Electrical and Computer Engineering

ELECTRICAL AND COMPUTER ENGINEERING

Faculty

Professors

Beal Botosani Denenberg Lyon Sergent, *chair* Taylor

Associate Professors Govil Tsacoyeanes

Assistant Professors Mandello

Munden Wojna

Senior Instructor Craciun

Bachelor of Science

The computer engineering program and the electrical engineering program are administered under the Department of Electrical and Computer Engineering. The two undergraduate programs share many courses and both programs have a strong design component. Students learn the theory in the classroom and put it into practice in the laboratory, resulting in an electrical or computer engineering graduate that is ready to put these skills into practice in an industrial environment. The Bachelor of Science degree programs in both Electrical Engineering and Computer Engineering are accredited by the Accreditation Board for Engineering and Technology (ABET). The programs blend theoretical knowledge with hands-on experiential learning in a rich menu of topics. The educational objectives of the two programs are as follows:

- **Domain Knowledge:** Graduates of the BSEE and BSCE programs will apply their technical skills to design/analyze/manage electrical/computer systems in their chosen discipline in the field of electrical engineering. They will exercise technical, quality, schedule, and cost constraints in the design process.
- **Professional Practice:** They will practice the profession of electrical/computer engineering as either an individual contributor to their discipline or as a member of an interdisciplinary team in a competent and efficient manner.
- Lifelong Learning: They will maintain membership in professional societies as part of being committed to lifelong learning about their profession and its relationship to society.

School of Engineering

• Engineering Citizenship: They will practice in an ethical and professional manner and will constantly be aware of the impact of their efforts on social welfare, safety, and the environment. They will promote justice in all matters and be of service to their community.

For the first year of study, these programs place major emphasis on the fundamentals of engineering and computer science, mathematics, and the basic sciences to provide the background for later engineering science and design courses. Following preparatory work, the fundamentals of electrical, computer, mechanical, and materials engineering concepts are developed. Advanced courses in electrical and computer engineering further develop knowledge in these engineering disciplines. The programs place increasing emphasis on design assignments. Students may specialize in a specific area of interest to them, and in accord with their specific career objectives, by taking two elective courses that provide depth in this area.

Computer Engineering Computer Engineering Curriculum (133 Credits)

MA 125 PS 15 PS 15L	Fall Semester Calculus I General Physics I General Physics I Lab	Credits 3 3 1
EG 31 CS 131 EN 11 Total	Fundamentals of Engineering and Computer Science I Computer Programming I Composition and Prose Literature	3 3 3 16
Year 1 – 9 MA 126 PS 16 PS 16L FG 32	Spring Semester Calculus II General Physics II General Physics II Lab Eurodementals of Engineering and	3 3 1

EG 32Fundamentals of Engineering and
Computer Science II3CS 132Computer Programming II3EN 12Introduction to Literature3Total16

268 School of Engineering

Year 2 – 1 MA 227 MA 231 EE 213 EE 213L CS 232 PH 10 Total	Fall Semester Calculus III Discrete Mathematics Introduction to Electric Circuits Electric Circuits Lab Data Structures Introduction to Philosophy	Credits 3 3 3 1 3 3 3 3 16
Year 2 – 5 MA 321 SW 327 CR 246 CR 246L EE 231 EE 231L HI 30 Total	Spring Semester Ordinary Differential Equations Distributed Operating Systems Digital Design II Digital Design Lab II Introduction to Electronics Circuits and Devices Electronics Circuits Lab Europe and the World in Transition	3 3 3 1 3 1 3 16
Year 3 – I MA 321 SW 327 CR 246 CR 246L EE 231 EE 231L HI 30 Total	Fall Semester Ordinary Differential Equations Distributed Operating Systems Digital Design II Digital Design Lab II Introduction to Electronics Circuits and Devices Electronics Circuits Lab Europe and the World in Transition	3 3 1 3 1 3 17
Year 3 – 5 EE 346 EE 346L CR 320 EC 11 AH PH Total	Spring Semester Embedded Microcontrollers Microcontrollers Laboratory Computer Networks Introduction to Microeconomics Art History Elective Philosophy Elective	3 1 3 3 3 3 16
CR 390	Fall Semester Senior Design Project I Probability and Random Processes Engineering Graphics I English Elective History Elective Religious Studies Elective	3 3 3 3 3 3 3 3 3 3
Year 4 – 5 CR 391 CR AE SSE GE GE GE Total	Spring Semester Senior Design Project II Major Elective Applied Ethics Elective Social Science Elective General Elective I General Elective II	3 3 3 3 3 3 18

