and gen- 
eralization. This work is valuable and must be 

continued, but there is a tension emerging be? 
tween the abstractions of cartographers and the 

virtual, augmented realities that are now being 
created in advanced visualization laboratories. 
Research needs to be conducted that will recon- 
cile these views. It is likely, for example, that hi- 
erarchical generalization research and generali- 
zation algorithms (McMaster and Shea 1992) 
will prove to be useful to researchers interested 
in developing distributed immersive collabora- 
tories (Kouzes et al. 1996), and yet, visualization 

researchers seem to be unaware of this work 

(Song andNorman 1994). 

Conclusion 

As we begin the year 7D0 (hexadecimal), 
current trends suggest that the computational 
requirements of geographic research will con? 
tinue to increase. New sources of disaggregated 
and high-resolution data are becoming widely 
available; we are now awash in data resources, 
and diis tide will not ebb. Geographers and com? 

putational scientists will wish to use these data 
in increasingly detailed dynamic spatial models. 
In addition, new computationally intensive com- 

puting paradigms are making inroads in the many 
areas of geography that routinely use computing 
to help researchers investigate research prob? 
lems. Geographers, for example, are beginning 
to adopt computational approaches such as ge- 
netic algorithms (and other types of evolution- 

ary programming), simulated annealing, neural 

networks, and data mining. Most of these new 

paradigms hold something in common: they are 

explicitly parallel. 
This is fortuitous since high-performance 

computing is now synonymous with parallel 
processing. Parallel architectures are becoming 
increasing decentralized as off-the-shelf work- 
stations are being linked into flexible clusters 
onto which parts of large problems can be allo- 
cated to independent processing nodes. This 

provides a cost-effective approach to parallelism 
that is within the reach of researchers at most 
universities. This innovation, when coupled 
with new machine-independent approaches to 

parallel programming, and broad access to high- 
speed networks (http://www.internet2.edu) and 
visualization tools, will provide geographers 
with an exciting testbed for the design and im- 

plementation of parallel, high resolution, spa- 
tially explicit simulation models and new classes 
of distributed computationally intensive geo? 
graphic models with interacting components. 
As geographers increasingly come to employ 
parallel architectures in their work, they will 

also, perhaps, forge alliances with the growing 
number of computational scientists who are de? 

veloping and evaluating spatial models. This in- 
teraction will be beneficial to the interdisci- 

plinary computational science community, will 

strengthen the position of geographers in a vari? 

ety of academic and research settings, and will 
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lead to an improved understanding of complex 

spatial processes. 
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Note 

1. Scalability is an important issue in parallel imple- 
mentations, for if a program is applied to a dataset 
and does not produce results in less time as addi- 
tional processors are introduced, computational 
resources are not used efficiently. A measure of 

speedup, defined as the run time required to exe- 
cute a program with one processor, divided by the 
run time required with n processors, is often used 
to help assess the scalability of an implementa- 
tion. Speedups are usually computed across the 

range of available processors (e.g., 1, 2,4, 8, and 16 

processors in a 16-processor environment) and 

graphed with the expectation that for a "perfectly 
efficient" program, the slope of the graph will be 
one if unit spacing is used on both axes (see, for 

example, Armstrong and Marciano 1994). When 

systematic departures from this expectation are 
observed, changes are often made in an attempt to 

improve software performance. 
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