Electrical and Computer Engineering

Electrical Engineering Electrical Engineering Curriculum (134 credits)

Year 1 – F MA 125 PS 15 PS 15L EG 31 CS 131 EN 11 Total	Fall Semester Calculus I General Physics I General Physics I Lab Fundamentals of Engineering and Computer Science I Computer Programming I Composition and Prose Literature	Credits 3 1 3 3 3 3 3 16
Year 1 – 5 MA 126 PS 16 PS 16L EG 32 EN 12 HI 30 Total	Spring Semester Calculus II General Physics II General Physics II Lab Fundamentals of Engineering and Computer Science II Introduction to Literature Europe and the World in Transition	3 3 1 3 3 3 16
MA 227 EE 213	Fall Semester Calculus III Introduction to Electric Circuits Electric Circuits Lab General Inorganic Chemistry	3 3 1 3

EE 213L CH 11 CH 11L ME 201 RS 10 Total	Electric Circuits Lab General Inorganic Chemistry General Inorganic Chemistry Lab Engineering Statics Introduction to Religious Studies	1 3 1 3 3 17
Year 2 – Spring Semester		

Calculus IV	3
Frequency Domain Circuit Analysis	3
Digital Design I	3
Digital Design I Lab	1
Introduction to Philosophy	3
	3
,	16
	Frequency Domain Circuit Analysis Digital Design I

Electrical and Computer Engineering

Year 3 – F MA 321 EE 231	Fall Semester Ordinary Differential Equations Introduction to Electronics Circuits	Credits 3
EE 231L EE 301 ME 241 EN HI Total	and Devices Electronics Circuits Lab Signals and Systems I Principles of Thermodynamics English Elective History Elective	3 1 3 3 3 3 19
Year 3 – 5 EE 331 EE 331L EE CD 211 EC 11 PH Total	Spring Semester Analog Electronics Design Analog Electronics Lab Major Elective I Engineering Graphics I Introduction to Microeconomics Philosophy Elective	3 1 3 3 3 3 16
Year 4 – F EE 321 EE 390 EG 351 EE RS Total	Fall Semester Electromagnetic Fields Senior Design Project I Probability and Random Processes Major Elective 2 Religious Studies Elective	4 3 3 3 3 16

EE 390	Senior Design Project I
EG 351	Probability and Random Processes
EE	Major Elective 2
RS	Religious Studies Elective
Total	•

Year 4 – Spring Semester

MC 300	Feedback and Control Systems	3
EE 391	Senior Design Project II	3
GE	General Elective I	3
GE	General Elective II	3
AE	Applied Ethics Elective	3
SSE	Social Science Elective	3
Total		18

School of Engineering

Electrical and Computer Engineering Electives

Biomedic ECE 431 ECE 432 EG 233	Biomedical Imaging	Credits 3 3 3
Commun EE 350 EE 354 EE 354L ECE 475 ECE 480	Communication Systems Electro-Optical Communications Electro-Optical Communications La Microwave Structures	3 3 1 3 3
Compute CR 310 CR 311 CR 320	r Engineering Voice and Signal Processing Image Processing Computer Networks	3 3 3
Design EE 346 EE 346L EE 382	Embedded Microcontrollers Microcontroller Lab Advanced Electrical Project	3 1 3
Digital Si EE 304 EE 350 ECE 485	gnal Processing Signals and Systems II Communication Systems Digital Communications	3 3 3
Microelec ECE 445 ECE 447 EE 335 ECE 405	Digital Integrated Circuit Design Analog Integrated Circuit Design Microelectronics	3 3 3 3
Power Sy EE 360 EE 360L ECE 495	Power Electronics Power Electronics Lab Power Generation and Distribution	3 1 3
Systems ECE 415 ECE 465 MF 361	Numerical Methods	3 3 3